2019学毕节市金沙县初中毕业生第三次联考数学试卷及答案
【附5套中考模拟试卷】贵州省毕节地区2019-2020学年中考第三次质量检测数学试题含解析
贵州省毕节地区2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为( )A .56×108B .5.6×108C .5.6×109D .0.56×10102.如图,矩形ABCD 中,AB=3,AD=3,将矩形ABCD 绕点B 按顺时针方向旋转后得到矩形EBGF ,此时恰好四边形AEHB 为菱形,连接CH 交FG 于点M ,则HM=( )A .12B .1C .22D .3 3.下列各式计算正确的是( )A .633-=B .1236⨯=C .3535+=D .1025÷=4.若一个多边形的内角和为360°,则这个多边形的边数是( )A .3B .4C .5D .6 5.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为( )A .1.6×104人B .1.6×105人C .0.16×105人D .16×103人6.计算232332x y x y xy ⋅÷的结果是( ).A .55xB .46xC .56xD .46x y7.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )A .1个B .2个C .3个D .4个8.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是( )A .①B .②C .①③D .②③9.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A .3y x =B .3y x =C .1y x =-D .2y x =10.如图所示,在长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )A .28cm 2B .27cm 2C .21cm 2D .20cm 211.函数y kx 1=+与k y x=-在同一坐标系中的大致图象是( ) A 、B 、C 、D 、 12.已知a=127+1)2,估计a 的值在( ) A .3 和4之间B .4和5之间C .5和6之间D .6和7之间 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC ∽△ADE ,∠BAC=∠DAE=90°,AB=6,AC=8,F 为DE 中点,若点D 在直线BC 上运动,连接CF ,则在点D 运动过程中,线段CF 的最小值是_____.14.函数13x y x -=-自变量x 的取值范围是 _____. 15.如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的半径是____cm.16.如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在E 处,EQ 与BC 相交于F .若AD=8cm ,AB=6cm ,AE=4cm .则△EBF 的周长是_____cm .17.将一张矩形纸片折叠成如图所示的图形,若AB=6cm ,则AC= cm .18.若不等式组130x a bx ->⎧⎨+≥⎩的解集是﹣1<x≤1,则a =_____,b =_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树180棵,由于同学们的积极参与,实际参加的人数比原计划增加了50%,结果每人比原计划少栽了2棵,问实际有多少人参加了这次植树活动?20.(6分)如图,抛物线2y ax bx c =++()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x =–1,P 为抛物线上第二象限的一个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)当点P 的纵坐标为2时,求点P 的横坐标;(3)当点P 在运动过程中,求四边形PABC 面积最大时的值及此时点P 的坐标.21.(6分)抛物线M :()2410y ax ax a a =-+-≠与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线________;(2)当2AB =时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :()0y kx b k =+≠经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为()330x x >,若当21n -≤≤-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.22.(8分)如图,已知ABC V ,请用尺规过点C 作一条直线,使其将ABC V 分成面积比为1:3两部分.(保留作图痕迹,不写作法)23.(8分)从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km 的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.24.(10分)如图,圆内接四边形ABCD 的两组对边延长线分别交于E 、F ,∠AEB 、∠AFD 的平分线交于P 点.求证:PE ⊥PF .25.(10分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A :自带白开水;B :瓶装矿泉水;C :碳酸饮料;D :非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:请你补全条形统计图;在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.26.(12分)如图,在四边形ABCD 中,E 为AB 的中点,DE AB ⊥于点E ,66A ∠=o ,90ABC ∠=o ,BC AD =,求C ∠的度数.27.(12分) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.【详解】56亿=56×108=5.6×101,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.2.D【解析】【分析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出△ABE是等边三角形,得到AB=3,3BAC=30°,求得AC⊥BE,推出C在对角线AH上,得到A,C,H共线,于是得到结论.【详解】如图,连接AC交BE于点O,∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,∴AB=BE,∵四边形AEHB为菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等边三角形,∵AB=3,AD=3,∴tan∠CAB=33 BCAB,∴∠BAC=30°,∴AC⊥BE,∴C在对角线AH上,∴A,C,H共线,∴AO=OH=32AB=332,∵O C=12BC=3,∵∠COB=∠OBG=∠G=90°,∴四边形OBGM是矩形,∴OM=BG=BC=3,∴HM=OH﹣OM=32,故选D.【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.3.B【解析】AB,∴本选项正确;C选项中,∵≠D2=2故选B.4.B【解析】【分析】利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)×180°=360°,解得n=4;故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.5.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】用科学记数法表示16000,应记作1.6×104,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.D【解析】【分析】根据同底数幂的乘除法运算进行计算.【详解】3x2y2 x3y2÷xy3=6x5y4÷xy3=6x4y.故答案选D.【点睛】本题主要考查同底数幂的乘除运算,解题的关键是知道:同底数幂相乘,底数不变,指数相加.7.C【解析】【分析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.8.B【解析】【分析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.故选:B.【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.9.B【解析】y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;y=3x的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;y=−1x的图象在二、四象限,故选项C错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.10.B【解析】【分析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【详解】解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC∽矩形FDCE,则AB BD DF DC设DF=xcm,得到:68 = x6解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm1.【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.11.D.【解析】试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.故选D.考点:一次函数和反比例函数的图象.12.D【解析】【分析】的范围,进而可得的范围.【详解】解:a=12×(,∵2<3,∴6<<7,∴a 的值在6和7之间,故选D .【点睛】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】试题分析:当点A 、点C 和点F 三点共线的时候,线段CF 的长度最小,点F 在AC 的中点,则CF=1. 14.x≥1且x≠1【解析】【分析】根据分式成立的条件,二次根式成立的条件列不等式组,从而求解.【详解】解:根据题意得:10{30x x -≥-≠,解得x≥1,且x≠1,即:自变量x 取值范围是x≥1且x≠1.故答案为x≥1且x≠1.【点睛】本题考查函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.15.5【解析】【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R-2)2,解得R=5,∴该光盘的半径是5cm.故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.16.2【解析】试题分析:BE=AB-AE=2.设AH=x,则DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考点:1折叠问题;2勾股定理;1相似三角形.17.1.【解析】试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考点:1轴对称;2矩形的性质;3等腰三角形.18.-2 -3【解析】【分析】先求出每个不等式的解集, 再求出不等式组的解集, 即可得出关于a 、b 的方程, 求出即可.【详解】解:由题意得:1?30?x a bx ->⎧⎨+≥⎩①② 解不等式 ① 得: x>1+a , 解不等式②得:x≤3b- Q 不等式组的解集为: 1+a <x≤3b -Q 不等式组的解集是﹣1<x≤1,∴..1+a=-1, 3b-=1, 解得:a=-2,b=-3故答案为: -2, -3.【点睛】本题主要考查解含参数的不等式组.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.45人【解析】【详解】解:设原计划有x 人参加了这次植树活动 依题意得:18018021.5x x=+ 解得 x=30人经检验x=30是原方程式的根实际参加了这次植树活动1.5x=45人答实际有45人参加了这次植树活动.20.(1)二次函数的解析式为223y x x =--+,顶点坐标为(–1,4);(2)点P 横坐标为2–1;(3)当3x 2=-时,四边形PABC 的面积有最大值758,点P (31524-,). 【解析】试题分析: (1)已知抛物线2y ax bx c =++ ()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C(0,3),其对称轴l 为x =﹣1,由此列出方程组,解方程组求得a 、b 、c 的值,即可得抛物线的解析式,把解析式化为顶点式,直接写出顶点坐标即可;(2)把y=2代入解析式,解方程求得x 的值,即可得点P 的横坐标,从而求得点P 的坐标;(3)设点P(x ,y ),则2--23y x x =+ ,根据 OBC OAP OPC BCPA S S S S ∆∆∆=++四边形得出四边形PABC 与x 之间的函数关系式,利用二次函数的性质求得x 的值,即可求得点P 的坐标.试题解析:(1)∵抛物线2y ax bx c =++ ()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x =﹣1,∴0312a b c c b a⎧⎪++=⎪=⎨⎪⎪-=-⎩ , 解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴二次函数的解析式为2--23y x x =+ =()214x -++,∴顶点坐标为(﹣1,4)(2)设点P (x ,2),即2--23y x x =+=2,解得1x1(舍去)或2x =﹣1,∴点P1,2).(3)设点P(x ,y ),则2--23y x x =+ , OBC OAP OPC BCPA S S S S ∆∆∆=++四边形,∴ 2339332222BCPAS x x x =--+-四边形=23375228x ⎛⎫-++ ⎪⎝⎭ ∴当32x =-时,四边形PABC 的面积有最大值758. 所以点P (315,24-). 点睛:本题是二次函数综合题,主要考查学生对二次函数解决动点问题综合运用能力,动点问题为中考常考题型,注意培养数形结合思想,培养综合分析归纳能力,解决这类问题要会建立二次函数模型,利用二次函数的性质解决问题.21.(1)2x =;(2)213222y x x =-+-;(3)54k > 【解析】【分析】(1)根据抛物线的函数表达式,利用二次函数的性质即可找出抛物线M 的对称轴;(2)根据抛物线的对称轴及2AB =即可得出点A 、B 的坐标,根据点A 的坐标,利用待定系数法即可求出抛物线M 的函数表达式;(3)利用配方法求出抛物线顶点D 的坐标,依照题意画出图形,观察图形可得出2b <-,再利用一次函数图象上点的坐标特征可得出122k b +=,结合b 的取值范围即可得出k 的取值范围. 【详解】(1)∵抛物线M 的表达式为241y ax ax a =-+-,∴抛物线M 的对称轴为直线422a x a-=-=. 故答案为:2x =.(2)∵抛物线241y ax ax a =-+-的对称轴为直线2x =,2AB =,∴点A 的坐标为()1,0,点B 的坐标为()3,0.将()1,0A 代入241y ax ax a =-+-,得:410a a a -+-=, 解得:12a =-, ∴抛物线M 的函数表达式为213222y x x =-+-. (3)∵()221311222222y x x x =-+-=--+, ∴点D 的坐标为12,2⎛⎫ ⎪⎝⎭. ∵直线y=n 与直线l 的交点的横坐标记为()330x x >,且当21n -≤≤-时,总有13320x x x x ->->, ∴x 2<x 3<x 1,∵x 3>0,∴直线l 与y 轴的交点在()0,2-下方,∴2b <-.∵直线l :()0y kx b k =+≠经过抛物线的顶点D , ∴122k b +=,∴15424bk=->.【点睛】本题考查了二次函数的性质、待定系数法求二次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数的性质找出抛物线的对称轴;(2)根据点的坐标,利用待定系数法求出二次函数表达式;(3)依照题意画出图形,利用数形结合找出.22.详见解析【解析】【分析】先作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,即可得到答案.【详解】如图作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,故AE=12AD,AD=BD,故AE=14AB,而BE=34AB,而△AEC与△CEB在AB边上的高相同,所以△CEB的面积是△AEC的面积的3倍,即S△AEC∶S△CEB=1∶3.【点睛】本题主要考查了三角形的基本概念和尺规作图,解本题的要点在于找到AB的四分之一点,即可得到答案. 23.4小时.【解析】【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【详解】解:设客车由高速公路从甲地到乙地需x 小时,则走普通公路需2x 小时,根据题意得: 60048045,2x x+= 解得x =4经检验,x =4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点睛】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.24.证明见解析.【解析】【分析】由圆内接四边形ABCD 的两组对边延长线分别交于E 、F ,∠AEB 、∠AFD 的平分线交于P 点,继而可得EM=EN ,即可证得:PE ⊥PF .【详解】∵四边形ABCD 内接于圆,∴BCF A ∠∠=,∵FM 平分BFC ∠,∴BFN CFN ∠∠=,∵EMP A BFN ∠∠∠=+,PNE BCF CFN ∠∠∠=+,∴EMP PNE ∠∠=,∴EM EN =,∵PE 平分MEN ∠,∴PE PF ⊥.【点睛】此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用. 25.(1)详见解析;(2)72°;(3) 【解析】【分析】(1)由B 类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C 类型人数,即可补全条形图;(2)用360°乘以C类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.【详解】解:(1)∵抽查的总人数为:(人)∴类人数为:(人)补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:(3)设男生为、,女生为、、,画树状图得:∴恰好抽到一男一女的情况共有12 种,分别是∴(恰好抽到一男一女).【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.78o【解析】【分析】连接BD,根据线段垂直平分线的性质得到DA DB=,根据等腰三角形的性质、三角形内角和定理计算即可.【详解】连接BD,∵E为AB的中点,DE AB⊥于点E,∴AD BD=,∴DBA A∠=∠,∵66A∠=o,∴66DBA∠=o,∵90ABC∠=o,∴24DBC ABC DBA∠=∠-∠=o,∵AD BC=,∴BD BC=,∴C BDC∠=∠,∴180782DBCC-∠∠==oo.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.27.(1) 60,90;(2)见解析;(3) 300人【解析】【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°; 故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560=300(人), 则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
2019年贵州省毕节市中考数学试卷-答案
贵州省毕节市2019年初中毕业会考、高级中等学校招生考试数学答案解析 一、选择题1.【答案】A【解析】2019的相反数是2019-.2.【答案】D【解析】55 000这个数用科学记数法可表示为45.510⨯.3.【答案】B【解析】根据正方体相对的面的特点,“中”字所在的面的对面的汉字是“的”.4.【答案】D【解析】将数据重新排列为800、820、820、850、860、930,所以这组数据的众数为820、中位数为8205508352+=, 故选:D .5.【答案】D【解析】①0113331+=﹣,故此选项错误;③23628a a ()=,故此选项错误;④844a a a -÷=-,正确.故选:D .6.【答案】B【解析】①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确.故选:B .7.【答案】C【解析】点C 到边AB 所在直线的距离是点C 到直线AB 的垂线段的长度,而CD 是点C 到直线AB 的垂线段,故选:C .8.【答案】B 【解析】四边形ABCD 是正方形,∴90B ∠︒=,∴22222213BC EC EB --===,∴正方形ABCD 的面积23BC ==.故选:B .9.【答案】A【解析】根据题意可得:211m m -+=,解得:2m =,故选:A .10.【答案】C【解析】如图所示:每旋转4次一周,201945043÷=,则第2019个图案中箭头的指向与第3个图案方向一致,箭头的指向是下方.故选:C .11.【答案】B【解析】y kx b +=的图象经过一、三、四象限,∴0k >,0b <,∴0kb <;故选:B .12.【答案】C【解析】A .234+>,能组成三角形;B .367+>,能组成三角形;C .226+<,不能组成三角形;D .567+>,能够组成三角形.故选:C .13.【答案】C 【解析】点()14,A y -、()22,B y -、()32,C y 都在反比例函数1y x=-的图象上, ∴111=44y -=-,211=22y -=-,31=2y -,又111242-<<, ∴312y y y <<.故选:C .14.【答案】B【解析】根据平行四边形的判定定理,可推出平行四边形ABCD 是菱形的有①或③, 概率为21=42.故选:B .15.【答案】A【解析】设AF x =,则3AC x =,四边形CDEF 为正方形, ∴2EF CF x ==,EF BC ∥,∴AEF ABC △∽△, ∴13EF AF BC AC ==, ∴6BC x =,在Rt ABC △中,222AB AC BC +=,即()()2223036x x +=,解得,x =∴AC =BC =,∴剩余部分的面积()21=100cm 2⨯, 故选:A .二、填空题16.【答案】()()()2422x x x ++-【解析】()()4221644x x x +--= ()()()2=422x x x ++-17.【答案】34︒ 【解析】40B ∠︒=,36C ∠︒=,∴180104BAC B C ∠︒-∠-∠︒== AB BD =∴()180270BAD ADB B ∠∠︒-∠÷︒===,∴34DAC BAC BAD ∠∠-∠︒==故答案为:34︒.18.【答案】2 000【解析】设这种商品的进价是x 元,由题意得,()140%0.82240x +⨯=.解得:2000x =,故答案为2 000.19.【答案】15-【解析】过点B 作BM FD ⊥于点M ,在ACB △中,90ACB ∠︒=,60A ∠︒=,10AC =,∴30ABC ∠︒=,10tan60BC ⨯︒==, AB CF ∥,∴1sin302BM BC ⨯︒== cos3015CM BC ⨯︒==,在EFD △中,90F ∠︒=,45E ∠︒=,∴45EDF ∠︒=,∴MD BM ==∴15CD CM MD --==故答案是:15-.20.【答案】3【解析】过点D 作DE x ⊥轴,过点C 作CF y ⊥轴,AB AD BAO DAE AB AD BOA DEA ABO DAE AAS AE BO DE OA ⊥∴∠∠∠∠∴∴,=,=,=,△≌△(),=,=,易求()1,0A ,()0,4B ,∴()5,1D ,顶点D 在反比例函数k y x=上, ∴5k =, ∴5y x=, 易证CBF BAO AAS △≌△(),∴4CF =,1BF =, ∴()4,5C ,C 向左移动n 个单位后为()4,5n -,∴()545n -=,∴3n =,故答案为3;三、解答题21.【答案】原式11=112122-+-+= 22.【答案】去分母得,()2236x x x +--=,∴56x x +=,解得,1x =经检验:1x =是原方程的解.23.【答案】(1)此次调查的总人数为15030%500÷=(人),则50045%225m ⨯==,5005%25n ⨯==,故答案为:500,225,25;(2)C 选项人数为50020%100⨯=(人),补全图形如下:(3)11502100325425⨯+⨯+⨯=,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有()110000145%60500⨯-=(名).24.【答案】(1)依题意,根据表格的数据,设日销售量y (袋)与销售价x (元)的函数关系式为y kx b +=得 25=152020k b k b +⎧⎨=+⎩,解得140k b =-⎧⎨=⎩故日销售量y (袋)与销售价x (元)的函数关系式为:40y x +=-(2)依题意,设利润为w 元,得()()2104050400w x x x x --+++==-整理得()225225w x -+=- 10-<∴当2x =时,w 取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.25.【答案】(1)①()()2222222224{,}=23223M -+-=,--; ②sin30cos60tan 1{}=524min ︒︒︒,,; 故答案为:43;12; (2)22,32{,}M x x -=, ∴22323x x -++=, 解得1x =-或3;(3)32,13,55{}min x x -+-=-,∴325135x x --⎧⎨+-⎩≥≥, 解得24x -≤≤.26.【答案】(1)AB 是直径90302ACP A AB BC∴∠︒∠︒∴=,=,=PC 是O 切线∴30BCP A ∠∠︒==,∴30P ∠︒=,∴PB BC =,12BC AB =, ∴3PA PB =(2)点P 在O 外,PC 是O 的切线,C 为切点,直线PO 与O 相交于点A 、B , 180902180BCP A A P ACB BCP ACB BCP P ∴∠∠∠+∠+∠+∠︒∠︒∴∠︒-∠=,=,且=,=,∴()1902BCP P ∠︒-∠= 27.【答案】(1)函数的表达式为:()()()21323y a x x a x x -++-==,即:33a -=,解得:1a =-,故抛物线的表达式为:223y x x -+=-…①,顶点坐标为()1,4-;(2)OB OC =,41:2:5CPD BPD CBO S S ∴∠︒△△=,=,∴2233BD BC ⨯== sin 2D y BD CBO ∠==,则点()1,2D -;(3)如图2,设直线PE 交x 轴于点H ,15230451OGE PEG OGE OHE OH OE ∠︒∠∠︒∴∠︒∴=,==,=,==,则直线HE 的表达式为:1y x -=-…②,联立①②并解得:x (舍去正值),故点P ⎝⎭; (4)不存在,理由:连接BC ,过点P 作y 轴的平行线交BC 于点H ,直线BC 的表达式为:3y x +=,设点()2,23P x x x --+,点(),3H x x +, 则()211332333822OBC PBC BOCP S S S x x x +⨯⨯+-+--⨯-△△四边形===, 整理得:23970x x ++=,解得:0∆<,故方程无解,则不存在满足条件的点P .。
2019年中考数学试题-2019年贵州省毕节市中考试题
