初三数学动点问题

合集下载

中考数学动点问题(含答案)

中考数学动点问题(含答案)

中考数学之动点问题一、选择题:1. 如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停顿,设点P运动的路程为*,△ABP的面积为y,如果y关于*的函数图象如图2所示,则△ABC的面积是〔〕A、10B、16C、18D、20二、填空题:1. 如上右图,C为线段AE上一动点〔不与点A,E重合〕,在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有_______________________〔把你认为正确的序号都填上〕。

三、解答题:1.〔2008年大连〕如图12,直角梯形ABCD中,AB∥CD,∠A = 90°,CD = 3,AD = 4,tan B = 2,过点C作CH⊥AB,垂足为H.点P为线段AD上一动点,直线PM∥AB,交BC、C H于点M、Q.以PM为斜边向右作等腰Rt△PMN,直线MN交直线AB于点E,直线PN交直线A B于点F.设PD的长为*,EF的长为y.⑴求PM的长(用*表示);⑵求y与*的函数关系式及自变量*的取值范围(图13为备用图);⑶当点E在线段AH上时,求*的取值范围(图14为备用图).2.〔2008年福建宁德〕如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时0<x<,△DCQ的8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为*秒()8面积为y1平方厘米,△PCQ的面积为y2平方厘米.⑴求y1与*的函数关系,并在图2中画出y1的图象;⑵如图2,y2的图象是抛物线的一局部,其顶点坐标是〔4,12〕,求点P的速度及AC的长;⑶在图2中,点G是*轴正半轴上一点〔0<OG<6=,过G作EF垂直于*轴,分别交y1、y2于点E、F.①说出线段EF的长在图1中所表示的实际意义;②当0<*<6时,求线段EF长的最大值.3.〔2008年白银〕如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为〔4,3〕.平行于对角线AC 的直线m 从原点O 出发,沿*轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..分别交于点M 、N ,直线m 运动的时间为t 〔秒〕. (1) 点A 的坐标是__________,点C 的坐标是__________; (2) 当t=秒或秒时,MN=21AC ; (3) 设△OMN 的面积为S ,求S 与t 的函数关系式;(4) 探求(3)中得到的函数S 有没有最大值?假设有,求出最大值;假设没有,要说明理由.参考答案一、选择 A二、填空:〔1〕〔2〕〔3〕〔5〕 三、解答: 2、解:⑴∵CD CQ S DCQ ⋅⋅=∆21,CD =3,CQ =*, ∴x y 231=. 图象如下图.⑵方法一:CP CQ S PCQ ⋅⋅=∆21,CP =8k -*k ,CQ =*, ∴()kx kx x kx k y 42182122+-=⋅-⨯=.∵抛物线顶点坐标是〔4,12〕,∴12444212=⋅+⋅-k k . 解得23=k .图1C Q → B图2则点P 的速度每秒23厘米,AC =12厘米. 方法二:观察图象知,当*=4时,△PCQ 面积为12. 此时PC =AC -AP =8k -4k =4k ,CQ =4.∴由CP CQ S PCQ ⋅⋅=∆21,得 12244=⨯k .解得23=k . 则点P 的速度每秒23厘米,AC =12厘米.方法三:设y 2的图象所在抛物线的解析式是c bx ax y ++=2. ∵图象过〔0,0〕,〔4,12〕,〔8,0〕,∴⎪⎩⎪⎨⎧=++=++=.0864124160c b a c b a c ,, 解得 ⎪⎪⎩⎪⎪⎨⎧==-=.0643c b a ,, ∴x x y 64322+-=. ①∵CP CQ S PCQ ⋅⋅=∆21,CP =8k -*k ,CQ =*,∴kx kx y 42122+-=. ②比拟①②得23=k .则点P 的速度每秒23厘米,AC =12厘米.⑶①观察图象,知线段的长EF =y 2-y 1,表示△PCQ 与△DCQ 的面积差〔或△PDQ 面积〕. ②由⑵得 x x y 64322+-=.〔方法二,x x x x y 643232382122+-=⋅⎪⎭⎫ ⎝⎛-⨯⨯=〕∵EF =y 2-y 1, ∴EF =x x x x x 29432364322+-=-+-, ∵二次项系数小于0,∴在60<x<范围,当3=x 时,427=EF 最大. 3、解:(1)〔4,0〕,〔0,3〕; 2分 (2) 2,6; 4分 (3) 当0<t ≤4时,OM =t .由△OMN ∽△OAC ,得OCONOA OM =, ∴ ON =t 43,S=283t . 6分 当4<t <8时,如图,∵ OD =t ,∴ AD = t-4. 方法一:由△DAM ∽△AOC ,可得AM =)4(43-t ,∴ BM =6-t 43. 7分 由△BMN ∽△BAC ,可得BN =BM 34=8-t ,∴ CN =t-4. 8分S=矩形OABC 的面积-Rt △OAM 的面积- Rt △MBN 的面积- Rt △NCO 的面积=12-)4(23-t -21〔8-t 〕〔6-t 43〕-)4(23-t =t t 3832+-. ·························· 10分方法二:易知四边形ADNC 是平行四边形,∴ CN =AD =t-4,BN =8-t .7分 由△BMN ∽△BAC ,可得BM =BN 43=6-t 43,∴ AM =)4(43-t .8分 以下同方法一. (4) 有最大值.方法一: 当0<t ≤4时,∵ 抛物线S=283t 的开口向上,在对称轴t=0的右边, S 随t 的增大而增大, ∴ 当t=4时,S 可取到最大值2483⨯=6; 11分当4<t <8时, ∵ 抛物线S=t t 3832+-的开口向下,它的顶点是〔4,6〕,∴ S <6. 综上,当t=4时,S 有最大值6. 12分 方法二:∵ S=22304833488t t t t t ⎧<⎪⎪⎨⎪-+<<⎪⎩,≤,∴ 当0<t <8时,画出S 与t 的函数关系图像,如下图. 11分显然,当t=4时,S有最大值6. 12分说明:只有当第〔3〕问解答正确时,第〔4〕问只答复"有最大值〞无其它步骤,可给1分;否则,不给分.。

初三数学动点问题归类及解题技巧

初三数学动点问题归类及解题技巧

初三数学动点问题归类及解题技巧初三数学学科是学生学习的重要科目之一,数学知识的掌握对学生的数学素养和综合能力提高有着非常重要的作用。

其中,解题技巧和问题分类是学生学习数学的关键点之一。

以下将从初三数学动点问题的归类和解题技巧展开讨论。

一、问题归类初三数学动点问题主要包括以下几种类型:1.几何问题:主要涉及到点、线、面等几何图形的性质和运动规律,如点的坐标、直线的方程、圆的性质等。

2.图像问题:主要是通过图像呈现的运动问题,要求学生根据图像进行分析和解答,比如速度图、位移图、加速度图等。

3.速度问题:主要是针对运动物体的速度和位移等概念展开的问题,要求学生掌握速度的定义和相关计算方法。

4.运动方程问题:主要是要求学生建立物体运动的数学模型,并求解相关问题,如撞击问题、相遇问题等。

5.加速度问题:主要是针对物体加速度的概念和计算方法进行考察,要求学生对加速度的定义和公式进行灵活运用。

6.综合问题:综合了以上几种类型的数学问题,要求学生在综合运用各种知识和方法的基础上解答问题。

以上这些类型的动点问题,对学生的数学能力和解题技巧有着很高的要求,需要学生通过不断的练习和思考,逐渐提高自己的解题能力。

二、解题技巧初三数学动点问题的解题技巧主要包括以下几点:1.充分理解问题:在解题前,要先充分理解问题的意思和要求,明确问题中涉及到的数学概念和知识点,了解问题的背景和条件。

2.建立数学模型:对于涉及到物体运动的问题,要根据问题的要求建立数学模型,明确物体的运动规律和相关参数,建立方程或不等式。

3.运用相关知识和公式:根据问题的情况,灵活运用速度、加速度、位移等物理量的定义和相关公式进行计算,注意在计算过程中要完整标明单位。

4.图像分析:对于图像问题,要细致分析图像的特点和变化规律,结合数学知识对图像进行解释和分析,从图像中得出相关信息。

5.综合能力:对于综合问题,要能够综合运用各种知识和方法,进行综合分析和推理,完成问题的解答。

九年级动点问题知识点

九年级动点问题知识点

九年级动点问题知识点动点问题是九年级数学中的重要知识点之一,主要涉及到对平面图形与运动的关系进行分析与计算。

本文将从定义、性质和解题方法三个方面进行论述,并结合示例详细说明。

以下是对九年级动点问题知识点的介绍。

1. 定义动点问题是指在平面直角坐标系中,通过对点在平面中的位置与运动进行分析和计算来解决具体问题的数学问题。

动点可以沿直线、曲线或者其他规定的路线进行运动。

2. 性质(1)运动的方向:动点的运动可以有向上、向下、向左、向右等不同的方向。

(2)运动的速度:动点的运动速度可以是恒定的、变化的或者被规定的。

(3)运动的路径:动点可以在平面上运动,其路径可以是直线、曲线或者特定的图形。

(4)坐标的变化:动点在运动过程中,其坐标会发生相应的变化。

3. 解题方法(1)建立坐标系:根据题意,建立合适的平面直角坐标系。

(2)确定动点的位置:根据题目的描述,确定动点在平面上的初始位置和运动规律。

(3)列方程或函数:根据动点在平面上的位置与运动规律,利用代数方法列出方程或函数。

(4)解方程或函数:对所列出的方程或函数进行求解,得到动点的位置或相关数据。

(5)分析解答:根据求解结果,结合问题的要求进行分析和答题。

以下是一个例子,通过该例子来说明动点问题的解题方法。

【示例】小明在操场上做直线运动,他从一端A出发,以每秒6米的速度向另一端B跑去,到达B后立即折返,以每秒8米的速度返回A。

已知AB的长度为80米,请问他什么时候回到起点A?解答过程:(1)建立坐标系:以A点为原点,假设横坐标表示时间,纵坐标表示距离。

(2)确定动点的位置:小明从A点出发,向B点跑去,然后又返回A点。

(3)列方程或函数:假设小明运动的时间为t秒,则小明到达B点的距离为6t米,小明从B点返回到A点的时间为80/8=10秒,所以小明到达A点的距离为6t-8*10=80-6t米。

(4)解方程或函数:根据所列的方程6t=80-6t,解得t=5秒。

数学动点问题及练习题附答案

数学动点问题及练习题附答案

初中数学动点问题及练习题附参考答案专题一:建立动点问题的函数解析式函数提醒了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于*一个点或*图形的有条件地运动变化,引起未知量与量间的一种变化关系,这种变化关系就是动点问题中的函数关系.则,我们怎样建立这种函数解析式呢"下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。

二、应用比例式建立函数解析式。

三、应用求图形面积的方法建立函数关系式。

专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考察问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性〔特殊角、特殊图形的性质、图形的特殊位置。

〕动点问题一直是中考热点,近几年考察探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、以动态几何为主线的压轴题。

〔一〕点动问题。

〔二〕线动问题。

〔三〕面动问题。

二、解决动态几何问题的常见方法有:1、特殊探路,一般推证。

2、动手实践,操作确认。

3、建立联系,计算说明。

三、专题二总结,本大类习题的共性:1.代数、几何的高度综合〔数形结合〕;着力于数学本质及核心容的考察;四大数学思想:数学结合、分类讨论、方程、函数.2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。

专题三:双动点问题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考察学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1 以双动点为载体,探求函数图象问题。

中考动点问题经典题型归类总结附答案

中考动点问题经典题型归类总结附答案

专题十动点型问题考点一:建立动点问题的函数解析式(或函数图像)例1 (2013•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.1.(2013•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.1.C考点二:动态几何型题目动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

