简单的线性规划问题教案
高二数学人教A版必修5教学教案3-3-2简单的线性规划问题(7)
《简单的线性规划问题》教学设计一、教学内容解析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,是辅助人们进行科学管理的数学方法,为合理地利用有限的人力、物力、财力等资源作出最优决策。
本节的教学重点是线性规划问题的图解法。
数形结合和化归思想是研究线性约束条件下求线性目标函数的最值问题的数学理论和方法,本节课重点体现了这一数学思想,将目标函数与直线的截距、斜率、两点距离联系起来,这样就能使学生对数形结合思想的理解和应用更透彻,为以后解析几何的学习和研究奠定了基础,使学生从更深层次地理解“以形助数”的作用。
二、教学目标设置(1)知识与技能:使学生了解线性规划的意义,利用数形结合及化归的数学方法,理解并掌握非线性目标函数及非线性约束条件下目标函数的最值求法;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力;(3)情态、态度与价值观:激发学生动手操作、勇于探索的精神,培养学生发现问题、分析问题及解决问题的能力,体会数学活动充满着探索与创造。
三、教学重点难点教学重点:求非线性目标函数的最值;教学难点:能将代数问题转化为斜率或距离等几何问题;四、学情分析本节课学生在学习了简单线性规划问题的基础上,会画出平面区域,并且会计算简单线性目标函数的最值。
从数学知识上看,学生在此基础上还学习过直线的斜率,两点距离问题,直线与圆的位置关系,具备本节课所需知识要素。
从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这成了学生学习的困难。
五、教学方法本课以例题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,激发学生动手操作、观察思考、猜想探究的兴趣。
注重引导帮助学生充分体验“从具体到一般”的抽象过程。
应用“数形结合”的思想方法,培养学生学会分析问题,解决问题的能力。
六、教学过程。
9_简单的线性规划问题
§3.3.3 简单的线性规划问题一、教学目标:(一)知识与技能1.从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;2.理解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;会根据条件建立线性目标函数3.理解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值4.培养学生观察、联想以及作图的水平;渗透集合、化归、数形结合、等价转化的数学思想,提升学生“建模”和解决实际问题的水平,培养学生应用数学的意识。
经历从实际情境中抽象出不等式模型的过程,培养学生数学建模的水平以及数学应用意识.(三)情感、态度与价值观1. 通过具体情景,感受在现实世界和日常生活中存有着大量的不等关系,体会不等式对于刻画不等关系的意义和价值;2.体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题;3.通过实例,体验数学与日常生活的联系,感受数学的实用价值,增强应用意识,提升实践水平,培养学生理论联系实际的观点.二、教学重难点:重点:线性规划的图解法。
难点:从实际情景中抽象出一些简单的二元线形规划问题;寻求线性规划问题的最优解。
三、教学过程:(一)创设情景,揭示课题1. 在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,本节课就学习此方面的应用2.问题:在约束条件4104320x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,如何求目标函数2P x y=+的最大值?OyxA CB430x y -+=1x = 35250x y +-=(二)自学导案(三)解决自学导案(四)例题分析例1 设2z x y =+,式中变量,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值.解:由题意,变量,x y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域.由图知,原点(0,0)不在公共区域内,当0,0x y ==时,20z x y =+=,即点(0,0)在直线0l :20x y +=上,作一组平行于0l 的直线l :2x y t +=,t R ∈,可知:当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>,即0t >,而且,直线l 往右平移时,t 随之增大. 由图象可知,当直线l 经过点(5,2)A 时,对应的t 最大, 当直线l 经过点(1,1)B 时,对应的t 最小, 所以,max 25212z =⨯+=,min 2113z =⨯+=.变题:设610z x y =+,式中,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值.解:由引例可知:直线0l 与AC 所在直线平行,则由引例的解题过程知,当l 与AC 所在直线35250x y +-=重合时z 最大,此时满足条件的最优解有无数多个,当l 经过点(1,1)B 时,对应z 最小,∴max 61050z x y =+=,min 6110116z =⨯+⨯=.例2 投资生产A 产品时,每生产一百吨需要资金200万元,需场地200 m 2,可获利润300万元;投资生产B 产品时,每生产一百米需要资金300万元,需场地100m 2,可获利润200万元.现某单位可使用资金1400万元,场地900 m 2,问 应作怎样的组合投资,可获利最大? 分析:解 设生产A 产品x 百吨,生产B 产品y 百米,利润为S 百万元,则约束条件为:23142900x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,,,. 目标函数为y x S 23+=,223Sx y +-=,这是斜率为23-,在y 轴上的截距为2,随着2S 变化的直线族.当2S最大时,S 最大,但直线要与可行域相交.当直线经过两条直线143292=+=+y x y x 与的交点⎪⎭⎫⎝⎛25413,A 时,直线在y 轴上的截距最大,此时75.145.2225.33=⨯+⨯=S ,所以,生产A 产品325t ,生产B 产品250m 时,获利最大,且最大利润为1475万元.例3 某运输公司向某地区运送物资,每天至少运送180t .该公司有8辆载重为6t 的A 型卡车与4辆载重为10t 的B 型卡车,有10名驾驶员.每辆卡车每天往返次数为A 型车4次,B 型车3次.每辆卡车每天往返的成本费A 型车为320元,B 型车为504元.试为该公司设计调配车辆方案,使公司花费的成本最低,若只调配A 型或B 型卡车,所花的成本费分别是多少?解 设每天调出A 型车x 辆,B 型车y 辆,公司花费成本z 元,将题中数据整理成如下表格:A 型车B 型车 物资限制 载重(s ) 6 10 共180 车辆数 8 4 出车次数 43每车每天运输成本(元)320504则约束条件为10,4631018008,04,,x y x y x y x y +≤⎧⎪⋅+⋅≥⎪⎪≤≤⎨⎪≤≤⎪∈⎪⎩,Z. 