贵州省毕节市2019年初中毕业生学业(升学)考试数学卷I一、选择题(本大题共15 小题,每小题3 分,共45 分.每小题只有一个正确选项)1.下列四个数中,2 019的相反数是()A.-2019 B.C.D.201902.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55 000米.55 000这个数用科学记数法可表示为()A.5.5×103B.55 ⨯103 C. 0.55 ⨯105 D.5.5 ⨯ 1043.由下面正方体的平面展开图可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦4.在一次爱心义卖活动中,某中学九年级6个班捐献的义卖金额(单位:元)分别为800、820、930、860、820、850,这组数据的众数和中位数分别是()A.820,850 B.820,930 C.930,835 D.820,835 5.下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3-1 = -3;②-=;③(2a2)3=8a5;④-a8÷a4=-a4.A.①B.②C.③D.④6.观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4 个B.3 个C.2 个D.1 个7.如图,ΔABC中,CD是AB边上的高,CM是AB边上的中线,点C到边AB所在直线的距离是()A.线段CA的长度B.线段CM的长度C.线段CD的长度D.线段CB的长度8.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3 C.D.59.如果32−1与9+1是同类项,那么m等于()A.2 B.1 C.-1 D.010.下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2 019个图案中箭头的指向是()A.上方B.右方C.下方D.左方11.已知一次函数=+(k, b为常数,k≠0)的图象经过一、三、四象限,则下列结论正确的是()A.kb>0 B.kb<0 C.k+b>0 D.k+b<012.在下列长度的三条线段中,不能组成三角形的是()A.2 cm,3 cm,4 cm B.3 cm,6 cm,6 cmC.2 cm,2 cm,6 cm D.5 cm,6 cm,7 cm13.若点A(-4,1)、B(-2,2)、C(2,3)都在反比例函数y 的图象上,则则1、、3的大小关系是()2A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y214.平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC、②AC=BD、③AC⊥BD、④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.115.如图,在一块斜边长30 cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF∶AC=1∶3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.100 cm2 B.150 cm2 C.170 cm2 D.200 cm2卷Ⅱ二、填空题(本大题5 小题,每题5 分,共25 分)16.分解因式:4−16= .17.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为度.18.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2 240元.则这种商品的进价是元.19.三角板是我们学习数学的好帮手.将一副直角三角板如图19放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是.20.如图20,在平面直角坐标中,一次函数y =―4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的顶点C、D在第一象限,顶点D在反比例函数y=(k≠0)的图象上.若正方形ABCD 向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是.三、解答题(本大题7小题,各题分值见题号后,共80分)21.(8分)计算:-+ (-1)2019+2-1- (2-)0+2cos 45°.22.(8分)解方程:1-=.23.(10分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过几封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两封;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:请根据以上统计图回答:(1)此次抽样调查了名学生,条形统计图中m= ,n= ;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有封;(4)全地区中学生共有110 000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?24.(12分)某山区不仅有美丽风光,也有许多令人喜爱的土特产.为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10 元,试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如下表:若日销售量y 是销售价x 的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数,,,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4, min{1,2,-3}=-3, min{3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(-2)2,22, -22}=;②min{sin30︒,cos60︒, tan45︒}=;(2)若M{-2x, x2,3}=2,求x的值;(3)若min{3-2x,1+3x,-5}=-5,求x的取值范围.26.(14分)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证P A=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90︒-∠ P)成立.请你写出推理过程.27.(16分)已知抛物线=2++3经过点A(1,0)和点B(-3,0),与y轴交于点C,点P 为第二象限内抛物线上的动点.(1)抛物线的解析式为,抛物线的顶点坐标为;(2)如图27-1,连接OP交BC于点D,当∆∶∆ = 1∶2 时,请求出点D的坐标;(3)如图27-2,点E的坐标为(0,-1),点G为x轴负半轴上的一点,∠OGE=15︒,连接PE,若∠PEG =2∠OGE,请求出点P的坐标;(4)如图27-3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.。
2019年贵州毕节中考数学真题--含解析
2019年贵州省毕节市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共15小题,每小题3分,共45分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019贵州省毕节市,题号1,分值3分)下列四个数中,2019的相反数是()A.﹣2019 B.C.﹣D.20190【答案】A.【解析】解:2019的相反数是﹣2019,故选:A.【知识点】相反数;零指数幂.菁优网版2.(2019贵州省毕节市,题号2,分值3分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×104【答案】D.【解析】解:55000这个数用科学记数法可表示为5.5×104,故选:D.【知识点】科学记数法—表示较大的数.3.(2019贵州省毕节市,题号3,分值3分)由下面正方体的平面展开图可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦【答案】B.【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.故选:B.【知识点】正方体相对两个面上的文字.4.(2019贵州省毕节市,题号4,分值3分)在一次爱心义卖活动中,某中学九年级6个班捐献的义卖金额(单位:元)分别为800、820、930、860、820、850,这组数据的众数和中位数分别是()A.820,850 B.820,930 C.930,835 D.820,835【答案】D.【解析】解:将数据重新排列为800、820、820、850、860、930,所以这组数据的众数为820、中位数为=835,故选:D.【知识点】中位数;众数.5.(2019贵州省毕节市,题号5,分值3分)下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣1=﹣3;②﹣=;③(2a2)3=8a5;④﹣a8÷a4=﹣a4.A.①B.②C.③D.④【答案】D.【解析】解:①30+3﹣1=1,故此选项错误;②﹣无法计算,故此选项错误;③(2a2)3=8a6,故此选项错误;④﹣a8÷a4=﹣a4,正确.故选:D.【知识点】幂的乘方与积的乘方;同底数幂的除法;零指数幂;负整数指数幂;二次根式的加减法.6.(2019贵州省毕节市,题号6,分值3分)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个【答案】B.【解析】解:①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确.故选:B.【知识点】轴对称图形;中心对称图形.7.(2019贵州省毕节市,题号7,分值3分)如图,ABC中,CD是AB边上的高,CM是AB边上的中线,点C到边AB所在直线的距离是()A.线段CA的长度B.线段CM的长度 C.线段CD的长度D.线段CB的长度【答案】C.【解析】解:点C到边AB所在直线的距离是点C到直线AB的垂线段的长度,而CD是点C到直线AB 的垂线段,故选:C.【知识点】点到直线的距离.8.(2019贵州省毕节市,题号8,分值3分)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3 C.D.5【答案】B.【解题过程】解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2﹣EB2=22﹣12=3,∴正方形ABCD的面积=BC2=3.故选:B.【知识点】勾股定理.9.(2019贵州省毕节市,题号9,分值3分)如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2 B.1 C.﹣1 D.0【答案】A.【解题过程】解:根据题意可得:2m﹣1=m+1,解得:m=2,故选:A.【知识点】同类项.10.(2019贵州省毕节市,题号10,分值3分)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是()A.上方B.右方C.下方D.左方【答案】C.【解题过程】解:如图所示:每旋转4次一周,2019÷4=504…3,则第2019个图案中箭头的指向与第3个图案方向一致,箭头的指向是下方.故选:C.【知识点】规律型:图形的变化类;生活中的旋转现象.11.(2019贵州省毕节市,题号11,分值3分)已知一次函数y=kx+b(k,b为常数,k≠0)的图象经过一、三、四象限,则下列结论正确的是()A.kb>0 B.kb<0 C.k+b>0 D.k+b<0【答案】B.【解题过程】解:y=kx+b的图象经过一、三、四象限,∴k>0,b<0,∴kb<0;故选:B.【知识点】一次函数图象与系数的关系.12.(2019贵州省毕节市,题号12,分值3分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,76cmC.2cm,2cm,6cm D.5cm,6cm,7cm【答案】C.【解题过程】解:A、2+3>4,能组成三角形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.【知识点】三角形三边关系.13.(2019贵州省毕节市,题号13,分值3分)若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2【答案】C.【思路分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解题过程】解:∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,∴y1=﹣=,y2=﹣=,y3=﹣,又∵﹣<<,∴y3<y1<y2.故选:C.【知识点】反比例函数图象上点的坐标特征.14.(2019贵州省毕节市,题号14,分值3分)平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.1【答案】B.【思路分析】菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).【解题过程】解:根据平行四边形的判定定理,可推出平行四边形ABCD是菱形的有①或③,概率为.故选:B.【知识点】平行四边形的判定与性质;菱形的判定;概率公式.菁优15.(2019贵州省毕节市,题号15,分值3分)如图,在一块斜边长30cm的直角三角形木板(Rt △ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC =1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm2【答案】A.【思路分析】设AF=x,根据正方形的性质用x表示出EF、CF,证明△AEF∽△ABC,根据相似三角形的性质求出BC,根据勾股定理列式求出x,根据三角形的面积公式、正方形的面积公式计算即可.【解题过程】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB2=AC2+BC2,即302=(3x)2+(6x)2,解得,x=2,∴AC=6,BC=12,∴剩余部分的面积=×12×6﹣4×4=100(cm2),故选:A.【知识点】正方形的性质;相似三角形的应用.二、填空题:本大题共5小题,每小题5分,共25分.不需写出解答过程,请把最后结果填在题中横线上.16.(2019贵州省毕节市,题号16,分值5分)分解因式:x4﹣16=.【答案】(x2+4)(x+2)(x﹣2).【解析】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).【知识点】因式分解﹣运用公式法.17.(2019贵州省毕节市,题号17,分值5分)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为.【答案】34°.【解析】解:∵∠B=40°,∠C=36°,∴∠BAC=180°﹣∠B﹣∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°﹣∠B)÷2=70°,∴∠DAC=∠BAC﹣∠BAD=34°.【知识点】等腰三角形的性质.18.(2019贵州省毕节市,题号18,分值5分)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.【答案】2000.【思路分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【解题过程】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000.【知识点】一元一次方程的应用.菁优网版19.(2019贵州省毕节市,题号19,分值5分)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是.【答案】15﹣5.【思路分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF =45°,进而可得出答案.【解题过程】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10 ,∵AB∥CF,∴BM=BC×sin30°==5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5 ,∴CD=CM﹣MD=15﹣5 .故答案是:15﹣5.【知识点】含30度角的直角三角形;勾股定理.20.(2019贵州省毕节市,题号20,分值5分)如图,在平面直角坐标中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的顶点C、D在第一象限,顶点D在反比例函数y=(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是.【答案】3.【思路分析】过点D作DE⊥x轴过点C作CF⊥y轴,可证△ABO≌△DAE(AAS),△CBF≌△BAO(AAS),则可求D(5,1),C(4,5),确定函数解析式y=,C向左移动n个单位后为(4﹣n,5),进而求n的值;【解题过程】解:过点D作DE⊥x轴,过点C作CF⊥y轴,∵AB⊥AD,∴∠BAO=∠DAE,∵AB=AD,∠BOA=∠DEA,∴△ABO≌△DAE(AAS),∴AE=BO,DE=OA,易求A(1,0),B(0,4),∴D(5,1),∵顶点D在反比例函数y=上,∴k=5,∴y=,易证△CBF≌△BAO(AAS),∴CF=4,BF=1,∴C(4,5),∵C向左移动n个单位后为(4﹣n,5),∴5(4﹣n)=5,∴n=3,故答案为3;【知识点】一次函数图象上点的坐标特征;反比例函数的性质;反比例函数图象上点的坐标特征;正方形的性质;坐标与图形变化﹣平移.三、解答题(本大题共7小题,满分80分,解答应写出文字说明、证明过程或演算步骤)21.(2019贵州省毕节市,题号21,分值8分)计算:|﹣|+(﹣1)2019+2﹣1﹣(2﹣)0+2cos45°.【思路分析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.【解题过程】解:原式=﹣1+﹣1+2×=﹣1【知识点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.菁优网版权所有22.(2019贵州省毕节市,题号22,分值8分)解方程:.【思路分析】观察可得最简公分母是2(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解题过程】解:去分母得,2x+2﹣(x﹣3)=6x,∴x+5=6x,解得,x=1经检验:x=1是原方程的解.【知识点】解分式方程.23.(2019贵州省毕节市,题号23,分值10分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了名学生,条形统计图中m=,n=;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?【思路分析】(1)由B选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m、n的值;(2)先求出C选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.【解题过程】解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1﹣45%)=60500(名).【知识点】全面调查与抽样调查;用样本估计总体;扇形统计图;条形统计图.菁优网版权所24.(2019贵州省毕节市,题号24,分值12分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元) 15 20 30 …y(袋) 25 20 10 …若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元【思路分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【解题过程】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400整理得w=﹣(x﹣25)2+225∵﹣1<0∴当x=2时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【知识点】二次函数的应用.25.(2019贵州省毕节市,题号25,分值12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a ,b ,c ,用{M a ,b ,}c 表示这三个数的平均数,用{min a ,b ,}c 表示这三个数中最小的数.例如:{1M ,2,1299}43++==,{1min ,2,3}3-=-,{3min ,1,1}1=.请结合上述材料,解决下列问题: (1)①2{(2)M -,22,22}-=43; ②{sin30min ︒,cos60︒,tan 45}︒= ; (2)若{2M x -,2x ,3}2=,求x 的值;(3)若{32min x -,13x +,5}5-=-,求x 的取值范围.【思路分析】(1)①根据平均数的定义计算即可.②求出三个数中的最小的数即可. (2)构建方程即可解决问题. (3)根据不等式解决问题即可.【解题过程】解:(1)①2{(2)M -,22,2222(2)2242}33-+--==;②{sin30min ︒,cos60︒,1tan 45}2︒=;故答案为:43;12;(2)){2M x -Q ,2x ,3}2=,∴22323x x -++=,解得1x =-或3;(3){32min x -Q ,13x +,5}5-=-,∴325135x x --⎧⎨+-⎩……, 解得24x -剟. 【知识点】特殊角的三角函数值;算术平均数;解一元一次不等式组. 26.(2019贵州省毕节市,题号26,分值14分)如图,点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交于点A 、B . (1)若∠A =30°,求证:PA =3PB ;(2)小明发现,∠A 在一定范围内变化时,始终有∠BCP =(90°﹣∠P )成立.请你写出推理过程.【思路分析】(1)由PC为圆O的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A,由∠A的度数求出∠BCP的度数,进而确定出∠P的度数,再由PB=BC,AB=2BC,等量代换确定出PB 与PA的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.【解题过程】解:(1)∵AB是直径∴∠ACP=90°,∵∠A=30°,∴AB=2BC∵PC是⊙O切线∴∠BCP=∠A=30°,∴∠P=30°,∴PB=BC,BC=AB,∴PA=3PB(2)∵点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=180°﹣∠P,∴∠BCP=(90°﹣∠P)【知识点】切线的性质.27.(2019贵州省毕节市,题号27,分值16分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B (﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为,抛物线的顶点坐标为;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.【思路分析】(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即可求解;(2)S△CPD:S△BPD=1:2,则BD=BC=×=2,即可求解;(3)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;(4)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.【解题过程】解:(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即:﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①,顶点坐标为(﹣1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×=2,y=BD sin∠CBO=2,D则点D(﹣1,2);(3)如图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=﹣x﹣1…②,联立①②并解得:x=(舍去正值),故点P(,);(4)不存在,理由:连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,﹣x2﹣2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC=×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.【知识点】二次函数综合题.。
2019年贵州省毕节地区金沙县、黔西县中考数学一模试卷-普通用卷
2019年贵州省毕节地区金沙县、黔西县中考数学一模试卷副标题题号一二三四总分得分一、选择题(本大题共15小题,共45.0分)1.-25的相反数是()A. −25B. 25C. −52D. 522.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.习近平总书记提出了未来五年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A. 1.17×107B. 11.7×106C. 0.117×107D. 1.17×1084.下列计算正确的是()A. −a4b÷a2b=−a2bB. (a−b)2=a2−b2C. a2⋅a3=a6D. −3a2+2a2=−a25.下列几何体中,其主视图为三角形的是()A. B. C. D.6.某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某天每个工人的生产件数,获得数据如下表:生产件数(件)101112131415人数(人)154321则这一天16名工人生产件数的众数和中位数是()A. 5件、11件B. 11件、12件C. 12件、11件D. 15件、14件7.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A. 45B. 35C. 25D. 158.如图,在矩形AOBC中,A(-2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A. −12B. 12C. −2D. 29.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A. 2:5B. 3:5C. 9:25D. 4:25x+2>0的解集在数轴上表示正确的是()10.不等式组{2x−4≤0A. B.C. D.11.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A. 40∘B. 50∘C. 60∘D. 70∘AC12.如图,在△ABC中,分别以点A和点C为圆心,大于12长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A. 16cmB. 19cmC. 22cmD. 25cm13.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. b=(1+22.1%×2)aB. b=(1+22.1%)2aC. b=(1+22.1%)×2aD. b=22.1%×2a14. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b >0;③b 2-4ac >0;④a -b +c >0,其中正确的个数是( ) A. 1 B. 2 C. 3 D. 415. 如图,在菱形ABCD 中,AC =6√2,BD =6,E 是BC边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE +PM 的最小值是( ) A. 6 B. 3√3 C. 2√6 D. 4.5 二、填空题(本大题共5小题,共25.0分) 16. 分解因式:x 3-9x =______.17. 图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=______度.18. 若分式方程3x−ax 2−2x +1x−2=2x 有增根,则实数a 的值是______.19. 若点(-2,y 1),(-1,y 2),(3,y 3)在双曲线y =kx (k <0)上,则y 1,y 2,y 3的大小关系是______.20. 如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE =DF =2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为______.三、计算题(本大题共1小题,共12.0分)21. 先化简,再求值x−3x 2−1÷x−3x 2+2x+1-(1x−1+1),其中x 是不等式组{5x −3>3(x +1)12x −1<9−32x 的整数解.四、解答题(本大题共6小题,共68.0分)22.计算:√(1−√2)2−(1−√22)0−sin45°+(12)−123.某校开展研学旅行活动,准备去的研学基地有A(曲阜)、B(梁山)、C(汶上),D(泗水),每位学生只能选去一个地方,王老师对本班全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).(1)求该班的总人数,并补全条形统计图.(2)求D(泗水)所在扇形的圆心角度数;(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.24.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.25.用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数).(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.26.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.27.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:-的相反数是:.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.【答案】A【解析】解:A、是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】A【解析】解:11700000=1.17×107.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:-a4b÷a2b=-a2,故选项A错误,(a-b)2=a2-2ab+b2,故选项B错误,a2•a3=a5,故选项C错误,-3a2+2a2=-a2,故选项D正确,故选:D.根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.5.【答案】D【解析】解:A、圆柱的主视图为矩形,∴A不符合题意;B、正方体的主视图为正方形,∴B不符合题意;C、球体的主视图为圆形,∴C不符合题意;D、圆锥的主视图为三角形,∴D符合题意.故选:D.找出四个选项中几何体的主视图,由此即可得出结论.本题考查了简单几何体的三视图,牢记圆锥的主视图为三角形是解题的关键.6.【答案】B【解析】解:数据11出现的次数最多,所以众数为11件;因为共16人,所以中位数是第8和第9人的平均数,即中位数==12件,故选:B.中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果数据的个数是偶数就是中间两个数的平均数,众数是指一组数据中出现次数最多的数据.本题考查统计量的选择、平均数、中位数和众数,解题的关键是明确题意,找出所求问题需要的条件.7.【答案】C【解析】解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.让正面的数字是偶数的情况数除以总情况数5即为所求的概率.此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.8.【答案】A【解析】解:∵A(-2,0),B(0,1).∴OA=2、OB=1,∵四边形AOBC是矩形,∴AC=OB=1、BC=OA=2,则点C的坐标为(-2,1),将点C(-2,1)代入y=kx,得:1=-2k,解得:k=-,故选:A.根据矩形的性质得出点C的坐标,再将点C坐标代入解析式求解可得.本题主要考查一次函数图象上点的坐标特征,解题的关键是掌握矩形的性质和待定系数法求函数解析式.9.【答案】C【解析】解:∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=3:2,∴==,∴=()2=.故选:C.根据平行四边形的性质可得出CD∥AB,进而可得出△DEF∽△BAF,根据相似三角形的性质结合DE:EC=3:2,即可得出△DEF与△BAF的面积之比,此题得解.本题考查了相似三角形的判定与性质以及平行四边形的性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.10.【答案】C【解析】解:解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选:C.先求出各不等式的解集,再求出其公共解集即可.本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【答案】A【解析】解:如图,连接OA、OB,∵BM是⊙O的切线,∴∠OBM=90°,∵∠MBA=140°,∴∠ABO=50°,∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°,故选:A.连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由内角和定理知∠AOB=80°,根据圆周角定理可得答案.本题主要考查切线的性质,解题的关键是掌握切线的性质:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.12.【答案】B【解析】解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选:B.利用线段的垂直平分线的性质即可解决问题.