安徽省濉溪县2019-2020学年七年级上学期期末考试数学试题(含答案)

合集下载

2019-2020学年七年级(上)期末数学试卷(附解析)

2019-2020学年七年级(上)期末数学试卷(附解析)

2019-2020学年七年级(上)期末数学试卷1. −2019的绝对值是( )A. 2019B. −2019C. 12019D. −120192. 如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )A.B.C.D.3. 如图,下列说法中错误的是( )A. ∠3和∠5是同位角B. ∠4和∠5是同旁内角C. ∠2和∠4是对顶角D. ∠1和∠4是内错角4. 下列运算正确的是( )A. 0−3=−3B. −52−12=−2 C. (−52)÷(−25)=1D. (−2)×(−3)=−65. 宜宾五粮液机场已于2019年12月5日正式投运,预计到2020年,通航的城市将达到30个,年旅客吞吐量达200万人次,该项目中航站楼总建筑面积约2.4万平方米,用科学记数法表示2.4万为( )A. 2.4×103B. 2.4×104C. 2.4×105D. 0.24×1056. 若锐角α的补角是140°,则锐角α的余角是( )A. 30°B. 40°C. 50°D. 60°7. 一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“创”相对的面上的汉字是( )A. 文B. 明C. 宜D. 宾8. 把多项式1−5ab 2−7b 3+6a 2b 按字母b 的降幂排列正确的是()A. 1−7b3−5ab2+6a2bB. 6a2b−5ab2−7b3+1C. −7b3−5ab2+1+6a2bD. −7b3−5ab2+6a2b+19.下列去括号正确的是()A. a−(b−c)=a−b−cB. x2−[−(−x+y)]=x2−x+yC. m−2(p−q)=m−2p+qD. a+(b−c−2d)=a+b−c+2d10.已知直线m//n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A. 20°B. 30°C. 45°D. 50°11.若代数式x−2y=3,则代数式2(x−2y)2+4y−2x+1的值为()A. 7B. 13C. 19D. 2512.将一副三角板按如图放置,则下列结论:①∠1=∠3;②∠CAD+∠2=180°;③若∠1=45°,则有BC//AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A. ①②③B. ①②④C. ③④D. ①②③④13.如果把顺时针旋转21°记作+21°,那么逆时针旋转15°应记作______.14.单项式2x m y3与−3xy3n是同类项,则m+n=______.15.如图,数轴上的点A所表示的数为a,化简|a|−|1−a|的结果为______.16.规定⊗是一种新运算规则:a⊗b=a2−b2,例如:2⊗3=22−32=4−9=−5,则5⊗[1⊗(−2)]=______.17.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=______cm.18.下列说法中:①若对于任意有理数x,则|x+1|+|3−x|存在最小值为4;②如果关于x的二次多项式−3x2+mx+nx2−x+3的值与x的取值无关,则(m2+n)(m2−n)的值为−8;③一条线垂直于两条直线中的一条,则这条直线也垂直于另一条;④在同一平面内,四条直线两两相交,如果最多有m个交点,最少有n个交点,则m−n的值为5.其中正确的有(填序号)______.19.计算:(1)15×(1−13−15);(2)(−1)2019−17×[2−(−3)2].20.化简:(1)−3a2−2a+2+6a2+1+5a;(2)x+2(3y2−2x)−4(2x−y2).21.先化简,再求值:2x2y−[5xy2+2(x2y−3xy2+1)],其中x,y满足(x−2)2+|y+1|=0.22.如图,已知∠1+∠2=180°,∠B=∠3,试判断∠C与∠AED的大小关系,请补全证明过程,即在横线处填上结论或理由.解:∠AED=∠C.理由如下:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(______),∴∠2=∠DFE(______),∴AB//______(______),∴∠3=∠ADE(______),∵∠B=∠3(已知),∴∠______=∠______(______),∴______//______(______),∴∠C=∠AED(______).23.如图,射线OC、OD把∠AOB分成三个角,且度数之比是∠AOC:∠COD:∠DOB=2:3:4,射线OM平分∠AOC,射线ON平分∠BOD,且OM⊥ON.(1)求∠COD的度数;(2)求∠AOB的补角的度数.24.为鼓励居民节约用电,某市电力公司采用分段计费方式计算电费;每月用电不超过180度时,按每度0.5元计费;每月用电超过180度但不超过280度时,其中的180度仍按原标准收费,超过部分按每度0.6元计费.收费标准如下表:超过180度不超过280超过280度的部分用电量不超过180度度的部分收费标准(元/度)0.50.60.8(1)若小陈家每月交电费y元,每月用电量为x度,用含x的代数式表示电费y为:当0≤x≤180时,y=______;当180<x≤280时,y=______;当x>280时,y=______.(2)小陈家第三季度交电费132元,求小陈家第三季度用电多少度?25.如图1,AB//CD,∠PAB=125°,∠PCD=115°,求∠APC的度数.小明的思路是:过P作PM//AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为______度;(2)如图2,AB//CD,点P在直线a上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点B、D两点不重合),请直接写出∠APC与α、β之间的数量关系答案和解析1.【答案】A【解析】解:−2019的绝对值是:2019.故选:A.直接利用绝对值的定义进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】B【解析】【试题解析】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.3.【答案】D【解析】【试题解析】解:A、同位角:在截线同旁,被截线相同的一侧的两角.同位角的边构成“F“形,∠5和∠3是同位角,正确;B、同旁内角:在截线同旁,被截线之内的两角,同旁内角的边构成”U“形.∠1和∠2是同旁内角、∠4和∠5是同旁内角,正确;C、对顶角:有公共顶点且一角的两边是另外角的两边的反向延长线,∠4和∠2是对顶角,正确;D、内错角:在截线两旁,被截线之内的两角,内错角的边构成”Z“形,∠1和∠4不是内错角,错误.故选:D.根据同位角、同旁内角、内错角的定义判断.考查了同位角、内错角及同旁内角的知识,正确且熟练掌握同位角、同旁内角、内错角的定义和形状,是解题的关键.4.【答案】A【解析】 【试题解析】 【分析】根据各个选项中的式子,可以计算出正确的结果,本题得以解决.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 【解答】解:∵0−3=0+(−3)=−3,故选项A 正确; ∵−52−12=−3,故选项B 错误;∵(−52)÷(−25)=52×52=254,故选项C 错误;∵(−2)×(−3)=6,故选项D 错误; 故选A .5.【答案】B【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 【解答】解:2.4万=24000=2.4×104. 故选:B .6.【答案】C【解析】【试题解析】解:由锐角α的补角是140°,可得锐角α的余角为:140°−90°=50°.故选:C.根据补角和余角的定义可知,一个角的补角比它的余角大90°,据此列式计算即可.本题考查了余角和补角的知识,解答本题的关键是掌握互补两角之和为180°,互余两角之和为90°.7.【答案】C【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“明”是相对面,“文”与“宾”是相对面,“创”与“宜”是相对面.故选:C.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.【答案】D【解析】解:1−5ab2−7b3+6a2b按字母b的降幂排列为−7b3−5ab2+6a2b+1.故选:D.字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.本题主要考查了多项式,解题的关键是熟记按照某一个字母的指数从高到低进行排列叫按这个字母降幂排列.9.【答案】B【解析】【试题解析】【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,分别进行各选项的判断即可.本题考查了去括号得知识,属于基础题,掌握去括号得法则是解答本题的关键.【解答】解:A、a−(b−c)=a−b+c,原式计算错误,故本选项错误;B、x2−[−(−x+y)]=x2−x+y,原式计算正确,故本选项正确;C、m−2(p−q)=m−2p+2q,原式计算错误,故本选项错误;D、a+(b−c−2d)=a+b−c−2d,原式计算错误,故本选项错误;故选:B.10.【答案】D【解析】解:∵直线m//n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.根据平行线的性质即可得到结论.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.11.【答案】B【解析】【试题解析】解:∵x−2y=3,∴2(x−2y)2+4y−2x+1,=2(x−2y)2−2(x−2y)+1,=2×32−2×3+1,=18−6+1,=13.故选:B.原式中间两项提取−2变形后,把x−2y=3代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.【答案】D【解析】解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,故①正确;∵∠CAD+∠2=∠1+∠2+∠3+∠2=90°+90°=180°,故②正确;∵∠1=45°,∴∠3=∠B=45°,∴BC//AD.故③正确;∵∠2=30°,∴∠1=∠E=60°,∴AC//DE,∴∠4=∠C,故④正确.故选:D.根据余角的概念和同角的余角相等判断①;根据①的结论判断②;根据平行线的判定定理判断③;根据①的结论和平行线的性质定理判断④.本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.13.【答案】−15°【解析】【试题解析】解:“正”和“负”相对,所以如果顺时针方向旋转21°,记作+21°,那么逆时针旋转15°,应记作−15°.故答案为:−15°.为了表示两种相反意义的量,出现了负数,也就是说正数和负数是两种相反意义的量,如果顺时针旋转21°记作+21°,那么逆时针旋转15°记作−15°.此题考查的知识点是正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.【答案】2【解析】【试题解析】解:由单项式2x m y3与−3xy3n是同类项,得m=1,3n=3,解得m=1,n=1,∴m+n=1+1=2,故答案为2.根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.15.【答案】1【解析】【试题解析】【分析】直接利用绝对值的性质化简得出答案.此题主要考查了绝对值、数轴,正确化简绝对值是解题关键.【解答】解:由数轴上A点位置可得:1<a<2,则1−a<0,故|a|−|1−a|=a−(a−1)=1.故答案为1.16.【答案】16【解析】【试题解析】解:根据题中的新定义得:原式=5⊗(1−4)=5⊗(−3)=25−9=16.故答案为:16.原式利用题中的新定义计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.【答案】1【解析】【试题解析】【分析】本题主要考查线段的中点和线段的和差,解答此题的关键是熟练掌握线段的中点的定义.根据中点的定义可求解BM,及PB的长,进而可求解.【解答】解:∵M是AB的中点,AB=8cm,∴AM=BM=4cm,∵N为PB的中点,NB=1.5cm,∴PB=2NB=3cm,∴MP=BM−PB=4−3=1cm.故答案为1.18.【答案】①②④【解析】解:|x+1|+|3−x|的意义是:数轴上表示数x的点到表示−1和3的点的距离之和,当−1≤x≤3时,这个距离之和最小,最小值为|−1−3|=4,因此①正确;由关于x的二次多项式−3x2+mx+nx2−x+3的值与x的取值无关,则m=1,n=3,因此(m2+n)(m2−n)=−8,所以②正确;一条线垂直于两条直线中的一条,如果这两条直线不平行,则这条直线就不垂直于另一条,因此③不正确;在同一平面内,四条直线两两相交,最多有6个交点,最少有1个交点,即m=6,n=1,有m−n=5,因此④正确;综上所述,正确的有①②④,故答案为:①②④.逐项进行判断即可.本题考查垂线、非负数性质、合并同类项和多项式等知识,理解和掌握非负数、同类项和垂线性质是正确判断的前提.19.【答案】解:(1)原式=15×1−15×13−15×15=15−5−3 =7;×(−7)(2)原式=−1−17=−1+1=0.【解析】【试题解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最简算加减运算即可求出值.20.【答案】解:(1)原式=3a2+3a+3;(2)原式=x+6y2−4x−8x+4y2=10y2−11x.【解析】【试题解析】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.21.【答案】解:原式=2x2y−[5xy2+2x2y−6xy2+2]=2x2y−5xy2−2x2y+6xy2−2=xy2−2,由(x−2)2+|y+1|=0,得到x=2,y=−1,则原式=2×(−1)2−2=2−2=0.【解析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.此题考查了整式的加减−化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.【答案】平角的定义等量代换EF内错角相等,两直线平行两直线平行,内错角相等ADE B等量代换DE BC同位角相等,两直线平行两直线平行,同位角相等【解析】解:∠AED=∠C.理由如下:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(平角的定义),∴∠2=∠DFE(等量代换),∴AB//EF(内错角相等,两直线平行),∴∠3=∠ADE(两直线平行,内错角相等),∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE//BC(同位角相等,两直线平行),∴∠C=∠AED(两直线平行,同位角相等).故答案为:平角的定义;等量代换;EF;内错角相等,两直线平行;两直线平行,内错角相等;ADE;B;等量代换;DE;BC,同位角相等,两直线平行;两直线平行,同位角相等.证出∠2=∠DFE,得AB//EF,由平行线的性质得∠3=∠ADE,证出∠ADE=∠B,得DE//BC,由平行线的性质即可得出结论.本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键.23.【答案】解:(1)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵OM⊥ON,∴∠MON=90°,即6x=90°,解得x=15°,∴∠COD=45°;(2)∵∠AOB=9×15°=135°,∴∠AOB的补角的度数为45°.【解析】【试题解析】(1)设∠AOC=2x,∠COD=3x,∠DOB=4x,依据∠MON=90°,即可得到x的值,进而得出∠COD的度数;(2)依据∠AOB的度数,即可得到∠AOB的补角的度数.本题考查了补角的定义以及角平分线的定义,如果两个角的和等于180°(平角),就说这两个角互为补角,其中一个角是另一个角的补角.24.【答案】(1)0.5x;0.6x−18;0.8x−74;(2)将y=132代入y=0.5x,可得x=264,不符合x的取值范围,舍去,将y=132代入y=0.6x−18,可得x=250,符合x的取值范围,将y=132代入y=0.8x−74,可得x=257.5,不符合x的取值范围,舍去,即小陈家第三季度用电250度.【解析】【试题解析】解:(1)根据题意得:当0≤x≤180时,y=0.5x,当180<x≤280时,y=0.5×180+0.6×(x−180)=90+0.6x−108=0.6x−18,当x>280时,y=0.5×180+0.6×(280−180)+0.8×(x−280)=0.8x−74,故答案为:0.5x;0.6x−18;0.8x−74;(2)见答案;(1)根据“第一档:每月用电不超过180度时,按每度0.5元计费;第二档:每月用电超过180度但不足280度时,其中超过部分按每度0.6元计费,第三档:超过280度时,超过280度的部分按每度0.8元计费”,据此列出函数关系式即可;(2)根据(1)的结论;将交电费132元分别代入三个档次,可得用电量.本题考查一次函数的应用,考查分段函数,确定函数解析式是关键.25.【答案】120【解析】解:(1)如图1,过P作PM//AB,∴∠APM+∠PAB=180°,∴∠APM=180°−125°=55°,∵AB//CD,∴PM//CD,∴∠CPM+∠PCD=180°,∴∠CPM=180°−115°=65°,∴∠APC=55°+65°=120°;故答案为:120;(2)如图2,∠APC=∠α+∠β,理由如下:过P作PE//AB交AC于E,∵AB//CD,∴AB//PE//CD,∴∠α=∠APE,∠β=∠CPE,∴∠APC=∠APE+∠CPE=∠α+∠β;(3)如图3,当P在BD延长线时,∠APC=∠α−∠β;理由:过P作PE//AB,∵AB//CD,∴AB//PE//CD,∴∠α=∠APE,∠β=∠CPE,∴∠APC=∠APE−∠CPE=∠α−∠β;如图4,当P在DB延长线时,∠APC=∠β−∠α;理由:过P作PE//AB,∵AB//CD,∴AB//PE//CD,∴∠α=∠APE,∠β=∠CPE,∴∠APC=∠CPE−∠APE=∠β−∠α;(1)过P作PM//AB,构造同旁内角,通过平行线性质,可得∠APC的度数;(2)过P作PE//AE交AC于E,推出AB//PE//CD,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)画出图形,分两种情况:①点P在BD的延长线上,②点P在DB的延长线上,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.。

人教部编版2019-2020学年安徽省重点中学第一学期期末学业测试七年级数学试卷(解析版)

人教部编版2019-2020学年安徽省重点中学第一学期期末学业测试七年级数学试卷(解析版)