即1045300804,x y x y x y x y +≤⎧⎪+≥⎪⎪≤≤⎨⎪≤≤⎪∈⎪⎩,,,,Z.目标函数为y x z 504320+=.作出可行域:当直线z y x =+504320经过直线3054=+y x 与x 轴的交点(7.5,0)时,z 有最小值,因为(7.5,0)不是整点,故不是最优解.由图可知,经过可行域内的整点,且与原点距离最近的直线是2560504320=+y x ,经过的整点是(8,0),它是最优解.答 公司每天调出A 型车8辆时,花费的成本最低,即只调配A 型卡车,所花最低成本费25608320=⨯=z (元);若只调配B 型卡车,则y 无允许值,即无法调配车辆.五、课堂小结:本节课学习了以下内容: 1. 线性规划问题的求解步骤:(1)审:审题(将题目中数据列表),将实际问题转化为数学问题; (2)设:设出变量,确定约束条件,建立目标函数;(3)画:画出线性约束条件所表示的可行域,作出目标函数线;(4)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线; (5)求:通过解方程组求出最优解; (6)答:回答实际问题.2. 对于有实际背景的线性规划问题,可行域通常是一个凸多边形区域,此时变动直线的最正确位置一般通过这个凸多边形的顶点,所以,确定其最优解,往往只需考虑在各个顶点的情形,通过比较,即可得最优解.3. 本节课学习的数学思想:化归思想、数形结合思想.六、课外作业课本P94-95 第8,9,10,11题教学反思:。
高中数学简单线性规划教案
高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。
2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。
2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。
3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。
三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。
2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。
四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。
2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。
五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。
2. 提醒学生在做作业时要注意思考问题的建模和求解方法。
六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。
2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。
《简单的线性规划问题》教学设计
碳 水 化 合 物 , . k 的 蛋 白质 , .7 g 01 g 4 O0 k  ̄
生直 观感 知 目 标函数和 可行域 边 界的 斜率与最优解的关系, 体会从特 殊到一
般的过程 ; 探究 的过程 中, 会最 优 在 体 解 与目标 函数和可 行域 边界 的斜率 之 间的关系。
肪, 物A B 食 、 如何 搭配才能满足营养专家
教 师用交互 式电子 白板展示 四组 求最优解的过程。
足需要 , 所用钢 板 数最 一? 且 J 、
学生 思考, 主完成 , 自 并且 利用实
物投影展示解题的过程 。
师: 得 很 好 , 说 解题 过 程也 很 严谨 ,
设计意图: 组求最优解的 把四 过程
放在同一张PT 可以使学生更直观 地 P上, 进行比 较和归 有利于学 纨 生迅速发现规
2检测引申, . 提出问题
课件 展示 : 要将两种大小不同的钢
板截成A B c 、 、三种规格 , 每张钢板可同时 截得三种规格 的小钢板的块 数, 如表2 。
现 需要 A B c 种 规 格 的成 品分 别是 l 、 、三 5 、
1 2块 , 8 7 求截 得 这 两种 钢板 多少张 才能满
指 出的日 常饮食要求?
线性规 划问题 的第二 课时 , 本节 课既 是上节课求最优 解的巩固和发展 , 又是 解决生活最 优化 问题的基础。 在学 生学 习了平 面区域 的前提 下, 与学生共 同探 究最优解问 及其几何意义。 题 黪 学生分析
学 生 已经学 过 平 面 区域 的知 识, 可 以根 据 题 意 列 出二 元 一 次 不 等 式
生5要 先预 算 一 下直 线与两坐 标轴 :
的交点, 然后确定单位 坐标, 才能画得 更 美观 , 而且能直 观地看出区域的位置。
简单的线性规划问题
简单的线性规划问题(一)教案单县一中 万继昌一. 教学目标:1. 知识目标:(1)了解线性规划,可行域等概念的意义。
(2)掌握简单的线性规划问题的解法。
2. 能力目标:结合实际应用实例,概括总结出线性规划问题及解决方法,培养学生现实应用技能,分析、探索的能力。
3. 情感目标:体会数学来源于现实生活,体验数学在建设节约型社会中的作用,提高学生解决实际问题的能力。
二. 教学重点:利用图解法求得线性规划问题的最优解;三. 教学难点: 如何准确求出线性规划问题的最优解。
四. 教学方法: 启发探究式教学。
五. 教学工具: ppt 课件,实物展台等。
六. 教学过程:(一) 复习引入:(1)二元一次不等式Ax +By +C >0在平面直角坐标系 表示什么图形?直线Ax +By +C =0的某一侧所有点组成的平面区域 (2) 作出下列不等式组的所表示的平面区域 ⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x师生互动:【教师】先让学生做,画,然后点拨。
【学生】画图,总结步骤:直线定界,特殊点定域【教师】问题1:x 有无最大(小)值?问题2:y 有无最大(小)值?问题3:2x+y 有无最大(小)值?设计意图:复习回顾上节内容,为本节课学习奠定基础,同时提出问题,激发学生兴趣,引入新课。
(二)新课讲授1 引例某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4 个A配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B 配件,按每天工作8 h计算,(1)该厂所有可能的日生产安排是什么?师生互动:【教师】多媒体投影引例,并提出问题引导学生思考。
1)如何设变量?请用不等式组表示问题中的限制条件。
2)画出该不等式组表示的平面区域。
【学生】按老师的问题解答:解:设甲、乙两种产品分别生产x、y件,由已知条件可得二元一次不等式组画出可行域【教师】引导学生作出不等式组表示成平面上的区域,图中的阴影部分中的整点(坐标为整数)即为所有可能的日生产安排。
《简单的线性规划问题》说课稿(附教学设计)