本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质,属于中考常考题型.13.【答案】B【解析】解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.考查了列代数式,掌握2次增长或下降之类方程的等量关系是解决本题的关键.14.【答案】D【解析】解:①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=-<1,∴-b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2-4ac>0,故③正确;④当x=-1时,y>0,∴a-b+c>0,故④正确.故选:D.由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.15.【答案】C【解析】解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选:C.作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,由PE+PM=PE′+PM=E′M知点P、M即为使PE+PM取得最小值的点,利用S菱形ABCD=AC•BD=AB•E′M求解可得答案.本题主要考查轴对称-最短路线问题,解题的关键是掌握菱形的性质和轴对称的性质.16.【答案】x(x+3)(x-3)【解析】解:原式=x(x2-9)=x(x+3)(x-3),故答案为:x(x+3)(x-3).根据提取公因式、平方差公式,可分解因式.本题考查了因式分解,利用了提公因式法与平方差公式,注意分解要彻底.17.【答案】360【解析】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.根据多边形的外角和等于360°解答即可.本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.18.【答案】4或8【解析】解:∵+=,∴+=,当x2-2x≠0时,原式化为3x-a+x=2x-4,∴2x=a-4,∵分式方程有增根,∴x=0或x=2,当x=0时,a=4;当x=2时,a=8.故答案是4或8.对分式方程+=进行正常求解,化简为2x=a-4,当x=0或x=2时,分式方程有增根,在x=0和x=2时,分别求出a的值即可.考查知识点:分式方程的解法;分式方程增根情况.能够正确求解分式方程,会求分式方程的增根,在有增根时求解a的值.19.【答案】y3<y1<y2【解析】解:∵点(-2,y1),(-1,y2),(3,y3)在双曲线y=(k<0)上,∴(-2,y1),(-1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x 的增大而增大,∴y3<y1<y2.故答案为y3<y1<y2.先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题.此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.20.【答案】√342【解析】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD-DF=5-2=3,∴BF==,∴GH=BF=,故答案为:.根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF ,利用勾股定理求出BF 的长即可得出答案.本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键. 21.【答案】解:原式=x−3(x+1)(x−1)•(x+1)2x−3-1+x−1x−1=x+1x−1-x x−1=1x−1, 不等式组解得:3<x <5,即整数解x =4, 则原式=13.【解析】原式利用除法法则变形,约分后计算得到最简结果,求出x 的值,代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.【答案】解:原式=√2−1-1-√22+2 =√22. 【解析】先分别计算二次根式、零指数幂、负指数幂、特殊三角函数值,然后算加减法. 本题考查了实数的运算,熟练掌握二次根式、零指数幂、负指数幂、特殊三角函数值的运算是解题的关键.23.【答案】解:(1)该班的人数为1632%=50人,则B 基地的人数为50×24%=12人, 补全图形如下:(2)D (泗水)所在扇形的圆心角度数为360°×1450=100.8°;(3)画树状图为:共有12种等可能的结果数,其中所抽取的2人中恰好有1人选去曲阜,1人选去梁山的占4种,所以所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率为412=13.【解析】(1)用C 组的人数除以它所占的百分比即可得到全班人数,用总人数乘以B 的百分比求得其人数,据此可补全条形图;(2)用D 组的所占百分比乘以360°即可得到在扇形统计图中“D”对应扇形的圆心角的度数;(3)先画树状图展示所有12种等可能的结果数,找出所抽取的2人中恰好有1人选去曲阜,1人选去梁山所占结果数,然后根据概率公式求解.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 24.【答案】(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°,∴∠BAE +∠AEB =90°,∵BH ⊥AE ,∴∠BHE =90°,∴∠AEB +∠EBH =90°,∴∠BAE =∠EBH ,在△ABE 和△BCF 中,{∠BAE =∠CBF AB =BC ∠ABE =∠BCF,∴△ABE ≌△BCF (ASA ),∴AE =BF ;(2)解:∵AB =BC =5,由(1)得:△ABE ≌△BCF ,∴CF =BE =2,∴DF =5-2=3,∵四边形ABCD 是正方形,∴AB =AD =5,∠ADF =90°,由勾股定理得:AF =√AD 2+DF 2=√52+32=√25+9=√34.【解析】(1)根据ASA 证明△ABE ≌△BCF ,可得结论;(2)根据(1)得:△ABE ≌△BCF ,则CF=BE=2,最后利用勾股定理可得AF 的长. 此题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题证明△ABE ≌△BCF 是解本题的关键.25.【答案】解:设购买A 型钢板x 块,则购买B 型钢板(100-x )块,根据题意得,{x +3(100−x)≥2502x+(100−x)≥120,解得,20≤x ≤25,∵x 为整数,∴x =20,21,22,23,24,25共6种方案,即:A 、B 型钢板的购买方案共有6种;(2)设总利润为w ,根据题意得,w =100(2x +100-x )+120(x +300-3x )=100x +10000-240x +36000=-140x +46000, ∵-140<0,∴当x =20时,w max =-140×20+46000=43200元, 即:购买A 型钢板20块,B 型钢板80块时,获得的利润最大.【解析】(1)根据“C 型钢板不少于120块,D 型钢板不少于250块”建立不等式组,即可得出结论;(2)先建立总利润和x 的关系,即可得出结论.此题主要考查了一元一次不等式组的应用,一次函数的性质,根据题意得出正确的等量关系是解题关键.26.【答案】解:(1)在Rt △ACB 中,∵AC =3cm ,BC =4cm ,∠ACB =90°,∴AB =5cm ;连接CD ,∵BC 为直径,∴∠ADC =∠BDC =90°;∵∠A =∠A ,∠ADC =∠ACB ,∴Rt △ADC ∽Rt △ACB ;∴AC AB =AD AC ,∴AD =AC 2AB =95;(2)当点E 是AC 的中点时,ED 与⊙O 相切;证明:连接OD ,∵DE 是Rt △ADC 的中线;∴∠EDC =∠ECD ;∵OC =OD ,∴∠ODC =∠OCD ;∴∠EDO =∠EDC +∠ODC =∠ECD +∠OCD =∠ACB =90°;∴ED ⊥OD ,∴ED 与⊙O 相切.【解析】(1)由勾股定理易求得AB 的长;可连接CD ,由圆周角定理知CD ⊥AB ,易知△ACD ∽△ABC ,可得关于AC 、AD 、AB 的比例关系式,即可求出AD 的长. (2)当ED 与⊙O 相切时,由切线长定理知EC=ED ,则∠ECD=∠EDC ,那么∠A 和∠DEC 就是等角的余角,由此可证得AE=DE ,即E 是AC 的中点.在证明时,可连接OD ,证OD ⊥DE 即可.此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.27.【答案】解:(1)设抛物线解析式为y =a (x +1)(x -3),即y =ax 2-2ax -3a ,∴-2a =2,解得a =-1,∴抛物线解析式为y =-x 2+2x +3;当x =0时,y =-x 2+2x +3=3,则C(0,3),设直线AC 的解析式为y =px +q ,把A (-1,0),C (0,3)代入得{q =3−p+q=0,解得{q =3p=3,∴直线AC 的解析式为y =3x +3;(2)∵y =-x 2+2x +3=-(x -1)2+4,∴顶点D 的坐标为(1,4),作B 点关于y 轴的对称点B ′,连接DB ′交y 轴于M ,如图1,则B ′(-3,0), ∵MB =MB ′,∴MB +MD =MB ′+MD =DB ′,此时MB +MD 的值最小,而BD 的值不变,∴此时△BDM 的周长最小,易得直线DB ′的解析式为y =x +3,当x =0时,y =x +3=3,∴点M 的坐标为(0,3);过点C 作AC 的垂线交抛物线于另一点P ,如图2,∵直线AC 的解析式为y =3x +3,∴直线PC 的解析式可设为y =-13x +b , 把C (0,3)代入得b =3, ∴直线PC 的解析式为y =-13x +3,解方程组{y =−x 2+2x +3y =−13x +3,解得{y =3x=0或{x =73y =209,则此时P 点坐标为(73,209); 过点A 作AC 的垂线交抛物线于另一点P ,直线PC 的解析式可设为y =-13x +b , 把A (-1,0)代入得13+b =0,解得b =-13,∴直线PC 的解析式为y =-13x -13,解方程组{y =−x 2+2x +3y =−13x −13,解得{y =0x=−1或{x =103y =−139,则此时P 点坐标为(103,-139), 综上所述,符合条件的点P 的坐标为(73,209)或(103,-139),【解析】(1)设交点式y=a (x+1)(x-3),展开得到-2a=2,然后求出a 即可得到抛物线解析式;再确定C (0,3),然后利用待定系数法求直线AC 的解析式;(2)利用二次函数的性质确定D 的坐标为(1,4),作B 点关于y 轴的对称点B′,连接DB′交y 轴于M ,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD 的值最小,则此时△BDM 的周长最小,然后求出直线DB′的解析式即可得到点M 的坐标;(3)过点C 作AC 的垂线交抛物线于另一点P ,如图2,利用两直线垂直一次项系数互为负倒数设直线PC 的解析式为y=-x+b ,把C 点坐标代入求出b 得到直线PC 的解析式为y=-x+3,再解方程组得此时P 点坐标;当过点A 作AC 的垂线交抛物线于另一点P 时,利用同样的方法可求出此时P 点坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.第21页,共21页。
【附20套中考模拟试题】贵州省毕节地区金沙县2019-2020学年九年级下期末数学试卷含解析
贵州省毕节地区金沙县2019-2020学年九年级下期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.解分式方程12x -﹣3=42x -时,去分母可得( ) A .1﹣3(x ﹣2)=4 B .1﹣3(x ﹣2)=﹣4C .﹣1﹣3(2﹣x )=﹣4D .1﹣3(2﹣x )=4 2.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解3.正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A .(2,0)B .(3,0)C .(2,-1)D .(2,1)4.如图,已知l 1∥l 2,∠A=40°,∠1=60°,则∠2的度数为( )A .40°B .60°C .80°D .100°5.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=16.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象可能是()A.B.C.D.7.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A.8374y xy x-=⎧⎨-=⎩B.8374y xx y-=⎧⎨-=⎩C.8374x yy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩9.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差10.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )A.q<16 B.q>16C.q≤4D.q≥411.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A .85°B .75°C .60°D .30°12.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知二次函数21y ax bx c =++与一次函数()20y kx m k =+≠的图象相交于点()2,4A -,()8,2.B 如图所示,则能使12y y >成立的x 的取值范围是______.14.不等式5x ﹣3<3x+5的非负整数解是_____.15.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm .16.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个.17.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 的度数是_____.18.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x 厘米,则依题意列方程为_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)20.(6分)已知二次函数2y x bx c =-++的图象如图6所示,它与x 轴的一个交点坐标为(10)-,,与y 轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值y 为正数时,自变量x 的取值范围.21.(6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:参加比赛的学生共有____名;在扇形统计图中,m 的值为____,表示“D 等级”的扇形的圆心角为____度;组委会决定从本次比赛获得A 等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.22.(8分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:两次取出小球上的数字相同;两次取出小球上的数字之和大于1.23.(8分)如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan48 1.11︒≈,tan58 1.60︒≈.24.(10分)计算:131|13|2sin 60(2016)83π-︒︒⎛⎫+--+-- ⎪⎝⎭.先化简,再求值:2344111x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中22x =-. 25.(10分)如图,△ABC 内接于⊙O ,过点C 作BC 的垂线交⊙O 于D ,点E 在BC 的延长线上,且∠DEC =∠BAC .求证:DE 是⊙O 的切线;若AC ∥DE ,当AB =8,CE =2时,求⊙O 直径的长.26.(12分)已知2是关于x 的方程x 2﹣2mx+3m =0的一个根,且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为_____.27.(12分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x ﹣2)=﹣4,故选B .【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键. 2.C【解析】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .3.B【解析】试题分析:正方形ABCD 绕点A 顺时针方向旋转180°后,C 点的对应点与C 一定关于A 对称,A 是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD 绕点A 顺时针方向旋转180°后C 的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B .考点:坐标与图形变化-旋转.4.D【解析】【分析】根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵l 1∥l 2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.5.B【解析】试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .6.C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.7.B【解析】【分析】 由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【详解】解:A 、因为a =3>0,所以开口向上,错误;B 、顶点坐标是(1,2),正确;C 、当x >1时,y 随x 增大而增大,错误;D 、图象与y 轴的交点坐标为(0,5),错误;故选:B .【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x ﹣h )2+k 中,对称轴为x =h ,顶点坐标为(h ,k ).8.C【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.9.A【解析】【分析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.10.A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选 A.11.B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.12.C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt △A′BD 中,∵∠A′DB=90°,A′D=2米,BD 2+A′D 2=A′B′2,∴BD 2+22=6.25,∴BD 2=2.25,∵BD >0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C .【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x<-2或x>1【解析】试题分析:根据函数图象可得:当12y y f 时,x <-2或x >1.考点:函数图象的性质14.0,1,2,1【解析】5x ﹣1<1x+5,移项得,5x ﹣1x <5+1,合并同类项得,2x <8,系数化为1得,x <4所以不等式的非负整数解为0,1,2,1;故答案为0,1,2,1.【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键.15.8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD ,则AB=AD+CD ,所以,△ACD 的周长=AD+CD+AC=AB+AC ,解答出即可解:∵DE 是BC 的垂直平分线,∴BD=CD ,∴AB=AD+BD=AD+CD ,∴△ACD 的周长=AD+CD+AC=AB+AC=8cm ;考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等 16.8 【解析】试题分析:设红球有x 个,根据概率公式可得0.484xx=++,解得:x =8.考点:概率. 17.32° 【解析】 【分析】根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A 的度数,根据圆周角定理解答即可. 【详解】∵AB 是⊙O 的直径, ∴∠ADB=90°, ∵∠ABD=58°, ∴∠A=32°, ∴∠BCD=32°, 故答案为32°. 18.x +23x =75. 【解析】试题解析:设长方形墙砖的长为x 厘米, 可得:x +23x =75. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元. 【解析】 【分析】(1)设甲型号的产品有x 万只,则乙型号的产品有(20﹣x )万只,根据销售收入为300万元可列方程18x+12(20﹣x )=300,解方程即可;(2)设安排甲型号产品生产y 万只,则乙型号产品生产(20﹣y )万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y 的范围,再根据利润=(1)设甲型号的产品有x 万只,则乙型号的产品有(20﹣x )万只, 根据题意得:18x+12(20﹣x )=300, 解得:x=10, 则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y 万只,则乙型号产品生产(20﹣y )万只, 根据题意得:13y+8.8(20﹣y )≤239, 解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y )=1.8y+64, 当y=15时,W 最大,最大值为91万元.所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元. 考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.20.(1)2x 2x 3y -++=;(2)1x 3-<<.【解析】 【分析】(1)将(-1,0)和(0,3)两点代入二次函数y=-x 2+bx+c ,求得b 和c ;从而得出抛物线的解析式; (2)令y=0,解得x 1,x 2,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x 的取值范围. 【详解】解:(1)由二次函数2y x bx c =-++的图象经过()1,0-和()0,3两点,得103b c c --+=⎧⎨=⎩,解这个方程组,得23b c =⎧⎨=⎩, 抛物线的解析式为2x 2x 3y -++=,(2)令y 0=,得2x 2x 30-++=. 解这个方程,得1x 3=,2x 1=-.∴此二次函数的图象与x 轴的另一个交点的坐标为()3,0.本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点. 21.(1)20;(2)40,1;(3)23. 【解析】试题分析:(1)根据等级为A 的人数除以所占的百分比求出总人数; (2)根据D 级的人数求得D 等级扇形圆心角的度数和m 的值;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率. 试题解析:解:(1)根据题意得:3÷15%=20(人),故答案为20; (2)C 级所占的百分比为820×100%=40%,表示“D 等级”的扇形的圆心角为420×360°=1°; 故答案为40、1. (3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P 恰好是一名男生和一名女生=46 =23. 22.(1)()P =两数相同13;(2)()10P =两数和大于49. 【解析】 【分析】根据列表法或树状图看出所有可能出现的结果共有多少种,再求出两次取出小球上的数字相同的结果有多少种,根据概率公式求出该事件的概率. 【详解】第二次第一次 6﹣276(6,6)(6,﹣2)(6,7)﹣2 (﹣2,6) (﹣2,﹣2) (﹣2,7) 7(7,6)(7,﹣2)(7,7)(1)P (两数相同)=. (2)P (两数和大于1)=. 【点睛】本题考查了利用列表法、画树状图法求等可能事件的概率.23.甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m . 【解析】分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.详解:如图,过点D 作DE AB ⊥,垂足为E .则90AED BED ∠=∠=︒.由题意可知,78BC =,48ADE ∠=︒,58ACB ∠=︒,90ABC ∠=︒,90DCB ∠=︒. 可得四边形BCDE 为矩形. ∴78ED BC ==,DC EB =. 在Rt ABC V 中,tan ABACB BC ∠=, ∴tan5878 1.60125AB BC =⋅︒≈⨯≈. 在Rt AED V 中,tan AE ADE ED∠=, ∴tan48AE ED =⋅︒.∴tan58EB AB AE BC =-=⋅︒ 78 1.6078 1.1138≈⨯-⨯≈. ∴38DC EB =≈.答:甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m .点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.24.(1)1;(2)22-1.【解析】【分析】(1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;(2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置. 【详解】(1)原式=3+3﹣1﹣2×3+1﹣2=3+3﹣1﹣3+1﹣2=1.(2)原式=[31x+﹣(1)(1)1x xx+-+]•21(2)xx++=(2)(2)1x xx-+-+•21(2)xx++=22xx-+,当x=2﹣2时,原式=222222-+-+=422-=22-1.【点睛】本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关键是熟练掌握以上性质和分式的混合运算.25.(1)见解析;(2)⊙O直径的长是45.【解析】【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BDC∽△BED,求出BD,即可得出结论.【详解】证明:(1)连接BD,交AC于F,∴∠BCD=∠DCE=90°,∴BD是⊙O的直径,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵弧BC=弧BC,∴∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴BD⊥DE,∴DE是⊙O切线;解:(2)∵AC∥DE,BD⊥DE,∴BD⊥AC.∵BD是⊙O直径,∴AF=CF,∴AB=BC=8,∵BD⊥DE,DC⊥BE,∴∠BCD=∠BDE=90°,∠DBC=∠EBD,∴△BDC∽△BED,∴BDBE=BCBD,∴BD2=BC•BE=8×10=80,∴BD=即⊙O直径的长是【点睛】此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键.26.11【解析】【分析】将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论.将x=2代入方程,得:1﹣1m+3m=0, 解得:m=1.当m=1时,原方程为x 2﹣8x+12=(x ﹣2)(x ﹣6)=0, 解得:x 1=2,x 2=6, ∵2+2=1<6,∴此等腰三角形的三边为6、6、2, ∴此等腰三角形的周长C=6+6+2=11. 【点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质27.(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人. 【解析】 【分析】(1)根据条形统计图,求个部分数量的和即可; (2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解. 【详解】(1)4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查. (2)最喜欢足球活动的有10人,10=20%50, ∴最喜欢足球活动的人占被调查人数的20%. (3)全校学生人数:400÷(1﹣30%﹣24%﹣26%) =400÷20% =2000(人)则全校学生中最喜欢篮球活动的人数约为2000×1850=720(人). 【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.中考模拟数学试卷一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-3的绝对值是( )A .3B .13C .-3 D.13-2.如图1,∠l+∠2等于( )A .60° B.90° C.110° D.180°3.国家投资某长江大桥预算总造价是9 370 000 000元人民币,用科学记数法表示为( )A .93.7×109元 B . 9.37×109元 C . 9.37×1010元 D .0.937×1010元 4.下列运算中,正确的是( )A.2x-x=lB.45x x x += C .33(2)6x x -=- D .22x y y x ÷=5.不等式组2133x x +⎧⎨>-⎩≤ 的解集在数轴上表示正确的是( )6. 某公园在一块土地上栽种三种花卉,如图是它们所占面积的扇形统计图,其中黄杨的面积为200米2,则冬青的面积为( ) A. 500米2B. 200米2C. 175米2D.125 米27.已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为( )A 。
2019年毕节市初中毕业(升学)统一考试数学试题及答案
机密启用前毕节市2019年初中毕业生学业(升学)统一考试试卷数学注意事项:1、答题前,务必将身己的姓名、准考证号填写在答题卡规定的位置。
2、答题时,卷I 必须使用2B 铅笔,卷II必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整,笔迹清楚。
3、所有题目必须在答题卡上作答,在试卷上答题无效4、本试卷共6 页,满分150 分,考试用时150 分钟。
5、考试结束后,将试卷和答题卡一并交回。
卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45分。
在每小题的四个选项中,中只有一个选项正确。