安徽省宿州2019-2020第一学期期末学业测试七年级数学试卷一、选择题(本大题共10小题,共30.0分)1.-的倒数是()A. B. C. D. 32.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2014年的“双11”网上促销活动中,天猫的支付交易额突破570亿元,将570亿元用科学记数法表示为()A. B. C. D.3.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为()A. 80元B. 85元C. 90元D. 95元4.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为()A. 0B.C.D. 15.下列判断错误的是()A. 多项式是二次三项式B. 单项式的系数是,次数是9C. 式子,ab,,,都是代数式D. 当时,关于x,y的代数式中不含二次项6.将方程去分母得到方程6x-3-2x-2=6,其错误的原因是()A. 分母的最小公倍数找错B. 去分母时,漏乘了分母为1的项C. 去分母时,分子部分的多项式未添括号,造成符号错误D. 去分母时,分子未乘相应的数7.下列说法中,正确的是()A. 直线一定比射线长B. 角的两边越长,角度就越大C. a一定是正数,一定是负数D. 是最大的负整数8.下列语句正确的是()A. 线段AB是点A与点B的距离B. 过n边形的每一个顶点有条对角线C. 各边相等的多边形是正多边形D. 两点之间的所有连线中,直线最短9.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A. 甲乙都对B. 甲对乙错C. 甲错乙对D. 甲乙都错10.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A. 2,3B. 3,3C. 2,4D. 3,4二、填空题(本大题共8小题,共24.0分)11.把一根木条钉在墙上使其固定,至少需要______个钉子,其理由是______.12.两个同样大小的正方体积木,每个正方体相对两个面上写的数字之和都等于0.现将两个正方体并排放置,看得见的5个面上的数如图所示,则看不见的7个面上所写的数字之和等于______.13.已知a+b=-7,ab=10,则代数式(3ab+6a+4b)-(2a-2ab)的值为______.14.3时45分时,时针与分针的夹角的补角为______.15.如图所示,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE=∠EOC,∠DOE=60°,则∠EOC的度数是______.16.点C在直线AB上,AC=10cm,CB=8cm,点M、N分别是AC、BC的中点,则线段MN的长为______.17.一圆柱形容器的内半径为3厘米,内壁高30厘米,容器内盛有18厘米高的水,现将一个底面半径为2厘米,高15厘米的金属圆柱竖直放入容器内,问容器内的水将升高______厘米.18.已知:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52,…,根据前面各式的规律,以下等式(n为正整数),①1+3+5+7+9+…+(2n-1)=n2;②1+3+5+7+9+…+(2n+3)=(n+3)2;③1+3+5+7+9+…+2013=10072;④101+…+2013=10072-502其中正确的有______ 个.三、解答题(本大题共8小题,共66.0分)19.画出右面由11个小正方体搭成的几何体从不同角度看得到的图形.从正面看从左面看从上面看20.(1)计算:-12019-(-)×[4-(-)2](2)先化简,再求值:(2x3-3x2y-xy2)-(x3-2xy2-y3)+(-x3+3x2y-y3),其中x=,y=2.21.解方程:=1-22.用⊕表示一种运算,它的含义是:A⊕B=+.如果2⊕1=,请计算出3⊕4的值.23.(1)平面内将一副三角板按如图1所示摆放,∠EBC=______°;(2)平面内将一副三角板按如图2所示摆放,若∠EBC=165°,那么∠α=______°;(3)平面内将一副三角板按如图3所示摆放,∠EBC=115°,求∠α的度数.24.如图,第一次将正方形纸片剪成4个一样的小正方形纸片,第2次将右下角的那个小正方形纸片按同样的方法剪成4个小正方形纸片,第3次,将第2次剪出的小正方形纸片右下角的那个小正方形纸片再剪成4个一样的小正方形纸片,…如此循环进行下去.(1)请将下表补充完整.(2)如果剪n次,总共能得到多少个小正方形纸片?(3)如果剪100次,总共得到多少个小正方形纸片?(4)如果想得到361个小正方形纸片,需要剪几次?25.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?26.列方程解应用题:某工厂车间有 21 名工人,每人每天可以生产 12 个螺钉或 18 个螺母,1 个螺钉需要配 2个螺母,为使每天生产的螺钉和螺母刚好配套,车间应该分配生产螺钉和螺母的工人各多少名?答案和解析1.【答案】A【解析】解:-的倒数为-3.故选:A.根据倒数的定义可得到-的倒数为-3.本题考查了倒数的定义:a(a≠0)的倒数为.2.【答案】B【解析】解:将570用科学记数法表示为5.70×1010.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解得x=90.故选:C.商品的实际售价是标价×90%=进货价+所得利润(20%•x).设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解这个方程即可求出进货价.解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价-进价列方程求解.4.【答案】B【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形.“5”与“2x-3”是相对面,“y”与“x”是相对面,“-2”与“2”是相对面,∵相对的面上的数字或代数式互为相反数,∴2x-3+5=0,x+y=0,解得x=-1,y=1,∴2x+y=2×(-1)+1=-2+1=-1.故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字互为相反数列式求出x、y的值,然后代入代数式进行计算即可得解.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.【答案】C【解析】解:A、多项式是二次三项式,故本选项正确;B、单项式的系数是-1,次数是2+3+4=9,故本选项正确;C、x=1不是代数式,故本选项错误;D、代入得:-9xy+3y+9xy-8x+1=3y-8x+1中不含二次项,故本选项正确;故选:C.运用多项式及单项式的定义判定即可.本题主要考查了多项式,单项式及代数式,解题的关键是熟记定义.6.【答案】C【解析】解:去分母得:6×-6×=1×6,3(2x-1)-2(x-1)=6,6x-3-2x+2=6,∴错误的原因是:去分母时,分子部分的多项式未添括号,造成符号错误.故选:C.首先根据解方程的方法,去分母,然后再观察错误原因.此题主要考查了一元一次方程的解法,去分母时,注意分子要加括号.7.【答案】D【解析】解:A、直线与射线是无限长的,故A错误;B、角度与角的两边长短无关,故B错误;C、大于零的数是正数,小于零的数是负数,故C错误;D、-1是最大的负整数,故D正确.故选:D.根据直线与射线的特征即可判断选项A;根据角的定义即可判断选项B;根据正数和负数的定义即可判断选项C;根据负整数的定义即可判断选项D.此题考查了直线、射线、线段,角的概念,有理数,准确的掌握概念是解题的关键.8.【答案】B【解析】解:A、应是线段AB的长度是点A与点B之间的距离,故错误;B、过n边形的每一个顶点有(n-3)条对角线,故正确;C、各角相等,各边相等的多边形是正多边形,故错误;D、连接两点的所有连线中,线段最短,故错误.故选:B.利用线段的性质和多边形的性质与特征,逐一判定即可.此题考查多边形的意义与性质以及线段的意义与性质的运用.9.【答案】A【解析】解:∵AC为正方形的对角线,∴∠1=×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4=×90°=45°.∴二者的做法都对.故选:A.甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.本题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.10.【答案】C【解析】解:计算8×9的过程为:左手伸出8-5=3个,右手伸出9-5=4个,∴8×9=10×(3+4)+2×1=72.计算7×8的过程为:左手应伸出7-5=2个,右手伸出8-5=3个,∴7×8=10×(2+3)+3×2=56.故7×9的过程为:左手伸出7-5=2个,右手伸出9-5=4个,所以7×9=10(2+4)+3×1=63,故选:C.认真分析8×9的计算过程后,得到规律:左手伸出8-5=3个,右手伸出9-5=4个,再计算5×6.本题的关键在于根据例子找到伸手指的规律.11.【答案】2 经过两点有且只有一条直线【解析】解:∵两点确定一条直线,∴将一根细木条固定在墙上时,我们至少需要两个钉子.因为经过两点有且只有一条直线,所以固定一根木条,至少需要2个钉子.当我们将一根细木条固定在墙上时,我们至少需要两个钉子;在建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙;当木工师傅锯木板时,他会用墨盒在木板上弹出墨线,这样会使木板沿直线锯下;在正常情况下,射击时只要保证瞄准的一只眼在两个准星确定在直线上,才能射中目标等等;它们都是运用了“两点确定一条直线”的直线的性质.12.【答案】-3【解析】解:∵正方体上相对两个面上写的数之和都等于0.∴每个正方体六个面上写的数之和等于0.两个正方体共十二个面上写的数之总和等于0,而五个看得见的面上的数之和是1-2+3-4+5=3,因此,看不见的七个面上所写数的和等于-3.故答案为:-3.根据相对两个面所写数字之和为0,可知两个正方体共十二个面上写的数之总和等于0,减去看得见的面上的数之和,即可得到看不见的七个面上所写的数字之和.本题考查了正方体相对两个面上的文字,解题关键是从相对面入手求出两个正方体共十二面上写的数之总和等于0.13.【答案】22【解析】解:(3ab+6a+4b)-(2a-2ab)=3ab+6a+4b-2a+2ab=5ab+4a+4b=5ab+4(a+b)当a+b=-7,ab=10时,原式=5×10+4×(-7)=22,故答案为:22.先去括号,再合并同类项,最后代入求出即可.本题考查了整式的加减和求值,用了整体代入思想,即分别把a+b和ab当作一个整体来代入.14.【答案】22.5°【解析】解:3时45分时,分针从数字12开始转了45×6°=270°,时针从数字3开始转了45×0.5°=22.5°所以3时40分时,时针与分针所夹的角度=270°-22.5°-3×30°=157.5°,180°-157.5°=22.5°,则时针与分针的夹角的补角为22.5°,故答案为:22.5°.根据分针每分钟转6°,时针每分钟转0.5°得到45分钟分针从数字12开始转的度数,时针从数字3开始转的度数,得到时针与分针的夹角,根据补角的概念计算即可.本题考查的是余角和补角的概念、钟面角的确定,掌握钟面被分成12大格,每大格30°;分针每分钟转6°,时针每分钟转0.5°是解题的关键.15.【答案】90°【解析】解:设∠BOE为x°,则∠DOB=60°-x°,由OD平分∠AOB,得∠AOB=2∠DOB,故有3x+x+2(60-x)=180,解方程得x=30,所以∠EOC=90°,故答案为:90°.可以设∠BOE为x°,就可以根据条件列方程解决,求出∠BOE.此题考查的知识点是角的计算,关键是根据角平分线的性质和已知条件列方程求解.方程思想是解决问题的基本思考方法.16.【答案】9cm或1cm【解析】解:当点C在线段AB上时,由点M、N分别是AC、BC的中点,得MC=AC=×10=5cm,CN=BC=×8=4cm.由线段的和差,得MN=MC+CN=5+4=9cm;当点C在线段AB的延长线上时,由点M、N分别是AC、BC的中点,得MC=AC=×10=5cm,CN=BC=×8=4cm.由线段的和差,得MN=MC-CN=5-4=1cm;故答案为:9cm,1cm.分类讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段中点的性质,可得MC、NC的长,根据线段的和差,可得答案.本题考查了两点间的距离,利用了线段中点的性质,线段的和差,分类讨论是解题关键,以防遗漏.17.【答案】6【解析】解:设此时的水深是x厘米,则容器内的水将升高(x-18)厘米,由题意,得π×32×x=π×32×18+π×22×15解得x=24,24-18=6,答:容器内的水将升高6厘米.故答案为6.设此时的水深是x厘米,则容器内的水将升高(x-18)厘米,根据此时容器中水的体积=原来容器中水的体积+金属圆柱的体积列出方程,解方程即可解答问题.本题考查了一元一次方程的应用,抓住水的体积不变,是解决本题的关键.18.【答案】3【解析】解:1+3+5+7+9+…+(2n-1)=n2,所以①正确;1+3+5+7+9+…+(2n+3)=(n+2)2,所以②错误1+3+5+7+9+…+2013=1+3+5+7+9+…+(2×1007-1)=10072,所以③正确;∵1+3+5+7+9+…+99=1+3+5+7+9+…+(2×50-1)=502,∴101+…+2013=10072-502,所以④正确.故答案为3.观察所给等式得到从1开始的连续的奇数的和等于奇数的个数的平方,则1+3+5+7+9+…+(2n-1)=n2,1+3+5+7+9+…+(2n+3)=(n+2)2,1+3+5+7+9+…+(2×50-1)=502,1+3+5+7+9+…+(2×1007-1)=10072,则可对①②③直接判断;通过求差可对④进行判断.本题考查了规律型:数字的变化类:探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.19.【答案】解:如图所示:.【解析】利用组合体从不同的角度观察得出答案即可.此题主要考查了三视图的画法,正确根据观察角度得出图形是解题关键.20.【答案】解:(1)原式=-1-×=-1-=-;(2)原式=2x3-3x2y-xy2-x3+2xy2+y3-x3+3x2y-y3=xy2,当x=,y=2时,原式=1.【解析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.【答案】解:方程两边同时乘以6得:2(17-5x)=6-(5+2x),去括号得:34-10x=6-5-2x,移项得:-10x+2x=6-5-34,合并同类项得:-8x=-33,系数化为1得:x=.【解析】依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.22.【答案】解:根据化简2⊕1=得:+=,去分母得:2+x=10,解得:x=8,则3⊕4=+=.【解析】利用题中的新定义化简已知等式求出x的值,即可确定出所求式子的值.此题考查了解一元一次方程,以及有理数的混合运算,弄清题中的新定义是解本题的关键.23.【答案】150 15【解析】解:(1)∠EBC=90°+60°=150°;(2)∠α=∠EBC-∠DBE-∠ABC=165°-90°-60°=15°;(3)因为∠EBC=115°,∠EBD=90°,所以∠DBC=∠EBC-∠EBD=25°.因为∠ABC=60°,所以∠α=∠ABC-∠DBC=35°.(1)(2)根据角的和差关系可直接算出答案;(3)首先计算出∠DBC的度数,再用∠ABC的度数减去∠DBC的度数即可.此题主要考查了角的计算以及一副三角板各角之间的关系,根据图象得出是解题关键.24.【答案】解:(1)填表如下:(2)如果剪了n次,共剪出3n+1个小正方形;(3)如果剪了100次,共剪出3×100+1=301个小正方形;(4)依题意有3n+1=361,解得:n-120.答:需要剪120次.【解析】(1)根据题意可以发现:每一次剪的时候,都是把上一次的图形中的一个进行剪.所以在4的基础上,依次多3个,找出规律填出答案即可;(2)利用(1)的规律,写出代数式即可;(3)把n=100代入(2)求得答案即可;(4)利用(1)的规律,得出方程求得n的数值即可.本题考查规律型中的图形变化问题,从简单情形入手,找出运算规律,利用规律解决问题.25.【答案】解:(1)读图可得:A类有60人,占30%;则本次一共调查了60÷30%=200人;本次一共调查了200位学生;(2)“B”有200-60-30-10=100人,画图正确;(3)用样本估计总体,每天参加体育锻炼在0.5小时以下占5%;则3000×5%=150,学校有150人平均每天参加体育锻炼在0.5小时以下.【解析】(1)读图可得:A类有60人,占30%即可求得总人数;(2)计算可得:“B”是100人,据此补全条形图;(3)用样本估计总体,若该校有3000名学生,则学校有3000×5%=150人平均每天参加体育锻炼在0.5小时以下.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.【答案】解:设分配x名工人生产螺母,则(21-x)人生产螺钉,由题意得18x=2×12(21-x),解得:x=12,则21-x=9,答:车间应该分配生产螺钉和螺母的工人9名,12名.【解析】设分配x名工人生产螺母,则(21-x)人生产螺钉,由1 个螺钉需要配 2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程求出解即可得出答案.本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.。

2019-2020学年七年级(上)期末考试数学试卷(解析版)

2019-2020学年七年级(上)期末考试数学试卷(解析版)