《简单的线性规划问题》说课稿一、教材分析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,是辅助人们进行科学管理的数学方法,为合理地利用有限的人力、物力、财力等资源作出最优决策.本节课是学生学习了二元一次不等式(组)所表示的平面区域及直线方程和简单函数的最值的基础上,借助二元一次函数与直线方程间的相互转化和数形结合思想的有关知识求二元一次函数的最值,也是对二元一次不等式(组)表示平面区域的知识升华.本节的教学重点是线性规划问题的图解法.数形结合和化归思想是研究线性约束条件下求线性目标函数的最值问题的数学理论和方法,本节教学内容中蕴含了丰富的属性结合素材,具体表现为:(1)不定方程的解与平面内点的坐标的结合,进而产生了直线的方程.(2)线性目标函数解析式与直线的斜截式方程的结合.(3)线性目标函数的函数值与直线的纵截距的结合.(4)二元一次不等式(组)与为平面内点的坐标的结合.(5)线性目标函数在线性约束条件下的最值与直线过可行域内的点时纵截距的最值的结合.这样就能使学生对数形结合思想的理解和应用更透彻,为以后解析几何的学习和研究奠定了基础, 使学生从更深层次地理解“以形助数”的作用。
线性规划的实际问题的解决需要数学建模,一个正确数学模型的建立要求建模者熟悉规划问题的具体实际内容.对学生来说,上一节课已初步学习利用表格将文字长、数据多的应用问题中的数据进行整理,设未知数,列出线性约束条件;本节课一方面要让学生经历数据整理过程,准确列出约束条件,还要分析数据写出线性目标函数,尝试运用该模型解决实际问题,在多次数学问题解决的全过程中加深对简单线性规划问题数学模型的理解.通过本节教学还能使学生学会运用已有的认知结构探求新知的方法.这将使学生在以后的学习数学的过程中遇到困难想办法进行转化,例如以后可能会遇到目标函数为22y x z xy z +==或的问题,解决中可以借鉴本节课探索方法. 二、教学目标解析1.教学内容的脉络:本节课首先运用尝试计算比较的方法求目标函数的最值,随着可行域的逐步复杂学生思维产生结点,这样让学生经历问题提出的过程.然后引导学生经历知识探究过程,让他们学会运用已有知识探究新问题的方法,引导学生总结一般性的方法,掌握本节的重点.巩固练习中对两个例题都进行了再剖析,结合例1对数形结合思想的运用进行深入体会;针对例2由于作图的误差可能会带来的错解研究对策,同时用两个例题来培养体验数学在建设节约型社会中的作用,品尝学习数学的乐趣和科学严谨的学习态度.2.使学生学会从实际优化问题中抽象、识别出线性规划模型.会用图解法求线性目标函数的最大值、最小值. 了解约束条件、目标函数、可行解、可行域、最优解等基本概念.3.教学中不但要教教材,还要教教材中的蕴含的方法.在探究如何求目标函数的最值时,让学生领悟到数形结合思想、化归思想在数学中的应用.在例1的反思中深入体会数学结合思想,培养学生在今后的学习中尝试运用数学思想方法进行思考,养成动手实践的探究新问题的习惯.4.在线性规划问题的探究过程中,使学生经历观察、分析、操作、归纳、概括的认知过程,经历知识的形成过程.三、教学分析让学生学会求简单的线性规划问题的方法并不困难,但对该问题的探究过程学生存在如下困难:(1)含两个决策变量的函数问题学生没有接触过,其函数值只能用代入法求得,直接求最大值对学生思维的要求跨度太大;(2)二元一次函数化成直线形式不是学生直接能想到的,也就是化归与数学结合的思想学生并不能熟练地应用. (3)学生对数形结合思想的理解往往停留只在表面化,让学生深入理解其作用及如何结合是本节课的难点之一.另外学生对实际生活中的问题转化为线性规划问题的数学建模意识也比较缺乏.教学难点:使让学生经历用图解法求最优解的探索过程;数形结合思想的理解.教学关键:指导学生紧紧抓住化归、数形结合的数学思想方法找到目标函数与直线方程的关系.四、教法分析新课程倡导学生积极主动、勇于探索的学习方式,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等.本节课我以学生为中心,以问题为载体,采用启发、引导、探究相结合的教学方法.(1)设置“问题”情境,激发学生解决问题的欲望,调动学习积极性,在同一游戏背景下,设计富有层次的问题,引领学生思维有条理的深入到问题本质,经历问题的提出、深化变式、解决过程.(2)提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验. 通过设计探究环节和学生合作交流的活动,学生学会怎样利用原有的知识探究新知.使学生学到知识的同时又学会方法,注重知识的形成过程.(3)在本节应用题教学中,让学生经历“学数学、做数学、用数学”的过程;做到数学原理与解决问题的统一,即帮助学生掌握了知识与方法,也培养了应用意识、形成数学思想.《简单的线性规划问题》教学设计一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。
简单的线性规划教案
简单的线性规划教案教案标题:简单的线性规划教案教学目标:1. 了解线性规划的基本概念和特点。
2. 理解线性规划问题的求解过程。
3. 能够利用线性规划方法解决简单的实际问题。
所需材料:1. 铅笔、纸张、计算器。
2. 多个线性规划问题的案例。
教学步骤:引入阶段:1. 引导学生思考:什么是线性规划?线性规划有哪些应用场景?2. 提出教学目标,并解释线性规划的定义和特点。
探究阶段:3. 解释线性约束条件和目标函数的概念。
4. 利用一个简单的例子说明线性规划问题的形式和表示方法。
5. 引导学生分析并列出问题的线性约束条件和目标函数。
实践阶段:6. 将学生分成小组,每个小组选择一个实际问题,并将其转化为线性规划问题。
7. 指导学生列出问题的线性约束条件和目标函数。
8. 引导学生运用计算器或手动计算,求解其线性规划问题。
9. 学生分享并讨论解决过程和结果。
巩固阶段:10. 提供更多复杂的线性规划问题案例,让学生独立尝试解答,并讨论解决策略和结果。
11. 简要总结线性规划的基本原理和步骤。
拓展阶段:12. 引导学生思考更高级的线性规划问题,如带有整数约束或非线性目标函数的问题。
13. 推荐相关参考书籍和网上学习资源供学生深入学习。
评估方式:1. 在实践阶段,观察学生的合作和参与情况。
2. 收集学生独立解答的线性规划问题的答案,并进行评估。
教学反思:根据学生的反馈和评估结果,适时调整教学步骤和内容,确保学生能够理解和应用线性规划的基本原理。
简单的线性规划(教案)
§3.3.2简单的线性规划(教案)---一节校际公开课的设计,实施,反思【教学目标】1.知识与技能:掌握线性规划问题的图解法,培养学生数形结合水平,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际问题中抽象出简单的线性规划问题的过程,学会用数学语言去表达实际问题,通过经历图解法解决问题的过程掌握图解法;3.情态与价值:通过对现实中优化问题的解决,让学生体会数学知识在解决资源分配,生产安排,人力布局等方面的强大作用.培养学生的理性精神。
【教学重点】利用图解法求得线性规划问题的最优解;【教学难点】把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。