)1. -2的相反数是()A. ±2B. 2C. -2D.122.如图所示的几何体的主视图是:()3. 2019年毕节市参加初中毕业学业(升学)统一考试的学生人数约为107000人,将107000用科学计数法表示为:()A. 410.710⨯ B. 51.0710⨯ C. 310710⨯ D. 60.10710⨯4.实数31270160.10100100013π-,,,,,(相邻两个1之间依次多一个0),其中无理数是()个。
A. 1B. 2C. 3D. 45.估计11的值在()之间。
A. 1与2之间B. 2与3之间C. 3与4之间D. 4与5之间6.下列计算正确的是()A. 3332a a a⋅= B.33a a a÷= C. 2a a a+= D. 325()a a=7.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A. 16B. 20或16C. 20D. 128.在下列图形中既是轴对称图形又是中心对称图形的是()①线段②角③等边三角形④圆⑤平行四边形⑥矩形A D9.数据4, 7, 4, 8,6, 6, 9,4的众数和中位数是( ) A. 6,9 B. 4,8 C. 6, 8 D. 4, 610. 分式方程321x x =-的解是( )A. 3x =-B. 35x =- C. 3x = D. 无解 11.(2019•凉山州改编)如图,已知AB ∥CD ,∠EBA=45°,∠E+∠D 的读数为( )A. 30°B. 60°C. 90°D. 45° 12.如图在⊙O 中,弦AB=8,OC ⊥AB ,垂足为C ,且OC=3,则⊙O 的半径( ) A. 5 B. 10 C. 8 D. 613.一次函数(0)y kx b k =+≠与反比例函数y (0)k k x=≠的图像在同一直角坐标系下的大致图像如图所示,则k 、b 的取值范围是( )A. 0,0k b >>B. 0,0k b <>C. 0,0k b <<D. 0,0k b >< 14. 将二次函数2y x =的图像向右平移一个单位长度,再向上平移3个单位长度所得的图像解析式为( )A. 2(1)3y x =-+B. 2(1)3y x =++C. 2(1)3y x =--D. 2(1)3y x =+-15.在等腰直角三角形ABC 中,AB=AC=4,点O 为BC 的中点,以O 为圆心作⊙O 交BC 于点M 、N ,⊙O 与AB 、AC 相切,切点分别为D 、E ,则⊙O的半径和∠MND 的度数分别为( )A. 2 , 22.5°B. 3 , 30°C. 3 , 22.5°D. 2 , 30°卷 Ⅱ二、填空题(本大题共5个小题,每小题5分,共25分)16.二元一次方程组213211x y x y +=⎧⎨-=⎩的解是 。
贵州省毕节地区2019-2020学年中考第三次适应性考试数学试题含解析
贵州省毕节地区2019-2020学年中考第三次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为( ) A .172B .171C .170D .1682.下列实数中,最小的数是( ) A .3B .π-C .0D .2-3.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是( )A .B .C .D .4.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .5.在△ABC 中,AB=AC=13,BC=24,则tanB 等于( ) A .513B .512C .1213D .1256.一组数据8,3,8,6,7,8,7的众数和中位数分别是( ) A .8,6 B .7,6 C .7,8 D .8,7 7.下列因式分解正确的是( ) A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+-D .()2212x x x x -+=-+8.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A 、B 两点,与y 轴交于点C ,对称轴为直线x=-1,点B 的坐标为(1,0),则下列结论:①AB=4;②b 2-4ac >0;③ab <0;④a 2-ab+ac <0,其中正确的结论有( )个.A .3B .4C .2D .19.已知反比例函数y =﹣6x,当﹣3<x <﹣2时,y 的取值范围是( ) A .0<y <1B .1<y <2C .2<y <3D .﹣3<y <﹣210.下列各数中,最小的数是( ) A .3-B .()2--C .0D .14-11.一元二次方程4x 2﹣2x+14=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断12.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( ) A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×105 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将一副三角板如图放置,若20AOD ∠=o ,则BOC ∠的大小为______.14.八位女生的体重(单位:kg )分别为36、42、38、40、42、35、45、38,则这八位女生的体重的中位数为_____kg .15.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n 个图案中正三角形的个数为 (用含n 的代数式表示).16.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的四边形,AB ∥CD ,CD ⊥BC 于C ,且AB 、BC 、CD 边长分别为2,4,3,则原直角三角形纸片的斜边长是_______.17.已知(x-ay)(x+ay)22x 16y =-,那么a=_______ 18.分解因式:4ax 2-ay 2=________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 20.(6分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄) 大江东去浪淘尽,千古风流数人物; 而立之年督东吴,早逝英年两位数; 十位恰小个位三,个位平方与寿符; 哪位学子算得快,多少年华属周瑜?21.(6分)如图,P 是半圆弧AB n上一动点,连接PA 、PB ,过圆心O 作OC //BP 交PA 于点C ,连接CB.已知AB 6cm =,设O ,C 两点间的距离为xcm ,B ,C 两点间的距离为ycm . 小东根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究. 下面是小东的探究过程,请补充完整:()1通过取点、画图、测量,得到了x 与y 的几组值,如下表:x /cm0.511.522.53y/cm 3 3.1 3.5 4.0 5.3 6(说明:补全表格时相关数据保留一位小数)()2建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;()3结合画出的函数图象,解决问题:直接写出OBCV周长C的取值范围是______.22.(8分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:OC OP PD AP=;(2)若△OCP与△PDA的面积比为1:4,求边AB的长.23.(8分)在等边△ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求∠BEC的度数;(2)如图2,当∠MAC=30°时,判断线段BE与DE之间的数量关系,并加以证明;(3)若0°<∠MAC<120°,当线段DE=2BE时,直接写出∠MAC的度数.24.(10分)已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.(1)如图1,当AB=AC,且sin∠BEF=35时,求BFCF的值;(2)如图2,当tan∠ABC=12时,过D作DH⊥AE于H,求EH EA⋅的值;(3)如图3,连AD交BC于G,当2=⋅时,求矩形BCDE的面积FG BF CG25.(10分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)(1)根据题意,填写下表:时间x(h)0.5 1.8 _____与A地的距离甲与A地的距离(km) 5 20乙与A地的距离(km)0 12(2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;(3)设甲,乙两人之间的距离为y,当y=12时,求x的值.26.(12分)爸爸和小芳驾车去郊外登山,欣赏美丽的达子香(兴安杜鹃),到了山下,爸爸让小芳先出发6min,然后他再追赶,待爸爸出发24min时,妈妈来电话,有急事,要求立即回去.于是爸爸和小芳马上按原路下山返回(中间接电话所用时间不计),二人返回山下的时间相差4min,假设小芳和爸爸各自上、下山的速度是均匀的,登山过程中小芳和爸爸之间的距离s(单位:m)关于小芳出发时间t(单位:min)的函数图象如图,请结合图象信息解答下列问题:(1)小芳和爸爸上山时的速度各是多少?(2)求出爸爸下山时CD段的函数解析式;(3)因山势特点所致,二人相距超过120m就互相看不见,求二人互相看不见的时间有多少分钟?27.(12分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】先把所给数据从小到大排列,然后根据中位数的定义求解即可.【详解】从小到大排列:150,164,168,168,,172,176,183,185,∴中位数为:(168+172)÷2=170.故选C.【点睛】本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.2.B【解析】【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【详解】3∵π∴最小的数是-π,故选B.【点睛】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.3.D【解析】分析:根据主视图和俯视图之间的关系可以得出答案.详解:∵主视图和俯视图的长要相等,∴只有D选项中的长和俯视图不相等,故选D.点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.4.C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.5.B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,225AB BD-=,故tanB=512 ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理. 6.D 【解析】试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7 考点:(1)众数;(2)中位数. 7.C 【解析】 【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论. 【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解; 选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确. 故选C . 【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法. 8.A 【解析】 【分析】利用抛物线的对称性可确定A 点坐标为(-3,0),则可对①进行判断;利用判别式的意义和抛物线与x 轴有2个交点可对②进行判断;由抛物线开口向下得到a >0,再利用对称轴方程得到b=2a >0,则可对③进行判断;利用x=-1时,y <0,即a-b+c <0和a >0可对④进行判断. 【详解】∵抛物线的对称轴为直线x=-1,点B 的坐标为(1,0), ∴A (-3,0),∴AB=1-(-3)=4,所以①正确; ∵抛物线与x 轴有2个交点, ∴△=b 2-4ac >0,所以②正确; ∵抛物线开口向下, ∴a >0,∵抛物线的对称轴为直线x=-2ba=-1,∴b=2a>0,∴ab>0,所以③错误;∵x=-1时,y<0,∴a-b+c<0,而a>0,∴a(a-b+c)<0,所以④正确.故选A.【点睛】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了二次函数的性质.9.C【解析】分析:由题意易得当﹣3<x<﹣2时,函数6yx=-的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了. 详解:∵在6yx=-中,﹣6<0,∴当﹣3<x<﹣2时函数6yx=-的图象位于第二象限内,且y随x的增大而增大,∵当x=﹣3时,y=2,当x=﹣2时,y=3,∴当﹣3<x<﹣2时,2<y<3,故选C.点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.10.A【解析】【分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【详解】解:因为在数轴上-3在其他数的左边,所以-3最小;故选A.【点睛】此题考负数的大小比较,应理解数字大的负数反而小.11.B 【解析】【分析】【详解】试题解析:在方程4x2﹣2x+ =0中,△=(﹣2)2﹣4×4×14=0,∴一元二次方程4x2﹣2x+14=0有两个相等的实数根.故选B.考点:根的判别式.12.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.160°【解析】试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为160°.考点:余角和补角.14.1【解析】【分析】根据中位数的定义,结合图表信息解答即可.【详解】将这八位女生的体重重新排列为:35、36、38、38、40、42、42、45,则这八位女生的体重的中位数为38402=1kg,故答案为1.【点睛】本题考查了中位数,确定中位数的时候一定要先排好顺序,然后再根据个数是奇数或偶数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数.15.4n+1【解析】【分析】分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.【详解】解:第一个图案正三角形个数为6=1+4;第二个图案正三角形个数为1+4+4=1+1×4;第三个图案正三角形个数为1+1×4+4=1+3×4;…;第n个图案正三角形个数为1+(n﹣1)×4+4=1+4n=4n+1.故答案为4n+1.考点:规律型:图形的变化类.16.4或1【解析】【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【详解】①如图:因为AC==2,点A是斜边EF的中点,所以EF=2AC=4,②如图:因为BD==5,点D 是斜边EF 的中点,所以EF=2BD=1,综上所述,原直角三角形纸片的斜边长是4或1,故答案是:4或1. 【点睛】 此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.17.±4【解析】【分析】根据平方差公式展开左边即可得出答案.【详解】∵(x-ay)(x+ay)=()22222x ay x a y -=-又(x-ay)(x+ay)22x 16y =- ∴216a =解得:a=±4 故答案为:±4. 【点睛】本题考查的平方差公式:22()()a b a b a b -=+-.18.a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0),∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94. 20.周瑜去世的年龄为16岁.【解析】【分析】设周瑜逝世时的年龄的个位数字为x ,则十位数字为x ﹣1.根据题意建立方程求出其值就可以求出其结论.【详解】设周瑜逝世时的年龄的个位数字为x ,则十位数字为x ﹣1.由题意得;10(x ﹣1)+x =x 2,解得:x 1=5,x 2=6当x =5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x =6时,周瑜年龄为16岁,完全符合题意.答:周瑜去世的年龄为16岁.【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键.21.(1)4.6(2)详见解析;(3)9C 12≤≤.【解析】【分析】(1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察找到函数值的取值范围,即可求得△OBC 周长C 的取值范围.【详解】()1经过测量,x 2=时,y 值为4.6()2根据题意,画出函数图象如下图:()3根据图象,可以发现,y的取值范围为:3y6≤≤,C6y=+Q,故答案为9C12≤≤.【点睛】本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义.22.(1)详见解析;(2)10.【解析】【分析】①只需证明两对对应角分别相等可得两个三角形相似;故OC OP PD AP=.②根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.【详解】①∵四边形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.∴∠APO=90°.∴∠APD=90°−∠CPO=∠POC.∵∠D=∠C,∠APD=∠POC.∴△OCP∽△PDA.∴OC OP PD AP=.②∵△OCP与△PDA的面积比为1:4,∴OCPD=OPPA=CPDA=14−−√=12.∴PD=2OC,PA=2OP,DA=2CP.∴CP=4,BC=8.设OP=x,则OB=x,CO=8−x.在△PCO中,∵∠C=90∘,CP=4,OP=x,CO=8−x,∴x2=(8−x)2+42.解得:x=5.∴AB=AP=2OP=10.∴边AB的长为10.【点睛】本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.23.(1)补全图形如图1所示,见解析,∠BEC=60°;(2)BE=2DE,见解析;(3)∠MAC=90°. 【解析】【分析】(1)根据轴对称作出图形,先判断出∠ABD=∠ADB=y,再利用三角形的内角和得出x+y即可得出结论;(2)同(1)的方法判断出四边形ABCD是菱形,进而得出∠CBD=30°,进而得出∠BCD=90°,即可得出结论;(3)先作出EF=2BE,进而判断出EF=CE,再判断出∠CBE=90°,进而得出∠BCE=30°,得出∠AEC =60°,即可得出结论.【详解】(1)补全图形如图1所示,根据轴对称得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y.在△ABD中,2x+2y+60°=180°,∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,证明:∵△ABC是等边三角形,∴AB=BC=AC,由对称知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等边三角形,∴CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如图3,(本身点C,A,D在同一条直线上,为了说明∠CBD=90°,画图时,没画在一条直线上)延长EB至F使BE=BF,∴EF=2BE,由轴对称得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,连接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等边三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【点睛】此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.24.(1)17;(2)80;(3)100.【解析】【分析】(1)过A作AK⊥BC于K,根据sin∠BEF=35得出35FKAK=,设FK=3a,AK=5a,可求得BF=a,故17BFCF=;(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,得△EGA∽△EHD,利用相似三角形的性质即可求出;(3)延长AB、ED交于K,延长AC、ED交于T,根据相似三角形的性质可求出BE=ED,故可求出矩形的面积.【详解】解:(1)过A作AK⊥BC于K,∵sin∠BEF=35,sin∠FAK=35,∴35 FKAK=,设FK=3a,AK=5a,∴AK=4a,∵AB=AC,∠BAC=90°, ∴BK=CK=4a,∴BF=a,又∵CF=7a,∴17 BFCF=(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,∵∠AGE=∠DHE=90°,∴△EGA ∽△EHD, ∴EH ED EG EA =, ∴·EH EA EG ED ⋅=,其中EG=BK, ∵BC=10,tan ∠ABC =12, cos ∠ABC =5, ∴BA =BC· cos ∠ABC =5, BK= BA·cos ∠ABC =855⨯= ∴EG=8,另一方面:ED=BC=10,∴EH·EA=80(3)延长AB 、ED 交于K,延长AC 、ED 交于T, ∵BC ∥KT,BF AF FG KE AE ED==, ∴BF KE FG DE =,同理:FG ED CG DT= ∵FG 2= BF·CG ∴BF FG FG CG=, ∴ED 2= KE·DT ∴KE ED DE DT= , 又∵△KEB ∽△CDT,∴KE CD BE DT =, ∴KE·DT =BE 2, ∴BE 2=ED 2∴ BE=ED∴1010100BCDE S =⨯=矩形【点睛】此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.25.(1)18,2,20(2)()()()1200 1.5100 1.5;40601.52x y x x y x x ⎧≤≤⎪=≤≤=⎨-<≤⎪⎩(3)当y=12时,x 的值是1.2或1.6【解析】【分析】(Ⅰ)根据路程、时间、速度三者间的关系通过计算即可求得相应答案;(Ⅱ)根据路程=速度×时间结合甲、乙的速度以及时间范围即可求得答案;(Ⅲ)根据题意,得()()100 1.530601.52x xyx x⎧≤≤⎪=⎨-+<≤⎪⎩,然后分别将y=12代入即可求得答案.【详解】(Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,当时间x=1.8 时,甲离开A的距离是10×1.8=18(km),当甲离开A的距离20km时,甲的行驶时间是20÷10=2(时),此时乙行驶的时间是2﹣1.5=0. 5(时),所以乙离开A的距离是40×0.5=20(km),故填写下表:(Ⅱ)由题意知:y1=10x(0≤x≤1.5),y2=()() 00 1.5 40601.52xx x⎧≤≤⎪⎨-<≤⎪⎩;(Ⅲ)根据题意,得()() 100 1.530601.52x xyx x⎧≤≤⎪=⎨-+<≤⎪⎩,当0≤x≤1.5时,由10x=12,得x=1.2,当1.5<x≤2时,由﹣30x+60=12,得x=1.6,因此,当y=12时,x的值是1.2或1.6.【点睛】本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解题的关键.26.(1)小芳上山的速度为20m/min,爸爸上山的速度为28m/min;(2)爸爸下山时CD段的函数解析式为y=12x﹣288(24≤x≤40);(3)二人互相看不见的时间有7.1分钟.【解析】分析:(1)根据速度=路程÷时间可求出小芳上山的速度;根据速度=路程÷时间+小芳的速度可求出爸爸上山的速度;(2)根据爸爸及小芳的速度结合点C 的横坐标(6+24=30),可得出点C 的坐标,由点D 的横坐标比点E 少4可得出点D 的坐标,再根据点C 、D 的坐标利用待定系数法可求出CD 段的函数解析式;(3)根据点D 、E 的坐标利用待定系数法可求出DE 段的函数解析式,分别求出CD 、DE 段纵坐标大于120时x 的取值范围,结合两个时间段即可求出结论.详解:(1)小芳上山的速度为120÷6=20(m/min ),爸爸上山的速度为120÷(21﹣6)+20=28(m/min ).答:小芳上山的速度为20m/min ,爸爸上山的速度为28m/min .(2)∵(28﹣20)×(24+6﹣21)=72(m ),∴点C 的坐标为(30,72);∵二人返回山下的时间相差4min ,44﹣4=40(min ),∴点D 的坐标为(40,192).设爸爸下山时CD 段的函数解析式为y=kx+b ,将C (30,72)、D (40,192)代入y=kx+b ,307240192k b k b +=⎧⎨+=⎩,解得:12228k b =⎧⎨=-⎩. 答:爸爸下山时CD 段的函数解析式为y=12x ﹣288(24≤x≤40).(3)设DE 段的函数解析式为y=mx+n ,将D (40,192)、E (44,0)代入y=mx+n ,40192440m n m n +=⎧⎨+=⎩,解得:482112m n =-⎧⎨=⎩, ∴DE 段的函数解析式为y=﹣48x+2112(40≤x≤44).当y=12x ﹣288>120时,34<x≤40;当y=﹣48x+2112>120时,40≤x <41.1.41.1﹣34=7.1(min ).答:二人互相看不见的时间有7.1分钟.点睛:本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据数量关系,列式计算;(2)根据点C 、D 的坐标,利用待定系数法求出CD 段的函数解析式;(3)利用一次函数图象上点的坐标特征分别求出CD 、DE 段纵坐标大于120时x 的取值范围.27.(1)见解析;(2)见解析;【解析】【分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C ,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.。
【附5套中考模拟试卷】贵州省毕节地区2019-2020学年中考数学三模试卷含解析
贵州省毕节地区2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD =4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm2.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()A.B.C.D.3.下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a24.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和295.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.3B.2C.3D.26.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-37.下列实数为无理数的是()A.-5 B.7C.0 D.π8.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于( )A .2B .3C .4D .69.在下列实数中,﹣3,2,0,2,﹣1中,绝对值最小的数是( ) A .﹣3 B .0 C .2 D .﹣110.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A .12B .14C .16D .11211.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为( ) A .13 B .23 C .12 D .2512.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( )A .10000x ﹣10=147000(140)0x + B .10000x +10=147000(140)0x + C .100000(140)0x -﹣10=14700x D .100000(140)0x -+10=14700x 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,ABC ∆中,∠BAC 75=︒,7BC =,ABC ∆的面积为14,D 为BC 边上一动点(不与B ,C 重合),将ABD ∆和ACD ∆分别沿直线AB ,AC 翻折得到ABE ∆和ACF ∆,那么△AEF 的面积的最小值为____.14.如图,在△ABC 中,P ,Q 分别为AB ,AC 的中点.若S △APQ =1,则S 四边形PBCQ =__.15.一个正n 边形的中心角等于18°,那么n =_____.动点,则PA+PB的最小值为_____.17.2011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为▲ 辆.18.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?20.(6分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.21.(6分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)请添加一个条件使四边形BEDF为菱形.22.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DFAC CG=.求证:△ADF∽△ACG;若12ADAC=,求AFFG的值.23.(8分)在某校举办的2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200 个以上可以按折扣价出售;购买200 个以下(包括200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050 元;若多买35 个,则按折扣价付款,恰好共需1050 元.设小王按原计划购买纪念品x 个.(1)求x 的范围;(2)如果按原价购买5 个纪念品与按打折价购买6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?24.(10分)如图1 所示是一辆直臂高空升降车正在进行外墙装饰作业.图2 是其工作示意图,AC是可以伸缩的起重臂,其转动点 A 离地面BD 的高度AH 为 2 m.当起重臂AC 长度为8 m,张角∠HAC 为118°时,求操作平台 C 离地面的高度.(果保留小数点后一位,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)25.(10分)先化简222211(1)11x x xxx x-+-÷-+--,然后从﹣5<x<3的范围内选取一个合适的整数作为x的值代入求值.26.(12分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:(1)本次抽测的男生人数为,图①中m的值为;(2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.2.D【解析】分析:根据主视图和俯视图之间的关系可以得出答案.详解:∵主视图和俯视图的长要相等,∴只有D选项中的长和俯视图不相等,故选D.