2019-2020学年七年级(上)期末考试数学试卷一、选择题(每小题3分,共30分)1.计算1+(﹣2)的正确结果是()A.﹣2 B.﹣1 C.1 D.32.﹣2019的相反数是()A.﹣2019 B.2019 C.﹣D.3.观察下列实物模型,其形状是圆柱体的是()A.B.C.D.4.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C.温度先上升6℃,再下降3℃D.无法确定5.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B.(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)6.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是()A.每名学生是总体的一个个体B.样本容量是500C.样本是500名学生D.该校一定有1000名学生近视7.若a为有理数,且|a|=2,那么a是()A.2 B.﹣2 C.2或﹣2 D.48.某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A.100a+50b B.100a﹣50b C.50a+100b D.50a+100b 9.下列说法正确的是()A.多项式x2+2x2y+1是二次三项式B.单项式2x2y的次数是2C.0是单项式D.单项式﹣3πx2y的系数是﹣310.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=33825二、填空题(每小题3分,共15分)11.比较大小:1 ﹣2(填“>,<或=”)12.把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是.13.2018年前三季度,我市社会消费品零售总额为19400000000元,该数据用科学记数法可表示为.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是千克.15.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了元.三、解答题(共55分,解答应写出必要的文字说明,演算步骤或推理过程)16.(5分)计算:﹣32﹣(﹣2)3+4÷2×2.17.(5分)解方程:﹣=1.18.(7分)先化简,再求值:3(m2n﹣mn)﹣6(m2n﹣mn),其中m=1,n=2.19.(7分)甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?20.(7分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的有人,最喜爱甲类图书的人数占本次被调查人数的%;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.21.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.22.(8分)已知平面上四点A,B,C,D,如图:(1)请按要求画图:①画直线AB,射线CD;②画射线AD,连接BC;③直线AB与射线CD相交于E;④连接AC、BD相交于点F.(2)根据以上作图,请判断下列位置关系:①点C与直线AB;②点E与直线CD;③直线AB与直线CD.23.(8分)方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?参考答案一、选择题1.计算1+(﹣2)的正确结果是()A.﹣2 B.﹣1 C.1 D.3【分析】绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.解:1+(﹣2)=﹣(2﹣1)=﹣1.故选:B.【点评】本题主要考查的是有理数的加法法则,熟练掌握有理数的加法法则是解题的关键.2.﹣2019的相反数是()A.﹣2019 B.2019 C.﹣D.【分析】直接利用相反数的定义分析得出答案.解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.观察下列实物模型,其形状是圆柱体的是()A.B.C.D.【分析】熟悉立体图形的基本概念和特性即可解.解:圆柱的上下底面都是圆,所以正确的是D.故选D.【点评】熟记常见圆柱体的特征,是解决此类问题的关键.4.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C.温度先上升6℃,再下降3℃D.无法确定【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.上升﹣3℃的意义是下降3℃.解:温度先上升6℃,再上升﹣3℃的意义是温度先上升6℃,再下降3℃.故选:C.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.5.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B.(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)【分析】根据除以一个不等于0的数,等于乘这个数的倒数可得.解:把(﹣)÷(﹣)转化为乘法是(﹣)×(﹣),故选:D .【点评】本题主要考查有理数的除法,解题的关键是掌握有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.6.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是( )A .每名学生是总体的一个个体B .样本容量是500C .样本是500名学生D .该校一定有1000名学生近视【分析】根据总体,样本,个体,样本容量的定义写出即可.解:A .每名学生的视力情况是总体的一个个体,此选项错误;B .样本容量是500,此选项正确;C .样本是500名学生的视力情况,此选项错误;D .该校大约有800名学生近视,此选项错误;故选:B .【点评】本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.7.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【分析】利用绝对值的代数意义求出a 的值即可.解:若a 为有理数,且|a |=2,那么a 是2或﹣2,故选:C.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.8.(3分)某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A.100a+50b B.100a﹣50b C.50a+100b D.50a+100b 【分析】由总价=单价×数量,可用含a,b的代数式表示出需付金额,此题得解.解:依题意,需付(100a+50b)元.故选:A.【点评】本题考查了列代数式,根据数量之间的关系,利用含a,b的代数式表示出需付总金额是解题的关键.9.下列说法正确的是()A.多项式x2+2x2y+1是二次三项式B.单项式2x2y的次数是2C.0是单项式D.单项式﹣3πx2y的系数是﹣3【分析】根据多项式、单项式、系数、常数项的定义分别进行判断,即可求出答案.解:A.多项式x2+2x2y+1是三次三项式,此选项错误;B.单项式2x2y的次数是3,此选项错误;C.0是单项式,此选项正确;D.单项式﹣3πx2y的系数是﹣3π,此选项错误;故选:C.【点评】此题考查了多项式、单项式;把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.10.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=33825【分析】根据“利息=本金×利率×时间”(利率和时间应对应),代入数值,计算即可得出结论.解:设王先生存入的本金为x元,根据题意得出:x+3×4.25%x=33825;故选:A.【点评】此题主要考查了一元一次方程的应用,计算的关键是根据利息、利率、时间和本金的关系,进行计算即可.二、填空题(每小题3分,共15分)11.比较大小:1 >﹣2(填“>,<或=”)【分析】根据有理数的大小比较法则比较即可.解:∵负数都小于正数,∴1>﹣2,故答案为:>.【点评】本题考查了对有理数的大小比较法则的应用,注意:负数都小于正数.12.把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是﹣8﹣5+2 .【分析】根据有理数的运算法则即可求出答案.解:原式=﹣8﹣5+2,故答案为:﹣8﹣5+2.【点评】本题考查有理数的运算,解题的关键熟练运用有理数的运算法则,本题属于基础题型.13.2018年前三季度,我市社会消费品零售总额为19400000000元,该数据用科学记数法可表示为 1.94×1010.【分析】根据科学记数法的表示方法:a×10n,可得答案.解:19400000000用科学记数法表示为:1.94×1010,故答案为:1.94×1010.【点评】本题考查了科学记数法,确定n的值是解题关键,n是整数数位减1.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是9 千克.【分析】设△的质量为xkg,□的质量为ykg,根据图示,列出关于x和y的二元一次方程组,解之即可.解:设△的质量为xkg,□的质量为ykg,根据题意得:,解得:,即□的质量为9kg.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.15.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了383.5 元.【分析】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.解:132+(﹣12.5)+(﹣10.5)+127+(﹣87)+136.5+98=132﹣12.5﹣10.5+127﹣87+136.5+98=132+98+127﹣87+136.5﹣12.5﹣10.5=230+40+113.5=383.5;答:这一周食品店的盈余了383.5元.故答案为:383.5.【点评】此题主要考查了正数和负数及有理数加法在实际生活中的应用,解题的关键是熟练掌握有理数的加法法则.三、解答题(共55分,解答应写出必要的文字说明,演算步骤或推理过程)16.(5分)计算:﹣32﹣(﹣2)3+4÷2×2.【分析】根据有理数的乘除法和加减法可以解答本题.解:﹣32﹣(﹣2)3+4÷2×2=﹣9﹣(﹣8)+4=﹣9+8+4=3.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(5分)解方程:﹣=1.【分析】依次去分母、去括号、移项、合并同类项、系数化为1可得.解:2(x﹣3)﹣3(4x+1)=6,2x﹣6﹣12x﹣3=6,2x﹣12x=6+6+3,﹣10x=15,x=﹣.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.18.(7分)先化简,再求值:3(m2n﹣mn)﹣6(m2n﹣mn),其中m=1,n=2.【分析】先算乘法,再合并同类项,最后代入求出即可.解:原式=3m2n﹣3mn﹣6m2n+4mn=﹣3m2n+mn,当m=1,n=2时,原式=﹣3×12×2+1×2=﹣6+2=﹣4.【点评】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则.19.(7分)甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?【分析】设x小时后两车相距30km,根据相距30km有两种情况分别列出方程求出即可.解:设x小时后两车相距30km,根据题意,得:(80+70)x=480﹣30或(80+70)x=480+30,解得:x=3或.答:3小时或小时后两车相距30km.【点评】此题主要考查了一元一次方程的应用,根据两车相距30km分类讨论得出是解题关键.20.(7分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了200 名学生;(2)被调查的学生中,最喜爱丁类图书的有15 人,最喜爱甲类图书的人数占本次被调查人数的40 %;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.【分析】(1)根据百分比=频数÷总数可得共调查的学生数;(2)最喜爱丁类图书的学生数=总数减去喜欢甲、乙、丙三类图书的人数即可;再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比;(3)设男生人数为x人,则女生人数为1.5x人,由题意得方程x+1.5x=1500×20%,解出x的值可得答案.解:(1)共调查的学生数:40÷20%=200(人);故答案为:50;(2)最喜爱丁类图书的学生数:200﹣80﹣65﹣40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;故答案为:15,40;(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1500×20%,解得:x=120,当x=120时,1.5x=180.答:该校最喜爱丙类图书的女生和男生分别有180人,120人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.【分析】(1)根据角平分线的定义求出∠MOB的度数,根据邻补角的性质计算即可.(2)根据题意得到:∠DOM为∠DON的余角.解:(1)∵∠AOC+∠AOD=∠AOD+∠BOD=180°,∴∠BOD=∠AOC=50°,∵OM平分∠BOD,∴∠BOM=∠DOM=25°,又由∠MON=90°,∴∠AON=180°﹣(∠MON+∠BOM)=180°﹣(90°+25°)=65°;(2)由∠DON+∠DOM=∠MON=90°知∠DOM为∠DON的余角,∵∠AON+∠BOM=90°,∠DOM=∠MOB,∴∠AON+∠DOM=90°,∴∠NOD+∠BOM=90°,故∠DON的余角为:∠DOM,∠BOM.【点评】本题考查的是邻补角的概念以及角平分线的定义,掌握邻补角的性质是邻补角互补是解题的关键.22.(8分)已知平面上四点A,B,C,D,如图:(1)请按要求画图:①画直线AB,射线CD;②画射线AD,连接BC;③直线AB与射线CD相交于E;④连接AC、BD相交于点F.(2)根据以上作图,请判断下列位置关系:①点C与直线AB;②点E与直线CD;③直线AB与直线CD.【分析】(1)根据直线、射线及线段的定义作图可得;(2)结合图形,依据点与直线的位置关系和直线与直线的位置关系逐一判断即可得.解:(1)如图所示:(2)由图知,①点C在直线AB外;②点E在直线CD上;③直线AB与直线CD相交.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握直线、射线及线段的定义和点与直线、直线与直线的位置关系.23.(8分)方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?【分析】第一个窗户射进的阳光的面积=长方形面积﹣半径为的一个半圆的面积;第二个窗户射进的阳光的面积=长方形面积﹣半径为的2个圆的面积.解:第一个窗户射进的阳光的面积为ab﹣×π()2=ab﹣第二个窗户射进的阳光的面积为ab﹣2×π()2=ab﹣∵>∴第一个窗户射进的阳光的面积<第二个窗户射进的阳光的面积.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.要能根据图形得到窗户射进的阳光的面积的计算公式.。

2019-2020学年安徽省淮北市濉溪县七年级上期末数学试卷含答案

2019-2020学年安徽省淮北市濉溪县七年级上期末数学试卷含答案

2019-2020学年安徽省淮北市濉溪县七年级上期末数学试卷含答案一.选择题.共10小题,每小题3分,满分30分)1.我2017年12月21日至24日每天的最高气温与最低气温如表:A.12月21日B.12月22日C.12月23日D.12月24日2.如图所示,A,B两点在数轴上,点A对应的数为2.若线段AB的长为3,则点B对应的数为()A.﹣1B.﹣2C.﹣3D.﹣43.与算式32+32+32的运算结果相等的是()A.33B.23C.35D.364.化简的结果是()A.﹣7x+B.﹣5x+C.﹣5x+D.﹣5x﹣5.已知a,b满足方程组,则a﹣b的值为()A.﹣1B.m﹣1C.0D.16.如图,下列图形全部属于柱体的是()A.B.C.D.7.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()A.30°B.45°C.50°D.60°8.如图,下列说法中错误的是()A.OA的方向是东北方向B.OB的方向是北偏西60°C.OC的方向是南偏西60°D.OD的方向是南偏东60°9.为了解我七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本;⑤500名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个10.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm2二、填空题.本大题共4小题,每小题4分,满分16分11.已知∠α=36°14′25″,则∠α的余角的度数是.12.王老师每晚19:00都要看央视的“新闻联播”节目,这一时刻钟面上时针与分针的夹角是度.13.若方程2x+1=3和的解相同,则a的值是.14.(4分)已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是cm.三、计算.本大题共2小题,每小题4分,满分8分15.计算(﹣3)2÷2÷(﹣)+4+22×(﹣)16.计算:﹣0.25÷(﹣)2×(﹣1)3+(+﹣3.75)×24.四、解方程组.本大题共2小题,每小题5分,满分10分17.(5分)解方程组:.18.(5分)解方程组:.五、本大题共2小题,每小题6分,满分12分19.(6分)先化简再求值:5(2a+b)2﹣2(2a+b)﹣4(2a+b)2+3(2a+b),其中a=,b=9.20.(6分)某生态示范园要对1号、2号、3号、4号四个品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出)(1)实验所用的2号果树幼苗的数量是株;(2)请求出3号果树幼苗的成活数,并把图2的统计图补充完整;(3)你认为应选哪一种品种进行推广?请通过计算说明理由.六、本题满分8分21.(8分)小王家购买了一套经济适用房,他家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)写出用含x、y的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21m2,且地面总面积是卫生间面积的15倍,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?七、本题满分8分22.(8分)如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.八.本题满分8分23.(8分)已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD 的中点,BM=6cm,求CM和AD的长.参考答案一.选择题1.【解答】解:12月21日:8﹣(﹣3)=11;12月22日:7﹣(﹣5)=12;12月23日:5﹣(﹣4)=9;12月24日:6﹣(﹣2)=8;∴温差最大的一天是12月22日,故选:B.2.【解答】解:根据数轴可知B<0,A>0,∴B点对应的数为2﹣3=﹣1.故选:A.3.【解答】解:原式=3×32=33,故选:A.4.【解答】解:原式=x+﹣6x+=﹣5x+故选:C.5.【解答】解:,②﹣①得:a﹣b=1,故选:D.6.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选:C.7.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选:A.8.【解答】解:A、OA的方向是北偏东45度即东北方向,故正确;B、OB的方向是北偏西60°,故正确;C、OC的方向是南偏西60°,故正确;D、OD的方向是南偏东30°,故错误.故选:D.9.【解答】解:这种调查方式是抽样调查;故①正确;总体是我七年级6000名学生期中数学考试情况;故②错误;个体是每名学生的数学成绩;故③正确;样本是所抽取的500名学生的数学成绩,故④错误;样本容量是500,故⑤错误.故选:B.10.【解答】解:设一个小长方形的长为xcm,宽为ycm,则可列方程组,解得,则一个小长方形的面积=40cm×10cm=400cm2.故选:A.二、填空题.本大题共4小题,每小题4分,满分16分11.【解答】解:根据定义,∠α的余角的度数是90°﹣36°14′25″=53°45′35″.故答案为53°45′35″.12.【解答】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°,故答案为:150.13.【解答】解:由2x+1=3得x=1,把x=1代入中得:2﹣=0,解得:a=7.故填:7.14.【解答】解:①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10﹣4=6cm.∵M是线段BC的中点,∴CM=BC=2cm,∴AM=AC+CM=6+2=8cm;②当点C在点B的右侧时,∵BC=4cm,M是线段BC的中点,∴BM=BC=2cm,∴AM=AB+BM=10+2=12cm.综上所述,线段AM的长为8cm或12cm.故答案为:8或12.三、计算.本大题共2小题,每小题4分,满分8分15.【解答】解:(﹣3)2÷2÷(﹣)+4+22×(﹣)=9×=﹣6+4﹣6=4.16.【解答】解:原式=﹣×4×(﹣1)+33+56﹣80=1+33+56﹣80=0.四、解方程组.本大题共2小题,每小题5分,满分10分17.【解答】解:将原方程组整理可得,①×3﹣②,得:﹣4y=﹣3,解得: y=,将y=代入①,得:x﹣=﹣1,解得:x=,∴方程组的解为.18.【解答】解:由②得x+2y=20 ③③﹣①得y=﹣40将y=﹣40代入①得x=100,所以原方程组的解为.五、本大题共2小题,每小题6分,满分12分19.【解答】解:原式=(2a+b)2+(2a+b),∵a=,b=9,∴2a+b=1+9=10,则原式=100+10=110.20.【解答】解:(1)500×(1﹣25%×2﹣30%)=100(株);(2)500×25%×89.6%=112(株),补全统计图如图;(3)1号果树幼苗成活率为:×100%=90%,2号果树幼苗成活率为×100%=85%,4号果树幼苗成活率为×100%=93.6%,∵93.6%>90%>89.6%>85%,∴应选择4号品种进行推广.六、本题满分8分21.【解答】解:(1)地面的总面积为:3×4+2y+2×3+6x=6x+2y+18;(2)由题意得,解得:,2y+18=45(m2),∴地面总面积为:S(总)=6x+∴铺地砖的总费用为:45×80=3600(元).答:那么铺地砖的总费用为3600元.七、本题满分8分22.【解答】解:设∠AOB=x°,因为∠AOC与∠AOB互补,则∠AOC=180°﹣x°.由题意,得.∴180﹣x﹣x=80,∴﹣2x=﹣100,解得x=50故∠AOB=50°,∠AOC=130°.八.本题满分8分23.【解答】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=AD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm.。

安徽省2019-2020年七年级上学期数学期末试卷

安徽省2019-2020年七年级上学期数学期末试卷

安徽省2019-2020年七年级上学期数学期末试卷1、12-的倒数的相反数是( ) A .2-B .2C . 12-D .122、下列各组数中,相等的一组是:( )A .23-()与23-B .223()与223C .32与23D .32-与32-()3. 有理数a 、b 在数轴上的对应的位置如图所示: 则( )-11abA .a + b <0B .a + b >0C .a -b = 0D .a -b >0 4. 下列判断中正确的是( ).A .bc a 23与2bca -不是同类项 B .52n m 不是整式C .单项式23y x -的系数是1-D .2253xy y x +-是二次三项式 5. 已知9532=++x x,则式子2932-+x x 的值为( )A . 4B . 6C . 8D . 106. 某种商品价格为a 元,降价10%后,又降价10%,销售额猛增,商店决定再提价20%,提价后这种商品的价格为( )元A .aB .a 08.1C .a 972.0D .a 96.0 7.如果∠α=20°,那么∠α的补角等于( ).A .20°B . 70°C .110°D .160°6. 如图,OC 是∠AOB 的平分线,OD 是∠BOC 的平分线,那么下列各式中正确的是( ).A .∠COD=12∠AOB B .∠AOD=23∠AOB C .∠BOD=13∠AOD D .∠BOC=23∠AOD9.下列语句正确的是()A .两点之间所有连线中,直线最短B .反向延长线段AB ,得到射线BAC .直线AB 比射线CD 长 D .射线CD 有两个端点,分别是点C 和点D 10. 某公司的生产量在七个月之内的增长变化情况如图所示,从图上看,下列结论不正确的是( ) A.2--6月生产量增长率逐月减少 B.7月份生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌一、 填空题(共6小题,每小题3分,共18分)11. 如图,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为 .12. 用科学记数法表示13040000,应记作_______________. 13. 若352220a b a b +++--=,则2a b +的值为 .14. 画直线L ,并在直线L 上截取线段AB=5cm ,再在直线L 上截取线段BC=2cm ,则线段AC 的长是 .15. 观察下列单项式:0,3x 2,8x 3,15x 4,24x 5,……,按此规律写出第8个单项式是______. 16.将两块直角三角板的直角顶点重合,如图所示,若128AOD =∠,则B OC =∠_________.三、解答题(共8小题,共52分)17. (5分)计算 ()322(5)64245-⨯-+÷---⨯18. (5分)解一元一次方程:12135x x +--=19.(6分)解方程:192(1)96x yx y +=⎧⎨+-=⎩.20. (6分)先化简,再求值2),45()54(3223-=--++-x x x x x 其中.21.(6分)如图所示,∠AOB 是直角,∠AOC=300,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,求∠MON 的度数。

2019-2020学年度七年级第一学期期末考试数学试题(解析版)

2019-2020学年度七年级第一学期期末考试数学试题(解析版)