【教学流程】【教学过程】一.复习引入:1.二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)代点确定,通常代如下几点(0,0),(1,0),(0,1)2.二元一次不等式组表示的几何意义是什么?二.问题情景:例 一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t 硝酸盐18t ;生产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐15t,现库存磷酸盐10t 、硝酸盐66t .若生产1车皮甲种肥料,产生的利润为10 000元;生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润? 三 建立模型解:设x,y 分别为计划生产甲乙两种混合肥料的车皮数,设利润为Z,于是满足以下条件:41018156600x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩(1) Z=x+0.5y (2)四 分析Z 随x 和y 的变化是如何变化:把(2)式等价变形为y=-2x+2Z,联系前面学过的一次函数:y=kx+b 可知,b=2Z,又因为一次函数的图象是直线如下图从图中分析可知:当直线与y 轴交点越向上时,b 的值越大,越向下是时,b 的值越小.取z=0,z=1,z=2等等可得到一系列平行直线得到的结论是:y=-2x+z表示一簇直线,z 的值随着直线y=-2x平行移动时与y 轴交点不同而变化,所以我们能够由(1)确定的区域内在平行移动直线y=-2x就可找到z 的最大值点和最小值点五 解决问题 1.在直角坐标系中可表示成如图的平面区域(阴影部分)通过平移参照直线可知使目标函数最大值点在M(2,2)所以Zmax=3万元 2 问题变式 在(1)的约束条件下,求目标函数Z=5x+y,Z=x+2y,Z=4x+y 的最大值3.随堂练习y=-2xy=-2x+1y=-2x+4Z=x+2yy=-2x+zZ=5x+yZ=4x+y1、求y x z -=的最大值、最小值,使x 、y 满足条件⎪⎩⎪⎨⎧≥≥≤+002y x y x2、设y x z +=2,式中变量x 、y 满足 ⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x六 形成一般规律解决线性规划问题的一般方法: ⑴ 建立约束条件和目标函数 ⑵ 画出可行域与参照直线 ⑶ 平行移动参考直线寻找最值点 ⑷ 求交点和最值结论1线性目标函数的最大值、最小值一般在可行域的顶点处取得.结论2线性目标函数的最大值、最小值也可能在可行域的边界上取得,即满足条件的最优解有无数多个.现摘录如下(1)对于一次函数y=kx+b 中当交点在y 轴上越高时b 值越大,但是在有些线性规划问题中,并不一定是交点越高,z 的值越大,有时能够相反,这点未给学生交待清楚,造成学生误认为只要交点越高,z 就越大的理解(2)在作图不是很严格情况下出现不确定最值点在何处时,最好是把各个交点代入检验以确保答案准确,要教给学会防止出错的方法,不能仅依赖作图来找答案 (3)开始阶段要着重向学生强调作图规范和准确以给学生做好示范,强调图解法就是靠准确作图找到最优点 八 教学反思(1) 在教学设计中,我考虑到湖北省必修教材教学顺是14523的顺序,不是12345的顺序,这样就给线性规划教学带来一定的困难,因为斜率未学,导致不能用斜率和截距知识来说明目标函数的变化趋势.所以只能从前面学过的一次函数角度来突破,从教学实际看,学生基本听懂了目标函数的变化趋势.(2) 考虑到本节课的重点是建模和解模两个环节,所以在建模开始时着重强调了列表法分析题中各个数据,对于初学线性规划问题的学生来讲,养成用表格方法去分析,对以后解题有很大作用(3)在解决了基本问题后设置了3个变式,用来强调目标函数最值点取决于目标函数系数和可行域的形状,特别是对于无穷解的设计,以为学生以后解题做好铺垫.。
《简单的线性规划问题》学案
04 对偶理论与灵敏度分析应 用
对偶问题概念及性质阐述
对偶问题定义
在线性规划问题中,每一个原问 题都存在一个与之对应的对偶问
题,两者在结构上密切相关。
对偶性质
对偶问题的解与原问题的解存在对 应关系,如互补松弛性、弱对偶性 等,这些性质为解决线性规划问题 提供了重要依据。
对偶问题意义
通过对偶问题的求解,可以进一步 了解原问题的性质,为决策提供更 多信息。
模型建立
结果分析
将问题转化为线性规划标准型,使用单纯 形法求解。
根据求解结果制定生产计划,分析各种资源 的使用情况和利润水平。如有必要,对生产 计划进行调整和优化。
03 单纯形法原理及步骤详解
单纯形法基本原理介绍
单纯形法是一种求解线性规划问 题的有效算法。
它通过不断地在可行域的一个顶 点上进行迭代,逐步逼近最优解。
根据问题的特点和求解目标, 选择合适的数学模型进行建模 。
模型检验与修正
对建立的模型进行检验,确保其 正确反映实际问题的本质。如有 必要,对模型进行修正和改进。
案例分析:生产安排优化
案例背景
问题分析
某企业生产多种产品,需要合理安排生产 计划以最大化利润。
确定决策变量(各种产品的生产量),明 确目标函数(利润最大化),列出约束条 件(原材料、设备、人力等资源限制)。
常见误区提示及避免策略
误区一
忽略非负性约束。在线性规划问题中,所有变量的取值都 应该是非负的。如果忽略了这一点,可能会导致求解结果 出现错误。
误区三
错误地处理约束条件。约束条件是线性规划问题中的重要 组成部分,如果错误地处理了约束条件,可能会导致求解 结果不满足实际问题的需求。
误区二
高中数学 同步教学 简单的线性规划问题
x (1)
2
率的 2 倍,
因为 kQA= 7 ,kQB= 3 ,所以 z 的取值范围是[ 3 , 7 ].
48
42
方法技巧 与二元一次不等式(组)表示的平面区域有关的非线性目标函数 的最值问题的求解,一般要结合给定代数式的几何意义来完成.
常 见 代 数 式 的 几 何 意 义 :(1) x2 y2 表 示 点 (x,y) 与 原 点 (0,0) 的 距
4.给定下列命题:在线性规划中,
①最优解指的是使目标函数取得最大值的变量x或y的值;
②最优解指的是目标函数的最大值或最小值;
③最优解指的是使目标函数取得最大值或最小值的可行域;
④最优解指的是使目标函数取得最大值或最小值的可行解.
其中正确命题的序号是
.
解析:因为最优解是使目标函数取得最大值或最小值的可行解,即满足 线性约束条件的解(x,y),它是一个有序实数对,所以①②③均错,④正确. 故填④. 答案:④
变式探究:在本例的约束条件下,求z=x2+y2+2x的最大值与最小值.
解:z=x2+y2+2x=(x+1)2+y2-1 表示可行域内任意一点(x,y)与点 D(-1,0)距离的平方减去 1,
如图所示,过 D 作 AB 的垂线 DP,垂足为 P,所以|DP|= | 1 0 4 | = 5 = 5 2 ,
(2)简单线性规划问题的解法 在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤 可概括为“画、移、求、答”,即: ① 画 : 在 平 面 直 角 坐 标 系 中 , 画 出 可 行 域 和 直 线 ax+by=0( 目 标 函 数 为 z=ax+by); ②移:平行移动直线ax+by=0,确定使z=ax+by取得最大值或最小值的点; ③求:求出使z取得最大值或最小值的点的坐标(解方程组)及z的最大值或 最小值; ④答:给出正确答案.