(一)点动问题.例2 (2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A.B.C.D.思路分析:分三段考虑,①点P在AD上运动,②点P在DC上运动,③点P在BC上运动,分别求出y与t 的函数表达式,继而可得出函数图象. 解:在Rt △ADE 中,AD=2213AE DE +=,在Rt △CFB 中,BC=2213BF CF +=,①点P 在AD 上运动:对应训练2.(2013•北京)如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2.设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .2.A(二)线动问题例3 (2013•荆门)如右图所示,已知等腰梯形ABCD ,AD ∥BC ,若动直线l 垂直于BC ,且向右平移,设扫过的阴影部分的面积为S ,BP 为x ,则S 关于x 的函数图象大致是( )A.B.C.D.解:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A选项的图象符合.故选A.对应训练3.(2013•永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A.B.C.D.3.A(三)面动问题例4 (2013•牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为()A.B.C.D.解:根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-Vt×1=4-Vt,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,A符合;故选A.对应训练4.(2013•衡阳)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.4.A究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.(4)△QMN 为等腰三角形的情形有两种,需要分类讨论,避免漏解.解:(1)∵C (7,4),AB ∥CD ,∴D (0,4).∵sin ∠DAB=22, ∴∠DAB=45°,∴OA=OD=4,∴A (-4,0).设直线l 的解析式为:y=kx+b ,则有4-40b k b =⎧⎨+=⎩, 解得:k=1,b=4,∴y=x+4.∴点A 坐标为(-4,0),直线l 的解析式为:y=x+4.(2)在点P 、Q 运动的过程中:①当0<t≤1时,如答图1所示:过点C 作CF ⊥x 轴于点F ,则CF=4,BF=3,由勾股定理得BC=5.过点Q 作QE ⊥x 轴于点E ,则BE=BQ•cos ∠CBF=5t•35=3t . ∴PE=PB -BE=(14-2t )-3t=14-5t ,S=12PM•PE=12×2t×(14-5t )=-5t 2+14t ; ②当1<t≤2时,如答图2所示:过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t-5,PE=AF-AP-EF=11-2t-(5t-5)=16-7t,S=12PM•PE=12×2t×(16-7t)=-7t2+16t;③当点M与点Q相遇时,DM+CQ=CD=7,即(2t-4)+(5t-5)=7,解得t=167.当2<t<167时,如答图3所示:MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,S=12PM•MQ=12×4×(16-7t)=-14t+32.(3)①当0<t≤1时,S=-5t2+14t=-5(t-75)2+495,∵a=-5<0,抛物线开口向下,对称轴为直线t=75,∴当0<t≤1时,S随t的增大而增大,∴当t=1时,S有最大值,最大值为9;②当1<t≤2时,S=-7t2+16t=-7(t-87)2+647,∵a=-7<0,抛物线开口向下,对称轴为直线t=87,∴当t=87时,S有最大值,最大值为647;③当2<t<167时,S=-14t+32∵k=-14<0,∴S随t的增大而减小.又∵当t=2时,S=4;当t=167时,S=0,∴0<S<4.综上所述,当t=87时,S有最大值,最大值为647.(4)△QMN为等腰三角形,有两种情形:①如答图4所示,点M在线段CD上,MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,MN=DM=2t-4,由MN=MQ,得16-7t=2t-4,解得t=209;②如答图5所示,当点M运动到C点,同时当Q刚好运动至终点D,此时△QMN为等腰三角形,t=125.故当t=209或t=125时,△QMN为等腰三角形.对应训练5.(2013•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B-A-D-A 运动,沿B-A运动时的速度为每秒13个单位长度,沿A-D-A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q 两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A-D-A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B-A-D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B-A-D运动过程中,当线段PQ 扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.5.解:(1)当点P沿A-D运动时,AP=8(t-1)=8t-8.当0<t<1时,如图①.作过点Q作QE⊥AB于点E.S△ABQ=12AB•QE=12BQ×12,4当0<t≤1时,如图③.∵S △BPM =S △BQM ,∴PM=QM .∵AB ∥QR ,∴∠PBM=∠QRM ,∠BPM=∠MQR ,在△BPM 和△RQM 中PBM QRMBPM MQR PM QM∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BPM ≌△RQM .∴BP=RQ ,∵RQ=AB ,∴BP=AB∴13t=13,解得:t=1当1<t≤83时,如图④.∵BR 平分阴影部分面积,∴P 与点R 重合.34∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或83时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(4)如图⑥,当P在A-D之间或D-A之间时,C′D′在BC上方且C′D′∥BC时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50-5t=50-8(t-1)+13,或50-5t=8(t-1)-50+13,解得:t=7或t=95 13.当P在A-D之间或D-A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50-5t+13=8(t-1)-50,解得:t=121 13.∴当t=7,t=9513,t=12113时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.中考真题演练一、选择题1.(2013•新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E 以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.51.D2.(2013•安徽)图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变2.D3.(2013•盘锦)如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为()A.B.C.D.3.B4.(2013•龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()A.2B.3C.4D.54.B5.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.516、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A、①②③B、①④⑤(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.6.解:(1)∵A(8,0),B(0,6),8.(2013•宜昌)半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.(1)过点B作的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF 重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.7.解:(1)①∵半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,当点A在⊙O如图,过O 点作OK ⊥MN 于K ,∴∠MON=2∠NOK ,MN=2NK ,在Rt △ONK 中,sin ∠NOK=2NK NK ON =, ∴∠NOK 随NK 的增大而增大,∴∠MON 随MN 的增大而增大,∴当MN 最大时∠MON 最大,当MN 最小时∠MON 最小,①当N ,M ,A 分别与D ,B ,O 重合时,MN 最大,MN=BD ,∠MON=∠BOD=90°,S 扇形MON 最大=π(cm 2),②当MN=DC=2时,MN 最小,∴ON=MN=OM ,∴∠NOM=60°,S 扇形MON 最小=23π(cm 2), ∴23π≤S 扇形MON ≤π. 故答案为:30°.9.(2013•重庆)已知:如图①,在平行四边形ABCD 中,AB=12,BC=6,AD ⊥BD .以AD 为斜边在平8.解:(1)∵四边形ABCD是平行四边形,∴AD=BC=6.在Rt△ADE中,AD=6,∠EAD=30°,∴AE=AD•cos30°=33,DE=AD•sin30°=3,∴△AED的周长为:6+33+3=9+33.(2)在△AED向右平移的过程中:(I)当0≤t≤1.5时,如答图1所示,此时重叠部分为△D0NK.∵DD0=2t,∴ND0=DD0•sin30°=t,NK=ND0•tan30°=3t,∴S=S△D0NK=12ND0•NK=12t•3t=32t2;(II)当1.5<t≤4.5时,如答图2所示,此时重叠部分为四边形D0E0KN.∵AA0=2t,∴A0B=AB-AA0=12-2t,∴A0N=12A0B=6-t,NK=A0N•tan30°=33(6-t).∴S=S四边形D0E0KN=S△ADE-S△A0NK=12×3×33-12×(6-t)×33(6-t)=-36t2+23t-332;(III)当4.5<t≤6时,如答图3所示,此时重叠部分为五边形D0IJKN.∵AA 0=2t,∴A0B=AB-AA0=12-2t=D0C,∴A0N=12A0B=6-t,D0N=6-(6-t)=t,BN=A0B•cos30°=3(6-t);易知CI=BJ=A0B=D0C=12-2t,∴BI=BC-CI=2t-6,S=S梯形BND0I-S△BKJ=12[t+(2t-6)]• 3(6-t)-12•(12-2t)•33(12-2t)=-1336t2+203t-423.综上所述,S与t之间的函数关系式为:S=2223(0 1.5)2333-23-(1.5 4.5)62133-203-423(4.56)6t tS t t tt t t⎧≤≤⎪⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩.(3)存在α,使△BPQ为等腰三角形.理由如下:经探究,得△BPQ∽△B1QC,故当△BPQ为等腰三角形时,△B1QC也为等腰三角形.(I)当QB=QP时(如答图4),则QB1=QC,∴∠B1CQ=∠B1=30°,即∠BCB1=30°,∴α=30°;(II)当BQ=BP时,则B1Q=B1C,若点Q在线段B1E1的延长线上时(如答图5),∵∠B1=30°,∴∠B1CQ=∠B1QC=75°,即∠BCB1=75°,∴α=75°.10.(2013•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB、(2)在点P 从点F 运动到点D 的过程中,某一时刻,点P 落在MQ 上,求此时BQ 的长度;(3)当点P 在线段FD 上运动时,求y 与x 之间的函数关系式.11.解:(1)当点P 运动到点F 时,∵F 为AC 的中点,AC=6cm ,∴AF=FC=3cm ,∵P 和Q 的运动速度都是1cm/s ,∴BQ=AF=3cm ,∴CQ=8cm -3cm=5cm ,故答案为:5.(2)设在点P 从点F 运动到点D 的过程中,点P 落在MQ 上,如图1,则t+t -3=8,t=112, BQ 的长度为112×1=112(cm );(3)∵D 、E 、F 分别是AB 、BC 、AC 的中点,∴DE=12AC=12×6=3, DF=12BC=12×8=4, ∵MQ ⊥BC ,∴∠BQM=∠C=90°,∵∠QBM=∠CBA ,∴△MBQ ∽△ABC ,∴BQ MQ BC AC=, ∴86x MQ =,MQ=34x,分为三种情况:①当3≤x<4时,重叠部分图形为平行四边形,如图2,y=PN•PD=34x(7-x)即y=-34x2+214x;②当4≤x<112时,重叠部分为矩形,如图3,y=3[(8-X)-(X-3))]即y=-6x+33;③当112≤x≤7时,重叠部分图形为矩形,如图4,y=3[(x-3)-(8-x)]即y=6x-33.213.解:(1)如图,2如图2,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小∵B(6,0),C(0,2)(3)如图3,连接ME ,∵CE 是⊙M 的切线∴ME ⊥CE ,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDE ∵在△COD 与△MED 中COA DEMODC MD EOC ME∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△MED (AAS ),∴OD=DE ,DC=DM设OD=x 则CD=DM=OM -OD=4-x 则RT △COD 中,OD 2+OC 2=CD 2, ∴x 2+22=(4-x )2∴x=32,∴D (32,0)设直线CE 的解析式为y=kx+b ∵直线CE 过C (0,2),D (32,0)两点,则3022k b b ⎧+=⎪⎨⎪=⎩,解得:432k b ⎧=-⎪⎨⎪=⎩。

九年级中考压轴——动点问题集锦

九年级中考压轴——动点问题集锦

九年级中考压轴——动点问题集锦1、已知等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动。

过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒。

1) 当四边形MNQP为矩形时,有MN=QP,即MN在运动t秒后,线段QP的长度为3+t。

因为三角形ABC是等边三角形,所以三角形ABC的高等于边长的一半,即2根号3.因此,四边形MNQP的面积为2根号3*t平方+2t。

2) 四边形MNQP的面积为S,运动时间为t。

因为三角形ABC是等边三角形,所以三角形ABC的高等于边长的一半,即2根号3.因此,四边形MNQP的高为2根号3.由于四边形MNQP是矩形,所以MN=QP=3+t,PQ=2根号3.因此,S=PQ*MN=2根号3*(3+t)。

函数关系式为S=2根号3*t+6根号3,t的取值范围为t≥0.2、在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=42,∠B=45度。

动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动。

设运动的时间为t 秒。

1) 因为三角形ABD和三角形CBD相似,所以BD=AB-AD=39.由于三角形BCD是直角三角形,所以BC=BD/根号2=39/根号2.2) 当MN∥AB时,由于三角形BMD和三角形BAC相似,所以BD/AB=MD/MN,即39/42=2t/(3+t),解XXX13秒。

3) 当△MNC为等腰三角形时,由于三角形MNC和三角形ABD相似,所以CN/AD=MN/BD,即CN/3=(3+t)/39,XXX13秒。

3、在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(4,3),点C在y轴的正半轴上。

动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点。

(完整)初三数学动点问题

(完整)初三数学动点问题

数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

动态几何形成的面积问题是动态几何中的基本类型,包括单动点形成的面积问题,双(多)动点形成的面积问题,线动形成的面积问题,面动形成的面积问题。

本专题原创编写单动点形成的面积问题模拟题。

在中考压轴题中,单动点形成的面积问题的重点和难点在于应用数形结合的思想准确地进行分类。

原创模拟预测题1. 某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考:如图1,点P 为线段AB 上的一个动点,分别以AP 、BP 为边在同侧作正方形APDC 与正方形PBFE.(1)在点P 运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.(2)分别连接AD 、DF 、AF , AF 交DP 于点A ,当点P 运动时,在△APK 、△ADK 、△DFK 中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB 为边作正方形ABCD ,动点P 、Q 在正方形ABCD 的边上运动,且PQ=8.若点P 从点A 出发,沿A→B→C→D 的线路,向D 点运动,求点P 从A 到D 的运动过程中, PQ 的中点O 所经过的路径的长。