2019-2020学年度七年级第一学期期末考试数学试题一、选择题(本大题共12小题,共36.0分)1.的相反数是A. 2018B.C.D.【答案】A【解析】解:的相反数是2018.故选:A.只有符号不同的两个数叫做互为相反数.本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.如果与互为余角,则A. B. C. D.【答案】D【解析】解:如果与互为余角,则.故选:D.根据互为余角的定义,可以得到答案.此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.单项式的次数是A. B. 2 C. 3 D. 4【答案】C【解析】解:单项式的次数是:3.故选:C.直接利用一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.4.下列立体图形中,从正面看,看到的图形是圆形的是A. B. C. D.【答案】A【解析】解:球从正面看到的图形是圆,符合题意;B.圆柱从正面看到的图形是矩形,不符合题意;C.圆锥从正面看到的图形是三角形,不符合题意;D.正方体从正面看到的图形是正方形,不符合题意;故选:A.根据三视图的性质得出主视图的形状进而得出答案.此题主要考查了简单几何体的三视图,得出主视图形状是解题关键.5.下列运算正确的是A. B. C. D.【答案】D【解析】解:原式,故A错误;原式,故B错误;原式,故C错误;故选:D.根据合并同类项的法则即可求出答案.本题考查合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.6.若代数式与是同类项,则x的值是A. B. 1 C. D. 0【答案】B【解析】解:根据题意得:,解得:.故选:B.根据同类项的定义所含字母相同,相同字母的指数相同列出方程,求出x的值.本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.7.已知A、B、C为直线l上的三点,线段,,那么A、C两点间的距离是A. 8cmB. 9cmC. 10cmD. 8cm或10cm【答案】D【解析】解:分两种情况:如图1,点C在线段AB上,则;如图2,点C在线段AB的延长线上,.故选:D.分类讨论:点C在线段AB上和点C在射线AB上两种情况.本题考查了两点间的距离需要分类讨论,以防漏解.8.某商品的进价为200元,标价为300元,打x折销售时后仍获利,则x为A. 7B. 6C. 5D. 4【答案】A【解析】解:设商品是按标价的x折销售的,根据题意列方程得:,解得:.则此商品是按标价的7折销售的.故选:A.根据题目中的等量关系是利润率利润成本,根据这个等量关系列方程求解.此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.9.如图所示的正方体的展开图是A. B. C. D.【答案】D【解析】解:根据带有各种符号的面的特点及位置,故选D.具体折一折,从中发挥想象力,可得正确的答案.解决此类问题,要充分考虑带有各种符号的面的特点及位置.10.9人14天完成一件工作的,而剩下的工作要在4天内完成,假设每个人的工作效率相同,则需增加的人数是A. 11人B. 12人C. 13人D. 14人【答案】B【解析】解:人14天完成一件工作的,这件工作需要:人1天完成,设需增加的人数是x人,根据题意可得:,解得:,答:需增加的人数是12人.故选:B.直接根据题意表示出总的工作量,进而利用剩下的工作要在4天内完成得出等式求出答案.此题主要考查了一元一次方程的应用,正确得出等量关系是解题关键.11.若代数式b为常数的值与字母x的取值无关,则代数式的值为A. 0B.C. 2或D. 6【答案】A【解析】解:原式,由结果与x无关,得到,,解得:,,则,故选:A.原式去括号整理后,由结果与x的取值无关求出a与b的值,代入原式计算即可求出值.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.12.有理数a,b在数轴上的对应点如图所示,则式子;;;中正确的是A. B. C. D.【答案】A【解析】解:由图可知:,正确;,错误;,错误;,正确;故选:A.在数轴上,右边的数总大于左边的数原点右边的表示正数,原点左边的表示负数.本题考查了数轴,学会根据点在数轴上的位置来判断数的正负以及代数式的值的符号.二、填空题(本大题共6小题,共18.0分)13.计算:______.【答案】3【解析】解:.故答案为:3.根据负数的绝对值等于这个数的相反数,即可得出答案.此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.14.已知,则的补角等于______.【答案】【解析】解:,的补角为,故答案为.根据补角的定义,得出补角为,即可得出答案.本题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式求解.15.若是关于x的方程的解,则a的值是______.【答案】【解析】解:将代入方程,得:,解得:.故答案为:.将代入方程可得关于a的方程,解之可得.本题主要考查一元一次方程的解,解题的关键是掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.16.若,且,,则______.【答案】49或1【解析】解:,,即.又,,,或,.当,时,;当,时,.故答案为:49或1根据已知条件,结合绝对值的性质得到m,n的值,再根据乘方的意义进行计算.绝对值具有非负性,绝对值是正数的数有两个,且互为相反数.17.运动场的跑道一圈长甲练习骑自行车,平均每分骑350m;乙练习跑步,平均每分跑两人从同一处同时反向出发,经过______分钟首次相遇.【答案】【解析】解:设两人背向而行,经过x分首次相遇,则:,解得:.故他们经过分钟时间首次相遇.故答案为:.在环形跑道上两人背向而行属于相遇问题,等量关系为:甲路程乙路程.本题考查环形跑道上的相遇问题和追及问题相遇问题常用的等量关系为:甲路程乙路程环形跑道的长度.18.已知,OC是从的顶点O引出的一条射线,若,则的度数为______.【答案】或【解析】解:如图1,当OC在内部时,,,,;如图2,当OC在外部时,,,,;故答案为或.本题是角的计算的多解题,题目中只说过O的射线,没说OC在的内部还是外部,要根据题意画出图形,分情况讨论.本题考查了余角的性质,解题的关键是根据题意画出图形,本题中易错的地方是漏掉其中的一种情况,所以求解时要分情况讨论.三、计算题(本大题共2小题,共16.0分)19.请你阅读下面的诗句并解答:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”【答案】解:设有x棵树,根据题意得,解得:只答:有5棵树,20只鸟.【解析】等量关系为:树的棵数树的棵数,把相关数值代入可得树的棵数,代入等号左边可得鸦的数量.此题考查一元一次方程的应用;根据鸦的总数得到相应的等量关系是解决本题的关键.20.已知点C为线段AB上的一个动点,点D、E分别是AC和BC的中点.若,则______cm.当点C是线段AB的中点时,且,求DE的长.若,求DE的长用含a的式子表求.【答案】20【解析】解:、E分别是AC和BC的中点而故答案为20.点D是AC中点,又、E分别是AC和BC的中点故DE的长为12cm.而,故当时,DE的长为根据中点定义,,即可求出AB的长;根据C是AB的中点,即可知,易求DE的长;根据,可以用含a的式子表示DE的长.本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.四、解答题(本大题共6小题,共50.0分)21.计算:化简:【答案】解:原式;原式.【解析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;原式去括号合并即可得到结果.此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.22..【答案】解:等式的两边同时乘以12,得分去括号、移项,得分合并同类项,得分化未知数的系数为1,得分【解析】先去分母,然后移项、合并同列项;最后化未知数的系数为1.本题考查了解一元一次方程解一元一次方程常见的过程有去分母、去括号、移项、系数化为1等.23.如图,已知四点A,B,C,D,按下列语句画出图形.画直线AB画射线DA画线段AC【答案】解:如图所示,直线AB,射线DA和线段AC即为所求.【解析】根据直线、射线和线段的定义作图可得.本题主要考查作图复杂作图,解题的关键是掌握直线、射线和线段的概念.24.如图,正方形ABCD和正方形CEFG的边长分别是a厘米和b厘米,图中阴影部分是由BF、BC和弧CF围成,求阴影部分的面积.【答案】解:连接CF,则阴影部分的面积扇形.【解析】根据扇形和三角形的面积公式即可得到结论.本题考查了扇形的面积,正方形的性质,三角形的面积,正确的理解题意是解题的关键.25.如图,已知OD平分,OE在内,且,.若知,求的度数;若知,求的度数.【答案】解:,,,设,则,,,;设,则,,OD平分,,,,.【解析】可以设为,根据条件列方程解决,求出;设,则,根据条件列方程解决,求出.考查了根据角平分线的性质和已知条件列方程求解,难度适中,方程思想是解决问题的基本思考方法.26.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:稿费不高于800元的不纳税;稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的的税;稿费为4000元或高于4000元的应缴纳全部稿费的的税.试根据上述纳税的计算方法作答:若王老师获得的稿费为2000元,则应纳税______元,若王老师获得的稿费为5000元,则应纳税______元若王老师获稿费后纳税280元,求这笔稿费是多少元?【答案】168 550【解析】解:若王老师获得的稿费为2000元,则应纳税:元若王老师获得的稿费为5000元,则应纳税:元故答案是:168;550;因为当稿费为4000元时,纳税元,且,所以王老师的这笔稿费高于800元,且低于4000元.设王老师的这笔稿费为x元,根据题意:答:王老师的这笔稿费为2800元.根据条件、解答;分类讨论:稿费高于4000元和低于4000元进行分析解答.考查了一元一次方程的应用解题关键是要读懂题目的意思,依据题目给出的不同条件进行判断,然后分类讨论,再根据题目给出的条件,找出合适的等量关系,列出方程,求解.。

2019-2020学年度第一学期期末考试七年级数学试题参考答案

2019-2020学年度第一学期期末考试七年级数学试题参考答案

2019—2020学年度第一学期期末考试七年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分题号 1 2 3 4 5 6 7 8 9 10答案 B D C B A B A C D C二、填空题:本题共5小题,每题3分,共15分11.1;12.36;13.-6;14.250;15.8m+12.三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.(本小题6分)(每正确画出一个图形得2分,共6分)17.(本小题6分)解:(1)(1)A-2B=(3a2-5ab)-2(a2-2ab)1分=3a2-5ab-2a2+4ab 2分=a2-ab. 3分(2)∵|3a +1|+(2-3b )2=0,∴3a +1=0,2-3b =0,解得a =13-,b =23. 4分 ∴A -2B =a 2-ab . =2112333⎛⎫⎛⎫---⨯ ⎪ ⎪⎝⎭⎝⎭ 5分 =121993+=. 6分 18.(本小题7分)(1)画图:如图所示. 4分(每正确画出一条射线得2分)(2)解:由题意知:∠MOG =110°,∠MOA =40°, 5分∴∠AOG=∠MOG -∠MOA =110°-40°=70° 射线OG 表示的方向是北偏东70°. 7分19.(本小题8分)解:(1)设甲、乙两车合作还需要x 天运完垃圾,根据题意,得31151530x x ++= 2分解得:x =8 3分答:甲、乙两车合作还需要8天运完垃圾.4分 (2)设乙车每天租金为y 元,则甲车每天租金为(y +100)元,根据题意,得 (3+8)(y +100)+8y =3950 6分解得:y =150 7分150+100=250答:甲车每天租金为250元,乙车每天租金为150元. 8分20.(本小题8分)解:(1)∵OB 平分∠AOC ,∴∠BOC =21∠COA =21×30°=15°. 1分同理:∠DOC =21∠EOC =21×90°=45°. 2分∴∠BOD =∠BOC +∠DOC =15°+45°=60°. 3分(2)∵OB 平分∠AOC ,∴∠COA =2∠BOC =2α. 4分同理:∠EOC =2∠DOC =2β. 5分∴∠AOE =∠COA +∠EOC =2α+2β. 6分(3)∠AOE =2∠BOD . 8分21.(本小题9分)(1)答:第①步错误,原因是去括号时,2这项没有乘以3;2分第④步错误,原因是应该用8除以2,小马用2除以8了. 4分【原因只要叙述合理即可得分】(2)解:7531164y y ---=,去分母得:12-2(7-5y )=3(3y -1). 6分去括号得:12-14+10y =9y -3. 7分移项得:10y -9y =-3-12+14. 8分合并同类项,得:y =-1. 9分22.(本小题11分)解:(1)EF =2020-(-2020)=4040. 2分(2)①当点P 是线段AB 的中点时,则PA =PB .所以x -(-2)=3-x .解得:x =0.5. 4分②当点A 是线段PB 的中点时,则PA =AB .所以(-2)-x =3-(-2).解得:x =-7. 6分③当点B 是线段P A 的中点时,则PB =AB .所以x -3=3-(-2).解得:x =8. 8分(3)答:在点A 左侧存在一点Q ,使点Q 到点A ,B 的距离和为19. 9分解:设点Q 表示的数是y .因为QA +QB =19,所以(-2)-y +3-y =19. 10分解得:y=-9.所以点Q表示的数是-9.11分。

2019-2020学年七年级数学上学期期末考试试卷(解析版)

2019-2020学年七年级数学上学期期末考试试卷(解析版)