《简单的线性规划问题》参考教案
课题: §3.3.2简单的线性规划第1课时授课类型:新授课【教学目标】1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。
【教学重点】用图解法解决简单的线性规划问题【教学难点】准确求得线性规划问题的最优解【教学过程】1.课题导入[复习提问]1、二元一次不等式在平面直角坐标系中表示什么图形?2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?3、熟记“直线定界、特殊点定域”方法的内涵。
2.讲授新课在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。
1、下面我们就来看有关与生产安排的一个问题:引例:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?(1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x、y件,又已知条件可得二元一次不等式组: (1)(2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。
(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x件,乙产品y件时,工厂获得的利润为z,则z=2x+3y.这样,上述问题就转化为:当x,y满足不等式(1)并且为非负整数时,z的最大值是多少?把z=2x+3y变形为,这是斜率为,在y轴上的截距为的直线。
教案:简单的线性规划问题
必修5 3.3.2 简单的线性规划问题(教案)(第1课时)【教学目标】1.知识与技能:使学生了解线性规划的意义及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力. 【重点】用图解法解决简单的线性规划问题. 【难点】准确求得线性规划问题的最优解.【预习提纲】(根据以下提纲,预习教材第87页~第89页)1.在教材第87页引例中,约束条件是⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x 为什么又叫线性约束条件?(约束条件都是关于y x ,的一次不等式)目标函数是y x z 32+=,为什么又叫线性目标函数?(目标函数是关于y x ,的一次解析式)2.在线性约束条件下求线性目标函数的最大值或最小值问题称为线性规划问题; 3.满足线性约束条件的解),(y x 叫做可行解;由所有可行解组成的集合叫做可行域;使目标函数取得最大值或最小值的可行解叫做最优解.【基础练习】1.给定下列命题:在线性规划问题中,①最优解指的是目标函数的最大值或最小值;②最优解指的是使目标函数取得最大值或最小值的变量y x 或;③最优解指的是目标函数取得最大值或最小值的可行域;④最优解指的是使目标函数取得最大值或最小值的可行解.其中真命题的序号是 ④ .2.在教材第87页引例中,当直线332,32zx y y x z +-=+=即经过可行域时,直线越向 上 (上,下)z 越大,直线越向 下 (上,下)z 越小,为什么?(由z 的几何意义决定的)z 的几何意义是3z是直线在y 轴上的截距.3.解下列线性规划问题:(1)求y x z +=2的最大值,使y x ,满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y(2)求y x z 523+=的最大值和最小值,使y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≤≤+.35,1,1535y x x y y x答案:(1)3max =z . (2)11,17min max -==z z . 【典型例题】例1 已知y x ,满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0025023002y x y x y x ,试求y x z 900300+=的最大值时点的坐标,及相应的z 的最大值【审题要津】先画出平面区域,然后在平面区域内寻找使y x z 900300+=取最大值时的点并求最大值解:如图所示平面区域AOBC ,点A(0,125),点B(150,0),点C 的坐标由方程组⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧=+=+3200335025023002y x y x y x 得C (3200,3350), 由yx z 900300+=,得y =-90031z x +, 欲求y x z 900300+=的最大值,即转化为求截距900z的最大值,从而可求z 的最大值,因直线y =-90031zx +与直线y =-31x 平行,故作与y =-31x 的平行线,当过点A (0,125)时,对应直线的截距最大,所以此时整点A 使z 取最大值,m ax z =300×0+900×125=112500 .【方法总结】1.在线性约束条件下,求c by ax z ++=的最值时,作图需准确,要区别目标函数所对应直线的斜率与可行域的边界直线的斜率的大小关系,分清目标函数所对应直线在y 轴上的截距与z 的关系.2.用图解法求最优解的步骤可概括为“画、移、求、答”. 变式训练:已知y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,2502,3003y x y x y x 求目标函数y x z 300600+=的最大值,并求整点最优解.解:可行域如图所示:四边形AOBC 易求点A (0,126),B (100,0)由方程组:⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧=+=+5191536925223003y x y x y x 得点C 的坐标为(6953,9151) 因题设条件要求整点),(y x 使y x z 300600+=取最大值,将点(69,91),(70,90)代入y x z 300600+=,可知当⎩⎨⎧==9070y x 时,z 取最大值为m ax z =600×70+300×900=69000,最优解为)90,70(.例 2 营养学家指出,成人良好的日常饮食应该至少提供kg 0750.的碳水化合物,kg 060.的蛋白质,kg 060.的脂肪,kg 1食物A 含有kg 1050.碳水化合物,kg 070.蛋白质,kg 140.脂肪,花费28元;而kg 1食物B 含有kg 1050.碳水化合物,kg 140.蛋白质,kg070.脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 多少kg ?解:设每天食用x 千克食物A ,y 千克食物B ,总成本为z .那么⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+≥+., ,...,...,...00060070140060140070075010501050y x y x y x y x ① 目标函数为 y x z 2128+=.二元一次不等式组①等价于⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+≥+., ,,,0067146147577y x y x y x y x ② 作出二元一次不等式组②所表示的平面区域,即可行域.考虑y x z 2128+=,将它变形为,这是斜率为34,2134-+-=z x y 随z 变化的一族平行直线.21z是直线在y 轴上的截距,当21z取最小值时,z的值最小.当然直线要与可行域相交,即在满足约束条件时目标函数y x z 2128+=取得最小值.由图可见,当直线y x z 2128+=经过可行域上的点M 时,截距21z最小,即z 最小.解方程组 ⎩⎨⎧=+=+,6714,577y x y x得M 点的坐标为 ., 7471==y x 所以162128min =+=y x z .答:每天食用食物A 约g 143,食物B 约g 571,能够满足日常饮食要求,又使花费最低,最低成本为16元.【方法总结】线性规划解决实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解,最后,要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.变式训练:某工厂生产甲、乙两种产品,已知生产甲产品1吨,需要煤9吨,需电4瓦,工作日3个(一个2人劳动一天等于一个工作日),生产乙种产品1吨,需要用煤4吨,需电5瓦,工作日12个,又知甲产品每吨售价7万元,乙产品每吨售价12万元,且每天供煤最多360吨,供电最多200瓦,全员劳动人数最多300人,问每天安排生产两种产品各多少吨;才能使日产值最大,最大产值是多少?解:设每天生产甲种产品x 吨,乙种产品y 吨,日产值为z 万元。
线性规划教学设计方案(五篇)