图1FEDCABP(4)如图(3),在“问题思考”中,若点M 、N 是线段AB 上的两点,且AM=BM=1,点G 、H 分别是边CD 、EF 的中点.请直接写出点P 从M 到N 的运动过程中,GH 的中点O 所经过的路径的长及OM+OB 的最小值.【答案】(1)当x=4时,这两个正方形面积之和有最小值,最小值为32; (2)存在两个面积始终相等的三角形,图形见解析; (3)PQ 的中点O 所经过的路径的长为6π;(4)点O 所经过的路径长为3,OM+OB 的最小值为113. 【解析】试题解析:(1)当点P 运动时,这两个正方形的面积之和不是定值. 设AP=x ,则PB=8-x ,根据题意得这两个正方形面积之和=x 2+(8-x )2=2x 2-16x+64=2(x-4)2+32, 所以当x=4时,这两个正方形面积之和有最小值,最小值为32; (2)存在两个面积始终相等的三角形,它们是△APK 与△DFK . 依题意画出图形,如图所示.图3OHG FE D CA BPMN图2OQCD ABP P设AP=a ,则PB=BF=8-a . ∵PE ∥BF ,∴PK APBF AB =, 即88PK a a =-, ∴PK=(8)8a a -,∴DK=PD-PK= a-(8)8a a -=28a , ∴S △APK =12PK•PA=12•(8)8a a -•a=2(8)16a a -,S △DFK =12DK•EF=12•28a •(8-a )=2(8)16a a -,∴S △APK =S △DFK ;所以PQ 的中点O 所经过的路径的长为:34×2π×4=6π;(4)点O 所经过的路径长为3,OM+OB 的最小值为113.如图,分别过点G 、O 、H 作AB 的垂线,垂足分别为点R 、S 、T ,则四边形GRTH 为梯形.如图,作点M 关于直线XY 的对称点M′,连接BM′,与XY 交于点O .由轴对称性质可知,此时OM+OB=BM′最小.在Rt △BMM′中,由勾股定理得:BM′=22113MM BM '+=. ∴OM+OB 的最小值为113. 考点:四边形综合题.原创模拟预测题2. 如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则当y=34时,x 的取值是【 】A. 1B. 14C. 1或3D. 3【答案】C。