2019-2020学年七年级数学上学期期末考试试卷一、选择题(本大题共10小题,共30.0分)1.一个物体向右移动1m记作+1m,那么这个物体向左移动3m记作()A. B. C. D.2.如图,数轴上有A,B,C,D四个点,其中所对应的数互为相反数的是()A. A与CB. A与DC. B与CD. B与D3.单项式-2x3y的系数为()A. B. 1 C. 2 D. 34.下列各式错误的是()A. B. C. D.5.如图所示,这个圆锥的侧面展开图可能是()A.B.C.D.6.已知a=b,下列变形不一定成立的是()A. B. C. D.7.买两种布料共120米,花了540元.其中蓝布料每米3元,黑布料每米5元,设买了蓝布料x米,依题意列方程()A. B.C. D.8.如图,将三角形纸片ABC沿EF折叠,点C落在C′处.若∠BFE=65°,则∠BFC′的度数为()A.B.C.D.9.如图,取一条长度为1的线段,将它三等分,去掉中间一段,余下两条线段,达到第1阶段;将剩下的两条线段再分别三等分,各去掉中间一段,余下四条线段,达到第2阶段;再将剩下四条线段分别三等分,各去掉中间一段,余下八条线段,达到第3阶段;…;这样一直继续操作下去,当达到第2017个阶段时,余下的线段的长度之和为()A. B. C. D.10.下列结论:①平面内3条直线两两相交,共有3个交点;②在平面内,若∠AOB=40°,∠AOC=∠BOC,则∠AOC的度数为20°;⑨若线段AB=3,BC=2,则线段AC的长为1或5;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β-∠α).其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.-的倒数是______.12.将一副三角板如图放置,则∠ABD的度数为______°.13.多项式3a2b-2ab+5是______次______项式,其中常数项为______.14.某货轮O在航行过程中,发现灯塔A在它的南偏东55°方向上,同时在它的北偏东40°方向发现了一座海岛B,则∠AOB的度数为______°.15.某商品按成本增加20%定出价格,由于库存积压,现将该商品按定价九折出售,那么出售该商品最终是______(填“盈利”或“亏损”),利润率或亏损率为______.16.如图,数轴上A,B两点之间的距离AB=16,有一根木棒PQ沿数轴向左水平移动,当点Q移动到点B时,点P所对应的数为6,当点Q移动到线段AB的中点时,点P所对应的数为______.三、计算题(本大题共3小题,共30.0分)17.先化简,再求值:3ab2+2(ab2-a3b)-3(2ab2-a3b),其中a=-2,b=.18.()观察积分榜,请直接写出球队胜一场积分,负一场积分;(2)根据积分规则,请求出E队已经进行了的11场比赛中胜、负各多少场?(3)若此次篮球比赛共16轮(每个球队各有16场比赛),D队希望最终积分达到28分,你认为有可能实现吗?请说明理由.19.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度、每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接写出a=______,b=______;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动;同时点N从原点O出发沿数轴向左运动,运动时间为t,点P为线段ON的中点.若MP=MA,求t的值;(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t.当以M,N,O,A为端点的所有线段的长度和为109时,求此时点M对应的数.四、解答题(本大题共5小题,共42.0分)20.计算.(1)80°-53°17′;(2)(3-5)×4+(-6)2÷921.解方程(1)2(x+3)=5x:(2)1-.22.某车间每天能制作甲种零件50只,或制作乙种零件25只,甲、乙两种零件各一只配成一套产品.现要使60天内制作的产品成套.则甲、乙两种零件各应安排制作多少天?23.如图,延长线段AB到点C,使BC=AB,点D为AC的中点.(1)若AB=8,请补齐图形并求线段BD的长;(2)若F为BC的三等分点,则的值为______(直接写出结果)24.如图,∠AOB=α,∠COD=β,且90°<α<180°,0°<β<90°.(1)如图1,已知α=128°.①若OD平分∠BOC,∠AOC与∠BOD互为余角,求∠AOC的度数;②若β=30°,分别作∠AOC和∠BOD平分线OP,OQ.求∠POQ的度数;(2)如图2,若α+β=160°,∠COD在平面内绕点O旋转,分别作∠AOC和∠BOD 平分线OP,OQ,则∠POQ的度数为______°(直接写出结果).答案和解析1.【答案】D【解析】解:一个物体向右移动1m记作+1m,那么这个物体向左移动3m记作-3m,故选:D.根据正数和负数表示相反意义的量,向右移动记为正,可得向左移动的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2.【答案】B【解析】解:A=-2,-1<B<0,C=1,D=2,所以所对应的数互为相反数的是A和D,故选:B.根据数轴和相反数的概念解答即可.本题考查了数轴,学会根据点在数轴上的位置来判断数的大小与正负.3.【答案】A【解析】解:单项式-2x3y的系数为:-2.故选:A.利用单项式中的数字因数叫做单项式的系数,进而得出答案.此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.4.【答案】C【解析】解:A、-(-3)=3,正确;B、|2|=|-2|,正确;C、0<|-1|,错误;D、-2>-3,正确;故选:C.根据正数大于零,零大于负数和绝对值、相反数的概念可得答案.本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.5.【答案】B【解析】解:观察图形可知,这个圆锥的侧面展开图可能是.故选:B.根据圆锥的侧面展开图是扇形,结合选项即可求解.本题考查了立体图形的侧面展开图.熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.6.【答案】D【解析】解:由等式a=b,可得:a-n=b-n,an=bn,a2=b2,但b=0时,无意义,故选:D.分别利用等式的基本性质判断得出即可.此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或整式)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数(或整式),结果仍得等式是解题关键.7.【答案】A【解析】解:设蓝布料x米,则黑布料(120-x)m,根据题意可得:3x+5(120-x)=540,故选:A.首先设蓝布料x米,则黑布料(120-x)m,进而利用买两种布料共120m,花了540元得出等式求出即可.此题主要考查了一元一次方程的应用,得出正确的等量关系是解题关键.8.【答案】B【解析】解:设∠BFC′的度数为α,则∠EFC'=65°+α,由折叠可得,∠EFC=∠EFC'=65°+α,又∵∠BFC=180°,∴∠EFB+∠EFC=180°,∴65°+65°+α=180°,∴α=50°,∴∠BFC′的度数为50°,故选:B.设∠BFC′的度数为α,则∠EFC=∠EFC'=65°+α,依据∠EFB+∠EFC=180°,即可得到α的大小.本题考查了三角形内角和定理以及折叠的性质,解题时注意:折叠前后两图形全等,即对应角相等,对应线段相等.解:根据题意知:第一阶段时,余下的线段的长度之和为,第二阶段时,余下的线段的长度之和为×=()2,第三阶段时,余下的线段的长度之和为××=()3,…以此类推,第五个阶段时,余下的线段的长度之和为()5,当达到第n个阶段时(n为正整数),余下的线段的长度之和为()n.∴达到第2017个阶段时,余下的线段的长度之和为()2017,故选:C.根据题意可知:当第一阶段时,余下线段之和为,当第二阶段时,余下线段之和为:=()2,当第三阶段时,余下线段之和为:=()3,于是得到结论.此题考查图形的变化规律,找出图形之间的联系,得出规律,解决问题.10.【答案】A【解析】解:①平面内3条直线两两相交,有1个或3个交点;故错误;②在平面内,若∠AOB=40°,∠AOC=∠BOC,则∠AOC的度数为20°或160°;故错误;③若线段AB=3,BC=2,则线段AC的长为1或5;点C不一定在直线AB上,故错误;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β-∠α),故正确.故选:A.根据线段的和差,相交线的定义,角平分线的定义,余角和补角的定义进行判断找到正确的答案即可.本题考查了基本的几何定义,比较简单,属于基础题.解:-的倒数是-2.故答案为:-2.乘积是1的两数互为倒数.本题主要考查的是倒数的定义,熟练掌握倒数的概念是解题的关键.12.【答案】15【解析】解:∠ABD=∠CBD-∠ABC=45°-30°=15°.故答案为:15.根据角的和差关系即可求解.考查了角的计算,关键是熟记三角板上面的度数.13.【答案】三三 5【解析】解:因为多项式的最高次项是3a2b,由三个单项式的和组成,所以多项式3a2b-2ab+5是三次三项式,其中常数项是-5.故答案是:三,三,5.根据多项式次数和项数以及常数项的定义求解.此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.常数项是不含字母的项.14.【答案】85【解析】解:∠AOB=180°-60°-35°=85°.故答案是:85.首先根据方向角的定义作出图形,根据图形即可求解.本题考查了方向角的定义,正确理解方向角的定义,理解A、B、O的相对位置是关键.15.【答案】盈利8%【解析】解:设成本为a元,根据题意可得:(1+20%)a•90%-a=0.08a,即出售该商品最终是盈利,利润率为8%.故答案是:盈利,8%.设成本为a元,按成本增加20%定出价格,求出定价,再根据按定价的90%出售,求出售价,最后根据售价-进价=利润,列式计算即可.本题考查了一元一次方程的应用,解题的关键是理清数量之间的关系,求出每件商品的售价.16.【答案】-2【解析】解:设AB的中点为C,则AC=BC=8,∵当点Q移动到点B时,点P所对应的数为6,∴此时AP=10,当点Q移动到线段AB的中点C时,BQ=AQ=8,∴点P所对应的数为6-8=-2,故答案为:-2.设AB的中点为C,则AC=BC=8,求得AP=10,当点Q移动到线段AB的中点C时,BQ=AQ=8,根据两点间的距离的求法即可得到结论.本题考查了数轴,正确理解两点间的距离是解题的关键.17.【答案】解:原式=3ab2+2ab2-2a3b-6ab2+3a3b=-ab2+a3b,当,时,原式==.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.18.【答案】2 1【解析】解:(1)2,1(2)设胜x场,则负(11-x)场依题意列方程2x+(11-x)=13解得x=2,则负场为 11-2=9(场)答:E对11场比赛胜2场,负9场(3)不可能实现,理由如下:设接下来的5场比赛胜x场,则负(5-x)场依题意列方程:2x+(5-x)=28-17x=6>5,不符合题意故不可能实现本题是典型的比赛积分问题.清楚积分的组成部分及胜负积分的规则是本题的关键.本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与负场的和.19.【答案】5 6【解析】解:(1)∵|a-5|+(b-6)2=0.∴a-5=0,b-6=0∴a=5,b=6故答案为5,6.(2)①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,即3t+10-5t=5t,解得t=②点M到达O返回时当(2<t≤4时),OM=5t-10,AM=20-5t,即3t+5t-10=20-5t,解得t=③点M到达O返回时,即t>4时,不成立(3)①依题意,当M在OA之间时,NO+OM+AM+MN+OA+AN=6t+20+11t+10+6t=109,解得t=>2,不符合题意,舍去;②当M在A右侧时,NO+OA+AM+AN+OM+MN=6t+5t+11t+10+6t+5t=109,解得 t=3,点M对应的数为15答:此时点M对应的数为15.本题涉及数轴即路程为题,清楚各个点之间距离的表示方式是解题的关键.另外要注意路程相等的几种情况.本题考查学生对数轴相关知识的掌握情况及利用一元一次解决实际问题的能力.20.【答案】解:(1)原式=79°60'-53°17'=26°43';(2)原式=-2×4+36÷9=-8+4=-4.【解析】(1)根据度分秒的计算解答即可;(2)根据有理数的混合计算解答.此题考查度分秒的换算,关键是根据度分秒的和、差计算即可.21.【答案】解:(1)2(x+3)=5x,去括号,得:2x+6=5x,移项合并同类项,得3x=6,化系数为1,得x=2;(2)1-,去分母,得10-x=4x+8,移项合并同类项,得5x=2,化系数为1,得.【解析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22.【答案】解:设安排甲制作x天,则安排乙制作(60-x)天,依题意列方程:50x=25(60-x)解得x=20,则安排乙制作 60-20=40(天)答:安排甲制作20天,则安排乙制作40天.【解析】可设甲种零件应制作x天,则乙种零件应制作(60-x)天,本题的等量关系为:甲、乙两种零件各一只配成一套产品.由此可得出方程求解.考查了一元一次方程的应用,解题关键是弄清题意,合适的等量关系,列出方程.本题要注意关键语“甲、乙两种零件各一只配成一套产品”得出等量关系,从而求出解.23.【答案】或【解析】解:(1)补图如图,∵BC=AB,AB=8,∴BC=4,∴AC=AB+BC=12,∵点D为AC的中点,∴DC=AC=6,∴BD=DC-BC=6-4=2.(2)由(1)知AD=DC=6,分两种情况讨论:①点F靠点B近,BF=,=;②点F靠点B近,BF=,=.故答案为:或.(1)先根据已知条件求出BC,再求出AC,由线段中点的定义求出DC,最后由BD=DC-BC求得答案;(2)由(1)知AD=DC=6,因为F为BC的三等分点,但是没有说明点F靠点B近,还是靠点C 近,所以需要分两种情况讨论:①点F 靠点B 近,BF=;②点F 靠点B 近,BF=.本题主要考查的是两点间的距离,掌握图形间线段之间的和差关系是解题的关键.24.【答案】100或80【解析】解:(1)①∵OD 平分∠BOC ,∠AOC+∠BOD=90°,∴∠BOD=∠COD=β,∴∠AOB=∠AOD+∠BOD=90°+β=128°,即β=38°,∴∠AOC=90°-β=52°; ②∵OP 平分∠AOC ,OQ 平分∠BOD ,∴∠AOP=∠AOC ,∠BOQ=∠BOD ,∴∠POQ=∠AOC+∠BOD+∠COD=(∠AOC+∠BOD+∠COD )+∠COD =∠AOB+15°=64°+15°=79°;(2)如图1,∵OP ,OQ 分别是∠AOC 和∠BOD 平分线,∴∠COP=∠AOC ,∠DOQ=∠BOD ,∴∠COP+∠DOQ=(∠AOC+∠BOD )=(∠AOB-∠COD )=(α-β),∴∠POQ=∠COP+∠DOQ+∠COD=(α-β)+β=(α+β)=80°; 如图2,∵∠AOD=∠AOB+∠COD-∠BOC=α+β-∠BOC ,∵OP ,OQ 分别是∠AOC 和∠BOD 平分线,∴∠COP=∠AOC ,∠BOQ=∠BOD ,∴∠POQ=∠COP+∠BOQ+∠BOC=(∠AOB-∠COD )+∠BOC=100°, 故答案为:80°或100°.(1)①根据角平分线的定义可以求得∠BOD=∠COD=β,可得∠AOB=∠AOD+∠BOD=90°+β=128°,求得β=38°,从而得到∠AOC的度数;②根据角平分线的定义得到∠AOP=∠AOC,∠BOQ=∠BOD,可得∠POQ=∠AOC+∠BOD+∠COD=(∠AOC+∠BOD+∠COD )+∠COD,从而得到∠POQ的度数;(2)分两种情况进行讨论,本题考查了角平分线定义,熟练掌握角平分线的定义是解题的关键.。

2019-2020学年安徽省淮北市濉溪县七年级上册期末数学试卷有答案【必备】

2019-2020学年安徽省淮北市濉溪县七年级上册期末数学试卷有答案【必备】

2019-2020学年安徽省淮北市濉溪县七年级(上)期末数学试卷一.选择题.共10小题,每小题3分,满分30分)1.我县2019-202012月21日至24日每天的最高气温与最低气温如表:A.12月21日B.12月22日C.12月23日D.12月24日2.如图所示,A,B两点在数轴上,点A对应的数为2.若线段AB的长为3,则点B 对应的数为()A.﹣1B.﹣2C.﹣3D.﹣43.与算式32+32+32的运算结果相等的是()A.33B.23C.35D.364.化简的结果是()A.﹣7x+B.﹣5x+C.﹣5x+D.﹣5x﹣5.已知a,b满足方程组,则a﹣b的值为()A.﹣1B.m﹣1C.0D.16.如图,下列图形全部属于柱体的是()A.B.C.D.7.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()A.30°B.45°C.50°D.60°8.如图,下列说法中错误的是()A.OA的方向是东北方向B.OB的方向是北偏西60°C.OC的方向是南偏西60°D.OD的方向是南偏东60°9.为了解我县七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本;⑤500名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个10.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm2二、填空题.本大题共4小题,每小题4分,满分16分11.已知∠α=36°14′25″,则∠α的余角的度数是.12.王老师每晚19:00都要看央视的“新闻联播”节目,这一时刻钟面上时针与分针的夹角是度.13.若方程2x+1=3和的解相同,则a的值是.14.(4分)已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是cm.三、计算.本大题共2小题,每小题4分,满分8分15.计算(﹣3)2÷2÷(﹣)+4+22×(﹣)16.计算:﹣0.25÷(﹣)2×(﹣1)3+(+﹣3.75)×24.四、解方程组.本大题共2小题,每小题5分,满分10分17.(5分)解方程组:.18.(5分)解方程组:.五、本大题共2小题,每小题6分,满分12分19.(6分)先化简再求值:5(2a+b)2﹣2(2a+b)﹣4(2a+b)2+3(2a+b),其中a=,b=9.20.(6分)某生态示范园要对1号、2号、3号、4号四个品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出)(1)实验所用的2号果树幼苗的数量是株;(2)请求出3号果树幼苗的成活数,并把图2的统计图补充完整;(3)你认为应选哪一种品种进行推广?请通过计算说明理由.六、本题满分8分21.(8分)小王家购买了一套经济适用房,他家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)写出用含x、y的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21m2,且地面总面积是卫生间面积的15倍,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?七、本题满分8分22.(8分)如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.八.本题满分8分23.(8分)已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.参考答案一.选择题1.【解答】解:12月21日:8﹣(﹣3)=11;12月22日:7﹣(﹣5)=12;12月23日:5﹣(﹣4)=9;12月24日:6﹣(﹣2)=8;∴温差最大的一天是12月22日,故选:B.2.【解答】解:根据数轴可知B<0,A>0,∴B点对应的数为2﹣3=﹣1.故选:A.3.【解答】解:原式=3×32=33,故选:A.4.【解答】解:原式=x+﹣6x+=﹣5x+故选:C.5.【解答】解:,②﹣①得:a﹣b=1,故选:D.6.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选:C.7.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选:A.8.【解答】解:A、OA的方向是北偏东45度即东北方向,故正确;B、OB的方向是北偏西60°,故正确;C、OC的方向是南偏西60°,故正确;D、OD的方向是南偏东30°,故错误.故选:D.9.【解答】解:这种调查方式是抽样调查;故①正确;总体是我县七年级6000名学生期中数学考试情况;故②错误;个体是每名学生的数学成绩;故③正确;样本是所抽取的500名学生的数学成绩,故④错误;样本容量是500,故⑤错误.故选:B.10.【解答】解:设一个小长方形的长为xcm,宽为ycm,则可列方程组,解得,则一个小长方形的面积=40cm×10cm=400cm2.故选:A.二、填空题.本大题共4小题,每小题4分,满分16分11.【解答】解:根据定义,∠α的余角的度数是90°﹣36°14′25″=53°45′35″.故答案为53°45′35″.12.【解答】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°,故答案为:150.13.【解答】解:由2x+1=3得x=1,把x=1代入中得:2﹣=0,解得:a=7.故填:7.14.【解答】解:①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10﹣4=6cm.∵M是线段BC的中点,∴CM=BC=2cm,∴AM=AC+CM=6+2=8cm;②当点C在点B的右侧时,∵BC=4cm,M是线段BC的中点,∴BM=BC=2cm,∴AM=AB+BM=10+2=12cm.综上所述,线段AM的长为8cm或12cm.故答案为:8或12.三、计算.本大题共2小题,每小题4分,满分8分15.【解答】解:(﹣3)2÷2÷(﹣)+4+22×(﹣)=9×=﹣6+4﹣6=4.16.【解答】解:原式=﹣×4×(﹣1)+33+56﹣80=1+33+56﹣80=0.四、解方程组.本大题共2小题,每小题5分,满分10分17.【解答】解:将原方程组整理可得,①×3﹣②,得:﹣4y=﹣3,解得:y=,将y=代入①,得:x﹣=﹣1,解得:x=,∴方程组的解为.18.【解答】解:由②得x+2y=20 ③③﹣①得y=﹣40将y=﹣40代入①得x=100,所以原方程组的解为.五、本大题共2小题,每小题6分,满分12分19.【解答】解:原式=(2a+b)2+(2a+b),∵a=,b=9,∴2a+b=1+9=10,则原式=100+10=110.20.【解答】解:(1)500×(1﹣25%×2﹣30%)=100(株);(2)500×25%×89.6%=112(株),补全统计图如图;(3)1号果树幼苗成活率为:×100%=90%,2号果树幼苗成活率为×100%=85%,4号果树幼苗成活率为×100%=93.6%,∵93.6%>90%>89.6%>85%,∴应选择4号品种进行推广.六、本题满分8分21.【解答】解:(1)地面的总面积为:3×4+2y+2×3+6x=6x+2y+18;(2)由题意得,解得:,2y+18=45(m2),∴地面总面积为:S(总)=6x+∴铺地砖的总费用为:45×80=3600(元).答:那么铺地砖的总费用为3600元.七、本题满分8分22.【解答】解:设∠AOB=x°,因为∠AOC与∠AOB互补,则∠AOC=180°﹣x°.由题意,得.∴180﹣x﹣x=80,∴﹣2x=﹣100,解得x=50故∠AOB=50°,∠AOC=130°.八.本题满分8分23.【解答】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=AD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm.。

2019-2020学年度第一学期七年级数学期末考试题(附答案

2019-2020学年度第一学期七年级数学期末考试题(附答案

2019-2020学年度第一学期七年级数学期末考试题(附答案)一、选择题(共6题;共12分)1.下列说法中正确的是()A. x的次数是0B. 是单项式C. 是单项式D. -5a的系数是52.下列运算错误的是()A. (m2)3=m6B. a10÷a9=aC. x3•x5=x8D. a4+a3=a73.分式中的x,y都扩大5倍,则该分式的值()A. 不变B. 扩大5倍C. 缩小5倍D. 扩大10倍4.下列四个多项式中,能因式分解的是()A. a2+1B. a2﹣2a+1C. x2+5yD. x2﹣5y5.下列图形中,既是中心对称图形又是轴对称图形的是( )A. 等边三角形B. 直角三角形C. 平行四边形D. 圆6.如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A. 130°B. 150°C. 160°D. 170°二、填空题(共12题;共24分)7.(-a5)4•(-a2)3=________.8.下图是一个长方形,请你仔细观察图形,写出图中所表示的整式的乘法关系式为________.9.下列式子中:①﹣;② ,③ ,④ ,⑤a2﹣2a+1,⑥ x,是整式的有________(填序号)10.病毒H7N9的长度约为0.000065mm,用科学记数法表示为________.11.把多项式3x2﹣12因式分解的结果是________.12.把多项式﹣2x+1﹣x3+x2按字母x升幂排列为:________.13.若16x2y4和x m y n+3是同类项,那么n﹣m2的值是________.14.当x=________时,分式没有意义.15.若关于x的分式方程﹣=2有增根,则m的值为________.16.在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为________.17.已知:a+x2=2015,b+x2=2016,c+x2=2017,且abc=12,则 =________18.若2m=3,4n=8,则23m﹣2n+3的值是________三、计算题(共7题;共55分)19.计算(1)-2 +(2)(+ )(- )-20.计算:(﹣2)0+ ﹣+2tan30°.21. 因式分解(1)x3﹣4x;(2)x3﹣4x2+4x.22.计算(1)分解因式.(2)解方程:.23.计算题(1)计算:|﹣|+()﹣1﹣2cos45°.(2)解方程:+ =1.24.计算:(﹣)2•(﹣)3÷25.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.四、解答题(共3题;共29分)26.如图,已知△ABC的三个顶点的坐标分别为A(﹣6,0)、B(﹣2,3)、C(﹣1,0).(1)请直接写出与点B关于坐标原点O的对称点B1的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.27.列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)28.如图,在平面直角坐标系中,∠AOB=60°,点B坐标为(2,0),线段OA的长为6.将△AOB绕点O 逆时针旋转60°后,点A落在点C处,点B落在点D处.(1)请在图中画出△COD;(2)求点A旋转过程中所经过的路程(精确到0.1).答案解析部分一、选择题1. C2.D3.B4. B5.D6.C二、填空题7. -a268. (a+b)(a+2b)=a2+3ab+2b29. ①③⑤⑥ 10.6.5×10﹣511. 3(x+2)(x-2)12.1﹣2x+x2﹣x313.﹣3 14.3 15.﹣5 16.3或6 17.0.25 18.27三、计算题19.(1)解:原式=4 - + =(2)解:原式=7-3-4=020.解:原式=1+3﹣2 + =4﹣21.(1)解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2);(2)解:x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2.22.(1)解:(2)解:,,(x-3)²=10,..23.(1)解:原式= +4﹣2× =4(2)解:去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解24.解:原式=•(﹣)•=﹣a.25.解:原式= ÷ = • = ,由m是方程x2+3x﹣1=0的根,得到m2+3m﹣1=0,即m2+3m=m(m+3)=1,则原式= .四、<b >解答题</b>26.(1)解:B1(2,﹣3)(2)解:△A′B′C′如图所示,A′(0,﹣6)(3)解:D′(3,﹣5).27.解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:=2× ,解得:x=3.2,经检验:x=3.2是原分式方程的解,且符合题意,答:A4薄型纸每页的质量为3.2克.28.(1)解:如图,△COD为所作;(2)解:点A旋转过程中所经过的路程长= =2π≈6.3.。