线性规划教学设计方案(五篇)第一篇:线性规划教学设计方案线性规划教学设计方案教学目标使学生了解并会作二元一次不等式和不等式组表示的区域.重点难点了解二元一次不等式表示平面区域.教学过程【引入新课】我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?【二元一次不等式表示的平面区域】1.先分析一个具体的例子在平面直角坐标系中,所有的点被直线x+y-1=0分成三类:(1)在直线x+y-1=0上;{(x,y)/x+y-1=o}(2)在直线x+y-1=0的左下方的平面区域内;{(x,y)/}(3)在直线x+y-1=0的右上方的平面区域内.{(x,y)/}点(1,1)、(1,2)、(2,2)等x+y-1>0 点(0,0)、(-1,-1)等x+y-1<0 猜想。
在直线x+y-1=0的右上方的平面区域内.{(x,y)x+y-1>0}在直线x+y-1=0的左下方的平面区域内;{(x,y)x+y-1<0}证明:在此直线右侧任意一点P(x,y)过点P作平行于x轴的直线交直线x+y-1=0点P0(x0,y0)都有x>x0,y=y0,所以,x+y>x0+y0,x+y-1>x0+y0-1=0, 即x+y-1>0.同理,对于直线x+y-1=0左下方的任意点(x,y),x+y-1<0都成立.所以,在平面直角坐标系中,以二元一次不等式x+y-1>0的解为坐标的点的集点.{(x,y)x+y-1>0}是直线x+y-1=0右上方的平面区域(如图)类似地,在平面直角坐标系中,以二元一次不等式x+y-1<0的解为坐标的点的集合{(x,y)x+y-1<0}是直线x+y-1=0左下方的平面区域.2.二元一次不等式ax+by+c>0和ax+by+c<0表示平面域.(1)结论:二元一次不等式ax+by+c>0在平面直角坐标系中表示直线ax+by+c=0某一侧所有点组成的平面区域.把直线画成虚线以表示区域不包括边界直线,若画不等式ax+by+c≥0就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.(2)判断方法:由于对在直线ax+by+c=0同一侧的所有点(x,y),把它的坐标所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊(x,y)代入ax+by+c,点(x0,y0),以a0x+b0y+c的正负情况便可判断ax+by+c>0表示这一直线哪一侧的平面区域,特殊地,当c≠0时,常把原点作为此特殊点.【应用举例】例1 画出不等式2x+y-6<0表示的平面区域解;先画直线2x+y-6=0(画线虚线)取原点(0,0),代入2x+y-6,∴2x+y-6<0∴原点在不等式2x+y-6<0表示的平面区域内,不等式2x+y-6<0表示的平面区域如图阴影部分.例2 画出不等式组⎧x-y+5≥0⎪⎨x+y≥0⎪x≤3⎩表示的平面区域分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.解:不等式x-y+5≥0表示直线x-y+5=0上及右上方的平面区域,x+y≥0表示直线x+y=0上及右上方的平面区域,x≤3上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.课堂练习作出下列二元一次不等式或不等式组表示的平面区域.(1)x-y+1<0(2)2x+3y-6>0(3)2x+5y-10>0(4)4x-3y-12<0⎧x+y-1>0(5)⎨x-y>0⎩1.如图所示的平面区域所对应的不等式是().A.3x+2y-6<0.B.3x+2y-6≤0C.3x+2y-6>0.D.3x+2y-6≥02.不等式组⎨⎧x+3y+6≥0⎩x-y+2<0表示的平面区域是().⎧x<0⎪3.不等式组⎨y<0表示的平面区域内的整点坐标是.⎪4x+3y+8>0⎩思考:画出(x+2y-1)(x-y+3)>0表示的区域.总结提炼1.二元一次不等式表示的平面区域.2.二元一次不等式表示哪个平面区域的判断方法.3.二元一次不等式组表示的平面区域.布置作业第二篇:简单的线性规划教学反思《简单的线性规划》教学反思桐城五中杨柳线性规划是《运筹学》中的基本组成部分,是通过数形结合方法来解决日常生活实践中的最优化问题的一种数学模型,体现了数形结合的数学思想,具有很强的现实意义。
《3.3.3 简单的线性规划问题》教学案4
3.3.3《简单的线性规划问题》教学案第1课时教学教法分析●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.教学方案设计●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.课前自主导学上述只含两个变量的简单线性规划问题可用图解法解决.课堂互动探究例1 设z =3x +5y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x +2y ≥3,7x +10y ≥17,x ≥0,y ≥0.求z 的最小值.【思路探究】【自主解答】 画出约束条件表示的点(x ,y )的可行域, 如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M , 此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.规律方法1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.变式训练设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11, z max =3×5-4×3=3.例2 已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2).由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.规律方法1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.变式训练若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y=-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)例3 已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值;(2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0.(2)z =y x +5=y -0x --,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k M C =2-0-3--=1, k min =k M B =-6-0-1--=-32,∴yx +5的最大值是1,最小值是-32.规律方法1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)yx +5=y -0x --可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.变式训练已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示,∵z =(x +2+y -2)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.易错易误辨析直线的倾斜程度判断不准致误典例 已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.当堂双基达标1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35. 【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx 的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k O C =95,最大值是k A O =6,又可行域边界取不到,∴95<yx <6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示:其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.课后知能检测一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)⎩2y -x ≥1,【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4. 所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx 的最大值是________.【解析】 不等式组表示的平面区域如图所示:又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32. 【答案】 32⎩x +y +4>0y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示:∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-2-1=5-1。