初三数学动点类模考100题答案

初三数学动点类模考100题答案

参考答案与详解1.【解答】解:(1)∵CD⊥AB,∴∠ADC=∠ADB=90°,∵在Rt△ACD中,AD==3,∴BD=AB﹣AD=5﹣3=2,∴在Rt△BCD中,tan∠B===2;(2)当点M落在BC边上时,如图1,由题意得:AP=3t,tan∠CAB=,∴PQ=PN=MN=4t,BN=2t,∴3t+4t+2t=5,t=;(3)分三种情况:①当0<t≤时,如图1,正方形PQMN与△ABC重叠部分是正方形PQMN,∴S=PQ2=(4t)2=16t2;②当N与B重合时,如图2,AP=3t,PQ=PB=4t,∴3t+4t=5,t=,当<t<时,如图3,正方形PQMN与△ABC重叠部分是五边形EQPNF,③当≤t<1时,如图4,正方形PQMN与△ABC重叠部分是梯形EQPB,∴AP=3t,PN=4t,∴BN=7t﹣5,PB=4t﹣(7t﹣5)=﹣3t+5,在Rt△APQ中,AQ=5t,∴QC=5﹣5t,∵AC=AB,∴∠ACB=∠ABC,∵QE∥AB,∴∠QEC=∠ABC,∴∠QEC=∠ACB,∴QE=QC=5﹣5t,∴S=S梯形QPBE=(QE+PB)×PQ,=(5﹣5t+5﹣3t)×4t=﹣16t2+20t;综上所述,S与t之间的函数关系式为:.(4)如图2,当t=时,CQ=QG=5﹣5t=,∴GM=4t﹣=,∴QG=GM,∴S△QGB=S△GMB,∴S梯形GQPB:S△GMB=3:1,当P与D重合时,t=1,如图5,则S△CDB:S四边形CBNM=×2×4:(42﹣×2×4),=1:3,∴<t≤,1≤t<.2.【解答】解:(1)在Rt△ABC中,∵∠C=90°,AB=10,BC=6,∴AC===8,∵CQ=t,∴AQ=8﹣t(0≤t≤4).(2)①当PQ∥BC时,=,∴=,∴t=s.②当PQ∥AB时,=,∴=,∴t=3,综上所述,t=s或3s时,当PQ与△ABC的一边平行.(3)①如图1中,a、当0<t<时,重叠部分是四边形PEQF.S=PE•EQ=3t•(8﹣4t﹣t)=﹣16t2+24t.b、如图2中,当<t≤2时,重叠部分是四边形PNQE.S=S四边形PEQF﹣S△PFN=(16t2﹣24t)﹣•[5t﹣(8﹣t)]•[5t﹣(8﹣t)]=.c、如图3中,当2<t≤3时,重叠部分是五边形NPBQ.S=S四边形PBCF﹣S△FNM=t•[6﹣3(t﹣2)]﹣•[t﹣4(t﹣2)]•[t﹣4(t﹣2)]=﹣t2+32t﹣24.②a、如图4中,当DE:DQ=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.则有(4﹣4t):(4﹣t)=1:2,解得t=s,b、如图5中,当NE:PN=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.∴DE:DQ=NE:FQ=1:3,∴(4t﹣4):(4﹣t)=1:3,解得t=s,综上所述,当t=s或s时,DF将矩形PEQF分成两部分的面积比为1:2.3.【解答】解:(1)①∵四边形ABCD是矩形,∴∠B=90°,∴AC====15;故答案为:15;②∵四边形ABCD是矩形,∴∠D=90°,AD=BC=3,CD=AB=6,∵EF⊥AC,∴∠APF=90°=∠D,∵∠PAF=∠DAC,∴△APF∽△ADC,∴=,即=,解得:PF=8t;故答案为:8t;(2)当点F与点D重合时,如图1所示:∵∠APD=∠ADC=90°,∠PAD=∠DAC,∴△APD∽△ADC,∴=,即=,解得:t=;(3)分情况讨论:①当0<t≤时,如图2所示:由(1)②得:PF=8t,同理:PE=2t,∴EF=10t,∴l=4(8t+2t)=40t;②当<t≤3时,如图3所示:EF=10t=,l=4×=30.③当3<t<时,如图4所示:同(1)①得:△CPF∽△ABC∽△EPC,∴=,=,即=,=,解得:PF=(15﹣4t),PE=2(15﹣4t),∴EF=PF+PE=(15﹣4t),∴l=4×(15﹣4t)=﹣40t+150;(4)如图3所示:对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时,则PE:PF=1:2,或PF:PE=1:2,①PE:PF=1:2时,∵EF=,∴PF=EF=5,同理可证:△CPF∽△CDA,∴=,即=,解得:PF=(15﹣4t),∴(15﹣4t)=5,解得:t=;②PF:PE=1:2时,PF=EF=,则(15﹣4t)=,解得:t=;综上所述,对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时t的值为或.4.【解答】解:(1)∵在菱形ABCD中,∠B=60°,∴∠D=∠B=60°,AD=AB=CD=4,△ACD是等边三角形,∴∠CAD=60°,∵PQ⊥AC,∴△APQ是等腰三角形,∴PF=QF,PF=PA•sin60°=2t×=,∴PQ=2t;(2)当点M落在边BC上时,如图2所示:由题意得:△PDN是等边三角形,∴PD=PN,∵PN=PQ=×2t=3t,∴PD=3t,∵PA+PD=AD,即2t+3t=4,解得:t=.(3)当0<t≤时,如图1所示:PQ=2t,PN=PQ=×2t=3t,S=矩形PQMN的面积=PQ×PN=2t×3t=6t2;当<t<1时,如图3所示:记PN与CD的交点为E,MN与CD的交点为F,∵△PDE是等边三角形,∴PE=PD=AD﹣PA=4﹣2t,∠FEN=∠PED=60°,∴NE=PN﹣PE=3t﹣(4﹣2t)=5t﹣4,∴FN=NE=(5t﹣4),∴S=矩形PQMN的面积﹣2△EFN的面积=6t2﹣2××(5t﹣4)2=﹣19t2+40t﹣16,即S=﹣19t2+40t﹣16;(4)分两种情况:当0<t≤时,如图4所示:记OM与PN的交点为H,∵△ACD是等边三角形,∴AC=AD=4,∵O是AC的中点,∴OA=2,OG是△MNH的中位线,∴OG=3t﹣(2﹣t)=4t﹣2,NH=2OG=8t﹣4,∴△MNH的面积=MN×NH=×2t×(8t﹣4)=×6t2,解得:t=;当<t≤2时,如图5所示:记OM与PQ的交点为E,AC与PQ的交点为F,∵AC∥QM,∴△OEF∽△MEQ,∴=,即=,解得:EF=,∴EQ=t+,∴△MEQ的面积=×3t×(t+)=×6t2,解得:t=;综上所述,当直线OM将矩形PQMN分成两部分图形的面积比为1:2时,t的值为或.5.【解答】解:(1)如图1中,当点N落在边DC上时,∵△DEC是等腰直角三角形,∴当点P与D重合时,点N落在CD上,∵PE=DE=4,∴t==2s时,点N落在边DC上;(2)①如图2中,当0<t≤2时,重叠部分是正方形EMPN,S=PE2=2t2;②如图3中,当2<t≤4时,重叠部分是五边形EFDGM,S=×42×+•(2t)2×﹣(2t﹣4)2=﹣t2+8t﹣4;③如图4中,当t>4时,重叠部分是四边形EFDA,S=8+4=12.综上所述,S=(3)①如图5中,设EM交BD于G,当EG=2GM时,∵EG=2,∴GM=,∴EN=3,∴PE=EM=6,∴t==3s.②如图6中,当MG=2GE时,MG=4,EM=6,PE=12,t==6s.综上所述,t=3s或6s时,正方形PMEN被直线BD分成2:1两部分;6.【解答】解:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时,<t<,t=1或.7.【解答】解:(1)∵∠C=90°,AC=4,BC=2,∴AB==2,如图2,当D与C重合时,CP⊥AB,cos∠A=,即,AP=,tan∠A=,即,∴PD=t,∴当0<t≤时,如图1,PE=2PD=2×t=t,如图3,AP=t,∴PB=2﹣t,tan∠DBP=,即==2,PD=4﹣2t,当<t≤2时,如图3,PE=2PD=2(4﹣2t)=8﹣4t;(2)当点F落在BC上时,如图4,BE=2﹣2t,EF=PD=t,∵EF=2BE,∴t=2×,t=(秒);(3)当0<t≤时,如图1,矩形PEFD与△ABC重叠部分图形是矩形PEFD,S=PD•PE==;如图5,当E与B重合时,PB=2PD,则2﹣t=2×,t=1,当1<t≤时,如图6,cos∠A=,即,AD=t,∴CD=4﹣t,∵DM∥AB,∴∠CDM=∠A,∴cos∠A=cos∠CDM=,即,DM=2﹣t,S=t=﹣+5t;综上,S与t之间的函数关系式是:S=.(4)①如图1,当0<t≤1时,过Q作QH⊥AB于H,∵AP=t,BQ=2t,∴PE=t,PD=t,BH=t,∴EH=BE﹣BH=2﹣2t﹣t=2﹣t,∵矩形PEFD面积是△QEF面积的4倍,∴=4×,t=0(舍)或;②当1<t≤2时,如图7,过Q作QH⊥AB于H,∵PE=t,PB=2﹣t,∴BE=PE﹣PB=t﹣(2﹣t)=2t﹣2,∵BQ+CQ=2t,∴BQ=4﹣2t,∴BH==,∵矩形PEFD面积是△QEF面积的4倍,∴=4×[+2t﹣2],t=0(舍)或;综上,t的值是秒或秒.8.【解答】解:(1)如图1,在Rt△ABC中,AB=6,BC=8,D、E分别为边AB、AC的中点,∴AD=AB=3,DE=BC=4,当点P在线段EA上运动时,PE=t﹣AD﹣DE=t﹣7(7<t<12);(2分)(2)分两种情况:①当0<t≤3时,如图2,∵PN∥BC,∴△APN∽△ABC,∴,∴,∴PN=,∵四边形PNQM是正方形,∴PN=PB=,∵AP+PB=AB,∴t+=6,∴t=,(3分)②当3<t≤7时,如图3,∵PE=PQ=BD=3,∵DP+PE=DE,∴t﹣3+3=4,∴t=4,(4分)综上所述,当点N落在AC边上时,t的值是秒或4秒;(3)分三种情况:①当≤t≤3时,如图4,S=PB2=(6﹣t)2=t2﹣12t+36;(5分)②当3<t≤4时,如图5,S=PQ2=32=9;(6分)③当7≤t<12时,如图1,由题意得:PE=t﹣7,∴AP=5﹣(t﹣7)=12﹣t,∵PQ∥AB,∴△CPQ∽△CAB,∴,∴,∴PQ=,∵△PNF∽△CBA,∴=,∴=,∴FN=,S=PQ2﹣PN•NF=[(t﹣2)]2﹣×××(t﹣2)2=;(8分)(4)分两种情况:①当S△EFC:S四边形ABFE=1:2时,即S△EFC:S△ABC=1:3,∴S△ABC=3S△EFC,过E作EG⊥BC于G,∴×6×8=3××3×FC,∴FC==,由(2)得:PK=t,同理得:AK=,∴KN=PN﹣PK=6﹣t﹣t=6﹣,KE=5﹣,∵KN∥FC,∴,∴KN•EC=KE•FC,∴5(6﹣)=,t=;②如图7,当S△AEK:S四边形BKEC=1:2时,即S△AEK:S△ABC=1:3,∴S△ABC=3S△AEK,∴×6×8=3××4×AK,∴AK=4,由(3)知:FN=,∴FM=MN﹣FN=﹣=,∵sin∠C=,∴FC==,∴EF=5﹣FC=,∵FN∥AK,∴,∴FN•AE=EF•AK,∴5×=4×,∴t=;(10分)综上所述,t的值为或.9.【解答】解:(1)由题意得:答案为:(2﹣t);(2)如图1,当点F落在边AD上时,t的值秒;(3)分两种情况:①当0<t≤时,Q在BD上,如图1,过P作PM⊥BD于M,则△BPM是等腰直角三角形,∵PB=t,∴PM=t,∴S=DQ•PM=2t•t=2t2;②当<t≤1时,Q在BD上,如图3,过Q作QH⊥AB于H,∵BQ=2﹣2t,∴QH=(2﹣2t),∵PF∥BD,∠ADB=90°,∴∠ANP=90°,∵AP=2﹣t,∴AN=PN=2﹣t,∴S=S△ADB﹣S△ANP﹣S△PBQ=﹣=t2+t.③当1<t≤2时,如图4,Q在BC上,同②知:AN=PN=2﹣t,∵EQ∥BD,DE∥BQ,∴四边形BDEQ是平行四边形,∠DEQ=90°,∴EQ=BD=2,BQ=DE=2t﹣2,∵EN=DN+DE=2﹣(2﹣t)+(2t﹣2)=3t﹣2,S=﹣=﹣=﹣t2+11t﹣6;综上,S与t之间的函数关系式为:S=;(4)存在两种情况:①当FQ过BD的中点O时,如图5,则OB=OD=1,∵∠DOM=∠BOQ,∠MDO=∠OBQ,∴△MDO≌△QBO(ASA),∴BQ=DM=DE=2t﹣2,∴MN=EN﹣2DM=(3t﹣2)﹣2(2t﹣2)=2﹣t,∵AN=PN=2﹣t,∴FN=t,∵∠NFM=∠BOQ,∴tan∠NFM=tan∠BOQ,即,∴,2t2﹣t﹣2=0,t=或;②当Q在BD的中点上时,如图6,则2t=1,t=;综上,t=秒或t=秒.10.【解答】解:(1)当0<t≤时,h=2t.当<t≤4时,h=3﹣(2t﹣3)=﹣t+.(2)当点E落在AC边上时,DQ∥AC,∵AD=DB,∴CQ=QB,∴2t=,∴t=.(3)①如图1中,当≤t<时,作PH⊥AB于H,则PH=PA•sinA=t,DQ=﹣2t,∴S=t•(﹣2t)=﹣t2+t.②如图2中,当<t≤4时,同法可得S=t•(2t﹣)=t2﹣t.(4)当点E落在直线CD上时,CD将▱PEQD分成的两部分图形面积相等.有两种情形:①当点E在CD上,且点Q在CB上时(如图3所示),过点E作EG⊥CA于点G,过点D作DH⊥CB于点H,易证Rt△PGE≌Rt△DHQ,∴PG=DH=2,∴CG=2﹣t,GE=HQ=CQ﹣CH=2t﹣,∵CD=AD,∴∠DCA=∠DAC∴在Rt△CEG中,tan∠ECG===,∴t=.②当点E在CD上,且点Q在AB上时(如图4所示),过点E作EF⊥CA于点F,∵CD=AD,∴∠CAD=∠ACD.∵PE∥AD,∴∠CPE=∠CAD=∠ACD,∴PE=CE,∴PF=PC=,PE=DQ=﹣2t,∴在Rt△PEF中,cos∠EPF===,11.【解答】解:(1)如图1故答案为:.(2)①如图2,∵四边形PQMN是正方形,∴∠BQM=90°,∵∠B=45°,∴BQ=MQ,即7﹣t=2t,解得t=,故当0<t≤时,S=(2t)2=4t2;②如图3,∵∠BQF=90°,∠B=45°∴BQ=FQ=7﹣t,∠BFQ=∠MFE=45°,则MF=MQ﹣QF=3t﹣7,∵∠M=90°,∴ME=MF=3t﹣7,则S=(2t)2﹣×(3t﹣7)2=﹣t2+21t﹣(<t<);综上,S=.(3)S△ABC=AB•CG=×14×8=56,①如图4,作HR⊥AB于点R,∵四边形PQMN为正方形,且PM为对角线,∴∠HPB=∠B=45°,∴HR=PB=×(14﹣7+t)=,∵PM将△ABC面积平分,∴S△PBH=S△ABC,则•(7+t)•=×56,解得t=﹣7+4(负值舍去);②如图5,作KT⊥AB于T,设KT=4m,由tanA==知AT=3m,∵∠KQT=45°,∴KT=QT=4m,则AQ=3m+4m=7m,又AQ=14﹣(7﹣t)=7+t,则7m=7+t,∴m=,∵直线NQ将△ABC面积平分,∴S△AKQ=S△ABC,即×7m×4m=×56,整理,得:m2=2,则()2=2,解得:t=﹣7+7(负值舍去),综上,t的值为4﹣7或7﹣7.12.【解答】解:(1)当0<t≤3时,PD=3﹣t.当3<t≤7时,PD=t﹣3.(2)①当点N在AC上时,解得t=.②当点N在BC上时,解得t=5综上所述,满足条件的t的值为s或5s.(3)①如图4中,当0<t≤时,重叠部分是五边形EFPDM,s=S正方形MDPN﹣S△NEF=(3﹣t)2﹣•(3﹣t﹣t)2=﹣②如图5或6中,当<t≤5时,重叠部分是正方形PDMN,s=t2﹣6t+9③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,s=S正方形MNPD﹣S△EFN=(t﹣3)2﹣•[(t﹣3)﹣(7﹣t)]2=﹣t2+14t﹣41.综上所述,s=.(4)如图8中,当点N′落在中线AE上时,作EK⊥BC于K,N′J⊥AB于J.∵JN′∥EK,∴=,则有=,解得t=1.如图9中,当点N′落在中线BG上时,作GK⊥BC于K,N′J⊥AB于J.∵N′J∥GK,∴=,∴=,解得t=.如图10中,当点N′落在中线CF上时,∵MN′∥DF,∴=,∴=,解得t=.综上所述,满足条件的t的值为1s或s或s.13.【解答】解:(1)由题意得,BQ=2t,当0≤t≤3时,QC=6﹣2t,当3<t≤6时,QC=2t﹣6;(2)∵△ABC为等边三角形,∴∠A=60°,当PQ⊥AC时,∠QPA=30°,∴AQ=AP,即t=2×(12﹣2t),解得,t=;(3)作QH⊥AB于H,如图①,在Rt△QBH中,QH=BQ•sinB=t,则S=×PB×QH=×(6﹣t)×t=﹣t2+3t;如图②,在Rt△QAH中,QH=AQ•sinA=×(12﹣2t)=6﹣t,则S=×PB×QH=×(6﹣t)×(6﹣t)=(6﹣t)2;(4)当点Q为AC的中点时,△APQ的面积=△PCQ的面积,即12﹣2t=3,解得,t=,如图①,作CE⊥AB于E,则CE=AC•sinA=×6=3,∴△ABC的面积=×6×3=9,=,∴△BPC的面积=9﹣t,∴△APC的面积=t,=,∴△APQ的面积=3t﹣t2,∴△PCQ的面积=t2﹣t,当△APQ的面积=△PCB的面积时,9﹣t=3t﹣t2,整理得,t2﹣t+4=0,△=1﹣16=﹣15<0,方程无解,当△CPQ的面积=△PCB的面积时,t2﹣t=9﹣t,解得,t1=3,t2=﹣3(舍去),综上所述,在△APQ、△PCQ、△PBC中,其中的某两个三角形面积相等时,t=或t=3.14.【解答】解:(1)在Rt△ABC中,AB===5,故答案为5.(2)如图1中,∵PA∥MN,PN∥AM,∴四边形PAMN是平行四边形,∴MN=PA=x,AM=PN==x,当点N在BC上时,sinA==,=,∴x=.(3)①当0≤t≤时,如图1,,,∴y=PN+MN+PM=x+x+x=4x.②当<t<时,如图2,y=4x﹣EN﹣NF+EF==,EN=PN﹣PE==,∴.③当≤t≤5时,如图3,y=PM+PE+EM==,∴.(4)如图4中,当点G是AC中点时,满足条件∵PN∥AG∴,∴,∴如图5中,当点D是AB中点时,满足条件.∵MN∥AD∴,∴,∴综上所述,满足条件的x的值为或.15.【解答】解:(1)连结AQ、MD,∵当AP=PD时,四边形AQDM是平行四边形,∴3t=3﹣3t,解得:t=,∴t=s时,四边形AQDM是平行四边形.(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴△AMP∽△DQP,∴=,∴=,∴AM=t,即在P、Q运动的过程中,总有CQ=AM;(3)∵MN⊥BC,∴∠MNB=90°,∵∠B=45°,∴∠BMN=45°=∠B,∴BN=MN,∵BM=AB+AM=1+t,在Rt△BMN中,由勾股定理得:BN=MN=(1+t),∵四边形ABCD是平行四边形,∴AD∥BC,∵MN⊥BC,∴MN⊥AD,设四边形ANPM的面积为y,∴y=×AP×MN=×3t×(1+t)=t2+t(0<t<1).假设存在某一时刻t,四边形ANPM的面积是平行四边形ABCD的面积的一半,∴t2+t=×3×,整理得:t2+t﹣1=0,解得:t1=,t2=(舍去),∴当t=s时,四边形ANPM的面积是平行四边形ABCD的面积的一半.16.【解答】解:(1)当点Q与点C重合时,∵PQ⊥AB,△ABC是等腰直角三角形,∴AP=BP=AB=4,∴4÷=4(s),即当点Q与点C重合时,t=4;故答案为:4;(2)①当0<t≤4时,如图①中,设PR、PQ分别交AB于点E、F,则重叠部分为△PEF,∵AP=t,∴EF=PE=t,∴S=S△PEF=•PE•EF=t2.②当4<t≤时,如图②中,设PR、RQ分别交AB于E、G,则重叠部分为四边形PEGQ.∵PQ=PC=8﹣t,∴PR=16﹣2t,∴RE=PR﹣PE=16﹣3t,∴S=S△PRQ﹣S△REG=(8﹣t)2﹣(16﹣3t)2=﹣t2+32t﹣64.③当<t<8时,如图③中,则重合部分为△PRQ,∴S=S△PRQ=PQ2=(8﹣t)2=t2﹣16t+64.