点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.3.D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】故选项A错误,故选项B错误,故选项C错误,故选项D正确,故选:D.【点睛】考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.4.D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的5.A【解析】试题分析:根据垂径定理先求BC一半的长,再求BC的长.解:如图所示,设OA与BC相交于D点.∵AB=OA=OB=6,∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得22-=6333所以BC=2BD=3.故选A.点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.6.B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.7.D【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A、﹣5是整数,是有理数,选项错误;B、72是分数,是有理数,选项错误;C、0是整数,是有理数,选项错误;D、π是无理数,选项正确.故选D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.C【解析】设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,∴R=4cm.故选C.9.B【解析】|﹣3|=3,|2|=2,|0|=0,|2|=2,|﹣1|=1,∵3>2>2>1>0,∴绝对值最小的数是0,故选:B.10.C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.11.B【解析】【分析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】 ①若第一次摸到的是白球,则有第一次摸到白球的概率为23,第二次,摸到白球的概率为12,则有211323⨯=;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为13,第二次摸到白球的概率为1,则有11133⨯=,则两次摸到的球的颜色不同的概率为112333+=. 【点睛】掌握分类讨论的方法是本题解题的关键.12.B【解析】【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【详解】解:设第一批购进x 件衬衫,则所列方程为:10000x +10=()1470001400x +. 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4.【解析】【分析】过E 作EG ⊥AF ,交FA 的延长线于G ,由折叠可得∠EAG =30°,而当AD ⊥BC 时,AD 最短,依据BC =7,△ABC 的面积为14,即可得到当AD ⊥BC 时,AD =4=AE =AF ,进而得到△AEF 的面积最小值为:12AF×EG =12×4×2=4.解:如图,过E 作EG ⊥AF ,交FA 的延长线于G ,由折叠可得,AF =AE =AD ,∠BAE =∠BAD ,∠DAC =∠FAC , ∵∠BAC =75°,∴∠EAF =150°,∴∠EAG =30°,∴EG =12AE =12AD , 当AD ⊥BC 时,AD 最短,∵BC =7,△ABC 的面积为14,∴当AD ⊥BC 时,1142BC AD ⋅=, 即:14274AD =⨯÷=AF AE ==, ∴114222EG AE ==⨯=. ∴△AEF 的面积最小值为:12AF×EG =12×4×2=4, 故答案为:4.【点睛】本题主要考查了折叠问题,解题的关键是利用对应边和对应角相等. 14.1【解析】【分析】根据三角形的中位线定理得到PQ =12BC ,得到相似比为12,再根据相似三角形面积之比等于相似比的平方,可得到结果.【详解】解:∵P ,Q 分别为AB ,AC 的中点,1∴△APQ ∽△ABC , ∴APQABC S S V V =(12)2=14, ∵S △APQ =1,∴S △ABC =4,∴S 四边形PBCQ =S △ABC ﹣S △APQ =1,故答案为1.【点睛】本题考查相似三角形的判定和性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.20【解析】【分析】由正n 边形的中心角为18°,可得方程18n=360,解方程即可求得答案.【详解】∵正n 边形的中心角为18°,∴18n=360,∴n=20.故答案为20.【点睛】本题考查的知识点是正多边形和圆,解题的关键是熟练的掌握正多边形和圆.16.【解析】【分析】过A 作关于直线MN 的对称点A′,连接A′B ,由轴对称的性质可知A′B 即为PA+PB 的最小值,【详解】解:连接OB ,OA ′,AA′,∵AA′关于直线MN 对称,∴»¼''AN A N∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O 作OQ ⊥A′B 于Q ,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=23即PA+PB的最小值23.【点睛】本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键. 17.2.85×2.【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×20n,其中2≤|a|<20,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于2还是小于2.当该数大于或等于2时,n为它的整数位数减2;当该数小于2时,-n为它第一个有效数字前0的个数(含小数点前的2个0).【详解】解:28500000一共8位,从而28500000=2.85×2.18.1 2【解析】分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是12.故答案为:12.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y1=(120-a)x(1≤x≤125,x为正整数),y2=100x-0.5x2(1≤x≤120,x为正整数);(2)110-125a (万元),10(万元);(3)当40<a<80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a<100时,选择方案二.【解析】【分析】(1)根据题意直接得出y1与y2与x的函数关系式即可;(2)根据a的取值范围可知y1随x的增大而增大,可求出y1的最大值.又因为﹣0.5<0,可求出y2的最大值;(3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a>1以及2000﹣200a<1.【详解】解:(1)由题意得:y1=(120﹣a)x(1≤x≤125,x为正整数),y2=100x﹣0.5x2(1≤x≤120,x为正整数);(2)①∵40<a<100,∴120﹣a>0,即y1随x的增大而增大,∴当x=125时,y1最大值=(120﹣a)×125=110﹣125a(万元)②y2=﹣0.5(x﹣100)2+10,∵a=﹣0.5<0,∴x=100时,y2最大值=10(万元);(3)∵由110﹣125a>10,∴a<80,∴当40<a<80时,选择方案一;由110﹣125a=10,得a=80,∴当a=80时,选择方案一或方案二均可;由110﹣125a<10,得a>80,∴当80<a<100时,选择方案二.考点:二次函数的应用.20.(1)证明见解析;(2)四边形BDCF是矩形,理由见解析.【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.21.见解析【解析】【分析】(1)根据平行四边形的性质可得AB∥DC,OB=OD,由平行线的性质可得∠OBE=∠ODF,利用ASA 判定△BOE≌△DOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EF⊥BD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形.【详解】(1)∵四边形ABCD是平行四边形,O是BD的中点,∴AB∥DC,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)EF⊥BD.∵四边形BEDF是平行四边形,∵EF⊥BD,∴平行四边形BEDF是菱形.【点睛】本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.22.(1)证明见解析;(2)1.【解析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴1.23.(1)0<x≤200,且 x 是整数(2)175【解析】【分析】(1)根据商场的规定确定出x 的范围即可;(2)设小王原计划购买x 个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【详解】(1)根据题意得:0<x≤200,且x 为整数;(2)设小王原计划购买x 个纪念品, 根据题意得:105010505635x x ⨯=⨯+, 整理得:5x+175=6x ,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【点睛】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.24.5.8【解析】【分析】过点C 作CE BD ⊥于点E ,过点A 作AF CE ⊥于点F ,易得四边形AHEF 为矩形,则2,90EF AH HAF ==∠=︒,再计算出28CAF ∠=︒,在Rt ACF V 中,利用正弦可计算出CF 的长度,然后计算CF+EF 即可.【详解】解:如图,过点C 作CE BD ⊥于点E ,过点A 作AF CE ⊥于点F ,90FEH AFE ∴∠=∠=︒.又AH BD ⊥Q ,90AHE∴∠=︒.∴四边形AHEF为矩形.2,90EF AH HAF∴==∠=︒1189028 CAF CAH HAF∴∠=∠-∠=︒-︒=︒在Rt ACFV中,sinCFCAFAC∠=,8sin2880.47 3.76CF∴=⨯︒=⨯=.3.762 5.8(m)CE CF EF∴=+=+≈.答:操作平台C离地面的高度约为5.8m.【点睛】本题考查了解直角三角形的应用,先将实际问题抽象为数学问题,然后利用勾股定理和锐角三角函数的定义进行计算.25.1 2【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣5<x<3的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题.【详解】解:÷(﹣x+1)====,当x=﹣2时,原式=1122-=-.【点睛】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法.26.客车不能通过限高杆,理由见解析【解析】【分析】根据DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根据cos∠EDF=DFDE,求出DF的值,即可判断.【详解】∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=DF DE,∴DF=DE•cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,∴客车不能通过限高杆.【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.27.(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标.【解析】分析:(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可;(Ⅱ)根据平均数、众数、中位数的定义求解可得;(Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.详解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=1450×100%=1%,所以m=1.故答案为50、1;(Ⅱ)平均数为344105166147650⨯+⨯+⨯+⨯+⨯=5.16次,众数为5次,中位数为552+=5次;(Ⅲ)1614650++×350=2.答:估计该校350名九年级男生中有2人体能达标.点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
贵州省毕节地区2019-2020学年中考数学第三次调研试卷含解析
贵州省毕节地区2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为()A.60 B.30 C.240 D.1202.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是( )A.a+b>0 B.ab >0 C.D.3.若点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,则y1与y2的大小关系为()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y24.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+5005.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10πB.15πC.20πD.30π6.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.7.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF 保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m8.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()A.3B.23C.332D.2339.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米10.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为()A.–1 B.2 C.1 D.–211.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉()A.6.5千克B.7.5千克C.8.5千克D.9.5千克12.如图,平行四边形ABCD中,点A在反比例函数y=kx(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是()A.﹣10 B.﹣5 C.5 D.10 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x的一元二次方程2210-+=有实数根,则a的取值范围是__________.ax x14.若关于x的方程x2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.15.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.16.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为.17.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+6.其中正确结论的序号是.18.把多项式3x2-12因式分解的结果是_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.20.(6分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.21.(6分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果.保留根号)组别成绩(分)频数(人数)频率一 2 0.04二10 0.2三14 b四 a 0.32五8 0.16请根据表格提供的信息,解答以下问题:本次决赛共有名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.23.(8分)发现如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……A n中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠A n﹣(n﹣4)×180°.验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠AB C”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……A n中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠A n﹣(n﹣)×180°.24.(10分)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=13AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形.25.(10分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:A.书法比赛,B.绘画比赛,C.乐器比赛,D.象棋比赛,E.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:图1 各项报名人数扇形统计图:图2 各项报名人数条形统计图:根据以上信息解答下列问题:(1)学生报名总人数为人;(2)如图1项目D所在扇形的圆心角等于;(3)请将图2的条形统计图补充完整;(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.26.(12分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO 与AB重合,连接OD,PD,得△OPD。
贵州省毕节地区2019-2020学年第三次中考模拟考试数学试卷含解析
贵州省毕节地区2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .4 1.2540800x x ⨯-=B .800800402.25x x -=C .800800401.25x x -=D .800800401.25x x -= 2.下列说法中,错误的是( )A .两个全等三角形一定是相似形B .两个等腰三角形一定相似C .两个等边三角形一定相似D .两个等腰直角三角形一定相似3.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x 个,那么可列方程为( )A .30x =456x +B .30x =456x -C .306x -=45xD .306x +=45x 4.若(x ﹣1)0=1成立,则x 的取值范围是( )A .x =﹣1B .x =1C .x≠0D .x≠15.下列实数中是无理数的是( )A .227B .πC .9D .13- 6.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( ) A . B . C . D .7.若正比例函数y =kx 的图象上一点(除原点外)到x 轴的距离与到y 轴的距离之比为3,且y 值随着x 值的增大而减小,则k 的值为( )A .﹣13B .﹣3C .13D .38.已知18x x -=,则2216x x +-的值是( ) A .60 B .64 C .66 D .729.函数2(0)y x x =->的图像位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.计算x ﹣2y ﹣(2x+y )的结果为( )A .3x ﹣yB .3x ﹣3yC .﹣x ﹣3yD .﹣x ﹣y11.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-12.实数213-的倒数是()A.52-B.52C.35-D.35二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一艘货轮以18km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B 的距离是________km.14.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_____.15.某校“百变魔方”社团为组织同学们参加学校科技节的“最强大脑”大赛,准备购买A,B两款魔方.社长发现若购买2个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同. 求每款魔方的单价.设A款魔方的单价为x元,B款魔方的单价为y元,依题意可列方程组为_______. 16.已知关于x的一元二次方程2x2x a0+-=有两个相等的实数根,则a的值是______.17.一组数据1,4,4,3,4,3,4的众数是_____.18.计算:|﹣5|9.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)根据图中给出的信息,解答下列问题:放入一个小球水面升高 ,cm ,放入一个大球水面升高 cm ;如果要使水面上升到50cm ,应放入大球、小球各多少个?20.(6分)如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数()0m y m x=≠的图象交于C 、D 两点.已知点C 的坐标是(6,-1),D (n ,3).求m 的值和点D 的坐标.求tan BAO ∠的值.根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?21.(6分)已知,抛物线L :y=x 2+bx+c 与x 轴交于点A 和点B (-3,0),与y 轴交于点C (0,3). (1)求抛物线L 的顶点坐标和A 点坐标.(2)如何平移抛物线L 得到抛物线L 1,使得平移后的抛物线L 1的顶点与抛物线L 的顶点关于原点对称? (3)将抛物线L 平移,使其经过点C 得到抛物线L 2,点P (m ,n )(m >0)是抛物线L 2上的一点,是否存在点P ,使得△PAC 为等腰直角三角形,若存在,请直接写出抛物线L 2的表达式,若不存在,请说明理由.22.(8分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长),直线MN 垂直于地面,垂足为点P .在地面A 处测得点M 的仰角为58°、点N 的仰角为45°,在B 处测得点M 的仰角为31°,AB =5米,且A 、B 、P 三点在一直线上.请根据以上数据求广告牌的宽MN 的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)23.(8分)如图,▱ABCD 的对角线AC ,BD 相交于点O .E ,F 是AC 上的两点,并且AE=CF ,连接DE ,BF .(1)求证:△DOE ≌△BOF ;(2)若BD=EF ,连接DE ,BF .判断四边形EBFD 的形状,并说明理由.24.(10分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?25.(10分)如图1,四边形ABCD 中,AB BC ⊥,//AD BC ,点P 为DC 上一点,且AP AB =,分别过点A 和点C 作直线BP 的垂线,垂足为点E 和点F .()1证明:ABE V ∽BCF V ;()2若34AB BC =,求BP CF的值; ()3如图2,若AB BC =,设DAP ∠的平分线AG 交直线BP 于.G 当1CF =,74PD PC =时,求线段AG 的长.26.(12分)解不等式组2(1)31122x x x x ⎧-≥⎪⎪⎨+⎪-≤⎪⎩(1)(2) 请结合题意填空,完成本题的解答.(I )解不等式(1),得 ;(II )解不等式(2),得 ;(III )把不等式①和②的解集在数轴上表示出来:(IV )原不等式组的解集为 .27.(12分)已知如图,在△ABC 中,∠B =45°,点D 是BC 边的中点,DE ⊥BC 于点D ,交AB 于点E ,连接CE .(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【详解】小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x秒,∵小进比小俊少用了40秒,方程是800800401.25x x-=,故选C.【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.2.B【解析】【分析】根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.【详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B.【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.3.A【解析】【分析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做30 个所用时间与乙做45 个所用时间相等即可列方程.【详解】设甲每小时做x 个,乙每小时做(x+6)个,根据甲做30 个所用时间与乙做45 个所用时间相等可得30 x =456 x.故选A.【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.4.D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.5.B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A、227是分数,属于有理数;B、π是无理数;C,是整数,属于有理数;D、-13是分数,属于有理数;故选B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A【解析】【分析】根据轴对称图形的概念判断即可.【详解】A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形.故选:A.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.B【解析】【分析】设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.【详解】设该点的坐标为(a,b),则|b|=1|a|,∵点(a,b)在正比例函数y=kx的图象上,∴k=±1.又∵y值随着x值的增大而减小,∴k=﹣1.故选:B.【点睛】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.8.A【解析】【分析】将18x x -=代入原式2221124()4x x x x=+--=--,计算可得. 【详解】 解:当18x x-=时, 原式22124x x=+-- 21()4x x =-- 284=-644=-60=,故选A .【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.9.D【解析】【分析】 根据反比例函数中k y x=,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大,进而得出答案.【详解】 解:函数2(0)y x x=->的图象位于第四象限. 故选:D .【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.10.C【解析】【分析】原式去括号合并同类项即可得到结果.【详解】原式223x y x y x y =---=--,故选:C .【点睛】本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.11.A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.12.D 【解析】因为213-=53,所以213-的倒数是35.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】作CE⊥AB于E,根据题意求出AC的长,根据正弦的定义求出CE,根据三角形的外角的性质求出∠B 的度数,根据正弦的定义计算即可.【详解】作CE⊥AB于E,1km/h×30分钟=9km,∴AC=9km,∵∠CAB=45°,∴CE=AC•sin45°=9km,∵灯塔B在它的南偏东15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC===1km ,故答案为:1.【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.14.513【解析】如图,有5种不同取法;故概率为 513. 15.26170{?38x y x y+== 【解析】分析:设A 款魔方的单价为x 元,B 魔方单价为y 元,根据“购买两个A 款魔方和6个B 款魔方共需170元,购买3个A 款魔方和购买8个B 款魔方所需费用相同”,即可得出关于x,y 的二元一次方程组,此题得解.解:设A 魔方的单价为x 元,B 款魔方的单价为y 元,根据题意得:2617038x y x y +=⎧⎨=⎩故答案为2617038x y x y+=⎧⎨=⎩ 点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 16.1-.【解析】试题分析:∵关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,∴()2241a 0a 1∆=-⋅⋅-=⇒=-. 考点:一元二次方程根的判别式.17.1【解析】【分析】本题考查了统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】在这一组数据中1是出现次数最多的,故众数是1.故答案为1.【点睛】本题为统计题,考查了众数的定义,是基础题型.18.1【解析】分析:直接利用二次根式以及绝对值的性质分别化简得出答案.详解:原式=5-3=1.故答案为1.点睛:此题主要考查了实数运算,正确化简各数是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.详见解析【解析】【分析】(1)设一个小球使水面升高x 厘米,一个大球使水面升高y 厘米,根据图象提供的数据建立方程求解即可.(1)设应放入大球m 个,小球n 个,根据题意列二元一次方程组求解即可.【详解】解:(1)设一个小球使水面升高x 厘米,由图意,得2x=21﹣16,解得x=1.设一个大球使水面升高y 厘米,由图意,得1y=21﹣16,解得:y=2.所以,放入一个小球水面升高1cm ,放入一个大球水面升高2cm .(1)设应放入大球m 个,小球n 个,由题意,得m n 103m 2n 5026+=⎧⎨+=-⎩,解得:m 4n 6=⎧⎨=⎩. 