简单的线性规划问题-教案
《简单的线性规划问题》教案教学内容分析:不等式是刻画现实世界中不等关系的数学工具,它是描述优化问题的一种数学模型.在这一章里,介绍了三种不等式模型.本节内容位于必修五第三章不等式的第三节,是借助第二种模型二元一次不等式(组)的几何意义求解简单的线性规划问题,它是继学习了二元一次不等式(组)表示的平面区域基础上,利用直线方程和二元一次不等式(组)的知识展开的,是对二元一次不等式(组)的深化和应用.通过具体情境中对目标函数最值求法的探索,培养和发展学生的观察、理解能力,提高学生的探索、归纳能力,在这一过程中,进一步渗透数形结合和转化化归的数学思想,体验二元一次不等式(组)模型的应用价值.教学目的:1、通过这节课的教学,让学生理解和掌握可行解、可行域、最优解等概念,掌握求解线性规划问题的图解法;2、通过学生对图解法最优解的探究过程,将目标函数转化为斜截式直线,培养学生观察、概括的能力,以及转化化归、数形结合的数学思想方法;3、通过师生交流将解决问题的层次逐步深化,培养学生的理性精神、严谨的逻辑思维能力及意识.教学重点:应用二元一次不等式(组)模型解决一类特殊的优化问题,即利用图解法求最优解.教学难点:让学生理解与把握特殊目标函数转化为斜截式直线方程的几何意义及操作要领.教学准备:《简单的线性规划问题》学案、多媒体课件、作图工具.计时间(分)学内容2分钟一、回顾问题1、在课堂教学的开始,用多媒体回顾演示了位于3.3节开篇的引例中提出来的问题:在约束条件410,4320,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,如何探求目标函数P=2x+y 的最大值?2、经过上一节课的学习,我们已经掌握了如何将二元一次不等式组转化为直角坐标系中的平面区域.请同学们作图,教师投影展示.学生作出约束条件所表示的平面区域.410,4320,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩所表示的平面区域.本节开门见山,回顾问题,引导学生迅速进入学习情境.让学生进一步感受在不等式组和平面区域之间建立的一一对应关系,以及其中蕴含的数形结合的思想.二、问题解决讲授:求目标函数P=2x+y的最大值,对我们来说十分陌生.我们已经能理解目标函数P=2x+y 的中的x,y分别是平面区域内点的横坐标、纵坐标,平面区域内的每一个点的坐标都会对应着一个P值.问题的关键就在于如何将目标函数转化为直角坐标系中的直线方程.这既是本节课的重点也是本节课的难点,如何突破本节课的重难点呢?3分钟问题1、P=2x+y中的x,y可以取怎样的值?教师抽取其中(3,1),(1,1),(1,2),(1,3),并在坐标系内描出它们的位置,请学生观察这些点的学生自主体验,通过作图、观察、归纳. 使学生深刻理解目标函数的x、y与平面区域的点的坐标之位置特点.可行解:满足线性约束条件的解(x,y)叫做可行解.可行域:由所有可行解组成的集合叫做可行域. 间的对应关系,更体会概念形成的的合理性.1分钟问题2、请学生计算出这三组可行解所对应的目标函数P的结果,并观察可行解有何特点?学生计算出(1,1),(1,2),(1,3)对应的P值分别为3、4、5,发现这些值有大有小,从而了解P值的变化特点,并试图寻求最大值.让学生初步体验到P值的变化特点,引发学生思考.3分钟问题3、点(1,1)对应的P值为3?还有哪些点所对应的P值也等于3?在图中标出这些点的位置,观察这些点的位置特点.学生在问题引导下,迅速写出P值等于3的其他点的坐标,填在学案上的表格里,并在坐标系中标出这些点的位置,观察它们的位置特点.答:这些点位于一条直线上,由于可行域的限制,应该在该直线位于可行域内的部分上.让学生在这里得到P=3时等式3=2x+y的几何图形是一条位于可行域内的线段,同时注意到3就是这条线段所在直线的纵截距.4分钟问题4、如果P=4或者5呢?会不会有类似的情况?三个不同P值对应的几何图形相互之间有联系吗?教师动画演示了等式P=2x+y转化为y=-2x+P的过程,使学生更明确了这个方程表示的几何图形是一组平行直线位于可行域内的部分,P的意义是这组平行直线的纵截距.学生继续完成4和5两种情况,使学生发现这两种情况与之前P=3的时候类似,还请学生继续尝试了P=8的情况,让学生发现此时直线上的点都不在可行域内. 当P值不同时,各直线之间是平行的关系.让学生明白当P值固定时,所对应的点都分布在同一条直线上,加之可行域的限制,都在该直线位于可行域内的线段上,同时发现此时的P值就是这条直线的纵截距.当P值不同时,直线的位置也不同. 体验从目标函数到斜截式直线方程的转化过程,通过观察,归纳,探索,体验数形结合和转化化归的思想,融入从特殊到一般的合情推理意识.目的是突出重点,化解难点.3分钟问题5、如何求出P的最大值?经过学生的探究和直观观察形成了通过平移找到最大值的方法.学生联立方程组求解,得到了点A的坐标为(1.25,5).并回答了引例中的问题.学生体悟到函数最值的运动变化特性,初步了解线性规划问题的本借用多媒体让学生逐步感受直线在不同位置时p 的变化情况,用渐近的思想得到点A的位置.教师给出最优解的概念. 引例中的问题也得到了解决. 质:将目标函数转化为直角坐标系中的斜截式直线方程,应用二元一次不等式(组)模型解决一类特殊的优化问题,深化数形结合的数学思想.十分钟三、运用拓展运用1、若实数x,y满足不等式组,分别求下列函数的最大值.1,0,0.x yxy+≤⎧⎪≥⎨⎪≥⎩1)z= 2x+y;2)z= x-y ;3)z= x+y请学生到展台展示自己的答案并讲解解答过程教师请学生们独立思考,充分参与,展开争论,分析错误产生的原因.答:1)当直线的纵截距最大时,目标函数也最大.作出平行直线y=-2x+z,平移至点(1,0)时,z取得最大值为2.2)学生作出平行直线y=x-z后,部分学生将直线y=x-z平移至点(0,1)时,得出z取得最大值为-1;还有部分学生将直线y=x-z平移至点(1,0)时,得出z取得最大值为1.产生不同答案之后,引发争论.请学生得出结论:这道题将直线y=x-z平移至点(0,1)时,得出z取得的是最小值为-1,将直线y=x-z平移至点(1,0)时,得出z取得最大值为1.因为纵截距-z越小时,目标函数值z越大.目标函数的函数值是与直线方程的纵截距有关的量.3) 学生作出平行直线y=-x+z,并平移,大部分学生能够发现当直线平移到与直线x+y=1重合时,z取得最大值为1.答:某些情况下,最优解的个数可能有多个,有时候可能有无数个.使学生理解和掌握利用图解法求最优解的一般思路和方法.通过作图、观察,加深学生对图解法的认识和对最优解概念的理解.教师设问引发思考:这时的最优解有多少个?8分钟运用2、已知实数x,y满足约束条件10,4530,08,04,,.x yx yxyx y Z+⎧⎪+⎪⎪⎨⎪⎪∈⎪⎩<><<<<求z=x+y最大值和最小值.师生在共同探究的过程中,通过观察探索最学生画出可行域,将目标函数z=x+y转化为y=-x+z并作出此直线,在图中的可行域上平移.当直线平移至经过点(4,3)时,z有最小值7,当直线平移至经过点(6,3),(7,2)时,z有最大值9.一、使学生进一步理解蕴含在图解法中的数形结合数学思维方法;二、加深理解“满足约束条件的点都在可行域内,可行域内的每个点的坐终找到正解.教师补充介绍了网格平移法.标都受约束条件的制约”;三、培养严谨的逻辑思维习惯.5分钟运用3、已知实数x,y满足不等式组13,11,x yx y≤+≤⎧⎨-≤-≤⎩求4x+2y的取值范围.答:设z=4x+2y,转化为直线y=-2x+2z,平移直线求解得出2≤4x+2y≤10的范围.一、引导学生运用观察、转化和化归的数学思想,通过设4x+2y=z将问题转化为线性规划问题;二、进一步深刻理解“约束条件”中量与量的相互制约关系;三、增强学生的数学应用意识.5分钟四、寻求规律请学生们自己小结,师生一起交流整理提炼和归纳出求线性规划问题最优解的步骤.答:1、作出可行域;2目标函数z=Ax+By(B≠0)变形为A zy xB B=-+3、作斜率为AB-的一组平行线,结合zB的几何意义找到最优解(当x,y为整数时利用网格平移法);4、解方程组求出最优解,并回答问题.让学生养成及时总结的习惯,进行自我反馈,学会用所提炼方法指导解题,学会理性思考问题,同时也培养数学交流和表达的能力.1分钟五、课后作业布置课后作业,让学生巩固所学内容并进行自我检测与评价:1、课本第84页第4题:求z=2x+y的最大值和最小值,其中实数x,y满足课后完成学案. 1、对图解法解决线性规划问题的巩固加强.2促使学生思考,并去发现目标函数直线的斜率与。
教学设计4:3.5.2 简单线性规划 第1课时 线性规划的有关概念及图解法