2019-2020 学年七年级上学期期末数学试题(解析版 )

2019-2020 学年七年级上学期期末数学试题(解析版 )

初中2019级第一学期末教学质量监测数学第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分.)1. 5的相反数是( )A. 15B.15- C. 5 D. 5-【答案】D【解析】【分析】根据相反数的定义解答.【详解】解:只有符号不同的两个数称为互为相反数,则5的相反数为-5,故选D.【点睛】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2. 下列四个几何体中,是三棱柱的为( ).A. B.C. D.【答案】C【解析】【分析】分别判断各个几何体的形状,然后确定正确的选项即可.【详解】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选C.【点睛】考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.3. 中国陆地面积约为29600000km ,将数字9600000用科学记数法表示为()A. 59610⨯B. 69.610⨯C. 79.610⨯D. 80.9610⨯ 【答案】B【解析】【分析】根据科学记数法的表示方法写出即可.【详解】解:将9600000用科学记数法表示为69.610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 如果单项式312m x y +-与2x 4y n+3的差是单项式,那么(m+n)2019的值为( ) A. 1-B. 0C. 1D. 22019【答案】A【解析】 【分析】 根据312m x y +-和2x 4y n+3是同类项,求出m 和n 的值,即可得出答案. 【详解】∵单项式312m x y +-与2x 4y n+3的差是单项式 ∴m+3=4,n+3=1解得:m=1,n=-2∴(m+n)2019=[1+(-2)]2019=-1故答案选择A.【点睛】本题考查的是同类项的定义:①字母相同;②相同字母的指数相同.5. 若(k ﹣5)x |k |﹣4﹣6=0是关于x 的一元一次方程,则k 的值为( )A. 5B. ﹣5C. 5 或﹣5D. 4 或﹣4【答案】B【解析】【分析】由一元一次方程的定义可得|k |﹣4=1且k ﹣5≠0,计算即可得到答案.【详解】∵(k ﹣5)x |k |﹣4﹣6=0是关于x 的一元一次方程, ∴|k |﹣4=1且k ﹣5≠0,解得:k =﹣5.故选B .【点睛】本题考查一元一次方程的定义,解题的关键是掌握一元一次方程的定义.6. 用四舍五入法得到的近似数1.02×104,其精确度为( )A. 精确到十分位B. 精确到十位C. 精确到百位D. 精确到千位【答案】C【解析】【分析】 先把近似数还原,再求精确度,即可得出答案.【详解】1.02×104=10200,2在百位上,故答案选择C. 【点睛】本题考查的是近似数的精确度,比较简单,近似数最后一位所在的数位即为该数的精确度. 7. 下列说法错误的是 ( )A. 若a=b,则3-2a=3-2bB. 若a b c c =,则a=b C. 若a b =,则a=bD. 若a=b,则ca=cb【答案】C【解析】【分析】 根据等式的性质逐一判断即可得出答案.【详解】A :因为a=b ,所以-2a=-2b ,进而3-2a=3-2b ,故选项A 正确;B :因为a b c c =,所以a=b ,故选项B 正确;C :因为a b =,所以a=b 或a=-b ,故选项C 错误;D :因为a=b ,所以ca=cb ,故选项D 正确;故答案选择C.【点睛】本题考查的是等式的性质,比较简单,需要熟练掌握等式的基本性质.8. 一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是( )A. 17道B. 18道C. 19道D. 20道【答案】C【解析】【分析】设作对了x道,则错了(25-x)道,根据题意列出方程进行求解.【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.9. 已知x2+3x=2,则多项式3x2+9x﹣4的值是()A. 0B. 2C. 4D. 6【答案】B【解析】【分析】【详解】解:∵x²+3x=2,∴3x²+9x−4=3(x²+3x)−4=3×2−4=6−4=2,故选B. 10. 已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A. a+bB. ﹣a﹣cC. a+cD. a+2b﹣c【答案】C【解析】【分析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选C11. 观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-4【答案】C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.12. 如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36°B. 45°C. 60°D. 72°【答案】D【解析】【分析】先推出∠AOD+∠BOC=180°,结合∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD-∠COE即可解答.【详解】解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD ,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE 为∠BOC 的平分线,∴∠COE=12∠BOC=18°,∴∠DOE=∠COD−∠COE=90°−18°=72°,故选择:A.【点睛】本题考查了角平分线的定义,角的和差计算及数形结合的数学思想,根据图中的数量关系求出∠BOC=36°是解答本题的关键.第Ⅱ卷(非选择题,共64分)二、填空题:(本大题共6小题,每小题3分,共18分.)13. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,这样做的依据是:__________.【答案】两点确定一条直线【解析】【分析】由直线公理可直接得出答案.【详解】建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题主要考查的是直线的性质,掌握直线的性质是解题的关键.14. 用“>、=、<”符号填空:45-______78-.【答案】> 【解析】【分析】先求绝对值,再用绝对值相减即可得出答案.【详解】∵44=55-,77=88-又4732-353-==-0 584040<∴47 < 58∴47 ->-58故答案为:>【点睛】本题考查的是负数的比较大小,先取绝对值,再比较大小,绝对值大的反而小.15. 如图,OA是北偏东28°36′方向的一条射线,OB是北偏西71°24′方向的一条射线,则∠AOB=__________.【答案】100°【解析】【分析】根据题意求出∠AOC和∠BOC的度数,相加即可得出答案.【详解】根据题意可得:∠AOC =28°36′,∠BOC=71°24′∠AOB=71°24′+28°36′=100°故答案为:100°【点睛】本题考查的是角度的计算,比较简单,角度的计算记住满60进1.16. 已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____. 【答案】10【解析】【分析】【详解】∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m =4,n =﹣2,∴2m ﹣n =8﹣(﹣2)=10.点睛:本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.17. 规定“Δ”是一种新的运算法则,满足:a △b=ab-3b ,示例:4△(-3)=4×(-3)-3×(-3)=-12+9=-3.若-3△(x+1)=1,则x=____________. 【答案】76- 【解析】【分析】根据新定义代入得出含x 的方程,解方程即可得出答案.【详解】∵a △b=ab-3b∴-3△(x+1)=-3(x+1)-3(x+1)=-6(x+1)∴-6(x+1)=1解得:x=76- 【点睛】本题考查的是新定义,认真审题,理清题目意思是解决本题的关键.18. 在数轴上点A 对应的数为-2,点B 是数轴上的一个动点,当动点B 到原点的距离与到点A 的距离之和为6时,则点B 对应的数为_________.【答案】-4或2【解析】【分析】先设点B 对应的数为b ,再用距离公式计算即可得出答案.【详解】设点B 对应的数为b解:设点B 表示的数为b ,①当点B 在点A 的左侧时,则有-2-b-b=6,解得,b=-4,②当点B 在OA 之间时,AB+AO=2≠6,因此此时不存在,③当点B 在原点的右侧时,则有b+2+b=6,解得,b=2,故答案为:-4或2.【点睛】本题考查的是数轴的动点问题,解题关键是利用距离公式进行计算.三、解答题(本大题共6个小题,共46分.)19. 计算:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ 【答案】0【解析】【分析】按照有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,若有括号先算括号内的,计算即可. 【详解】解:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ =-1-12×13×(3-9) =-1-16×(-6) =-1+1=0【点睛】本题考查有理数的混合运算,掌握运算顺序及法则,正确计算是本题的解题关键.20. 解方程:12136x x x -+-=- 【答案】27x =-【解析】【分析】方程两边同时乘以最小公倍数去掉分母,进而去括号、移项、合并同类项即可求解.【详解】解:去分母得:6x-2(1-x )=x+2-6,去括号得:6x-2+2x=x+2-6,移项得:6x+2x-x=2-6+2,合并同类项得:7x=-2,解得:27x =-. 【点睛】本题考查一元一次方程的解法,掌握解方程的步骤正确计算是本题的关键.21. 先化简,再求值:已知()()222242x x y x y --+- ,其中1x =-,y=2. 【答案】22x y +;5.【解析】【分析】先去括号再合并同类项,然后把1x =-,y=2代入计算.【详解】解:原式=22222422=2x x y x y x y --+++, 当1x =-,y=2时,原式=(-1)2+2×2=5. 【点睛】本题考查了整式的加减−化简求值:先去括号,再合并同类项,然后把满足条件的字母的值代入计算得到对应的整式的值.22. 如图所示,已知C ,D 是线段AB 上的两个点,M ,N 分别为AC ,BD 的中点,若AB=10cm ,CD=4cm ,求线段MN 的长;【答案】7cm【解析】【分析】根据题目求出AC+DB 的值,进而根据中点求出AM+DN 的值,即可得出答案.【详解】解:∵AB=10cm ,CD=4cm∴AC+DB=AB-CD=6cm又M ,N 分别为AC ,BD 的中点∴AM=CM=12AC ,DN=BN=12DB ∴AM+DN=12(AC+DB)=3cm ∴MN=AB-(AM+DN)=7cm【点睛】本题考查的是线段的中点问题,解题关键是根据进行线段之间等量关系的转换.23. 小魏和小梁从A ,B 两地同时出发,小魏骑自行车,小梁步行,沿同条路线相向匀速而行。

2019-2020学年七年级上学期期末考试数学试卷(含解析版)

2019-2020学年七年级上学期期末考试数学试卷(含解析版)