(3)分情况讨论:①如图④所示:根据三角形的面积关系得:AM=BM=AB=4,根据等腰直角三角形的性质得:PM=PB=BM,∴AP=AB=6,∴t=6,解得:t=6;②如图⑤所示:同②得:t=;③如图⑥所示:点M不可能是AC中点,此种情形不存在.综上所述:点R与△ABC的顶点的连线平分△ABC面积时t的值为6或.17.【解答】解:(1)故答案为:①25;②3t.(2)当▱PQMN为矩形时,∠NPQ=90°,∵PN⊥AB,∴PQ∥AB,∴由题意可知AP=CQ=5t,CP=20﹣5t,∴,解得t=,即当▱PQMN为矩形时t=.(3)当▱PQMN△ABC重叠部分图形为四边形时,有两种情况,Ⅰ.如解图(3)1所示.▱PQMN在三角形内部时.延长QM交AB于G点,由(1)题可知:cosA=sinB=,cosB=,AP=5t,BQ=15﹣5t,PN=QM=3t.∴AN=AP•cosA=4t,BG=BQ•cosB=9﹣3t,QG=BQ•sinB=12﹣4t,∵.▱PQMN在三角形内部时.有0<QM≤QG,∴0<3t≤12﹣4t,∴0<t.∴NG=25﹣4t﹣(9﹣3t)=16﹣t.∴当0<t时,▱PQMN与△ABC重叠部分图形为▱PQMN,S与t之间的函数关系式为S=PN•NG=3t•(16﹣t)=﹣3t2+48t.Ⅱ.如解图(3)2所示.当0<QG<QM,▱PQMN与△ABC重叠部分图形为梯形PQMG 时,即:0<12﹣4t<3t,解得:,▱PQMN与△ABC重叠部分图形为梯形PQMG的面积S===.综上所述:当0<t时,S=﹣3t2+48t.当,S=.(4)当过点P且平行于BC的直线经过▱PQMN一边中点时,有两种情况,Ⅰ.如解题图(4)1,PR∥BC,PR与AB交于K点,R为MN中点,过R点作RH⊥AB,∴∠PKN=∠HKR=∠B,NK=PN•cot∠PKN=3t=,∵NR=MR,HR∥PN∥QM,∴NH=GH=,HR=,∴GM=QM﹣QG=3t﹣(12﹣4t )=7t﹣12.HR=.∴KH=HR•cot∠HKR==,∵NK+KH=NH,∴,解得:t=,Ⅱ.如解题图(4)2,PR∥BC,PR与AB交于K点,R为MQ中点,过Q点作QH⊥PR,∴∠HPN=∠A=∠QRH,四边形PCQH为矩形,∴HQ=QR•sin∠QRH=∵PC=20﹣5t,∴20﹣5t=,解得t=.综上所述:当t=或时,点P且平行于BC的直线经过▱PQMN一边中点,18.【解答】解:(1)当点Q在AB上时,∴;,当点Q在AC上时,.(2)当点R落在AC上时,解得.(3)如图1中,当时,重叠部分是△PQR,可得.如图4中,当时,重叠部分是四边形PQNM.可得.如图5中,当时,重叠部分是△PQM.可得.(4)①如图6中,当点R落在△ABC的中位线MN上时,作RH⊥PM.则四边形PQRH是矩形,易证RP=RM,∵RH⊥PM,∴PH=HM=RQ,∴PM=2RQ,∴﹣t=2•t,解得t=.②如图7中,当点R落在△ABC的中位线MN上时,易知BQ=,可得,t=.③如图8中,当点R落在△ABC的中位线MN上时,易知:PQ=可得:(5﹣t)=,解得t=④如图9中,当点R落在△ABC的中位线MN上时,易知RQ=BM=,可得t=,解得t=.综上所述,满足条件的t的值为:,,,.19.【解答】解:(1)如图1中,在Rt△BPQ中,∵∠BPQ=90°,∠B=30°,BP=t,∴PQ=BP•tan30°=t.(2)①如图1中,当0<t≤2时,重叠部分是△PQM,S=t2.②如图2中,当2<t<3时,重叠部分是四边形PQFE,S=S△PQM﹣S△EFM=t2﹣(3t﹣6)2=﹣2t2+9t﹣9,综上所述,S=.(3)①如图3﹣1中,当点M落在中线AE上时,作MH⊥BC于H.∵MH∥AC,∴=,∴=,解得t=②如图3﹣2中,当点M落在中线CK上时,t==.③如图3﹣3中,当点M落在中线CK上时,由PM=PC•cos30°,可得:[3﹣(t﹣3)]=•(t﹣3),解得t=5.④如图3﹣4中,当点M落在中线BF上时,作MH⊥AC于H.∵MH∥BC,∴=,∴=,解得t==,综上所述,满足条件的t的值为s或s或5s或s.20.解:(1)当M与D重合时,如图1,由题意得:AP=4x,此时4x=3.6,x=,∴当0<x≤时,如图2,M在CD的延长线上,DM=﹣5x+;②当<x<时,如图3,M在边CD上,DM=8﹣(﹣5x)=5x﹣;(2)∵四边形ABCD是矩形,∴AB∥CD,∴△MPC∽△NPA,∴=()2=,∴=,∴=,∴x=;(3)分三种情况:①当0<x≤时y=20x;②当<x≤时,△MEN与矩形ABCD重合部分图形是△MEN,,y=18;③当<x<时,△MEN与矩形ABCD重合部分图形是四边形MEBG,y=18﹣BN﹣GN+BG=18﹣(5x﹣8)﹣+=﹣+;综上,y与x之间的函数关系式为:y=;(4)分两种情况:①当F在∠ACB的平分线上,如图6,过F作GH∥AB,交AC于H,交BC于G,∴GH⊥BC,∵PF⊥PC,∴∠CFP=∠CFG,∴CG=CP=10﹣4x,∵F是PN的中点,FH∥AN,∴AH=PH=2x,∴CH=10﹣2x,∵∠CHG=∠CAB,∴sin∠CHG=sin∠CAB=,∴=,x=;②当F在∠ABC的平分线上,如图7,过F作GH∥AB,交AC于H,交BC于G,过H 作HQ⊥AB于Q,同理得:AH=2x,sin∠HAQ=,HQ=BG=1.2x,∵BF平分∠ABC,∴∠GBF=45°,∴FG=BG=1.2x,由①知:FH是△PAN的中位线,∴FH=AN=x,∴GH=FH+FG=2.5x+1.2x=3.7x,∵cos∠CHG=,∴=,x=,综上,x的值是秒或秒.21.【解答】解:(1)如图1中,.故答案为9t.(2)如图2中,点A′落在BC边上时,t=.(3)①如图1中,当0<t≤时,重叠部分是△PMA′,S=•3t•4t=6t2②如图3中,当<t≤时,重叠部分是四边形PMTS.S=S△PMA′﹣S△TSA′=6t2﹣•(9t﹣8)2=﹣48t2+96t ﹣.③如图4中,<t≤2时,重叠部分是△PBS.S=×(8﹣4t)2=6t2﹣24t+24,综上所述,S=.(3)如图5中,当直线CA′平分∠PA′M时,设CA′交AB于Q,作QE⊥AC于E,交PA′于G.∵∠A′MQ=∠A′GQ=90°,∠QA′M=∠QA′G,A′Q=A′Q,∴△A′QM≌△A′QG,∴A′M=A′G=3t,∴PG=PA′﹣A′G=2t,∴QG=QM=t,PQ=t,∵PA′∥AC,∴=,∴=,∴t=s.如图6中,当CM平分∠PMA′时,作CE⊥AB于E.∵CE==,∴BE==,∵∠CME=45°,∴CE=EM=,∴BM=EM﹣EB=﹣=,∴AM=9t=10+,∴t=s.综上所述,t=s或s时,点C和△PA′M中一个顶点的直线平分△PA′M的内角.22.【解答】解:(1)由题意得:BP=2t如图1,过A作AD⊥BC于D,①当点Q在线段AB上时,即0<t≤1时,PQ=t;②当点Q在线段AC上时,即1<t<2时PQ=PC==2﹣t;(2)点M在△ABC内部时t的取值范围是<t<2;(3)分三种情况:①0<t≤1时,如图5,正方形PQMN与△ABC重叠部分图形是四边形DNPQ,BP=2t,PQ=PN=MD=t,∴BN=2t﹣t=t,∴DN=t=DM,∴S=S正方形MNPQ﹣S△MDQ==;②当1<t<时,如图6,正方形PQMN与△ABC重叠部分图形是五边形ODNPQ,∵PQ=PN=MN=2﹣t,∴BN=BP﹣PN=2t﹣(2﹣t)=3t﹣2,∵tan∠B=,DN=BN=,∴DM=MN﹣DN=2﹣t﹣=3﹣t,∵tan∠MOD=tan∠B==,∴OM=2MD,∴S=S正方形MNPQ﹣S△MDO=(2﹣t)2﹣=(2﹣t)2﹣=﹣+11t﹣5;③当≤t<2时,如图7,正方形PQMN与△ABC重叠部分图形是正方形MNPQ,S=PQ2=(2﹣t)2=t2﹣4t+4;综上,S与t之间的函数关系式为:S=;(4)存在四种情况:①如图8,M在中位线MQ上,则Q是AB的中点,BQ=,∴BP=1=2t,t=;②如图9,M在中位线MT上,则T是BC的中点,BT=2,∴MT∥AC,∴∠C=∠BTM,∴tan∠BTM===,∴NT=BP,∵BP+TN﹣BT=PN,∴2t+2t﹣2=t,t=;③如图10,M在中位线MQ上,∴Q是AC的中点,同理得CP=1=4﹣2t,t=;④如图11,M在中位线MT上,T是BC的中点,CP=TN=4﹣2t,PQ=PN=2﹣t,∵CT=TN+PN+PC,∴2=2(4﹣2t)+2﹣t,t=;综上,t的值是秒或秒或秒或秒.23.【解答】解:(1)如图1中,作EM⊥AC于M.∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵DH⊥AB,∴∠DHA=∠C=90°,∵∠A=∠A,∴△AHD∽△ACB,∴=,∴=,∴AH=4t,∴AE=2AH=8t,∵EM∥BC,∴=,∴=,∴EM=t,∴sin∠EDG===.(2)如图2中,由(1)可知:DM==t,∵AD+DM+CM=8,∴5t+t+5t=8,解得t=.(3)①如图3﹣1中,当0<t≤时,重叠部分是菱形DEFG,S=DG•EM=5t×t=24t2.②如图3﹣2中,当≤t<时,重叠部分是四边形DEMC,S=•(EM+CD)•CM=[8﹣5t+(10﹣8t)]•t=﹣t2+t.③如图3﹣3中,当≤t<时,重叠部分是三角形DCM,S=•(8﹣5t)2•=(8﹣5t)2.(4)①当点P落在DF上时,如图4﹣1中,易证AD=DC=4,t=.②如图4﹣2中,当点P落在FG上时,作CM⊥EG于M.由△PBE≌△PCM,可得BE=CM=10﹣8t,CG=(10﹣8t),∴10t=8+(10﹣8t),解得t=.综上所述,满足条件的t的值为或s.24.【解答】解:(1)当t=2s时,则CP=2×2=4=BC,即点P与点B重合,OQ=2,如图1,∴AQ=OA﹣OQ=4﹣2=2,且AP=OC=3,∴tan∠QPA==;(2)当线段PQ与线段AB相交于点M,则可知点Q在线段OA上,点P在线段CB的延长线上,如图2,则CP=2t,OQ=t,∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,∵PC∥OA,∴△PBM∽△QAM,∴=,且BM=2AM,∴=2,解得t=3,∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;(3)当0≤t≤2时,如图3,由题意可知CP=2t,∴S=S△PCQ=×2t×3=3t;当2<t≤4时,设PQ交AB于点M,如图4,由题意可知PC=2t,OQ=t,则BP=2t﹣4,AQ=4﹣t,同(3)可得==,∴BM=•AM,∴3﹣AM=•AM,解得AM=,∴S=S四边形BCQM=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣×t×3﹣×(4﹣t)×=24﹣﹣3t;当t>4时,设CQ与AB交于点M,如图5,由题意可知OQ=t,AQ=t﹣4,∵AB∥OC,∴=,即=,解得AM=,∴BM=3﹣=,∴S=S△BCM=×4×=;综上可知S=;(4)如图6,∵∠OAD=∠OAB=45°,OA=4,∴D(0,4),设直线AD解析式为y=kx+b,代入,得:,解得,∴直线AD解析式为y=﹣x+4,由题意知C(0,3),P(2t,3),Q(t,0),∴CP的中点坐标为(t,3),CQ中点坐标为(,),PQ中点坐标为(t,),若直线AD经过CP中点,则﹣t+4=3,解得t=1;若直线AD经过CQ中点,则﹣+4=,解得t=5;若直线AD经过PQ中点,则﹣t+4=,解得t=;综上,∠OAB的角平分线经过△CQP边上中点时的t值为1或5或.25.【解答】解:(1)如图1中,故答案为t.(2)如图2中,当D与点C重合时,∵PQ⊥PD,PR⊥CD,∴∠QPD=∠PRQ=∠PRD=90°,∵∠PCR+∠CPR=90°,∠CPR+∠DPR=90°,∴∠DPR=∠PCR,∴△CPR∽△PDR,∴=,∴PR2=CR•DR,∴(t)2=(5﹣t)•t,解得t=3.∴t=3s时,C,Q重合.(3)①当0<t≤3时,如图3中,S=•PR•QR=•t•(t﹣t)=t2.②当3<t≤时,如图3﹣1中,S=•PR•CR=•t•(5﹣t)=﹣t2+2t.综上所述,S=.(4)①如图4﹣1中,当点P在线段AB的垂直平分线上时,设AB的垂直平分线交AB于N,交BC于M.易知BM=BN=,PM=PD,∴DM=BM+BD=,∵PR⊥DM,∴DR=DM=,∴t=,∴t=.②如图4﹣2中,当点P在线段BC的垂直平分线上时,DR=CR=,可得t =,解得t=.③如图4﹣3中,当点P在线段AC的垂直平分线上时,PR=CM=,可得t=,解得t =.综上所述,满足条件的t的值为s或s或s.26.【解答】解:(1)∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴当0<t≤3时,点Q在线段AC上运动,CQ=6﹣2t,当3<t≤7时,点Q在线段BC上运动,CQ=2t﹣6;(2)∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB==10,当点M落在边BC上时,如图1,∵QM∥AB,∴△CQM∽△CAB,∴==,∴CQ=QM,∵PM∥AC,QM∥AB,∴四边形APMQ是平行四边形,∴QM=AP=t,∴6﹣2t=t,解得:t=;(3)如图2,当0<t<时,S=2t•t=t2,如图3,当5<t<7时,S=[10﹣t﹣(14﹣2t)]×(14﹣2t)=﹣t2+t﹣63;综上所述,S与t之间的函数关系式为:S=;(4)①当0<t≤3时,当Q在线段AC上运动时,即AQ=2t,AP=t,∴AQ=2AP,②如图4,当点Q在线段BC上运动时,PM=2PN,即(14﹣2t)=2[10﹣t﹣(14﹣2t)],解得:t=,如图5,当点Q在线段BC上运动时,2PM=PN,即2×(14﹣2t)=[10﹣t﹣(14﹣2t)],解得:t=,∴当▱PMQN的一边是它邻边2倍时,t的取值范围为:0<t≤3或或.27.【解答】解:(1)如图1,∵∠C=90°,AC=8厘米,BC=6厘米,∴AB=10(cm),∴cosA=,sinA=,tanA=,设AP=5x,∴PA′=AD=APcos∠A=×5x=4x,CP=8﹣5x,∴cos∠CPA′=cos∠A===,∴x=,(2)①当0<x≤,如图2,∴PA′=AD=APcosA=3x,∴A′D=AP=5x,∴y=4x+3x+5x=12x,②当<x≤时,如图3∴PE===,DF=DB×cosA=8﹣x,∴y=3x++8﹣x+x﹣6=12﹣x,即:当0<x≤时,y=12x,当<x≤时,y=﹣x+12;(3)同(1)一样有,sinB=,cosB=,tanB=,①当A′B′⊥AB时,如图6,∴DH=PA'=AD=4x,HE=B′Q=EB=3x,∵AB=2AD+2EB=2×4x+2×3x=10,∴x=,∴A′B′=QE﹣PD=4x﹣3x=x=.②当A′B′⊥BC时,如图7,∴B′E=5x,DE=10﹣7x,∴cosB==,∴x=.③当A′B′⊥AC时,如图8,DA'=PA=5x,DE=×5x=x,∴4x+x+3x=10,∴x=.④当Q,P都到达C后,如图9,∵A′B′∥AB且AB=A′B′=10,此时t=s.28.【解答】解:(1)如图1,过D作DM⊥AB于M,EG=t;(2)t=4;(3)当点G在DC上时,存在三种情况:①当4≤t<6时,G在DC上,E在F的左边,如图3,矩形EFHG与四边形ABCD重叠部分是矩形EFHG,,∴S=EF•EG=4×(12﹣2t)=﹣8t+48;②当6<t≤8时,如图4,G在DC上,E在F的右边,矩形EFHG与四边形ABCD重叠部分是矩形EFHG,∴S=EF•EG=4×(2t﹣12)=8t﹣48;③当8<t≤12时,如图5,矩形EFHG与四边形ABCD重叠部分是五边形EFMDG,∵AF=BE=t﹣(2t﹣12)=12﹣t,Rt△AFM中,∠AMF=30°,∴FM=AF=(12﹣t),∴HM=4﹣FM=4﹣(12﹣t)=t﹣8,∴DH=t﹣8,∴S=S矩形EFHG﹣S△DHM=8t﹣48﹣=8t﹣48﹣=﹣;综上,S(cm2)与t(秒)的函数关系式为:S=;(4)分三种情况:①当BD∥FG时,如图6,∴,即,t=3;②当AC∥EH时,如图7,则∠FEH=∠BAC,tan∠BAC=tan∠FEH=,即,t=;③当BD∥EH时,如图8,∠CDB=∠GHE,∴tan∠CDB=tan∠GHE,∴,∵BC=EG,∴CD=GH,即CG=DH,由(3)知DH=t﹣8,∴t﹣8=12﹣t,t=10;综上,t的值为3秒或秒或10秒.29.【解答】解:(1)故答案为:2t;(2)∵以每秒2个单位长度的速度沿边AB向点B运动,过点P作PD⊥AB交折线AC、CB于点D,以PD为边在PD右侧作正方形PDEF,∴△APD是等腰直角三角形,AP=PD,过点C作CK⊥AB于K,交QG于点H,如图1所示:则CH⊥QG,∵△ABC是等腰直角三角形,∴CK=AB=×10=5,当点E与点N重合时,CH+QN+EF=CK=5,∵△CQG是等腰直角三角形,∴△CHQ是等腰直角三角形,∴CQ=CH,此时,CQ=t,AP=DP=EF=2t,∴CH===t,QG=QN=CQ=×t=2t,∴t+2t+2t=5,解得:t=1;(3)由题意得:正方形PDEF与正方形QGMN重叠部分图形是正方形,(4)当正方形PDEF与正方形QGMN完全重合时,3t=5,t=;分两种情况:①当1<t≤时,如图2所示:由(1)得:QG=GM=2t,△CQG是等腰直角三角形,由(2)得:EF=2t,CH=t,CK=5,∴S=[2t﹣(5﹣3t)]2=(5t﹣5)2=25t2﹣50t+25,即S与t之间的函数关系式为S=25t2﹣50t+25;②当<t<5时,如图3所示:S=(5﹣t)2=t2﹣10t+25,即S=t2﹣10t+25;(4)分三种情况:①当EM⊥BC时,如图4所示:由题意得:(5﹣2t)=10﹣2t,解得:t=0,不合题意舍去;②当EM⊥AC时,如图5所示:由题意得:×3t=10﹣2t,解得:t=;③当EM⊥AB时,正方形PDEF与正方形QGMN重合,此时t=;综上所述,当直线EM与△ABC的边垂直时,t的值为或.30.【解答】解:(1)如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠CAD=∠CAB=∠DAB=60°,∴△ADC,△ABC都是等边三角形,∵PE⊥AB,PA=2t,∴∠PEA=90°,∠APE=30°,∴AE=PA=t,∴BE=AB﹣AE=4﹣t.(2)当点P与点O重合时,PA=OA=2=2t,∴t=1时,点P与点O重合.(3)当0<t≤1时,如图1中,重叠部分是四边形PEAF,S=2××t×t=t2.当1<t≤2时,如图2中,重叠部分是五边形AEMNF,S=S四边形PEAF﹣S△PMN=t2﹣()2=﹣t2+t﹣.(4)如图4﹣1中,当PQ′⊥BC时,易知PC=2CQ′,可得4﹣2t=2×6t,解得t=.如图4﹣2中,当点Q与点F重合时,PQ⊥AB,则有:6t+t=8,t=如图4﹣3中,当点Q与点E重合时,PQ′⊥AD,则有:6t=8+t,t=,综上所述,满足条件的t的值为s或s或s.31.【解答】解:(1)∵PD⊥AB,∴∠APD=90°,∵∠A=60°,PA=t,∴PD=PA=.故答案为t.(2)①当AD=DC时,2t=1,t=.②当CD=DB时,AP=4﹣,t=,综上所述,满足条件的t的值为或.(3)当0<t<1时,如图1中,∵DE∥AB,∴=,∴=,∴DE=4﹣4t,∴S=•DE•DP=﹣2t2+2t.当1<t<4时,如图2中,。