答:如果要使水面上升到50cm ,应放入大球4个,小球6个.20.(1)m=-6,点D 的坐标为(-2,3);(2)1tan BAO 2∠=;(3)当2x <-或06x <<时,一次函数的值大于反比例函数的值.【解析】【分析】(1)将点C 的坐标(6,-1)代入m y x=即可求出m ,再把D (n ,3)代入反比例函数解析式求出n 即可. (2)根据C (6,-1)、D (-2,3)得出直线CD 的解析式,再求出直线CD 与x 轴和y 轴的交点即可,得出OA 、OB 的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图象和交点坐标即可求得.【详解】⑴把C (6,-1)代入m y x=,得()m 616=⨯-=-. 则反比例函数的解析式为6y x=-, 把y 3=代入6y x =-,得x 2=-, ∴点D 的坐标为(-2,3).⑵将C (6,-1)、D (-2,3)代入y kx b =+,得6123k b k b +=-⎧⎨-+=⎩,解得122k b ⎧=-⎪⎨⎪=⎩. ∴一次函数的解析式为1y x 22=-+, ∴点B 的坐标为(0,2),点A 的坐标为(4,0).∴OA 4OB 2==,,在在Rt ΔABO 中, ∴OB 21tan BAO OA 42∠===. ⑶根据函数图象可知,当x 2<-或0x 6<<时,一次函数的值大于反比例函数的值【点睛】此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.21.(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x 2-103x+3, 2239y x x =++,y=x 2-4x+3, 2833y x x =++. 【解析】【分析】(1)将点B 和点C 代入求出抛物线L 即可求解.(2)将抛物线L 化顶点式求出顶点再根据关于原点对称求出即可求解.(3)将使得△PAC 为等腰直角三角形,作出所有点P 的可能性,求出代入23y x dx =++即可求解.【详解】(1)将点B (-3,0),C (0,3)代入抛物线得:{0=9-3b+cc=3,解得{b=4c=3,则抛物线243y x x =++. Q 抛物线与x 轴交于点A,∴ 2043x x =++,12x =-3x =-1,,A (-1,0),抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1).(2)抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1) Q 抛物线L 1的顶点与抛物线L 的顶点关于原点对称,1L ∴对称顶点坐标为(2,1),即将抛物线向右移4个单位,向上移2个单位.(3) 使得△PAC 为等腰直角三角形,作出所有点P 的可能性.1P AC ∆Q 是等腰直角三角形1P A CA ∴=,190,90CAO ACO CAO P AE ∠+∠=︒∠+∠=︒Q ,1CAO P AE ∴∠=,190PEA COA =∠=︒Q ,()1CAO APE AAS ∴∆≅∆,∴求得()14,1P -.,同理得()22,1P -,()33,4P -,()43,2P ,由题意知抛物线23y x dx =++并将点代入得:222228103,43,3,3933y x x y x x y x x y x x =++=-+=++=-+. 【点睛】本题主要考查抛物线综合题,讨论出P 点的所有可能性是解题关键.22.1.8米【解析】【分析】设PA=PN=x ,Rt △APM 中求得MP =1.6x, 在Rt △BPM 中tan MP MBP BP ∠=,解得x=3,MN=MP-NP=0.6x=1.8.【详解】在Rt △APN 中,∠NAP=45°,∴PA=PN,在Rt △APM 中,tan MP MAP AP ∠=, 设PA=PN=x ,∵∠MAP=58°,∴tan MP AP MAP =⋅∠=1.6x,在Rt △BPM 中,tan MP MBP BP ∠=, ∵∠MBP=31°,AB=5, ∴ 1.60.65x x=+, ∴ x=3,∴MN=MP-NP=0.6x=1.8(米),答:广告牌的宽MN 的长为1.8米.【点睛】熟练掌握三角函数的定义并能够灵活运用是解题的关键.23.(2)证明见解析;(2)四边形EBFD 是矩形.理由见解析.【解析】分析:(1)根据SAS 即可证明;(2)首先证明四边形EBFD 是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∴OE=OF ,在△DEO 和△BOF 中,OD OB DOE BOF OE OF ⎧⎪∠∠⎨⎪⎩===,∴△DOE ≌△BOF .(2)结论:四边形EBFD 是矩形.理由:∵OD=OB ,OE=OF ,∴四边形EBFD 是平行四边形,∵BD=EF ,∴四边形EBFD 是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.周瑜去世的年龄为16岁.【解析】【分析】设周瑜逝世时的年龄的个位数字为x ,则十位数字为x ﹣1.根据题意建立方程求出其值就可以求出其结论.【详解】设周瑜逝世时的年龄的个位数字为x ,则十位数字为x ﹣1.由题意得;10(x ﹣1)+x =x 2,解得:x 1=5,x 2=6当x =5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x =6时,周瑜年龄为16岁,完全符合题意.答:周瑜去世的年龄为16岁.【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键.25.(1)证明见解析;(2)32BP CF =;(3)3AG =. 【解析】()1由余角的性质可得ABE BCF ∠∠=,即可证ABE V ∽BCF V ;()2由相似三角形的性质可得AB BE 3BC CF 4==,由等腰三角形的性质可得BP 2BE =,即可求BP CF 的值; ()3由题意可证DPH V ∽CPB V ,可得HP PD 7BP PC 4==,可求32AE =,由等腰三角形的性质可得AE 平分BAP ∠,可证1EAG BAH 452∠∠==o ,可得AEG V 是等腰直角三角形,即可求AG 的长. 【详解】证明:()1AB BC ⊥Q , ABE FBC 90∠∠∴+=o又CF BF ⊥Q ,BCF FBC 90∠∠∴+=oABE BCF ∠∠∴=又AEB BFC 90∠∠==o Q ,ABE ∴V ∽BCF V()2ABE QV ∽BCF V ,AB BE 3BC CF 4∴== 又AP AB =Q ,AE BF ⊥,BP 2BE ∴=BP 2BE 3CF CF 2∴== ()3如图,延长AD 与BG 的延长线交于H 点AD //BC Q ,DPH ∴V ∽CPB V∴HP PD 7BP PC 4== AB BC =Q ,由()1可知ABE V ≌BCF VCF BE EP1∴===,BP2∴=,代入上式可得7HP2=,79HE122=+=ABEQV∽HAEV,BE AEAE HE∴=,1AE9AE2=,∴32AE2=AP AB=Q,AE BF⊥,AE∴平分BAP∠又AGQ平分DAP∠,1EAG BAH452∠∠∴==o,AEG∴V是等腰直角三角形.∴AG2AE3==.【点睛】本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.26.(1)x≥65;(1)x≤1;(3)答案见解析;(4)65≤x≤1.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(I)解不等式(1),得x≥65;(II)解不等式(1),得x≤1;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为:65≤x≤1.故答案为x≥65、x≤1、65≤x≤1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.27.(1)90°;(1)AE1+EB1=AC1,证明见解析.【解析】【分析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB=EC,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答.【详解】解:(1)∵点D是BC边的中点,DE⊥BC,∴DE是线段BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(1)AE1+EB1=AC1.∵∠AEC=90°,∴AE1+EC1=AC1,∵EB=EC,∴AE1+EB1=AC1.【点睛】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.。
2019年贵州省毕节市中考数学试卷及答案解析
贵州省毕节市2019年初中毕业会考、高级中等学校招生考试数 学一、选择题(本大题共15小题,每小题3分,共45分,每小题只有一个正确选项) 1.下列四个数中,2019的相反数是( )A.2019-B.12019C.12019-D.020192.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55 000米,55 000这个数用科学记数法可表示为 ( ) A.35.510⨯B.35510⨯C.50.5510⨯D.45.510⨯3.由下面正方体的平面展开图可知,原正方体“中”字所在面的对面的汉字是( )A.国B.的C.中D.梦4.在一次爱心义卖活动中,某中学九年级6个班捐献的义卖金额(单位:元)分别为800、820、930、860、820、850,这组数据的众数和中位数分别是( )A.820,850B.820,930C.930,835D.820,835 5.下列四个运算中,只有一个是正确的,这个正确运算的序号是( )①01333+﹣-== ③()3252=8a a④844=a a a -÷- A.①B.②C.③D.④ 6.观察下列图案,既是轴对称图形又是中心对称图形的共有( )A.4个B.3个C.2个D.1个7.如图,ABC △中,CD 是AB 边上的高,CM 是AB 边上的中线,点C 到边AB 所在直线的距离是( )A.线段CA 的长度B.线段CM 的长度C.线段CD 的长度D.线段CB 的长度8.如图,点E 在正方形ABCD 的边AB 上,若=1EB ,=2EC ,那么正方形ABCD 的面积为( )A.B.3D.5 9.如果213m ab ﹣与19m ab +是同类项,那么m 等于( )A.2B.1C.1-D.0 10.下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90︒得到,第2019个图案中箭头的指向是( )A.上方B.右方C.下方D.左方 11.已知一次函数=y kx b +(k ,b 为常数,0k ≠)的图象经过一、三、四象限,则下列结论正确的是( ) A.0kb >B.0kb <C.0k b +>D.0k b +< 12.在下列长度的三条线段中,不能组成三角形的是( )A.2 cm ,3 cm ,4 cmB.3 cm ,6 cm ,76 cmC.2 cm ,2 cm ,6 cmD.5 cm ,6 cm ,7 cm13.若点()14,A y -、()22,B y -、()32,C y 都在反比例函数1y x=-的图象上,则1y 、2y 、3y 的大小关系是()-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________A.123y y y >>B.321y y y >>C.213y y y >>D.132y y y >>14.平行四边形ABCD 中,AC 、BD 是两条对角线,现从以下四个关系①AB BC =;②AC BD =;③AC BD ⊥;④AB BC ⊥中随机取出一个作为条件,即可推出平行四边形ABCD 是菱形的概率为( )A.14B.12C.34D.115.如图,在一块斜边长30 cm 的直角三角形木板(Rt ACB △)上截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若:1:3AF AC =,则这块木板截取正方形CDEF 后,剩余部分的面积为( )A.2100 cmB.2150 cmC.2170 cmD.2200 cm二、填空题(本大题5小题,每题5分,共25分) 16.分解因式:416x -= .17.如图,以ABC △的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D ,连接AD .若40B ∠︒=,36C ∠︒=,则DAC ∠的大小为 .18.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2 240元,则这种商品的进价是 元. 19.三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB CF ∥,90F ACB ∠∠︒==,45E ∠︒=,60A ∠︒=,10AC =,则CD 的长度是 .20.如图,在平面直角坐标中,一次函数44y x =+-的图象与x 轴、y 轴分别交于A 、B两点.正方形ABCD 的顶点C 、D 在第一象限,顶点D 在反比例函数ky x=(0k ≠)的图象上.若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图象上,则n 的值是 .三、解答题(本大题7小题,共80分)21.计算:()(0201911||1222cos452--+-+-+︒.22.解方程:331221x xx x --=++.23.某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A :没有投过;选项B :一封;选项C :两;选项D :三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了 名学生,条形统计图中m = ,n = ; (2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有 封;(4)全地区中学生共有110 000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?24.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x (元)与该土特产的日销售量y (袋)之间的关系如表:x (元)15 20 30 … y (袋)252010…若日销售量y 是销售价x 的一次函数,试求:(1)日销售量y (袋)与销售价x (元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?25.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a ,b ,c ,用{}M a b c ,,表示这三个数的平均数,用{}min a b c ,,表示这三个数中最小的数.例如:129{}=1,423,9M ++=,1,2,3{}3min -=-,3,1,1}1{min =.请结合上述材料,解决下列问题:(1)①()222{2,22}=M -,- ;②sin30cos60{}=tan45min ︒︒︒,, ; (2)若22,32},{M x x -=,求x 的值;(3)若32,13,55{}min x x -+=--,求x 的取值范围.26.如图,点P 在O e 外,PC 是O e 的切线,C 为切点,直线PO 与O e 相交于点A 、B .(1)若30A ∠︒=,求证:3PA PB =;(2)小明发现,A ∠在一定范围内变化时,始终有()1902BCP P ∠︒-∠=成立.请你写出推理过程.27.已知抛物线23y ax bx ++=经过点()1,0A 和点()3,0B -,与y 轴交于点C ,点P 为第二象限内抛物线上的动点.(1)抛物线的解析式为 ,抛物线的顶点坐标为 ;(2)如图1,连接OP 交BC 于点D ,当:=1:2CPD BPD S S △△时,请求出点D 的坐标; (3)如图2,点E 的坐标为()0,1-,点G 为x 轴负半轴上的一点,15OGE ∠︒=,连接PE ,若2PEG OGE ∠∠=,请求出点P 的坐标;(4)如图3,是否存在点P ,使四边形BOCP 的面积为8?若存在,请求出点P 的坐标;若不存在,请说明理由.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________贵州省毕节市2019年初中毕业会考、高级中等学校招生考试数学答案解析一、选择题 1.【答案】A【解析】2019的相反数是2019-. 2.【答案】D【解析】55 000这个数用科学记数法可表示为45.510⨯. 3.【答案】B【解析】根据正方体相对的面的特点,“中”字所在的面的对面的汉字是“的”. 4.【答案】D【解析】将数据重新排列为800、820、820、850、860、930,所以这组数据的众数为820、中位数为8205508352+=,故选:D . 5.【答案】D【解析】①0113331+=﹣,故此选项错误;③23628a a ()=,故此选项错误;④844a a a -÷=-,正确. 故选:D . 6.【答案】B【解析】①不是轴对称图形,是中心对称图形,故此选项错误; ②是轴对称图形,也是中心对称图形,故此选项正确; ③是轴对称图形,也是中心对称图形,故此选项正确; ③是轴对称图形,也是中心对称图形,故此选项正确. 故选:B .7.【答案】C【解析】点C 到边AB 所在直线的距离是点C 到直线AB 的垂线段的长度,而CD 是点C到直线AB 的垂线段, 故选:C . 8.【答案】B【解析】Q 四边形ABCD 是正方形, ∴90B ∠︒=,∴22222213BC EC EB --===, ∴正方形ABCD 的面积23BC ==.故选:B . 9.【答案】A【解析】根据题意可得:211m m -+=, 解得:2m =, 故选:A . 10.【答案】C【解析】如图所示:每旋转4次一周,201945043÷L =,则第2019个图案中箭头的指向与第3个图案方向一致,箭头的指向是下方. 故选:C . 11.【答案】B【解析】y kx b +=的图象经过一、三、四象限, ∴0k >,0b <, ∴0kb <;故选:B . 12.【答案】C【解析】A .234+>,能组成三角形; B .367+>,能组成三角形; C .226+<,不能组成三角形;D .567+>,能够组成三角形. 故选:C . 13.【答案】C【解析】Q 点()14,A y -、()22,B y -、()32,C y 都在反比例函数1y x=-的图象上,∴111=44y -=-,211=22y -=-,31=2y -, 又Q 111242-<<,∴312y y y <<.故选:C . 14.【答案】B【解析】根据平行四边形的判定定理, 可推出平行四边形ABCD 是菱形的有①或③, 概率为21=42. 故选:B . 15.【答案】A【解析】设AF x =,则3AC x =, Q 四边形CDEF 为正方形, ∴2EF CF x ==,EF BC ∥, ∴AEF ABC △∽△, ∴13EF AF BC AC ==, ∴6BC x =,在Rt ABC △中,222AB AC BC +=,即()()2223036x x +=,解得,x =∴AC =BC =∴剩余部分的面积()21=100cm 2⨯,故选:A .二、填空题16.【答案】()()()2422x x x ++- 【解析】()()4221644x x x +--=()()()2=422x x x ++-17.【答案】34︒【解析】Q 40B ∠︒=,36C ∠︒=, ∴180104BAC B C ∠︒-∠-∠︒== Q AB BD =∴()180270BAD ADB B ∠∠︒-∠÷︒===, ∴34DAC BAC BAD ∠∠-∠︒==故答案为:34︒. 18.【答案】2 000【解析】设这种商品的进价是x 元, 由题意得,()140%0.82240x +⨯=. 解得:2000x =, 故答案为2 000. 19.【答案】15-【解析】过点B 作BM FD ⊥于点M ,在ACB △中,90ACB ∠︒=,60A ∠︒=,10AC =,∴30ABC ∠︒=,10tan60BC ⨯︒==, Q AB CF ∥,∴1sin302BM BC ⨯︒==cos3015CM BC ⨯︒==,在EFD △中,90F ∠︒=,45E ∠︒=, ∴45EDF ∠︒=,∴MD BM ==∴15CD CM MD --==故答案是:15-.20.【答案】3【解析】过点D 作DE x ⊥轴,过点C 作CF y ⊥轴,AB AD BAO DAE AB AD BOA DEA ABO DAE AAS AE BO DE OA ⊥∴∠∠∠∠∴∴Q Q ,=,=,=,△≌△(),=,=, 易求()1,0A ,()0,4B ,∴()5,1D ,Q 顶点D 在反比例函数ky x=上, ∴5k =, ∴5y x=, 易证CBF BAO AAS △≌△(), ∴4CF =,1BF =, ∴()4,5C ,Q C 向左移动n 个单位后为()4,5n -, ∴()545n -=, ∴3n =,故答案为3;三、解答题21.【答案】原式11=112122-+-+=22.【答案】去分母得,()2236x x x +--=, ∴56x x +=,解得,1x =经检验:1x =是原方程的解.23.【答案】(1)此次调查的总人数为15030%500÷=(人), 则50045%225m ⨯==,5005%25n ⨯==, 故答案为:500,225,25;(2)C 选项人数为50020%100⨯=(人), 补全图形如下:(3)11502100325425⨯+⨯+⨯=,答:接受问卷调查的学生在活动中投出的信件总数至少有425封, 故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有()110000145%60500⨯-=(名).24.【答案】(1)依题意,根据表格的数据,设日销售量y (袋)与销售价x (元)的函数关系式为y kx b +=得 25=152020k b k b +⎧⎨=+⎩,解得140k b =-⎧⎨=⎩ 故日销售量y (袋)与销售价x (元)的函数关系式为:40y x +=- (2)依题意,设利润为w 元,得 ()()2104050400w x x x x --+++==-整理得()225225w x -+=-Q 10-<∴当2x =时,w 取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元. 25.【答案】(1)①()()2222222224{,}=23223M -+-=,--; ②sin30cos60tan 1{}=524min ︒︒︒,,;故答案为:43;12; (2)Q 22,32{,}M x x -=,∴22323x x -++=,解得1x =-或3;(3)Q 32,13,55{}min x x -+-=-, ∴325135x x --⎧⎨+-⎩≥≥,解得24x -≤≤.26.【答案】(1)Q AB 是直径 90302ACP A AB BC∴∠︒∠︒∴Q =,=,= Q PC 是O e 切线 ∴30BCP A ∠∠︒==, ∴30P ∠︒=,∴PB BC =,12BC AB =,∴3PA PB =(2)Q 点P 在O e 外,PC 是O e 的切线,C 为切点,直线PO 与O e 相交于点A 、B , 180902180BCP A A P ACB BCP ACB BCP P ∴∠∠∠+∠+∠+∠︒∠︒∴∠︒-∠Q =,=,且=,=,∴()1902BCP P ∠︒-∠=27.【答案】(1)函数的表达式为:()()()21323y a x x a x x -++-==, 即:33a -=,解得:1a =-,故抛物线的表达式为:223y x x -+=-…①,顶点坐标为()1,4-; (2)Q OB OC =,41:2:5CPD BPD CBO S S ∴∠︒Q △△=,=,∴2233BD BC ⨯==sin 2D y BD CBO ∠==, 则点()1,2D -;(3)如图2,设直线PE 交x 轴于点H ,15230451OGE PEG OGE OHE OH OE ∠︒∠∠︒∴∠︒∴Q =,==,=,==,则直线HE 的表达式为:1y x -=-…②,联立①②并解得:x ,故点P ⎝⎭; (4)不存在,理由:连接BC ,过点P 作y 轴的平行线交BC 于点H ,直线BC 的表达式为:3y x +=, 设点()2,23P x x x --+,点(),3H x x +,则()211332333822OBC PBC BOCP S S S x x x +⨯⨯+-+--⨯-△△四边形===, 整理得:23970x x ++=, 解得:0∆<,故方程无解, 则不存在满足条件的点P .。
贵州省毕节地区2019-2020学年中考三诊数学试题含解析
贵州省毕节地区2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列说法正确的是( ) A .﹣3是相反数 B .3与﹣3互为相反数 C .3与13互为相反数 D .3与﹣13互为相反数 2.下列说法中,错误的是( )A .两个全等三角形一定是相似形B .两个等腰三角形一定相似C .两个等边三角形一定相似D .两个等腰直角三角形一定相似 3.如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )A .B .C .D .4.如图,△OAB∽△OCD ,OA :OC =3:2,∠A =α,∠C =β,△OAB 与△OCD 的面积分别是S 1和S 2,△OAB 与△OCD 的周长分别是C 1和C 2,则下列等式一定成立的是( )A .32OB CD=B .32αβ= C .1232S S = D .1232C C =5.已知二次函数y=x 2 + bx +c 的图象与x 轴相交于A 、B 两点,其顶点为P ,若S △APB =1,则b 与c 满足的关系是( ) A .b 2 -4c +1=0B .b 2 -4c -1=0C .b 2 -4c +4 =0D .b 2 -4c -4=06.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC∠的度数是( )A .68︒B .112︒C .124︒D .146︒7.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是( )A .①B .②C .③D .④8.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( ) A .24d h πB .22d h πC .2d h πD .24d h π9.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在ky x=的图象上,且点B 在以O 点为圆心,OA 为半径的O e 上,则k 的值为( )A .34-B .1-C .32-D .2-10.已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( )A .∠NOQ =42°B .∠NOP =132°C .∠PON 比∠MOQ 大D .∠MOQ 与∠MOP 互补11.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C.D.12.如图,将△ABC 绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC 边的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C 平分∠BB′A′二、填空题:(本大题共6个小题,每小题4分,共24分.)13.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.14.新田为实现全县“脱贫摘帽”,2018年2月已统筹整合涉农资金235000000元,撬动800000000元金融资本参与全县脱贫攻坚工作,请将235000000用科学记数法表示为___.15.已知图中Rt△ABC,∠B=90°,AB=BC,斜边AC上的一点D,满足AD=AB,将线段AC绕点A逆时针旋转α (0°<α <360°),得到线段AC’,连接DC’,当DC’//BC时,旋转角度α 的值为_________,16.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线B D交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.17.若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是_____.18.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.20.(6分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.(1)求证:»»AC CE=;(2)若32DEDF=,求tan∠CED的值.21.(6分)随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在20—40万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:(1)调查样本人数为__________,样本中B类人数百分比是_______,其所在扇形统计图中的圆心角度数是________;(2)把条形统计图补充完整;(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.22.(8分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC关于x轴对称的△A1B1C1;请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.23.(8分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?24.(10分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.25.(10分)计算:2sin30°﹣(π﹣2)0+|3﹣1|+(12)﹣126.(12分)如图,在Rt△ABC中,∠C=90°,AC=12AB.求证:∠B=30°.请填空完成下列证明.证明:如图,作Rt△ABC的斜边上的中线CD,则CD=12AB=AD ().∵AC=12 AB,∴AC=CD=AD 即△ACD是等边三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.27.(12分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确.【详解】A、3和-3互为相反数,错误;B、3与-3互为相反数,正确;C、3与13互为倒数,错误;D、3与-13互为负倒数,错误;故选B.【点睛】此题考查相反数问题,正确理解相反数的定义是解答此题的关键.2.B【解析】【分析】根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.【详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B.【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.3.D【解析】 【分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中. 【详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形; 左视图有二列,从左往右分别有2,1个正方形; 俯视图有三列,从上往下分别有3,1个正方形, 故选A . 