2019-2020学年七年级上学期期末考试数学试卷一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣18的倒数是()A.18B.﹣18C.﹣D.2.下列代数式书写正确的是()A.a48B.x÷y C.a(x+y)D.abc3.下列说法不正确的是()A.0是单项式B.单项式﹣的系数是﹣C.单项式a2b的次数为2D.多项式1﹣xy+2x2y是三次三项式4.下列说法中正确的是()A.射线是直线的一半B.两点间的线叫做线段C.延长射线OA D.两点确定一条直线5.如果x=2是方程2x=5﹣a的解,那么a的值为()A.2B.6C.1D.126.下列运算正确的是()A.(﹣2)÷(﹣4)=2B.0﹣2=2C.D.﹣=﹣47.下列各式成立的是()A.2x+3y=5xy B.a﹣(b+c)=a﹣b+cC.3a2b+2ab2=5a3b3D.﹣2xy+xy=﹣xy8.如图,线段AB=18cm,BC=6cm,D为BC的中点,则线段AD的长为()A.12 cm B.15cm C.13cm D.11 cm9.长方形长为3x+2y,宽为x﹣y,则这个长方形的周长为()A.4x+y B.8x+2y C.10x+10y D.12x+8y10.一件工作,甲单独做要20小时完成,乙单独做要12小时完成,现在由甲单独做4小时,剩下的部分由甲、乙合做,那么剩下的部分需要几个小时完成?若设还要xh完成,则依题意可列方程为()A.B.C.D.11.多项式a+5与2a﹣8互为相反数,则a=()A.﹣1B.0C.1D.212.如果代数式2y2﹣y+5的值为7,那么代数式4y2﹣2y+1的值为()A.5B.4C.3D.213.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm214.如图,已知∠AOC=∠BOC=90°,若∠1=∠2,则图中互余的角共有()A.5对B.4对C.3对D.2对15.某工厂原计划用a天生产b件产品,由于技术革新实际比原计划少用x天完成,则实际每天要比原计划多生产()件.A.B.C.D.16.有理数a、b、c在数轴上的对应点如图所示,化简代数式:|a﹣b|﹣|c﹣a|=()A.﹣2a﹣b+c B.﹣b﹣c C.﹣2a﹣b﹣c D.b﹣c二、填空题(本大题共4个小题每小题3分,共12分)17.已知a、b互为相反数,c、d互为倒数,那么2a+2b﹣5cd=.18.如果x m+1与x n是同类项,那么m﹣n=.19.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,若∠AOB=160°,则∠COD =.20.将图①中的正方形剪开得到图②中的4个正方形;将图②中一个正方形剪开得到图③中的7个正方形,将图③中一个正方形剪开得到图④,图④中共有10个正方形;…;如此下去.则第n个图中共有个正方形.三、解答题(本大题共6个小题共56分解答应写出文字说明、证明过程或演算步骤)21.计算(1)(﹣﹣1)×(﹣12)(2)﹣22×+(﹣3)3×(﹣)22.解方程(1)3x+7=32﹣2x;(2)﹣1=23.先化简,后求值:a+(5a﹣3b)﹣2(a﹣2b),其中a=2,b=﹣3.24.如图,已知∠AOB=114°,OF是∠AOB的平分线,∠AOE和∠AOF互余,求∠AOE和∠BOE 的度数.25.联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?26.如图,边长为4的正方形ABCD中,动点P以每秒1个单位的速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位的速度从点A出发沿正方形的边AD﹣DC﹣CB方向顺时针做折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t秒.(1)当点P在BC上运动时,PB=;(用含t的代数式表示)(2)当点Q在AD上运动时,AQ=;(用含t的代数式表示)(3)当点Q在DC上运动时,DQ=,QC=;(用含t的代数式表示)(4)当t等于多少时,点Q运动到DC的中点?(5)当t等于多少时,点P与点Q相遇?参考答案与试题解析一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣18的倒数是﹣,故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【分析】根据代数式的书写要求判断各项.【解答】解:选项A正确的书写格式是48a,B正确的书写格式是,C正确,D正确的书写格式是abc.故选:C.【点评】代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.【分析】根据单项式、单项式次数、单项式的系数的定义,结合各选项判断即可.【解答】解:A.0是单项式,此选项正确;B.单项式﹣的系数是﹣,此选项正确;C.单项式a2b的次数为3,此选项错误;D.多项式1﹣xy+2x2y是三次三项式,此选项正确;故选:C.【点评】本题考查了单项式的知识,属于基础题,解答本题的关键是熟练掌握单项式、单项式次数、单项式的系数的定义.4.【分析】根据直线,射线,线段的含义进行逐项判断.【解答】解:A、射线只有一个端点,是一条向一端无限延长的线,直线是可以向两端无限延长,所以两者之间并不存在什么数量关系A错;B、直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点而不只是两点间的线,所以B错;C、射线只有一个端点,只能反向延长,C错;D、两点确定一条直线,正确故选:D.【点评】本题主要考查直线、射线、线段等知识点,熟练掌握射线,线段,直线的含义.5.【分析】x=2是方程2x=5﹣a的解,那么将x=2代入方程可使得方程左右两边相等,从而转化成只含一个未知数a的方程,解一元一次方程即可求出a值【解答】解∵x=2是方程2x=5﹣a的解∴将x=2代入方程得,2×2=5﹣a,解得a=1故选:C.【点评】此题考查的是一元一次方程的解,使方程两边左右相等的未知数的值即为方程的解6.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵(﹣2)÷(﹣4)=2÷4=0.5,故选项A错误,∵0﹣2=﹣2,故选项B错误,∵=,故选项C错误,∵﹣=﹣=﹣4,故选项D正确,故选:D.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.7.【分析】利用合并同类项,系数相加字母和字母的指数不变;以及去括号法则,对各选项计算后利用排除法求解.【解答】解:A、不是同类项不能合并,故选项错误;B、a﹣(b+c)=a﹣b﹣c,故选项错误;C、不是同类项不能合并,故选项错误;D、正确.故选:D.【点评】本题考查了合并同类项得法则,去括号得法则,正确认识同类项,理解同类项得定义是关键.8.【分析】根据AD=AC+CD=(AB﹣BC)+BC,再抓住已知线段来求未知线段的长度,即可得线段AD的长.【解答】解:∵AB=18cm,BC=6cm,∴AC=AB﹣BC=12cm又∵D为BC的中点,∴CD=BC=3于是AD=AC+CD=12+3=15故选:B.【点评】本题考查的线段的长度计算问题,根据图形利用线段的和、差、倍、分进行计算是解决问题的关键.9.【分析】根据题意列出代数式即可求出答案.【解答】解:长方形额周长为:2[(3x+2y)+(x﹣y)]=2(3x+2y+x﹣y)=2(4x+y)=8x+2y,故选:B.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.【分析】要列方程,首先要理解题意,根据题意找出等量关系:甲的工作量+乙的工作量=总的工作量,此时可设工作总量为1,由甲,乙的单独工作时间可得到两者各自的工作效率,再根据“效率×时间=工作量”可以表示甲,乙的工作量,这样再根据等量关系列方程就不难了.【解答】解:“设剩下部分要x小时完成”,那么甲共工作了4+x小时,乙共工作了x小时,设工作总量为1,则甲的工作效率为,乙的工作效率为.那么可得出方程为:+=1;即++=1,故选:D.【点评】本题主要考查一元一次方程的应用,解题的关键是理解工作效率,工作时间和工作总量的关系,从而找出题中存在的等量关系.11.【分析】利用相反数性质列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:a+5+2a﹣8=0,移项合并得:3a=3,解得:a=1,故选:C.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.【分析】根据已知条件,可求出2y2﹣y的值,然后将原代数式变形为:2(2y2﹣y)+1,再将(2y2﹣y)整体代入所求代数式中求值即可.【解答】解:∵2y2﹣y+5的值为7,∴2y2﹣y=2,则4y2﹣2y+1=2(2y2﹣y)+1=4+1=5.故选:A.【点评】做此类题的时候,应先得到只含字母的代数式的值为多少,把要求的式子整理成包含那个代数式的形式.13.【分析】由题意可知本题存在两个等量关系,即小长方形的长+小长方形的宽=50cm,小长方形的长+小长方形宽的4倍=小长方形长的2倍,根据这两个等量关系可列出方程组,进而求出小长方形的长与宽,最后求得小长方形的面积.【解答】解:设一个小长方形的长为xcm,宽为ycm,则可列方程组,解得,则一个小长方形的面积=40cm×10cm=400cm2.故选:A.【点评】此题考查方程组的应用问题,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小长方形的长与宽的关系.14.【分析】根据互为余角的两个角的和等于90°和等角的余角相等解答.【解答】解:∵∠AOC=∠BOC=90°,∠1=∠2,∴∠1+∠AOE=90°,∠2+∠COD=90°,∠2+∠AOE=90°,∠1+∠COD=90°,∴互余的角共有4对.故选:B.【点评】本题考查了余角和补角,是基础题,熟记概念并准确识图是解题的关键.15.【分析】根据题意得出原计划每天生产件,实际每天生产件,相减即可得.【解答】解:根据题意知,原计划每天生产件,而实际每天生产件,则实际每天要比原计划多生产﹣(件),故选:C.【点评】本题主要考查根据实际问题列代数式,根据题意表示出原来和现在每天生产的件数是关键.16.【分析】根据数轴上a、b、c对应的位置,判断a﹣b、c﹣a正负,然后对绝对值进行化简即可.【解答】解:由图形可知c>0>b>a∴a﹣b<0,c﹣a>0∴|a﹣b|﹣|c﹣a|=b﹣a﹣c+a=b﹣c故选:D.【点评】本题考查的是关于绝对值的化简,利用数轴对绝对值内的代数式判断正负是解决问题的关键.二、填空题(本大题共4个小题每小题3分,共12分)17.【分析】由相反数性质和倒数的定义得出a+b=0,cd=1,再代入原式=2(a+b)﹣5cd计算可得.【解答】解:由题意知a+b=0,cd=1,则原式=2(a+b)﹣5cd=2×0﹣5×1=0﹣5=﹣5,故答案为:﹣5.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及相反数、倒数的性质.18.【分析】根据同类项是字母相同且相同字母的指数也相同,可得m+1=n,再移项即可得.【解答】解:∵x m+1与x n是同类项,∴m+1=n,则m﹣n=﹣1,故答案为:﹣1.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.19.【分析】先根据直角三角板的性质得出∠AOC+∠DOB=180°,进而可得出∠COD的度数.【解答】解:∵△AOC△BOD是一副直角三角板,∴∠AOC+∠DOB=180°,∴∠AOB+∠COD=∠DOB+∠AOD+∠COD=∠DOB+∠AOC=90°+90°=180°,∵∠AOB=160°,∴∠COD=180°﹣∠AOB=180°﹣160°=20°.故答案为:20°.【点评】本题考查的是角的计算,熟知直角三角板的特点是解答此题的关键.20.【分析】观察图形可知,每剪开一次多出3个正方形,然后写出前4个图形中正方形的个数,再根据此规律写出第n个图形中的正方形的个数的表达式即可.【解答】解:第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形11个,…,第n个图形有正方形(3n﹣2)个.故答案为:(3n﹣2).【点评】本题是对图形变化规律的考查,观察出每剪开一次多出3个正方形是解题的关键.三、解答题(本大题共6个小题共56分解答应写出文字说明、证明过程或演算步骤)21.【分析】(1)利用乘法分配律展开,再计算乘法,最后计算加减可得;(2)先计算乘方,再计算乘法,最后计算加减可得.【解答】解:(1)原式=×(﹣12)﹣×(﹣12)﹣1×(﹣12)=﹣3+4+12=13;(2)原式=﹣4×+(﹣27)×(﹣)=﹣1+8=7.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)3x+7=32﹣2x,移项得:3x+2x=32﹣7,合并得:5x=25,解得:x=5;(2)﹣1=.去分母得:3(2y﹣1)﹣6=2(5y﹣7),去括号得:6y﹣3﹣6=10y﹣14,移项:6y﹣10y=﹣14+6+3,合并得:﹣4y=﹣5,解得:y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.【分析】先去括号,再合并同类项,把a、b的值代入进行计算即可.【解答】解:原式=a+5a﹣3b﹣2a+4b=(1+5﹣2)a﹣(3﹣4)b=4a+b,当a=2,b=﹣3时,原式=4×2﹣3=5.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.24.【分析】首先根据∠AOB=114°,OF是∠AOB的平分线,求出∠AOF的度数,然后根据互余两角之和为90°,求出∠AOE的度数,再根据角的和差关系求出∠BOE的度数.【解答】解:因为∠AOB=114°,OF是∠AOB的平分线,所以∠AOF=∠AOB=×114°=57°,因为∠AOE与∠AOF互余,所以∠AOE+∠AOF=90°所以∠AOE=90°﹣∠AOF=90°﹣57°=33°,所以∠BOE=∠AOE+∠AOB=33°+114°=147°.【点评】本题考查了余角和补角以及角平分线的定义,解答本题的关键是掌握互余两角之和为90°.25.【分析】(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,根据题意可得,第一次比第二次单价低30元,据此列方程求解;(2)分别求出两次的盈利,然后求和.【解答】解:(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,由题意得,=150+30,解得:x=60,经检验:x=60是原分式方程的解,且符合题意,则x﹣10=60﹣10=50,答:第一次购买了60台电风扇,则第二次购买了50台电风扇;(2)两次获利:(250﹣150)×60+(250﹣150﹣30)×50=6000+3500=9500(元).答:商场获利9500元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.【分析】(1)由路程=速度×时间,可得BP 的值;(2)由路程=速度×时间,可得AQ 的值;(3)由DQ =点Q 的路程﹣AD 的长度,可得DQ 的值;由QC =CD ﹣DQ ,可求QC 的长; (4)由路程=速度×时间,可得t 的值;(5)由点P 路程+点Q 路程=AD +CD +BC ,可求t 的值.【解答】解:(1)∵动点P 以每秒1个单位的速度从点B 出发沿线段BC 方向运动, ∴BP =1×t =t ,故答案为:t ,(2)∵动点Q 同时以每秒4个单位的速度从点A 出发,∴AQ =4×t =4t ,故答案为:4t ,(3)∵DQ =4t ﹣AD∴DQ =4t ﹣4,∵QC =CD ﹣DQ∴QC =4﹣(4t ﹣4)=8﹣4t故答案为:4t ﹣4,8﹣4t(4)根据题意可得:4t =4+2t =1.5答:当t 等于1.5时,点Q 运动到DC 的中点.(5)根据题意可得:4t +t =4×3t =答:当t 等于时,点P 与点Q 相遇.【点评】本题四边形综合题,考查了正方形的性质,一元一次方程的应用,正确理解题意列出方程是本题的关键.。

2019-2020学年七年级(上)期末考试数学试卷及答案

2019-2020学年七年级(上)期末考试数学试卷及答案

2019-2020学年七年级(上)期末考试数学试卷一、选择题(本大题共10小题,共30.0分)1.一个数的相反数是它本身,则该数为()A. 0B. 1C.D. 不存在2.有下列四个算式:①(-5)+(+3)=-8 ②-(-2)3=6③(+)+(-)=④-3÷(-)=9其中,错误的有()A. 0个B. 1个C. 2个D. 3个3.下列说法正确的是()A. 有理数a的相反数是B. 有理数a的倒数是C. 精确到千分位D.4.a,b是有理数,它们在数轴上的对应点的位置如所示:把a,-a,b,-b按照由小到大的顺序排列是()A. B. C.D.5.下列说法正确的是()A. 一点确定一条直线B. 两条射线组成的图形叫角C. 两点之间线段最短D. 若,则B为AC的中点6.下列计算正确的是()A. B.C. D.7.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.8.父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是()A. 2B. 3C. 4D. 59.由5个小立方体搭成如图所示的几何体,从左面看到的平面图形是()A. B. C.D.10.已知某商店有两个进价不同的计算器都卖了60元,其中一个盈利25%,另一个亏损20%,在这次买卖中,这家商店()A. 不赢不亏B. 盈利3元C. 亏损12元D. 亏损3元二、填空题(本大题共10小题,共20.0分)11.若a,b互为倒数,则3ab+2=______.12.若单项式若3x m+6y2和x3y n是同类项,则(m+n)2019=______.13.沧州市图书馆共藏书558000册,数558000用科学记数法表示为______册.14.设关于x的方程x m+2-m+2=0是一元一次方程,则这个方程的解是______.15.已知|a|=1,|b|=2,如果a>b,那么a+b=______.16.若方程=2(x-1)的解为x=3,则a的值是______.17.已知线段AB=5cm,点C在直线AB上,且BC=3cm,则线段AC=______.18.如图,某海域有三个小岛A,B,O,在小岛O处观测小岛A在它北偏东62°52′38″的方向上,观测小岛B在南偏东38°12′36″的方向上,则∠AOB的度数是______.19.如图将两块三角板的直角顶点重叠在一起,∠DOB与∠DOA的比是2:11,则∠BOC=______.20.边长相同的小正方体如图摆放,最上面是第一层,第一层有一个小正方体,第二层有三个小正方体,第三层有六个小正方体,按此规律摆放下去,第六层有______个小正方体,第n层有______个小正方体.三、计算题(本大题共2小题,共30.0分)21.有理数的运算或解方程(1)4+(-2)2×5-(-0.28)÷4(2)-12019-18×(-+)(3)2(x-3)-5(x+4)=4(4)-=2-22.整式的运算(1)化简求值:x-2(x-y2)+(-x+y2),其中x=,y=-2;(2)化简求值:3a2b-[2ab2-2(ab-a2b)+ab]+3ab2,其中a,b满足(a+4)2+|b-|=0.四、解答题(本大题共5小题,共40.0分)23.作图题:如图,平面内有四个点A、B、C、D,请你利用直尺和圆规,根据下列语句画出符合要求的图,请保留作图痕迹.(1)画直线AB,射线AC,线段BC;(2)在直线AB上找一点M,使线段MD与线段MC之和最小;(3)在线段AD的延长线上截AE=3AD,连线段CE交直线AB于点F.24.如图,已知线段AB,延长AB到C,使得BC=AB,D为AC中点且AC=30,求线段BD的长.25.如图,图①所示是一个长为2m,宽为2n的长方形,用剪刀均分成四个小长方形,然后按图②的方式拼成一个大正方形.(1)图②中的大正方形的边长等于______,图②中的小正方形的边长等于______;(2)图②中的大正方形的面积等于______,图②中的小正方形的面积等于______;图①中每个小长方形的面积是______;(3)观察图②,你能写出(m+n)2,(m-n)2,mn这三个代数式间的等量关系吗?______.26.苏宁电器商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若苏宁电器商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?27.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=112°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O按每秒4°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.答案和解析1.【答案】A【解析】解:∵0的相反数是0,∴一个数的相反数是它本身,则该数为0.故选:A.根据0的相反数是0解答.本题考查了相反数的定义,是基础题,要注意0的特殊性.2.【答案】B【解析】解:∵(-5)+(+3)=-8,故①正确,∵-(-2)3=-(-8)=8,故②错误,∵(+)+(-)==,故③正确,∵-3÷(-)=3×3=9,故④正确,故选:B.根据题目中的式子可以计算出正确的结果,从而可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.【答案】A【解析】解:A、有理数a的相反数是-a,正确;B、有理数a的倒数是(a≠0),故此选项错误;C、2.0197≈2.020(精确到千分位),故此选项错误;D、|-a|=a(a≥0),故此选项错误;故选:A.直接利用相反数的定义以及互为倒数的定义和近似数和绝对值的性质分别分析得出答案.此题主要考查了相反数的定义以及互为倒数的定义和近似数和绝对值的性质,正确把握相关定义是解题关键.4.【答案】B【解析】解:∵由图可知,b<0<a,|b|<a,∴0<-b<a,-a<b<0,∴a>-b>b>-a.故选:B.先根据a,b两点在数轴上的位置判断出a、b的符号及其绝对值的大小,再比较出其大小即可.本题考查的是有理数的大小比较,熟知数轴上各点所表示的数的特点是解答此题的关键.5.【答案】C【解析】解:A、两点确定一条直线,故本选项错误;B、应为有公共端点的两条射线组成的图形叫做角,故本选项错误;C、两点之间线段最短,故本选项正确;D、若AB=BC,则点B为AC的中点错误,因为A、B、C三点不一定共线,故本选项错误.故选:C.根据两点确定一条直线,角的定义,线段中点的定义对各选项分析判断后利用排除法求解.本题考查了线段的性质,直线的性质,以及角的定义,是基础题,熟记概念与各性质是解题的关键.6.【答案】C【解析】解:A、原式不能合并,错误;B、原式不能合并,错误;C、原式=a2b,正确;D、原式=-y2,错误,故选:C.利用合并同类项法则判断即可.此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.7.【答案】B【解析】解:根据立体图形可得,展开图中三角形图案的顶点应与圆形的图案相对,而选项A,D与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C与此也不符,正确的是B.故选:B.根据图中三角形,圆,正方形所处的位置关系即可直接选出答案.此题主要考查了展开图折叠成几何体,同学们可以动手折叠一下,有助于空间想象力的培养.8.【答案】C【解析】解:设小强胜了x盘,则父亲胜了(10-x)盘,根据题意得:3x=2(10-x),解得:x=4.答:小强胜了4盘.故选:C.设小强胜了x盘,则父亲胜了(10-x)盘,根据3×小强胜的盘数=2×父亲胜的盘数,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.9.【答案】D【解析】解:从左边看第一层两个小正方形,第二层右边一个小正方形,故选:D.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.10.【答案】D【解析】解:设盈利25%的进价为x元,亏本20%的进价是y元,由题意,得:x(1+25%)=60,y(1-20%)=60,解得:x=48,y=75,∴这次买卖的利润为:60×2-48-75=-3元.故选:D.设盈利25%的进价为x元,亏本20%的进价是y元,由销售问题的数量关系建立方程求出其解即可.本题考查了销售问题在实际生活中的运用,一元一次方程的解法的运用,有理数大小比较的运用,解答时哟由销售问题的数量关系建立方程是关键.11.【答案】5【解析】解:∵a,b互为倒数,∴ab=1,∴3ab+2=3+2=5.故答案为:5.直接利用互为倒数的定义计算得出答案.此题主要考查了倒数,正确把握倒数的定义是解题关键.12.【答案】-1【解析】解:∵单项式若3x m+6y2和x3y n是同类项,∴m+6=3,n=2,解得:m=-3,故(m+n)2019=-1.故答案为:-1.直接利用同类项的定义得出m,n的值,进而得出答案.此题主要考查了同类项,正确把握同类项的定义是解题关键.13.【答案】5.58×105【解析】解:数558000用科学记数法表示为5.58×105册.故答案为:5.58×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】-3【解析】解:由题意可知:m+2=1,∴m=-1,∴该方程为:x+1+2=0,∴x=-3,故答案为:-3根据一元一次方程的定义即可求出答案.本题考查一元一次方程的定义,解题的关键是熟练运用一元一次方程的定义,本题属于基础题型.15.【答案】-1或-3【解析】解:∵|a|=1,|b|=2,∴a=±1,b=±2,∵a>b,∴①a=1,b=-2,则:a+b=1-2=-1;②a=-1,b=-2,则a+b=-1-2=-3,故答案是:-1或-3.根据绝对值的性质可得a=±1,b=±2,再根据a>b,可得①a=1,b=-2②a=-1,b=-2,然后计算出a+b即可.此题主要考查了绝对值得性质,以及有理数的加法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.16.【答案】2【解析】解:把x=3代入=2(x-1),可得:,解得:a=2,故答案为:2方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.就得到关于a的一个方程,解方程就可求出a.本题主要考查了方程解的定义,已知x=3是方程的解实际就是得到了一个关于字母a的方程.17.【答案】2cm或8cm【解析】解:当点C在线段AB上时,则AC+BC=AB,所以AC=5cm-3cm=2cm;当点C在线段AB的延长线上时,则AC-BC=AB,所以AC=5cm+3cm=8cm.故答案为2cm或8cm.讨论:当点C在线段AB上时,则AC+BC=AB;当点C在线段AB的延长线上时,则AC-BC=AB,然后把AB=5cm,BC=3cm分别代入计算即可.本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.18.【答案】78°54′46″【解析】解:∠AOB=180°-62°52′38″-38°12′36″=78°54′46″,故答案为:78°54′46″.先根据题意列出算式,再求出即可.本题考查了度、分、秒的换算,能根据题意列出算式是解此题的关键.19.【答案】70°【解析】解:设∠DOB为2x,∠DOA为11x;∴∠AOB=∠DOA-∠DOB=9x,∵∠AOB=90°,∴9x=90°,∴x=10°,∴∠DOB=20°,∴∠BOC=∠COD-∠DOB=90°-20°=70°;故答案为:70°设出适当未知数∠DOB为2x,∠DOA为11x,得出∠AOB=9x,由∠AOB=90°,求出x=10°,得出∠DOB=20°,即可求出∠BOC=∠COD-∠DOB=70°.本题考查看余角的定义;设出适当未知数,弄清各个角之间的关系得出方程,解方程即可得出结果.20.【答案】21【解析】解:∵第1层有1个小正方体,第2层有1+2=3个小正方体,第3层有1+2+3=6个小正方体,……∴第6层有1+2+3+4+5+6=21个小正方体,第n层有1+2+3+…+n=个小正方体,故答案为:21,.由第1层有1个小正方体,第2层有1+2=3个小正方体,第3层有1+2+3=6个小正方体,知第n层小正方体是连续n个正整数的和,据此求解可得.本题主要考查认识立体图形和图形的变化规律,解题的关键是根据已知图形得出第n层小正方体是连续n个正整数的和.21.【答案】解:(1)4+(-2)2×5-(-0.28)÷4=4+4×5+0.07=4+20+0.07=24.07;(2)-12019-18×(-+)=-1-18×+18×-18×=-1-9+15-12=-7;(3)2(x-3)-5(x+4)=4,2x-6-5x-20=4,2x-5x=4+6+20,-3x=30,x=-10;(4)-=2-,4(5y+4)-3(y-1)=24-(5y-5),20y+16-3y+3=24-5y+5,20y-3y+5y=24+5-16-3,22y=10,y=.【解析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法分配律的运用;(3)去括号、移项、合并同类项、系数化为1,依此即可求解;(4)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.同时考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.22.【答案】解:(1)原式=x-2x+y2-x+y2=-3x+y2,当x=,y=-2时,原式=-3×+(-2)2=-2+4=2;(2)原式=3a2b-2ab2+2(ab-a2b)-ab+3ab2=3a2b-2ab2+2ab-3a2b-ab+3ab2=ab+ab2,∵(a+4)2+|b-|=0,∴a=-4,b=,则原式=-4×+(-4)×()2=-2-4×=-2-1=-3.【解析】(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.此题考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)如图,直线AB,射线AC,线段BC为所作;(2)如图,点M为所作;(3)如图,点E、F为所作.【解析】(1)根据几何语言画出对应几何图形;(2)连接CD交AB于M,利用两点之间线段最短可得到此时M点使线段MD 与线段MC之和最小;(3)在AD的延长线截取DE=2AD,然后连接CE交AB于F.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).24.【答案】解:∵BC=AB,∴AC=3BC,∵AC=30,∴BC=AC=×30=10,∵D为AC中点且AC=30,∴CD=AC=15,∴BD=CD-BC=5.【解析】根据D是AC的中点求出CD的长,根据BD=CD-CB即可得出结论.本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25.【答案】m+n m-n(m+n)2(m-n)2mn(m+n)2-(m-n)2=4mn【解析】解:(1)图②中的大正方形的边长等于m+n,图②中的小正方形的边长等于m-n;故答案为:m+n,m-n;(2)图②中的大正方形的面积等于(m+n)2,图②中的小正方形的面积等于(m-n)2;图①中每个小长方形的面积是mn;故答案为:(m+n)2,(m-n)2,mn;(3)由图②可得,(m+n)2,(m-n)2,mn这三个代数式间的等量关系为:(m+n)2-(m-n)2=4mn.故答案为:(m+n)2-(m-n)2=4mn.(1)依据小长方形的边长,即可得到大正方形的边长以及小正方形的边长;(2)依据正方形的边长即可得到正方形的面积,依据小长方形的边长,即可得到小长方形的面积;(3)依据大正方形的面积减去小正方形的面积等于四个小长方形的面积之和,即可得到三个代数式间的等量关系.本题考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.26.【答案】解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程:1500x+2100(50-x)=90000,即5x+7(50-x)=300,解得:x=25,则B种电视机购50-25=25(台);②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程:1500x+2500(50-x)=90000,解得:x=35,则C种电视机购50-35=15(台);③当购B,C两种电视机时,C种电视机为(50-y)台,可得方程:2100y+2500(50-y)=90000,解得:y=,(不合题意,舍去)由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+200×25=8750(元),若选择(1)中的方案②,可获利150×35+250×15=9000(元),因为9000>8750,所以为了获利最多,选择第二种方案.【解析】(1)本题的等量关系是:两种电视的台数和=50台,买两种电视花去的费用=9万元.然后分进的两种电视是A、B,A、C,B、C三种情况进行讨论.求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方案.此题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:两种电视的台数和=50台,买两种电视花去的费用=9万元.列出方程,再求解.27.【答案】解:(1)平分,理由:延长NO到D,∵∠MON=90°∴∠MOD=90°∴∠MOB+∠NOB=90°,∠MOC+∠COD=90°,∵∠MOB=∠MOC,∴∠NOB=∠COD,∵∠NOB=∠AOD,∴∠COD=∠AOD,∴直线NO平分∠AOC;(2)分两种情况:①如图2,∵∠BOC=112°∴∠AOC=68°,当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=34°,∴∠BON=34°,∠BOM=56°,即逆时针旋转的角度为56°,由题意得,4t=56°解得t=14(s);②如图3,当NO平分∠AOC时,∠NOA=34°,∴∠AOM=56°,即逆时针旋转的角度为:180°+56°=236°,由题意得,4t=236°,解得t=59(s),综上所述,t=14s或59s时,直线ON恰好平分锐角∠AOC;(3)∠AOM-∠NOC=22°,理由:∵∠AOM=90°-∠AON∠NOC=68°-∠AON,∴∠AOM-∠NOC=(90°-∠AON)-(68°-∠AON)=22°.【解析】(1)延长NO到D,根据余角的性质得到∠MOB=∠MOC,等量代换得到∠COD=∠AOD,于是得到结论;(2)分两种情况:ON的反向延长线平分∠AOC或射线ON平分∠AOC,分别根据角平分线的定义以及角的和差关系进行计算即可;(3)根据∠MON=90°,∠AOC=68°,分别求得∠AOM=90°-∠AON,∠NOC=68°-∠AON,再根据∠AOM-∠NOC=(90°-∠AON)-(68°-∠AON)进行计算,即可得出∠AOM与∠NOC的数量关系.此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.。