动点与定值问题初三

动点与定值问题初三

动点与定值问题初三一、动点与定值问题解析动点与定值问题是一种常见的数学问题,主要考察学生的空间思维能力和代数运算能力。

这类问题通常涉及到几何图形中的动点和定点,通过给定的条件和关系,求出动点的轨迹或定值。

解决动点与定值问题的关键在于理解问题的几何背景和代数关系。

首先,要明确动点和定点的位置关系,以及它们之间的距离、角度等关系。

其次,要运用代数方法,将几何关系转化为代数方程或不等式,通过求解方程或不等式得到答案。

二、例题讲解例题1:在直角坐标系中,点A的坐标为(0,1),点B的坐标为(2,0),点C的坐标为(4,3)。

若点P是x轴上的一个动点,当△PAB的周长最小时,求点P的坐标。

分析:首先,我们可以通过平移的方式找到点P的位置。

由于点A和点B关于x轴对称,我们可以将点A关于x轴的对称点设为点P,这样△PAB的周长最小。

解:设点P的坐标为(x,0)。

由于点A和点B关于x轴对称,因此,我们有:AP = BP根据点到点的距离公式,我们可以得到:AP = √(x^2 + 1)BP = √((x-2)^2 + 1)因为AP=BP,所以:x^2 + 1 = (x-2)^2 + 1解这个方程,我们得到:x = 1所以,当△PAB的周长最小时,点P的坐标为(1,0)。