【点睛】本题考查了三视图的知识,关键是掌握三视图所看的位置.掌握定义是关键. 此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键. 4.D 【解析】A 选项,在△OAB ∽△OCD 中,OB 和CD 不是对应边,因此它们的比值不一定等于相似比,所以A 选项不一定成立;B 选项,在△OAB ∽△OCD 中,∠A 和∠C 是对应角,因此αβ=,所以B 选项不成立; C 选项,因为相似三角形的面积比等于相似比的平方,所以C 选项不成立;D 选项,因为相似三角形的周长比等于相似比,所以D 选项一定成立. 故选D. 5.D 【解析】 【分析】抛物线的顶点坐标为P (−2b ,244c b -),设A 、B 两点的坐标为A (1x ,0)、B (2x ,0)则AB =12x x -,根据根与系数的关系把AB 的长度用b 、c 表示,而S △APB =1,然后根据三角形的面积公式就可以建立关于b 、c 的等式. 【详解】解:∵1212,x x b x x c +=-=,∴AB =12x x -=∵若S △APB =1∴S △APB =12×AB×244c b - =1,214124c b -∴-=∴−12×2414b c -=,∴(248b ac-=,s , 则38s =, 故s =2,2, ∴2440b c --=. 故选D . 【点睛】本题主要考查了抛物线与x 轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强. 6.B 【解析】 【分析】根据题意可知DE 是AC 的垂直平分线,CD=DA .即可得到∠DCE=∠A ,而∠A 和∠B 互余可求出∠A ,由三角形外角性质即可求出∠CDA 的度数. 【详解】解:∵DE 是AC 的垂直平分线, ∴DA=DC , ∴∠DCE=∠A ,∵∠ACB=90°,∠B=34°, ∴∠A=56°,∴∠CDA=∠DCE+∠A=112°, 故选B . 【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型. 7.A 【解析】【分析】根据题意得到原几何体的主视图,结合主视图选择. 【详解】解:原几何体的主视图是:.视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可. 故取走的正方体是①. 故选A . 【点睛】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键. 8.A 【解析】圆柱体的底面积为:π×(2d)2, ∴矿石的体积为:π×(2d )2h= 2π4d h .故答案为2π4d h .9.A 【解析】 【分析】由题意(),3A m m -,因为O e 与反比例函数ky x=都是关于直线y x =-对称,推出A 与B 关于直线y x =-对称,推出()3,B m m -,可得31m m =-,求出m 即可解决问题;【详解】Q 函数3y x =-与ky x=的图象在第二象限交于点()1,A m y , ∴点(),3A m m -O Q e 与反比例函数ky x=都是关于直线y x =-对称, A ∴与B 关于直线y x =-对称,()3,B m m ∴-, 31m m ∴=-,12m ∴=-∴点13,22A ⎛⎫- ⎪⎝⎭133224k ∴=-⨯=-故选:A . 【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A ,B 关于直线y x =-对称. 10.C 【解析】试题分析:如图所示:∠NOQ=138°,选项A 错误;∠NOP=48°,选项B 错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON 比∠MOQ 大,选项C 正确;由以上可得,∠MOQ 与∠MOP 不互补,选项D 错误.故答案选C . 考点:角的度量. 11.C 【解析】 【分析】根据俯视图的概念可知, 只需找到从上面看所得到的图形即可. 【详解】解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C. 【点睛】考查下三视图的概念; 主视图、 左视图、 俯视图是分别从物体正面、 左面和上面看所得到的图形; 12.C 【解析】 【分析】根据旋转的性质求解即可. 【详解】解:根据旋转的性质,A:∠'BCB 与∠ACA '均为旋转角,故∠'BCB =∠ACA ',故A 正确; B:CB CB ='Q ,B BB C ∴∠=∠', 又A CB B BB C ∠=∠+∠'''Q2A CB B ''∴∠=∠, ACB A CB ∠=∠''Q 2ACB B ∴∠=∠,故B 正确;D:A BC B ''∠=∠Q ,A B C BB C ∴∠=∠'''B′C平分∠BB′A′,故D正确.无法得出C中结论,故答案:C.【点睛】本题主要考查三角形旋转后具有的性质,注意灵活运用各条件二、填空题:(本大题共6个小题,每小题4分,共24分.)13.12.【解析】【分析】【详解】根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为12.考点:概率公式.14.2.35×1【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将235000000用科学记数法表示为:2.35×1.故答案为:2.35×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.15或255°【解析】如下图,设直线DC′与AB相交于点E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AC,∴AE=2AD,又∵AD=AB,AC′=AC,∴AE=22AB=2222⨯AC=12AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即当DC′∥BC时,旋转角α=15°;同理,当DC′′∥BC时,旋转角α=180°-45°-60°=255°;综上所述,当旋转角α=15°或255°时,DC′//BC.故答案为:15°或255°.163【解析】∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴223BD DE-,3.点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.AC⊥BD【解析】【分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【详解】∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案为:AC⊥BD.【点睛】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.18.1 2【解析】试题分析:如图所示,一只蚂蚁从点出发后有ABD、ABE、ACE、ACF四条路,所以蚂蚁从出发到达处的概率是.考点:概率.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)14;(2)112【解析】【分析】(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答.【详解】(1)14; (2)方法1:根据题意可画树状图如下: 方法2:根据题意可列表格如下:弟弟姐姐 ABCDA (A,B ) (A,C) (A,D) B (B,A) (B,C) (B,D)C (C,A) (C,B) (C,D) D(D,A)(D,B)(D,C)由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A 佩奇,弟弟抽到B 乔治的结果有1种:(A ,B ).∴P (姐姐抽到A 佩奇,弟弟抽到B 乔治)112= 【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比.20.(1)见解析;(2)tan ∠CED =155【解析】 【分析】(1)欲证明»»AC CE =,只要证明EAC AEC ∠∠=即可;(2)由EDF COF ∆∆∽,可得32ED OC DF OF ==,设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,由BAD BEC ∆∆∽,可得BD•BE =BC•BA ,设AC =BC =x ,则有2267.5x a a ⨯=,由此求出AC 、CD 即可解决问题. 【详解】(1)证明:如下图,连接AE , ∵AD 是直径, ∴90ACD ∠︒=, ∴DC ⊥AB , ∵AC =CB , ∴DA =DB , ∴∠CDA =∠CDB ,∵180EAC EDC ∠+∠︒=,180EDC CDB ∠+∠︒=, ∴∠BDC =∠EAC , ∵∠AEC =∠ADC , ∴∠EAC =∠AEC , ∴»»AC CE =;(2)解:如下图,连接OC , ∵AO =OD ,AC =CB , ∴OC ∥BD , ∴EDF COF ∆∆∽, ∴32ED OC DF OF ==, 设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a , ∵∠BAD =∠BEC ,∠B =∠B , ∴BAD BEC ∆∆∽,∴BD•BE =BC•BA ,设AC =BC =x , 则有2267.5x a a ⨯=,∴x =,∴AC a =,∴CD ==,∴36152tan tan 310aDC EDC DAC AC ∠=∠===.【点睛】本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键. 21.(1)50,20%,72°. (2)图形见解析;(3)选出的2人来自不同科室的概率=. 【解析】试题分析:(1)根据调查样本人数=A 类的人数除以对应的百分比.样本中B 类人数百分比=B 类人数除以总人数,B 类人数所在扇形统计图中的圆心角度数=B 类人数的百分比×360°. (2)先求出样本中B 类人数,再画图.(3)画树状图并求出选出的2人来自不同科室的概率. 试题解析:(1)调查样本人数为4÷8%=50(人), 样本中B 类人数百分比(50﹣4﹣28﹣8)÷50=20%, B 类人数所在扇形统计图中的圆心角度数是20%×360°=72°; (2)如图,样本中B 类人数=50﹣4﹣28﹣8=10(人);(3)画树状图为:共有20种可能的结果数,其中选出选出的2人来自不同科室占12种,所以选出的2人来自不同科室的概率=.考点:1.条形统计图2.扇形统计图3.列表法与树状图法.22.(1)(2)见解析;(3)P(0,2).【解析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.设直线B1C′的解析式为y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴224k bk b-+=-⎧⎨+=⎩,解得:22kb=⎧⎨=⎩,∴直线AB2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).点睛:本题主要考查轴对称图形的绘制和轴对称的应用.23.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只. 【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵1.05 1.211 1.514 1.8162.041.5251114164x⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.51.52+=,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg的数量约占8%.有25008%200⨯=.∴这2500只鸡中,质量为2.0kg的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.24.解:(1)AF与圆O的相切.理由为:如图,连接OC,∵PC为圆O切线,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF为圆O的切线,即AF与⊙O的位置关系是相切.(2)∵△AOF ≌△COF ,∴∠AOF=∠COF . ∵OA=OC ,∴E 为AC 中点,即AE=CE=12AC ,OE ⊥AC . ∵OA ⊥AF ,∴在Rt △AOF 中,OA=4,AF=3,根据勾股定理得:OF=1. ∵S △AOF =12•OA•AF=12•OF•AE ,∴AE=245. ∴AC=2AE=.【解析】试题分析:(1)连接OC ,先证出∠3=∠2,由SAS 证明△OAF ≌△OCF ,得对应角相等∠OAF=∠OCF ,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;(2)先由勾股定理求出OF ,再由三角形的面积求出AE ,根据垂径定理得出AC=2AE . 试题解析:(1)连接OC ,如图所示:∵AB 是⊙O 直径, ∴∠BCA=90°, ∵OF ∥BC ,∴∠AEO=90°,∠1=∠2,∠B=∠3, ∴OF ⊥AC , ∵OC=OA , ∴∠B=∠1, ∴∠3=∠2,在△OAF 和△OCF 中,{32OA OCOF OF=∠=∠=, ∴△OAF ≌△OCF (SAS ), ∴∠OAF=∠OCF , ∵PC 是⊙O 的切线, ∴∠OCF=90°, ∴∠OAF=90°, ∴FA ⊥OA , ∴AF 是⊙O 的切线;(2)∵⊙O 的半径为4,AF=3,∠OAF=90°,∴=∵FA ⊥OA ,OF ⊥AC ,∴AC=2AE ,△OAF 的面积=12AF•OA=12OF•AE , ∴3×4=1×AE , 解得:AE=125, ∴AC=2AE=245. 考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.25.【解析】分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.详解:原式=2×12点睛:此题主要考查了实数运算,正确化简各数是解题关键.26.直角三角形斜边上的中线等于斜边的一半;1.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.【详解】证明:如图,作Rt △ABC 的斜边上的中线CD , 则CD=12AB=AD (直角三角形斜边上的中线等于斜边的一半), ∵AC=12AB , ∴AC=CD=AD 即△ACD 是等边三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.27.(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【解析】【分析】(1)设生产一件甲种产品需x 分,生产一件乙种产品需y 分,利用待定系数法求出x ,y 的值.(2)设生产甲种产品用x 分,则生产乙种产品用(25×8×60-x )分,分别求出甲乙两种生产多少件产品. 【详解】(1)设生产一件甲种产品需x 分,生产一件乙种产品需y 分.由题意得:10103503020850x y x y +=⎧⎨+=⎩, 解这个方程组得:1520x y =⎧⎨=⎩, 答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x 分,则生产乙种产品用(25×8×60-x )分. 则生产甲种产品15x 件,生产乙种产品2586020x ⨯⨯-件. ∴w 总额=1.5×15x +2.8×2586020x ⨯⨯-=0.1x+1200020x -×2.8=0.1x+1680-0.14x=-0.04x+1680, 又15x ≥60,得x≥900, 由一次函数的增减性,当x=900时w 取得最大值,此时w=0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元), 此时甲有90015=60(件), 乙有:2586090020⨯⨯-=555(件), 答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【点睛】考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.。
贵州省毕节地区2019-2020学年中考数学三模考试卷含解析
贵州省毕节地区2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是反比例函数k y x =(k 为常数,k≠0)的图象,则一次函数y kx k =-的图象大致是( )A .B .C .D .2.如图,BC ∥DE ,若∠A=35°,∠E=60°,则∠C 等于( )A .60°B .35°C .25°D .20°3.已知正比例函数(0)y kx k =≠的图象经过点(1,3)-,则此正比例函数的关系式为( ). A .3y x =- B .3y x = C .13y x = D .13y x =- 4.方程(m –2)x 2+3mx+1=0是关于x 的一元二次方程,则( )A .m≠±2B .m=2C .m=–2D .m≠25.如图是二次函数y =ax 2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b 2–4ac<0,其中正确的有( )A .1个B .2个C .3个D .46.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )A .B .C .D .7.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,则下列结论正确的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB8.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC9.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为()A.0 B.﹣1 C.1 D.7201710.在数轴上表示不等式组10240xx+≥⎧⎨-<⎩的解集,正确的是()A.B.C.D.11.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限12.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )A.EA EGBE EF=B.EG AGGH GD=C.AB BCAE CF=D.FH CFEH AD=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是_____.(写出一个即可).14.函数2x y x =-中自变量x 的取值范围是_____;函数26y x =-中自变量x 的取值范围是______. 15.不等式5x ﹣3<3x+5的非负整数解是_____.16.计算2x 3·x 2的结果是_______.17.如图,反比例函数y=k x(x >0)的图象与矩形AOBC 的两边AC ,BC 边相交于E ,F ,已知OA=3,OB=4,△ECF 的面积为83,则k 的值为_____.18.请写出一个一次函数的解析式,满足过点(1,0),且y 随x 的增大而减小_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,在正方形ABCD 中,点E 在边CD 上,AQ ⊥BE 于点Q ,DP ⊥AQ 于点P .求证:AP=BQ ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.20.(6分)如图,四边形ABCD 内接于圆,对角线AC 与BD 相交于点E ,F 在AC 上,AB=AD ,∠BFC=∠BAD=2∠DFC .求证:(1)CD ⊥DF ;(2)BC=2CD .21.(6分)(感知)如图①,四边形ABCD 、CEFG 均为正方形.可知BE=DG .(拓展)如图②,四边形ABCD 、CEFG 均为菱形,且∠A=∠F .求证:BE=DG .(应用)如图③,四边形ABCD 、CEFG 均为菱形,点E 在边AD 上,点G 在AD 延长线上.若AE=2ED ,∠A=∠F ,△EBC 的面积为8,菱形CEFG 的面积是_______.(只填结果)22.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.23.(8分)解分式方程:2322xx x+--=124.(10分)如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得∠ABC=45°,∠ACB =30°,且BC=20米.(1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹)(2)求出路灯A离地面的高度AD.(精确到0.1米)(参考数据:2≈1.414,3≈1.732).25.(10分)(1)计算:|﹣2|﹣(π﹣2015)0+(12)﹣2﹣2sin60°12;(2)先化简,再求值:221aa a--÷(2+21aa+),其中2.26.(12分)如图,在▱ABCD中,AE⊥BC交边BC于点E,点F为边CD上一点,且DF=BE.过点F 作FG⊥CD,交边AD于点G.求证:DG=DC.27.(12分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级非常了解比较了解只听说过不了解频数40 120 36 4频率0.2 m 0.18 0.02(1)本次问卷调查取样的样本容量为,表中的m值为;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】根据图示知,反比例函数kyx的图象位于第一、三象限,∴k>0,∴一次函数y=kx−k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,∴一次函数y=kx−k的图象经过第一、三、四象限;故选:B.2.C【解析】【分析】先根据平行线的性质得出∠CBE=∠E=60°,再根据三角形的外角性质求出∠C的度数即可.【详解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故选C.【点睛】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.3.A【解析】【分析】根据待定系数法即可求得.【详解】解:∵正比例函数y=kx的图象经过点(1,﹣3),∴﹣3=k,即k=﹣3,∴该正比例函数的解析式为:y=﹣3x.故选A.【点睛】此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.D【解析】试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2.故选D5.B【解析】【分析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①抛物线与y 轴交于负半轴,则c <1,故①正确;②对称轴x 2b a=-=1,则2a+b=1.故②正确; ③由图可知:当x=1时,y=a+b+c <1.故③错误;④由图可知:抛物线与x 轴有两个不同的交点,则b 2﹣4ac >1.故④错误.综上所述:正确的结论有2个.故选B .【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.6.D【解析】A 选项:∠1+∠2=360°-90°×2=180°;B 选项:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C 选项:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D选项:∠1和∠2不一定互补.故选D.点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系. 7.B【解析】【分析】作弧后可知MN⊥CB,且CD=DB.【详解】由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB.【点睛】了解中垂线的作图规则是解题的关键.8.C【解析】根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,则△ABD为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.9.B【解析】【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【详解】解:由题意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故选B.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.【解析】【分析】解不等式组,再将解集在数轴上正确表示出来即可【详解】解1+x≥0得x≥﹣1,解2x -4<0得x <2,所以不等式的解集为﹣1≤x <2,故选C.【点睛】本题主要考查了一元一次不等式组的求解,求出题中不等式组的解集是解题的关键.11.D【解析】【分析】判断出P 的横纵坐标的符号,即可判断出点P 所在的相应象限.【详解】当a 为正数的时候,a+3一定为正数,所以点P 可能在第一象限,一定不在第四象限, 当a 为负数的时候,a+3可能为正数,也可能为负数,所以点P 可能在第二象限,也可能在第三象限,故选D.【点睛】本题考查了点的坐标的知识点,解题的关键是由a 的取值判断出相应的象限.12.C【解析】试题解析:∵四边形ABCD 是平行四边形,,AD BF BE DC AD BC ∴=P P ,,,,.EA EG EG AG HF FC CF BE EF GH DG EH BC AD∴==== 故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】由一次函数图象经过第一、三、四象限,可知k >0,﹣1<0,在范围内确定k 的值即可.【详解】解:因为一次函数y=kx ﹣1(k 是常数,k ≠0)的图象经过第一、三、四象限,所以k >0,﹣1<0,所以k 可以取1.故答案为1.根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k的取值范围.14.x≠2 x≥3【解析】【分析】根据分式的意义和二次根式的意义,分别求解.【详解】解:根据分式的意义得2-x≠0,解得x≠2;根据二次根式的意义得2x-6≥0,解得x≥3.故答案为: x≠2, x≥3.【点睛】数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.15.0,1,2,1【解析】5x﹣1<1x+5,移项得,5x﹣1x<5+1,合并同类项得,2x<8,系数化为1得,x<4所以不等式的非负整数解为0,1,2,1;故答案为0,1,2,1.【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键.16.52x【解析】试题分析:根据单项式乘以单项式,结合同底数幂相乘,底数不变,指数相加,可知2x3·x2=2x3+2=2x5. 故答案为:2x517.1【解析】【分析】设E(k3,3),F(1,k4),由题意12(1-k3)(3-k4)=83,求出k即可;【详解】∵四边形OACB是矩形,。
初中数学毕业生第三次联考试卷
金沙县2013年初中毕业生第三次适应性联考试卷数 学 试 题注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、填涂在答题卡规定的位置。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,非选择题必须用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上,在试题卷上作答无效。
3. 总分150、考试时间120分钟。
4.考试结束,监考人员将试卷和答题卡一并收回.第I卷 选择题(共45分)一、单项选择题(本大题共15个小题.每小题3分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 2-的相反数是( )A. 2B. -1C. 12-D. 122、如图是我县某一天内的气温变化图,根据图2, 下列说法中错误..的是 ( ) A .这一天中最高气温是24℃B .这一天中最高气温与最低气温的差为12℃C .这一天中2时至14时之间的气温在逐渐升高D .这一天中只有14时至24时之间的气温在逐渐降低3. 小明的讲义夹里放了大小相同的试卷共10页,其中语文2页、数学3页、英语5页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( ) A.21B.103C.52D.101 4. 抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( ) A .()213y x =++ B .()213y x =+- C .()213y x =-- D .()213y x =-+5.三角形在方格纸中的位置如图所示,则tan α的值是( )A .34B .43C .35 D.135D .45t时2题α (第5题)6.在实数2,722,0.101001,π,0,4中,无理数的个数是( )A .0个B .1个C .2个D .3个7. 关于近似数3104.2⨯,下列说法正确的是( )A .精确到十分位,有2个有效数字 B. 精确到百位,有4个有效数字 C. 精确到百位,有2个有效数字 D. 精确到十分位,有4个有效数字8.一次数学测试后,随机抽取6名学生成绩如下:86,85,88,80,88,95,关于这组数据说法错误的是( )A .极差是15B .众数是88C .中位数是86D .平均数是87 9. 如图, OAB △绕点O 逆时针旋转80°得到OCD △, 若110A ∠=°,40D ∠=°,则∠α的度数是( ) A .30° B .40° C .50° D .60° 10.已知抛物线c bx ax y ++=2的图象如图所示,则下列结论:①abc >0; ② 2=++c b a ; ③a <21; ④b =1.其中正确的结论是 ( ) A. ①②B. ②③C. ③④D. ②④第10题11. 下列不是必然事件的是( ) A .角平分线上的点到角两边的距离相等B . 三角形任意两边之和大于第三边C . 面积相等的两个三角形全等D . 三角形内心到三边距离相等12.在平行四边形、等边三角形、菱形、等腰梯形中,既是轴对称图形又是中心对称图形的是( )A .平行四边形B .等边三角形C .菱形D .等腰梯形 13. 把不等式组 ⎩⎨⎧<-≤-4201x x 的解集表示在数轴上,正确的是( )(A ) (B ) (C ) (D )14从不同方向看一只茶壶,你认为是俯视效果图的是………………( ) 15.使分式51-x 有意义,则x 的取值范围是( ) ABCDOBAD Cα (第9题)yx-112oA .x 5≥B .x 5≤C .x ﹥5D .x ≠5 第Ⅱ卷 非选择题(共105分)二.填空题(本大题共5小题,每小题5分,共25分) 16. 如图,直线12l l ∥,1120∠=°,则2∠=__________度.17. 如图,已知梯形ABCD ,AD ∥BC ,对角线AC ,BD 相交于点O ,△AOD 与△BOC 的面积之比为1:9,若AD =1,则BC 的长是 . 一次函数21y x =+,则y 随x 的增大而_______________18. 已知(填“增大”或“减小”).19.为落实“两免一补”政策,某市2011年投入教育经费2500万元,预计2013年要投入教育经费3600万元.已知2011年至2013年的教育经费投入以相同的百分率逐年增长,则2012年该市要投入的教育经费为 万元. 20.分解因式:x 3-6x 2+9x=_________________三、解答及证明。