3.5.2 简单线性规划第1课时 线性规划的有关概念及图解法教学目标1.了解线性规划的意义.2.理解约束条件、目标函数、可行解、可行域、最优解等基本概念.3.掌握线性规划问题的图解法. 教学过程引例 已知x ,y 满足条件⎩⎪⎨⎪⎧x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0.①该不等式组所表示的平面区域如图阴影部分所示,求2x +3y ②的最大值.以此为例,尝试通过下列问题理解有关概念. 知识点一 线性约束条件及目标函数1.在上述问题中,不等式组①是一组对变量x ,y 的约束条件,这组约束条件都是关于x ,y 的一次不等式,故又称线性约束条件.2.在上述问题中,②是要研究的目标,称为目标函数.因为它是关于变量x ,y 的一次解析式,这样的目标函数称为线性目标函数. 知识点二 线性规划问题一般地,在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题. 知识点三 可行解、可行域和最优解满足线性约束条件的解(x ,y )叫作可行解.由所有可行解组成的集合叫作可行域.其中,使目标函数取得最大值或最小值的可行解叫作线性规划问题的最优解.在上述问题的图中,阴影部分叫可行域,阴影区域中的每一个点对应的坐标都是一个可行解,其中能使②式取得所求最值的可行解称为最优解. 教学案例类型一 最优解问题命题角度1 b >0时ax +by 的最优解例1 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0,该不等式组所表示的平面区域如图阴影部分所示, 求2x +3y 的最大值.解 设区域内任一点P (x ,y ), z =2x +3y , 则y =-23x +z3,这是斜率为-23,在y 轴上的截距为z3的直线,如图.由图可以看出,当直线y =-23x +z 3经过直线x =4与直线x +2y -8=0的交点M (4,2)时,截距z3的值最大,此时2x +3y =14.反思与感悟 图解法是解决线性规划问题的有效方法,基本步骤 (1)确定线性约束条件,线性目标函数; (2)作图——画出可行域;(3)平移——平移目标函数对应的直线 =ax +by ,看它经过哪个点(或哪些点)时最先接触可行域或最后离开可行域,确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. 设 =ax +by ,则y =-a b x +zb.当b >0时,y 轴上的截距zb越大, 就越大.跟踪训练1 若x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -1≤0,y ≥0,x ≥0,则x +2y 的最大值为( )A.0B.12 C.2 D.以上都不对【答案】C【解析】约束条件所表示的可行域如图阴影部分所示. 当直线x +2y =0平移到经过点(0,1)时,x +2y 取到最大值2.命题角度2 b <0时ax +by 的最优解例2 已知z =2y -2x +4,其中x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,求z 的最大值和最小值.解 作出可行域如图阴影部分所示.作直线l :2y -2x =0, 即y =x ,平移直线l , 当l 经过点A (0,2)时, z max =2×2-2×0+4=8; 当l 经过点B (1,1)时, z min =2×1-2×1+4=4.反思与感悟 (1)求ax +by +c 的最值,只需求ax +by 的最值,最后加上常数c .(2)当b <0时,z =ax +by 化为y =-a b x +z b .y 轴上的截距zb 越大, 就越小,所以要根据目标确定平移方向.跟踪训练2 已知1≤x +y ≤5,-1≤x -y ≤3,求2x -3y 的取值范围.解 作出二元一次不等式组⎩⎪⎨⎪⎧1≤x +y ≤5,-1≤x -y ≤3所表示的平面区域(如图阴影部分所示)即为可行域.设z =2x -3y ,变形得y =23x -13,则得到斜率为23,且随 变化的一组平行直线.-13是直线在y 轴上的截距, 当直线截距最大时,z 的值最小. 由图可知,当直线z =2x -3y 经过可行域上的点A 时,截距最大,即 最小.解方程组⎩⎪⎨⎪⎧x -y =-1,x +y =5,得A 点坐标为(2,3),∴z min =2x -3y =2×2-3×3=-5.当直线z =2x -3y 经过可行域上的点B 时,截距最小,即 最大.解方程组⎩⎪⎨⎪⎧x -y =3,x +y =1,得B 点坐标为(2,-1).∴z max =2x -3y =2×2-3×(-1)=7. ∴-5≤2x -3y ≤7,即2x -3y 的取值范围是[-5,7]. 类型二 问题的最优解有多个例3 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若目标函数z =ax +y 的最大值有无数个最优解,求实数a 的值.解 约束条件所表示的平面区域如图(阴影部分),由z =ax +y ,得y =-ax +z .当a =0时,最优解只有一个,过A (1,1)时取得最大值;当a >0,y =-ax +z 与x +y =2重合时,最优解有无数个,此时a =1; 当a <0,y =-ax +z 与x -y =0重合时,最优解有无数个,此时a =-1.综上,a =1或a =-1.反思与感悟 当目标函数取最优解时,如果目标函数与平面区域的一段边界(实线)重合,则此边界上所有点均为最优解.跟踪训练3 给出平面可行域(如图阴影部分所示),若使目标函数 =ax +y 取最大值的最优解有无穷多个,则a 等于( )A.14B.35 C .4 D.53 【答案】B【解析】由题意知,当直线y =-ax +z 与直线AC 重合时,最优解有无穷多个,则-a =5-21-6=-35,即a =35,故选B.达标检测1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A .-52B .0 C.53 D.52【答案】C【解析】画出可行域如图阴影部分(含边界)所示.设z =x +2y ,即y =-12x +12 ,平行移动直线y =-12x +12 ,当直线y =-12x +z2过点B ⎝⎛⎭⎫13,23时,z 取最大值53,所以(x +2y )max =53.2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值为( )A .6B .7C .8D .23 【答案】B【解析】作出可行域如图阴影部分(含边界)所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7.3.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1 【答案】A【解析】-1a =2-14-1=13,∴a =-3.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数 =3x -y 的取值范围是( )A.⎣⎡⎦⎤-32,6 B.⎣⎡⎦⎤-32,-1 C .[-1,6] D.⎣⎡⎦⎤-6,32 【答案】A【解析】作出不等式组表示的平面区域,如图阴影部分(含边界)所示,由z =3x -y ,可得y =3x -z ,则-z 为直线y =3x -z 在y 轴上的截距,截距越大,z 越小,结合图形可知,当直线y =3x -z 平移到B 时,z 最小,平移到C 时,z 最大,可得B ⎝⎛⎭⎫12,3, z min =-32,C (2,0), z max =6,∴-32≤ ≤6.课堂小结1.用图解法解决简单的线性规划问题的基本步骤(1)寻找线性约束条件,线性目标函数;(2)作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l;(3)平移——将直线l平行移动,以确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.2.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.3.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题名称:简单的线性规划问题(教案)
高一数学备课组(潘洪存)
三维教学目标
知识与技能:①了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;
②在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;③掌握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的基本方法和步骤。
过程与方法:①培养学生的形象思维能力、绘图能力和探究能力;②强化数形结合的数学思想方法;
③提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力。
情感、态度与价值观:①在感受现实生产、生活中的各种优化、决策问题中体验应用数学的快乐;②在运用求解线性规划问题的图解方法中,感受动态几何的魅力;③在探究性练习中,感受多角度思考、探究问题并收获探究成果的乐趣。
教学重点及应对策略
1、教学重点:根据实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;
教学难点:①借助线性目标函数的几何含义准确理解线性目标函数在y轴上的截距与z最值之间的关系;②用数学语言表述运用图解法求解线性规划问题的过程。
教学过程设计。