例题2:在矩形ABCD中,AB=2, BC=4, 点E是BC的中点。

将△ABE沿AE折起,使得AB=BE=2, 求二面角B-AE-D的平面角的余弦值。

分析:首先,我们需要找到二面角B-AE-D的平面角所在的三角形。

通过观察和计算,我们可以发现平面角所在的三角形是△BAE。

因此,我们需要求出△BAE 的三边长度,然后利用余弦定理求出余弦值。

解:由于AB=BE=2,AE=2√2(根据勾股定理)。

我们可以得到△BAE的三边长度分别为2、2√2、4。

根据余弦定理,我们可以得到:cos∠BAE = (AB^2 + AE^2 - BE^2) / (2 ×AB ×AE)= (4 + 8 - 4) / (2 ×2 ×2√2)= √2/2所以,二面角B-AE-D的平面角的余弦值为√2/2。

(完整版)初中数学动点问题归纳

(完整版)初中数学动点问题归纳

BB动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1单位和2个长度单位的速度沿OC 和BO 之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。

数学动点问题解题技巧初三

数学动点问题解题技巧初三

数学动点问题解题技巧初三
1. 着重理解问题意思:要仔细阅读题目,明确所求,理解问题中涉及的各项条件,并将其表示为数学式子。

2. 建立坐标系:尽量建立合适的坐标系,明确各个动点所在位置的坐标轴位置和数值。

这有助于我们更直观地看到动点运动的方向和路径。

3. 利用几何图形:有时候将问题中所涉及的几何图形画出来有助于我们更好地理解和解决问题。

4. 运用向量和向量运算:向量和向量运算是解决动点问题的重要基础,尤其是位移向量、速度向量和加速度向量。

5. 建立方程组:对于复杂的动点问题,可以通过建立方程组来求解,利用各个动点的运动状态和条件,把问题转化为数学方程进行求解。

6. 合理选择计算方法:对于复杂的动点问题,选择合适的计算方法也是非常重要的,有些问题可以通过空间几何、三角函数、微积分等方面的运算方法解决。

初三动点题经典例题

初三动点题经典例题

初三动点题经典例题初三动点题是数学中比较复杂的一个题型,其所涉及的计算和分析方法的种类和难度都是相对较高的。

在初三阶段,学生们常常会遇到不少关于动点题的题目,并且常常需要在考试中解答此类问题,因此掌握初三动点题的经典例题是非常重要的。

本文将为大家介绍几道初三动点题的经典例题,以便更好地帮助大家掌握此类题型的计算技巧和分析方法。

例题一:动点匀速运动问题(1)已知飞机以90千米/小时的速度前进,机头偏离目标点30度,求飞机可以偏移多少时间到达目标点。

(2)如果飞机的前庭在1小时之后位于目标点的东南偏南30度的方向上,求这架飞机离目标点还有多远,以及此时机头离目标点的方位角是多少。

解析:这道题的解决方法就是根据初三物理中的均速直线运动的公式进行计算。

均速直线运动的公式可以表达为:S=vt,其中,S是运动的位移,v是物体的速度,t是运动的时间。

我们可以根据飞机的速度和偏离角度,求出飞机与目标点之间的距离并计算出需要多少时间才能够到达目标点。

如果已知飞机前庭位于目标点的东南偏南30度的方向上,那么我们可以利用正弦定理来计算出此时机头离目标点的方位角,再结合余弦定理计算出此时与目标点的距离。

例题二:动点投射问题(1)一位夹着手帕的拳击手以15米/秒的速度,以45度角把一个重量为0.5千克的沙袋向高空投掷,求沙袋的最高点高多少米,以及它从地面到最高点所用时间是多少。

(2)设弹道高度为4米,求从离垂直墙30米的距离处,以30度角把一个重量为0.2千克的丸子水平射出,使之恰好能砸到墙上某一定点,求此丸子的初速度应为多少。

解析:这道题的解决方法就是根据初三物理中的“抛体运动”概念进行计算。

对于抛体运动,我们需要先计算出其水平方向和竖直方向的初速度和初速度分别为v0x和v0y,再结合运动的时间和加速度分别求解其到达最高点和达到地面的时间。

如果已知弹道高度和砸到墙上的定点位置,那么我们可以通过三角函数中的正切函数来计算丸子的初速度。

初三数学动点练习题及答案

初三数学动点练习题及答案

初三数学动点练习题及答案动点是初中数学中一个重要的概念,它在几何图形的运动中起到关键的作用。

为了帮助初三学生更好地理解和掌握动点的概念,我为大家准备了一些动点练习题及答案。

以下是具体的练习内容:练习一:1. 在平面直角坐标系中,点A(3, 4)绕原点顺时针旋转90度,求旋转后点的坐标。

2. 点B(2, -1)绕坐标原点逆时针旋转180度,求旋转后点的坐标。

练习二:1. 已知正方形ABCD的边长为5个单位长度,点O为其中一条对角线的中点,求点O绕点A顺时针旋转270度后的坐标。

2. 如图所示,正方形EFGH的边长为8个单位长度,点A是边EF 上的一个点,点B是边HG上的一个点,连结AB并延长到点C(BC=3),求点C绕点A逆时针旋转120度后的坐标。

练习三:1. 在平面直角坐标系中,点P的坐标为(-2, 3),将点P绕原点顺时针旋转60度,求旋转后点的坐标。

2. 点Q的坐标为(4, -1),将点Q绕坐标原点逆时针旋转240度,求旋转后点的坐标。

练习四:1. 如图所示,矩形ABCD的长为8个单位长度,宽为6个单位长度,点O是矩形中心,将整个矩形逆时针旋转90度后,求旋转后点O的坐标。

2. 已知矩形PQRS的长为10个单位长度,宽为6个单位长度,点O 是矩形PR的中点,求点O绕点P顺时针旋转180度后的坐标。

解答如下:练习一:1. 点A(3, 4)绕原点顺时针旋转90度后,点的坐标为B(-4, 3)。

2. 点B(2, -1)绕坐标原点逆时针旋转180度后,点的坐标为C(-2, 1)。

练习二:1. 点O绕点A顺时针旋转270度后的坐标为D(-5, -3)。

2. 点C绕点A逆时针旋转120度后的坐标为E(7, 2)。

练习三:1. 点P(-2, 3)绕原点顺时针旋转60度后,点的坐标为Q(-1, -3)。

2. 点Q(4, -1)绕坐标原点逆时针旋转240度后,点的坐标为R(4, 1)。

练习四:1. 旋转后点O的坐标为D(-3, 7)。

中考数学动点题讲解

中考数学动点题讲解

中考数学动点题讲解中考数学动点题主要考察考生对平面几何中动点的理解和应用能力。

在这种题型中,需要考生根据动点的特点和运动轨迹,推导出动点所在的图形的性质和相关参数。

以下是中考数学动点题的讲解。

1. 直线上动点问题直线上动点问题是动点题中最简单的一种,通常需要考生根据动点的移动轨迹,推导出线段长度、角度等相关量的变化规律。

例如,有一条长度为10的线段AB,动点P沿着这条线段从A点开始匀速向B点移动,求当P点到达B点时,线段AB的中点O的位置。

解题思路:由于P点是匀速移动的,可以通过构建等速度线段来找到P点在到达B点前所处的位置。

具体地,我们可以在AB上构造以A点和B点为端点、长度为5的等速度线段CD和EF,分别与P点的轨迹相交于C点和E点。

根据线段AB的中点公式,可以得出线段OB的长度为5,因此,当P点到达B点时,线段OB的位置位于B点的左侧5个单位长度处。

2. 圆上动点问题圆上动点问题通常需要考生根据动点所在的圆的性质,推导出相关的几何关系和参数。

例如,有一条固定的半径为3的圆和一个动点P沿着这个圆的周长运动,当P点从起始位置出发后,经过圆心O点后,再走过180度后又回到起始位置,求动点P所走的路径长度。

解题思路:由于P点沿着圆的周长匀速运动,因此,当P点运动经过180度后,它所走的路径长度就是圆的周长的一半,即3π。

又因为P点在运动过程中经过圆心O点,因此,P点所在的运动轨迹是一条弧线,其长度等于圆心角的对应弧长。

根据圆心角的定义,当P 点运动经过180度时,它所对应的圆心角为π,因此,P点所在弧线的长度为圆的周长的一半,即3π。

3. 平面内任意图形上动点问题平面内任意图形上的动点问题通常需要考生根据所给图形的几何特征,推导出动点所处的位置和相关参数。

例如,有一个正方形ABCD和一个动点P沿着正方形边界从A点开始匀速运动,当P点回到A点时,求P点所在的轨迹。

解题思路:由于P点沿着正方形边界匀速运动,它所在的轨迹应为一条四边形,其四个顶点分别为A、B、C、D。

初三数学动点问题解题技巧

初三数学动点问题解题技巧

初三数学动点问题解题技巧
1.运用常识分析现象:问题中有两个变量(时间t和距离d),所以可以使用x=vt(物体速度v和时间t关联),d=vt(物体距离d和时间t也有关联)来描述时间和距离之间的关系。

2.用数理归纳:考虑从时间t1到 t2变化的情况,令s=d2-d1,s=vt2-
vt1=v(t2-t1)=v∆t;这是一个比较常的原理,得到的表达式可用来简化问题的解法。

3.用分析思考重新组织求解:将时间t和距离d抽象为一个整体,表述为一个乘法运算,即先乘以时间t,算出距离d,即d=vt。

由此可以多次迭代以确定每秒距离一定的最小速度v。

4.用计算求出结果:可以求出v的值来确定物体的最小速度,从而获得结果。

初三动点问题的解题技巧

初三动点问题的解题技巧

初三数学动点问题归类及解题技巧如下:
初中常见的动点问题:1.求最值问题。

2.动点构成特殊图形问题。

一、求最值问题
初中利用轴对称性质实现“搬点移线”求几何图形中一些线段和最小值问题。

利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短;(2)三角形两边之和大于第三边;(3)垂线段最短。

求线段和的最小值问题可以归结为:一个动点的最值问题,两个动点的最值问题。

以“搬点移线”为主要方法,利用轴对称性质求解决几何图形中一些线段和最小值问题。

如何实现“搬点移线”:1)确定被“搬”的点;2)确定被“移”的线。

二、动点构成特殊图形
问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置)。

分析图形变化过程中变量和其他量之间的关系,或是找到变化中的不变量,建立方程或函数关系解决。

动点构成特殊图形解题方法:1、把握运动变化的形式及过程;思考运动初始状态时几何元素的关系,以及可求出的量。

2、先确定特定图形中动点的位置,画出符合题意的图形——化动为静。

3、根据已知条件,将动点的移动距离以及解决问题时所需要的条件用含t的代数式表示出来。

4、根据所求,利用特殊图形的性质或相互关系,找出等量关系列出方程来解决动点问题。

初三数学刷题推荐练习题动点问题

初三数学刷题推荐练习题动点问题

初三数学刷题推荐练习题动点问题数学作为一门重要的学科,对于学生的学业发展具有重要的推动作用。

对于初三学生来说,数学的学习更是需要加强,尤其是在解决动点问题方面。

本文将为大家推荐几道适合初三学生练习的动点问题,帮助他们更好地理解和掌握数学知识。

问题一:动点的运动方程已知直线上有两点A(2,-3)和B(6,5),M点沿直线上下运动,且AM:MB = 2:1。

求M点的运动方程。

解析:我们可以通过求M点到A点和B点的距离的比值来得出M 点的坐标,并进而得到M点的运动方程。

设M点的坐标为(x,y),由AM:MB = 2:1可得,AM = 2MB。

根据两点间距离公式可得:AM² = (x-2)² + (y+3)²MB² = (x-6)² + (y-5)²将AM = 2MB带入上式,得到:(x-2)² + (y+3)² = 4[(x-6)² + (y-5)²]化简得到:3x + 4y = 43因此,M点的运动方程为3x + 4y = 43。

问题二:动点的速度与加速度已知动点P沿直线运动,其速度v(t)和加速度a(t)分别为:v(t) = 3t² - 2t + 5a(t) = 6t - 2求动点P在t = 2时的速度和加速度。

解析:要求动点P在t = 2时的速度和加速度,我们只需要将t = 2代入速度函数v(t)和加速度函数a(t)即可。

代入速度函数可得:v(2) = 3(2)² - 2(2) + 5= 12 - 4 + 5= 13代入加速度函数可得:a(2) = 6(2) - 2= 12 - 2= 10因此,动点P在t = 2时的速度为13,加速度为10。