2019年贵州省毕节市中考数学模拟试卷(三)(解析版)(20190828073934)
2019年贵州省毕节市中考数学模拟试卷(三)一、选择题(本大题共15小题,满分45分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列实数中,为有理数的是()A .B.πC.D.12.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg 的煤所产生的能量.把130 000 000kg 用科学记数法可表示为()7 8 7 8A .13×10 kg B.0.13×10 kg C.1.3×10 kg D.1.3×10 kg3.如图所示的几何体的主视图正确的是()A .B.C.D.4.下列运算正确的是()2=a2 B.(ab)2=ab C.3﹣1=D.A .a?a5.不等式组的解集表示在数轴上,正确的是()A .B.C.D.6.如图,已知AB∥DE,∠ABC=70°,∠CDE =140°,则∠BCD 的值为()A .20°B.30°C.40°D.70°7.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.B.C.D.8.如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()A.B.C.D.9.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EFC.GH垂直平分EF D.GH平分AF10.如图,在平面直角坐标系xOy中,直线y=k1x+2与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接BO,若S△OBC=1,tan∠BOC=,则k2的值是()A.﹣3B.1C.2D.311.分式方程﹣1=的解为()A.x=1B.x=﹣1C.无解D.x=﹣212.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A.B.C.D.13.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.214.已知命题“关于x的一元二次方程x+bx+1=0,必有实数解”是假命题,则在下列选项中,b 的值可以是()A.b=﹣3B.b=﹣2C.b=﹣1D.b=2215.如图,已知二次函数y=ax+b x+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>02<8a ③4ac﹣b④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤二、填空题(本大题共5小题,满分25分,只要求填写最后结果,每小题填对得5分)432﹣4ab=.16.分解因式:ab+4ab17.使代数式有意义的x的取值范围是.18.甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件.19.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是.20.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+P B的最小值为.三、解答题(本大题共7小题,满分80分.解答应写出必要的文字说明、证明过程或推演步骤)0﹣|1﹣2cos30°|.21.(8分)计算:﹣(3﹣π)2=0.22.(8分)化简并求值:(+)÷,其中x,y满足|x﹣2|+(2x﹣y﹣3)23.(10分)我州某校计划购买甲、乙两种树苗共1000株用以绿化校园,甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲,乙两种树苗成活率分别是90%和95%.(1)若购买这种树苗共用去28000元,则甲、乙两种树苗各购买多少株?(2)要使这批树苗的总成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.24.(12分)2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m=,n=;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?25.(12分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.26.(14分)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC 分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.27.(16分)如图,抛物线经过A(﹣1,0),B(5,0),C(0,﹣)三点.(Ⅰ)求抛物线的解析式;(Ⅱ)在抛物线的对称轴上有一点P,使PA+P C的值最小,求点P的坐标.(Ⅲ)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.2019年贵州省毕节市中考数学模拟试卷(三)参考答案与试题解析分45分,在每小题给出的四个选项中,只有一个是正确的,请15小题,满题共一、选择题(本大分)把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零1.【分析】根据有理数是有限小数或无限循环小数,无理数是无限不循环小数,可得答案.【解答】解:,π,是无理数,1 是有理数,故选:D.【点评】本题考查了实数,正确区分有理数与无理数是解题关键.n 的形式,其中1≤|a |<10,n 为整数.确定n的值时,2.【分析】科学记数法的表示形式为a×10要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值< 1 时,n 是负数.【解答】解:130 000 000kg=1.3×108kg.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|a的值以及n的值.<10,n 为整数,表示时关键要正确确定3.【分析】先细心观察原立体图形和长方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选:D.能力.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象4.【分析】根据同底数幂的乘法法则对 A 进行判断;根据积的乘方对 B 进行判断;根据负整数指对 C 进行判断;根据二次根式的加减法对 D 进行判断.数幂的意义【解答】解:A、原式=a3,所以 A 选项错误;2 2,所以 B 选项错误;B、原式=a bC、原式=,所以 C 选项正确;D、原式=2 ,所以 D 选项错误.故选:C.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.也考查了整式的运算.5.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则分析选项可得答案.【解答】解:解不等式x﹣1≤7﹣x,得:x≤4,解不等式5x﹣2>3(x+1),得:x>,∴不等式组的解集为:<x≤4,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【分析】延长E D交BC于F,根据平行线的性质求出∠MFC=∠B=70°,求出∠FDC=40°,根据三角形外角性质得出∠C=∠MFC﹣∠MDC,代入求出即可.【解答】解:E D交BC于F,延长∵AB∥DE,∠ABC=70°,∴∠MFC=∠B=70°,∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠C=∠MFC﹣∠MDC=70°﹣40°=30°,故选:B.【点评】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意:两直线平行,同位角相等.7.【分析】画树状图展示所有4种等可能的结果数,再找出两枚硬币全部正面向上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为,故选:A.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.8.【分析】作AB⊥x轴于B,如图,先利用勾股定理计算出OA=5,然后在Rt△AOB中利用正弦的定义求解.【解答】解:作AB⊥x轴于B,如图,∵点A的坐标为(3,4),∴OB=3,AB=4,∴OA==5,在Rt△AOB中,sinα==.故选:C.【点评】本题考查了三角函数的定义,充分利用勾股定理和解直角三角形计算三角形的边或角.也考查了坐标与图形性质.9.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选:C.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.10.【分析】先根据直线求得点C的坐标,然后根据△BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论.【解答】解:∵直线y=k1x+2与x轴交于点A,与y轴交于点C,∴点C的坐标为(0,2),∴OC=2,过B作BD⊥y轴于D,∵S△OBC=1,∴BD=1,∵tan∠BOC=,∴=,∴OD=3,∴点B的坐标为(1,3),∵反比例函数y=在第一象限内的图象交于点B,∴k2=1×3=3.故选:D.【点评】本题考查了反比例函数与一次函数的交点坐标,解题的关键是作辅助线构造直角三角形.11.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:2x﹣x+2=3解得:x=1,检验:把x=1代入(x﹣1)(x+2)=0,所以分式方程的无解.故选:C.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.【分析】先求出△AEF和△DEG的面积,然后可得到五边形EFBCG的面积,继而可得y与x 的函数关系式.2【解答】解:S△AEF=AE×AF=x,S△DEG=DG×DE=×1×(3﹣x)=,2﹣=﹣x2+x+,S五边形EFBCG= S正方形ABCD﹣S△AEF﹣S△DEG=9﹣x则y=4×(﹣x2+x+)=﹣2x2+2x+30,∵AE<AD,∴x<3,2综上可得:y=﹣2x+2x+30(0<x<3).故选:A.【点评】本题考查了动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,对于有些题目可以不用求出函数关系式,根据走势或者特殊点的值进行判断.13.【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【解答】解:如图1,∵OC=2,∴OD=2×sin30°=1;如图2,∵OB=2,∴OE=2×sin45°=;如图3,∵OA=2,∴OD=2×cos30°=,则该三角形的三边分别为:1,,,∵(1)222+()=(),∴该三角形是直角三角形,∴该三角形的面积是:×1×=.故选:A.,概念【点评】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等根据解直角三角形的知识解答是解题的关键.14.【分析】根据判别式的意义,当b=﹣1时△<0,从而可判断原命题为是假命题.0,方程没有实数解,4,当b=﹣1时,△<【解答】解:△=b2﹣1可作为判断命题“关于x的一元二次方程x2+b x+1=0,必有实数解”是假命题的反所以b取﹣例.故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”假.要真即形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非例即出一个反说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举可.15.【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经1,0)可得到a、b、c之(﹣过过(3,0),则得②的判断;根据图象经1)之间可以判间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣断c的大小得出④的正误.【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4?a?(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>02∴4ac﹣b<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.思想的应用.【点评】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合分25分,只要求填写最后结果,每小题填对得5分)5小题,满二、填空题(本大题共16.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.4324ab【解答】解:ab﹣+4ab4b+4)=ab2(b2﹣=ab2(b﹣2)2.2)2.故答案为:ab2(b﹣行因式分【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.17.【分析】根据二次根式有意义的条件和分式有意义的条件列出不等式,解不等式即可.1≥0,3﹣x≠0,【解答】解:由题意得,2x﹣解得,x≥,x≠3,故答案为:x≥且x≠3.【点评】本题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式中的被开方数是非负数、分式有意义的条件是分母不等于零是解题的关键.18.【分析】设甲每小时做x个零件,乙每小时做y个零件,根据题意列出关于x、y的方程,解方.程组即可得出结论【解答】解:设甲每小时做x个零件,乙每小时做y个零件,依题意得:,解得:.故答案为:9.题意列时,结合【点评】本题考查了分式方程的应用,属于基础题,难度不大,解决该题型题目出方程(或方程组)是关键.19.【分析】过M作MN′⊥OB于N′,交OC于P,即MN′的长度等于点P到点M与到边O A的距离之和的最小值,解直角三角形即可得到结论.【解答】解:过M作MN′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,∵∠ON′M=90°,OM=4,∴MN′=OM?sin60°=2,∴点P到点M与到边OA的距离之和的最小值为2.【点评】本题考查了轴对称﹣最短路线问题,解直角三角形,正确的作出图形是解题的关键.20.【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB 的最小值,由对称的性质可知=,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.【解答】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+P B的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.故答案为:2.【点评】本题考查的是轴对称﹣最短路线问题,圆周角定理及勾股定理,解答此题的关键是根据题意作出辅助线,构造出直角三角形,利用勾股定理求解.三、解答题(本大题共7小题,满分80分.解答应写出必要的文字说明、证明过程或推演步骤)21.【分析】本题涉及零指数幂、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=+2﹣1﹣|1|,=+2﹣1﹣(﹣1),=+2﹣1+1,=+2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.22.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=?=,2∵|x﹣2|+(2x﹣y﹣3)=0,∴|x﹣2|=0,(2x﹣y﹣3)2=0,∴x=2,y=1.∴原式==.【点评】此题考查了分式的化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.23.【分析】(1)设购甲种树苗x株,乙种树苗y株,根据两种树苗总数为1000株及购买两种树苗的总价为28000元建立方程组求出其解即可;(2)购买甲种树苗a株,则购买乙种树苗(1000﹣a)株,由这批树苗的总成活率不低于92%建立不等式求出其解即可;(3)设购买树苗的总费用为W元,根据总费用=两种树苗的费用之和建立解析式,由一次函数的性质求出结论.【解答】解:(1)设购甲种树苗x株,乙种树苗y株,由题意,得,解得:.答:购甲种树苗400株,乙种树苗600株;(2)购买甲种树苗a株,则购买乙种树苗(1000﹣a)株,由题意,得90%a+95%(1000﹣a)≥92%×1000,解得:a≤600.购买600株;答:甲种树苗最多(3)设购买树苗的总费用为W元,购买甲种树苗a株,由题意,得W=25a+30(1000﹣a)=﹣5a+30000.∵k=﹣5<0,∴W随a的增大而减小,∵0<a≤600,∴当a=600时,W27000元.最小=∴购买甲种树苗600株,乙种树苗400株时总费用最低,最低费用为27000元.【点评】本题考查了总价=单价×数量的运用,列二元一次方程解实际问题的运用,一元一次不.等式的解法的运用,一次函数的运用,解答时求出一次函数的解析式是关键24.【分析】(1)根据A的人数为105人,所占的百分比为35%,求出总人数,即可解答;(2)C所对应的人数为:总人数×30%,B所对应的人数为:总人数﹣A所对应的人数﹣C所对D所对应的人数,即可解答;应的人数﹣(3)根据B所占的百分比×360°,即可解答.【解答】解:(1)105÷35%=300(人),答:一共调查了300名同学,90﹣45=60(人).105﹣(2)n=300×30%=90(人),m=300﹣故答案为:60,90;(3)×360°=72°.词B所在扇形的圆心角是72度.答:扇形统计图中,热息的能力.利用统计图获【点评】本题考查条形统计图与扇形统计图的能力和利用统计图获取信取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.【分析】(1)本题需先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O 为B D的中点得出△POD≌△QOB,即可证出OP=OQ.(2)本题需先根据已知条件得出∠A的度数,再根据AD=8厘米,AB=6厘米,得出BD和OD 的长,再根据四边形PBQD是菱形时,即可求出t的值,判断出四边形PBQD是菱形.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,又∵O为B D的中点,∴OB=OD,在△POD与△QOB中,∵∴△POD≌△QOB(ASA),∴OP=OQ;t,(2)解:PD=8﹣∵四边形PBQD是菱形,∴PD=BP=8﹣t,∵四边形ABCD是矩形,∴∠A=90°,在Rt△ABP中,由勾股定理得:AB222=BP+AP,即62+t2=(8﹣t)2,解得:t=,为秒时,四边形PBQD是菱形.时间即运动来是点结合起【点评】本题主要考查了矩形的性质,在解题时要注意与全等三角形、矩形的知识.解本题的关键26.【分析】(1)连接O E.欲证直线C E与⊙O相切,只需证明∠CEO=90°,即OE⊥CE即可;(2)在直角三角形ABC中,根据三角函数的定义可以求得AB=,然后根据勾股定理求得AC=,同理知DE=1;方法一、在Rt△COE 中,利用勾股定理可以求得CO2=OE2+CE2,即=r2+3,从而易得r 的值;方法二、过点O 作OM⊥AE 于点M,在Rt△AMO 中,根据三角函数的定义可以求得r 的值.【解答】解:(1)直线C E 与⊙O 相切.⋯( 1 分)理由如下:∵四边形ABCD 是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;O E,则∠DAC =∠AEO=∠DCE ;连接∵∠DCE +∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE 是⊙O 的半径,∴直线C E 与⊙O 相切.⋯(2)∵tan∠ACB==,BC=2,∴AB=BC?tan∠ACB=,∴AC=;又∵∠ACB=∠DCE,∴tan∠DCE =tan∠ACB=,∴DE=DC ?tan∠DCE=1;方法一:在Rt△CDE 中,CE==,连接⊙O 的半径为r,则在Rt△COE 中,CO2=OE2+CE2,即=r2+3O E,设解得:r=D E=1,过点O 作OM⊥AE 于点M,则AM=AE=方法二:AE=AD﹣在Rt△AMO中,OA==÷=⋯段.线的长【点评】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算227.【分析】(Ⅰ)设抛物线的解析式为y=ax+b x+c(a≠0),再把A(﹣1,0),B(5,0),C (0,﹣)三点代入求出a、b、c的值即可;B C交对称轴直线于点P,求出(Ⅱ)因为点A关于对称轴对称的点B的坐标为(5,0),连接P点坐标即可;.(Ⅲ)分点N在x轴下方和上方两种情况进行讨论【解答】解:(Ⅰ)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,﹣)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;,2x﹣(Ⅱ)∵抛物线的解析式为:y=x2﹣∴其对称轴为直线x=﹣=﹣=2,1所示,B C,如图连接∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(Ⅲ)存在点N,使以A,C,M,N四点构成的四边形为平行四边形.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,点N2作N2D⊥x轴于点D,如图,过在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).,).),(2+,)或(2﹣综上所述,符合条件的点N的坐标为(4,﹣、式本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析【点评】谢谢..论平行四边的判定与性质、全等三角形等知识,在解答类讨(3)时要注意进行分谢谢.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金沙县2019年初中毕业生第三次适应性联考试卷数 学 试 题注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、填涂在答题卡规定的位置。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,非选择题必须用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上,在试题卷上作答无效。
3. 总分150、考试时间120分钟。
4.考试结束,监考人员将试卷和答题卡一并收回.第I卷 选择题(共45分)一、单项选择题(本大题共15个小题.每小题3分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 2-的相反数是( )A. 2B. -1C. 12-D. 122、如图是我县某一天内的气温变化图,根据图2,下列说法中错误..的是 ( ) A .这一天中最高气温是24℃B .这一天中最高气温与最低气温的差为12℃C .这一天中2时至14时之间的气温在逐渐升高D .这一天中只有14时至243. 小明的讲义夹里放了大小相同的试卷共10页,其中语文2页、数学3页、英语5页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( ) A.21B.103C.52D.101 4. 抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .()213y x =++ B .()213y x =+- C .()213y x =-- D .()213y x =-+t 时2题5.三角形在方格纸中的位置如图所示,则tan α的值是( )A .34B .43C .35 D.135D .456.在实数2,722,0.101001,π,0,4中,无理数的个数是( ) A .0个B .1个C .2个D .3个7. 关于近似数3104.2⨯,下列说法正确的是( )A .精确到十分位,有2个有效数字 B. 精确到百位,有4个有效数字 C. 精确到百位,有2个有效数字 D. 精确到十分位,有4个有效数字 8.一次数学测试后,随机抽取6名学生成绩如下:86,85,88,80,88,95,关于这组数据说法错误的是( )A .极差是15B .众数是88C .中位数是86D .平均数是87 9. 如图, OAB △绕点O 逆时针旋转80°得到OCD △,若110A ∠=°,40D ∠=°,则∠α的度数是( ) A .30° B .40° C .50° D .60°10.已知抛物线c bx ax y ++=2的图象如图所示,则下列结论: ①abc >0; ② 2=++c b a ; ③a <21; ④b =1. 其中正确的结论是 ( ) A. ①② B. ②③C. ③④D. ②④第10题11. 下列不是必然事件的是( ) A . 角平分线上的点到角两边的距离相等 B . 三角形任意两边之和大于第三边 C . 面积相等的两个三角形全等 D . 三角形内心到三边距离相等α(第5题) B(第9题)x12.在平行四边形、等边三角形、菱形、等腰梯形中,既是轴对称图形又是中心对称图形的是( )A .平行四边形B .等边三角形C .菱形D .等腰梯形13. 把不等式组 ⎩⎨⎧<-≤-4201x x 的解集表示在数轴上,正确的是( )(A ) (B ) (C ) (D ) 14从不同方向看一只茶壶,你认为是俯视效果图的是………………( ) 15.使分式51-x 有意义,则x 的取值范围是( ) A .x 5≥ B .x 5≤ C .x ﹥5 D .x ≠5第Ⅱ卷 非选择题(共105分)二.填空题(本大题共5小题,每小题5分,共25分)16. 如图,直线12l l ∥,1120∠=°,则2∠=__________度.17. 如图,已知梯形ABCD ,AD ∥BC ,对角线AC ,BD 相交于点O ,△AOD 与△BOC 的面积之比为1:9,若AD =1,则BC 的长是 .18. 已知一次函数21y x =+,则y 随x 的增大而_______________(填“增大”或“减小”).19.为落实“两免一补”政策,某市2019年投入教育经费2500万元,预计2019年要投入教育经费3600万元.已知2019年至2019年的教育经费投入以相同的百分率逐年增长,则2019年该市要投入的教育经费为 万元. 20.分解因式:x 3-6x 2+9x=_________________ABCD12 l 2l 1(第16题)三、解答及证明。
(本大题共7题,各题分值见题号后,共80分,解答时必须写出运算步骤、推理过程、文字说明或作图痕迹)21.(本题满分10分)先化简,再求值:222216214x x x x x x x ⎛⎫---÷ ⎪+-⎝⎭,其中x 满足2310x x --=.22.(本题满分10分)解方程组:{3237x y x y +=+=.23.(本小题满分12分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,AC CD =,30D ∠=°, (1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为3,求BC24.(本小题满分12分)(第23题)为了推动课堂教学改革,打造高效课堂,我县某中学对八年级部分学生就一期来“分组合作学习”方式的支持程度进行调查,统计情况如图.试根据图中提供的信息,回答下列问题:(1)求本次被调查的八年级学生的人数,并补全条形统计图;(2)若该校八年级学生共有180人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?25.(本小题满分10分)某工厂加工某种产品,机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的3倍,求手工每小时加工产品的数量.726.(本小题满分11分)某单位于“三•八”妇女节期间组织女职工到大田乡“十里杜鹃”观光旅游.下面是领队与旅行社导游收费标准的一段对话:领队:组团去“十里杜鹃”旅游每人收费是多少?导游:如果人数不超过25人,人均旅游费用为100元.领队:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团浏览“十里杜鹃”结束后,共支付给旅行社2700元.请你根据上述信息,求该单位这次到“十里杜鹃”观光旅游的共有多少人?27.(本小题满分15分)在△ABC中,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图甲),而y关于x的函数图象如图乙所示.Q(1)是函数图象上的最低点.请仔细观察甲、乙两图,解答下列问题.(1)请直接写出AB边的长和BC边上的高AH的长;(2)求∠B的度数;(3)若△ABP为钝角三角形,求x的取值范围.Q金沙县2019年初中毕业生第三次适应性联考试卷参考答案一、选择题(本大题共15个小题.每小题3分,共45分,在每小题给出的四个选项中,只有一二、填空题16. 120。
17. 3 18.增大 19. 3000 20. x(x-3)2三、解答及证明。
(本大题共7题,各题分值见题号后,共80分,解答时必须写出运算步骤、推理过程、文字说明或作图痕迹)21.(本小题满分10分)解:原式=22222224116x x x x x xx x +-+-⨯+- …………………………(3分)=(4)(4)1(4)(4)x x x x x x x +-⨯++- …………………………(5分) =21x x +. …………………………(6分) ∵2310x x --=,∴213x x += . ……………………… (8分)∴当2310x x --=时, 原式=22133x x =. ………………………… (10分)22(本题满分10分)解:由①得,x y -=3③ ……………………………………………1分 把③代入②得,7)3(32=-+x x 7392=-+x x2=x ……………………………………………4分 把2=x 代入③得1=y ………………………………………7分∴原方程组的解为{21==x y……………………………………………10分23 .(本小题满分12分)(1)证明:连结OC , ············· 1分30AC CD D =∠=,°,30A D ∴∠=∠=° ············· 3分 OA OC =,230A ∴∠=∠=°,············· 5分 160∴∠=°,90OCD ∴∠=°.······························· 6分 CD ∴是O ⊙的切线.······························ 7分 (2)160∠=°,BC ∴的长=π60π3π180180n R ⨯⨯==.······················ 10分 答:BC 的长为π. ······························ 12分24.(本小题满分12分)解:(1)∵喜欢“分组合作学习”方式的圆心角度数为120°,频数为18,∴本次被调查的八年级学生的人数为:18÷120360=54(人)。