问题三:动点的轨迹方程已知动点P随时间t变化的位置满足x(t) = t² - t + 1,y(t) = t² + t。

初三数学几何动点题及方法精选幻灯片

初三数学几何动点题及方法精选幻灯片
5
【思路分析】本题和上题有所不同,上一题会给出一个条件使得动点静 止,而本题并未给出那个“静止点”,所以需要我们去分析由D运动产生的 变化图形当中,什么条件是不动的。由题我们发现,正方形中四条边的垂 直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。
6
【思路分析】这一问是典型的从特殊到一般的问法,那么思路很简 单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找 AC的垂线,就可以变成第一问的条件,然后一样求解。
A
D
N
B
M
C
2
【思路分析】解决动点问题,首先就是要找谁在动,谁没在动, 通过分析动态条件和静态条件之间的关系求解。对于大多数题目 来说,都有一个由动转静的瞬间,就本题而言,M,N是在动,意 味着BM,MC以及DN,NC都是变化的。但是我们发现,和这些动态的 条件密切相关的条件DC,BC长度都是给定的,而且动态条件之间也 是有关系的。所以当题中设定MN//AB时,就变成了一个静止问 题。由此,从这些条件出发,列出方程,自然得出结果。
A
M
D
60°
B P
Q C
11
以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现 特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求 解。如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不 变的。当动的不是点,而是一些具体的图形时,思路是不是一样呢?接下 来我们看另外两道题.
A
M
D
G
E
FN
B
C
图2 14
【思路分析】如果△BEF任意旋转,哪些量在变化,哪些量不变呢?在△BEF的
旋转过程中,始终不变的依然是G点是FD的中点。可以延长一倍EG到H,从而构造

(完整版)(完整word)初三数学动点问题总结,推荐文档

(完整版)(完整word)初三数学动点问题总结,推荐文档
5
解得:t=< (5分)
33
而MN=..NC= ..(1+t)
(4)①当MP=Mffl-(如图1)贝U有:NP=NC
即PC=2NC・4-t=2(1+t)
2当CM=CP^(如图2)
则有:
5
(1+t)=4-t
11
解得:t=/3当PM=PC寸(如图Fra bibliotek)则有:
在Rt△MNF中,PM2=MN2+PN2
33
而MN=.-NC= ..(1+t)
BC, CB DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(xm0),贝U AP=2xcm
CM=3xcm DN=x2cm
(1)当x为何值时,以PQ MN为两边,以矩形的边(AD或BC的一部分为第三边构成一个三角形;
(2)当x为何值时,以P,Q, M, N为顶点的四边形是平行四边形;
以P,Q,MN为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MCBQ=ND当点P在点N的右侧时,AN=MC BQ=PD所以可以根据这些条件列出方程关系式.
1当皿卩=皿时,那么PC=2NC据此可求出t的值.
2当CM=CPt,可根据CM和CP的表达式以及题设的等量关系来求出t的值.
3当MP=PC寸,在直角三角形MNP中先用t表示出三边的长,然后根据勾股定理即可得出t的值.
综上所述可得出符合条件的t的值.
解答:
解: (1)vAQ=3-t
•CN=4-(3-t)=1+t
四边形PCDQ勾成平行四边形就是PC=DQ列方程4-t=t即解;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

动态几何形成的面积问题是动态几何中的基本类型,包括单动点形成的面积问题,双(多)动点形成的面积问题,线动形成的面积问题,面动形成的面积问题。

本专题原创编写单动点形成的面积问题模拟题。

在中考压轴题中,单动点形成的面积问题的重点和难点在于应用数形结合的思想准确地进行分类。

原创模拟预测题1. 某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考:如图1,点P 为线段AB 上的一个动点,分别以AP 、BP 为边在同侧作正方形APDC 与正方形PBFE.(1)在点P 运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.(2)分别连接AD 、DF 、AF , AF 交DP 于点A ,当点P 运动时,在△APK 、△ADK 、△DFK 中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB 为边作正方形ABCD ,动点P 、Q 在正方形ABCD 的边上运动,且PQ=8.若点P 从点A 出发,沿A→B→C→D 的线路,向D 点运动,求点P 从A 到D 的运动过程中, PQ 的中点O 所经过的路径的长。

图1FEDCABP(4)如图(3),在“问题思考”中,若点M 、N 是线段AB 上的两点,且AM=BM=1,点G 、H 分别是边CD 、EF 的中点.请直接写出点P 从M 到N 的运动过程中,GH 的中点O 所经过的路径的长及OM+OB 的最小值.【答案】(1)当x=4时,这两个正方形面积之和有最小值,最小值为32; (2)存在两个面积始终相等的三角形,图形见解析; (3)PQ 的中点O 所经过的路径的长为6π;(4)点O 所经过的路径长为3,OM+OB 的最小值为113. 【解析】试题解析:(1)当点P 运动时,这两个正方形的面积之和不是定值. 设AP=x ,则PB=8-x ,根据题意得这两个正方形面积之和=x 2+(8-x )2=2x 2-16x+64=2(x-4)2+32, 所以当x=4时,这两个正方形面积之和有最小值,最小值为32; (2)存在两个面积始终相等的三角形,它们是△APK 与△DFK . 依题意画出图形,如图所示.图3OHG FE D CA BPMN图2OQCD ABP P设AP=a ,则PB=BF=8-a . ∵PE ∥BF ,∴PK APBF AB =, 即88PK a a =-, ∴PK=(8)8a a -,∴DK=PD-PK= a-(8)8a a -=28a , ∴S △APK =12PK•PA=12•(8)8a a -•a=2(8)16a a -,S △DFK =12DK•EF=12•28a •(8-a )=2(8)16a a -,∴S △APK =S △DFK ;所以PQ 的中点O 所经过的路径的长为:34×2π×4=6π;(4)点O 所经过的路径长为3,OM+OB 的最小值为113.如图,分别过点G 、O 、H 作AB 的垂线,垂足分别为点R 、S 、T ,则四边形GRTH 为梯形.如图,作点M 关于直线XY 的对称点M′,连接BM′,与XY 交于点O .由轴对称性质可知,此时OM+OB=BM′最小.在Rt △BMM′中,由勾股定理得:BM′=22113MM BM '+=. ∴OM+OB 的最小值为113. 考点:四边形综合题.原创模拟预测题2. 如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则当y=34时,x 的取值是【 】A. 1B. 14C. 1或3D. 3【答案】C。

【考点】动点问题,锐角三角函数定义,特殊角的三角函数值,等边三角形的判定和性质,含30度角直角三角形的性质,分类思想的应用。

故选C。

原创模拟预测题3.如图,菱形ABCD的边长为2,∠A=30,动点P从点B出发,沿B-C-D 的路线向点D运动。

设△ABP的面积为y (B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图像大致为【】A. B. C. D.【答案】C。

【考点】动点问题的函数图象,菱形的性质,锐角三角函数定义,特殊角的三角函数值,分类思想的应用。

【分析】当点P在BC上运动时,如图1,∵△ABP的高1PE BP sin PBE BP sin A x2 =⋅∠=⋅∠=,∴△ABP的面积1111y AB PE=2x x 2222=⋅⋅⋅⋅=。

当点P在BC上运动时,如图2,故选C。

原创模拟预测题4. 如图,在矩形ABCD 中,AB =3,BC =4.动点P 从点A 出发沿AC 向终点C 运动,同时动点Q 从点B 出发沿BA 向点A 运动,到达A 点后立刻以原来的速度沿AB 返回.点P 、Q 运动速度均为每秒1个单位长度,当点P 到达点C 时停止运动,点Q 也同时停止.连接PQ ,设运动时间为t (t >0)秒.(1)求线段AC 的长度;(2)当点Q 从点B 向点A 运动时(未到达A 点),求△APQ 的面积S 关于t 的函数关系式,并写出t 的取值范围;(3)伴随着P 、Q 两点的运动,线段PQ 的垂直平分线为l : ①当l 经过点A 时,射线QP 交AD 于点E ,求AE 的长; ②当l 经过点B 时,求t 的值. 【答案】(1)5 (2)t t t t S 565254)3(212+-=⋅-=, )30(<<t (3)3、t =2.5,1445=t 【解析】试题分析:(1)在矩形ABCD 中,225AC AB BC =+=由△APE ∽△OPQ ,得3,=⋅=∴=OQ OPAPAE OP AP OQ AE . ②(ⅰ)如图③,当点Q 从B 向A 运动时l 经过点B ,BQ =CP =AP =t ,∠QBP =∠QAP∵∠QBP +∠PBC =90°,∠QAP +∠PCB =90° ∴∠PBC =∠PCB CP =BP =AP =t∴CP =AP =21AC =21×5=2.5 ∴t =2.5. (ⅱ)如图④,当点Q 从A 向B 运动时l 经过点B ,考点:矩形、相似三角形点评:本题考查矩形,相似三角形,要求考生掌握矩形的性质,相似三角形的判定方法,会判定两个三角形相似原创模拟预测题5.如图,已知动点A在函数2y=x(x>o)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC。

直线DE分别交x轴,y 轴于点P,Q。

当QE:DP=4:9时,图中的阴影部分的面积等于▲ _。

【答案】32。

【考点】反比例函数综合题,曲线上坐标与方程的关系,勾股定理,相似三角形的判定和性质。

【分析】过点D作DG⊥x轴于点G,过点E作EF⊥y轴于点F。

∴图中阴影部分的面积=221141433AB 22t 242⨯=⋅=⋅=。

原创模拟预测题6. 如图,在平面坐标系中,直线y=﹣x+2与x 轴,y 轴分别交于点A ,点B ,动点P (a ,b )在第一象限内,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点P (a ,b )运动时,矩形PMON 的面积为定值2.当点E ,F 都在线段AB 上时,由三条线段AE ,EF ,BF 组成一个三角形,记此三角形的外接圆面积为S 1,△OEF 的面积为S 2。

试探究:21S S -是否存在最大值?若存在,请求出该最大值;若不存在,请说明理由。

【答案】存在。

∵四边形OAPN 是矩形,∠OAF=∠EBO=45°,∴△AME 、△BNF 、△PEF 为等腰直角三角形。

∵E 点的横坐标为a ,E (a ,2﹣a ),∴AM=EM=2﹣a 。

∴AE 2=2(2﹣a )2=2a 2﹣8a+8。

∵F 的纵坐标为b ,F (2﹣b ,b ),∴BN=FN=2﹣b 。

∴BF 2=2(2﹣b )2=2b 2﹣8b+8。

∵PF=PE=a+b ﹣2,∴EF 2=2(a+b ﹣2)2=2a 2+4ab+2b 2﹣8a ﹣8b+8。

∵ab=2,∴EF 2=2a 2+2b 2﹣8a ﹣8b+16。

∴EF 2=AE 2+BF 2。

∴线段AE 、EF 、BF 组成的三角形为直角三角形,且EF 为斜边。

∴此三角形的外接圆的面积为()()2221S EF 2a b 2a b 2442πππ==⋅+-=+-。

∵()PEF OME OMPF 111S PF ON PM S PF PE S OM EM 222∆∆=+⋅=⋅=⋅梯形,,, ∴S 2=S 梯形OMPF ﹣S △PEF ﹣S △OME ,=12(PF+ON )•PM ﹣12PF•PE ﹣12OM•EM =12 [PF (PM ﹣PE )+OM (PM ﹣EM )]= 12(PF•EM+OM•PE )=12PE (EM+OM ) =12(a+b ﹣2)(2﹣a+a )=a+b ﹣2。

∴()221S S a b 2a b 22π-=+--+-。

设m=a+b ﹣2,则222121S S m m m 222ππππ⎛⎫-=-=--+ ⎪⎝⎭, ∵<02π-, ∴当2m π=时,21S S -有最大值,最大值为12π。

【考点】单动点问题,等腰直角三角形的判定和性质,勾股定理和逆定理,二次函数的性质,偶次幂的非负性质,转换思想的应用。

图②。

相关文档
最新文档