淮北市濉溪县2020—2021学年七年级上期末数学试卷含答案解析

淮北市濉溪县2020—2021学年七年级上期末数学试卷含答案解析
A.44×108B.4.4×109C.4.4×108D.4.4×1010
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
B、对端午节期间市场上粽子质量情形的调查无法进行全面调查,适合抽样调查,故B错误;
C、某班50名同学体重情形适用于全面调查,故C正确;
D、关于某类烟花爆竹燃放安全情形的调查,无法进行全面调查,故D错误;
故选:C.
【点评】本题考查了抽样调查和全面调查的区别,选择普查依旧抽样调查要依照所要考查的对象的特点灵活选用,一样来说,关于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,关于精确度要求高的调查,事关重大的调查往往选用普查.
【解答】解:∵﹣2的相反数是2,
∴比﹣2的相反数小3是2﹣3=﹣1,
∴这两个数的和的绝对值为|﹣2+(﹣1)|=|﹣3|=3.
故答案为3.
【点评】本题要紧考查代数式求值和绝对值的定义.解题的关键在于依照题意求得另一个数的值,熟知相反数的概念及有理数的加减法则.绝对值的规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
D、两者所含字母不同且相同字母的指数相同,故不同类项;
故选C.
【点评】本题考查同类项的定义,把握同类项所含字母相同且相同字母的指数相同是关键.
5.长方形的周长为10,它的长是a,那么它的宽是( )
A.10﹣aB.10﹣2aC.5﹣aD.5﹣2a
【考点】平行四边形的性质;列代数式.

2019-2020学年七年级(上)期末数学试卷(含答案)

2019-2020学年七年级(上)期末数学试卷(含答案)

2019-2020学年七年级(上)期末数学试卷(含答案)一、选择题(本大题共10小题,共30.0分)1.−6的绝对值是()A. −6B. 6C. ±6D. 16【答案】B【解析】解:根据负数的绝对值等于它的相反数,得|−6|=6.故选:B.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题考查了绝对值的意义,任何一个数的绝对值一定是非负数.2.下列计算正确的是()A. 2x+3y=5xyB. 2a2+2a3=2a5C. 4a2−3a2=1D. −2ba2+a2b=−a2b 【答案】D【解析】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.根据合并同类项的法则,系数相加字母部分不变,可得答案.本题考查了合并同类项,系数相加字母部分不变.3.在数−2,π,0,2.6,+3,−85中,属于整数的个数为()A. 4B. 3C. 2D. 1【答案】B【解析】解:在数−2,π,0,2.6,+3,−85中,整数有−2,0,+3,属于整数的个数,3.故选:B.整数包括正整数、负整数和0,依此即可求解.本题考查了实数的分类.实数分为有理数和无理数;整数和分数统称有理数;整数包括正整数、负整数和0.4.2018年1月的无锡市政府工作报告中指出:2017年,预计无锡全市实现地区生产总值10500亿元.将数值10500用科学记数法表示为()A. 0.105×105B. 10.5×103C. 1.05×104D. 1.05×105【答案】C【解析】解:将数值10500用科学记数法表示为1.05×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.已知x=2是方程3x−a=0的解,那么a的值是()A. 6B. −6C. 5D. −5【答案】A【解析】解:将x=2代入3x−a=0,∴6−a=0,∴a=6,故选:A.根据一元一次方程的解法即可求出答案.本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.6.下列各式中,去括号错误的是()A. x−(3y−1)=x−3y+1B. m+(−n+p)=m−n+pC. 2(−3a+b)=−6a+2bD. −5(2x+3y)=−10x+15y【答案】D【解析】解:A、x−(3y−1)=x−3y+1,故原题正确;B、m+(−n+p)=m−n+p,故原题正确;C、2(−3a+b)=−6a+2b,故原题正确;D、−5(2x+3y)=−10x+15y,故原题错误;故选:D.根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反进行分析即可.此题主要考查了去括号,关键是掌握去括号法则.7.已知∠α是锐角,∠α与∠β互补,∠β与∠γ互余,则∠α与∠γ的关系式为()A. ∠α−∠γ=90∘B. ∠α+∠γ=90∘C. ∠α+∠γ=180∘D. ∠α=∠γ【答案】A【解析】解:∵∠α与∠β互补,∠β与∠γ互余,∴∠α+∠β=180∘,∠β+∠γ=90∘.∴∠α−∠γ=90∘.故选:A.根据补角和余角的定义关系式,然后消去∠β即可.本题主要考查的是余角和补角的定义,根据余角和补角的定义列出关系式,然后再消去∠β是解题的关键.8.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A. 2B. 3C. 4D. 5【答案】C【解析】解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,据此可得.本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.9. 如图,点P 是直线a 外的一点,点A 、B 、C 在直线a 上,且PB ⊥a ,垂足是B ,PA ⊥PC ,则下列不正确的语句是( ) A. 线段PB 的长是点P 到直线a 的距离 B. PA 、PB 、PC 三条线段中,PB 最短C. 线段AC 的长是点A 到直线PC 的距离D. 线段PC 的长是点C 到直线PA 的距离 【答案】C【解析】解:A 、根据点到直线的距离的定义:即点到这一直线的垂线段的长度.故此选项正确; B 、根据垂线段最短可知此选项正确;C 、线段AP 的长是点A 到直线PC 的距离,故选项错误;D 、根据点到直线的距离即点到这一直线的垂线段的长度.故此选项正确. 故选:C .利用点到直线的距离的定义、垂线段最短分析.本题主要考查了点到直线的距离的定义,及垂线段最短的性质.10. 在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.如∑k n k=1=1+2+3+⋯+(n −1)+n ,∑(n k=3x +k)=(x +3)+(x +4)+⋯+(x +n);若对于任意x 都有∑[n k=2x 2+k(x −a)]=5x 2+bx +80,则a ,b 的值分别是( ) A. 4,−20 B. 4,20 C. −4,−20 D. −4,20 【答案】D【解析】解:根据题意知x 2+2(x −a)+x 2+3(x −a)+⋯+x 2+n(x −a)=5x 2+bx +80, 则n =5,所以x 2+2(x −a)+x 2+3(x −a)+x 2+4(x −a)+x 2+5(x −a)+x 2+6(x −a)=5x 2+bx +80, 即5x 2+20x −20a =5x 2+bx +80, 则b =20,−20a =80,即a =−4, 故选:D .由新定义知x 2+2(x −a)+x 2+3(x −a)+⋯+x 2+n(x −a)=5x 2+bx +80,整理可得5x 2+20x −20a =5x 2+bx +80,据此解答即可.本题主要考查数字的变化类,解题的关键是理解新定义,并据此列出关于x 的整式.二、填空题(本大题共8小题,共16.0分) 11. −3的相反数是______. 【答案】3【解析】解:−(−3)=3, 故−3的相反数是3. 故答案为:3.一个数的相反数就是在这个数前面添上“−”号.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.12. 单项式−2x 2y 5的次数是______.【答案】3【解析】解:单项式−2x 2y 5的次数是3.故答案为:3.直接利用单项式次数确定方法分析得出答案.此题主要考查了单项式,正确把握单项式次数确定方法是解题关键.13. 如图,已知∠AOB =64∘36′,OC 平分∠AOB ,则∠AOC =______ ∘.【答案】32.3【解析】解:∵∠AOB =64∘36′,OC 平分∠AOB , ∴∠AOC =64∘36′÷2=32∘18′=32.3∘; 故答案为:32.3.根据角平分线的定义求出∠AOC 的度数,再根据度分秒之间的换算即可得出答案.此题考查了角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线;本题也考查了度分秒的换算.14. 已知线段AB =4,延长线段AB 到C ,使AC =2AB ,点D 是BC 的中点,则AD =______. 【答案】6【解析】解:如图,∵AB =4,AC =2AB , ∴BC =AB =4, ∵点D 是BC 的中点, ∴BD =12BC =2,∴AD =AB +BD =4+2=6. 故答案为:6.先求出AC 的长,根据AC =2AB ,再求出BC ,利用线段的和即可解答. 本题考查了两点间的距离,利用了线段的和差,线段中点的性质.15. 已知x −3y =−3,则5−x +3y 的值是______. 【答案】8【解析】解:∵x −3y =−3, ∴−x +3y =3,∴5−x +3y =5+3=8. 故填:8.由已知x −3y =−3,则−x +3y =3,代入所求式子中即得到.本题考查了代数式求值,根据已知求得代数的部分值,代入到所求代数式求值.16. 定义a ∗b =a b −1,则(0∗2)∗2018=______. 【答案】0【解析】解:根据题中的新定义得:原式=−1∗2018=1−1=0, 故答案为:0原式利用已知的新定义计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图,将一张长方形的纸片沿折痕EF翻折,使点C、D分别落在点M、N的位置,且∠AEN=13∠DEN,则∠AEF的度数为______ ∘.【答案】67.5【解析】解:∵∠AEN=13∠DEN,∠AEN+∠NED=180∘,∴∠AEN=45∘,∠DEN=135∘,由折叠可得,∠DEF=∠NEF,∴∠DEF=12(360∘−135∘)=112.5∘,∴∠AEF=180∘−∠DEF=67.5∘,故答案为:67.5依据∠AEN=13∠DEN,∠AEN+∠NED=180∘,即可得到∠AEN=45∘,∠DEN=135∘,由折叠可得,∠DEF=∠NEF,进而得出∠DEF=12(360∘−135∘)=112.5∘,最后得到∠AEF的度数.本题主要考查了平行线的性质以及折叠问题,解题时注意:在折叠中对应角相等.18.如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=12∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为76∘,则∠AOB=______ ∘.【答案】114【解析】解:∵OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC 又∵剪开后得到的3个角中最大的一个角为76∘,∴2∠COE=76∘∴∠COE=38∘又∵∠BOE=12∠EOC,∴∠BOE=12×38∘=19∘∴∠BOC=∠BOE+∠EOC=19∘+38∘=57∘则∠AOB=2∠BOC=2×57∘=114∘故答案为:114∘①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB−∠BOC.②若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.本题主要考查了角度平分线将角平分后角之间的倍数关系.三、计算题(本大题共3小题,共22.0分)19.计算:(1)4−|−6|−3×(−13);(2)−12018−16×[2−(−3)2].【答案】解:(1)原式=4−6+1=−1;(2)原式=−1+76=16.【解析】(1)原式先计算乘法运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.已知A=−x2+x+1,B=2x2−x.(1)当x=−2时,求A+2B的值;(2)若2A与B互为相反数,求x的值.【答案】解:(1)∵A=−x2+x+1,B=2x2−x,∴A+2B=−x2+x+1+4x2−2x=3x2−x+1,当x=−2时,原式=3×(−2)2−(−2)+1=15;(2)2A+B=0,即:−2x2+2x+2+2x2−x=0,解得:x=−2.【解析】(1)把A与B代入A+2B中,去括号合并得到最简结果,把x的值代入计算即可求出值;(2)利用相反数性质列出方程,求出方程的解即可得到x的值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.21.如图,O为直线AB上一点,OC⊥OD.已知∠AOC的度数比∠BOD的度数的2倍多6∘.(1)求∠BOD的度数.(2)若OE平分∠BOD,OF平分∠BOC,求∠EOF的度数.【答案】解:(1)设∠BOD=x,则∠AOC=2x+6,∵OC⊥OD∴∠COD=90∘.∵∠AOC+∠COD+∠BOD=180∘∴2x+6+90+x=180∘,解得x=28,即:∠BOD=28∘.(2)∵OE平分∠BOD∴∠BOE=12∠BOD=14∘,∵OF平分∠BOC,∴∠BOF=12∠BOC=12(90+28)=59∘,∴∠EOF=∠BOF−∠BOE=59∘−14∘=45∘.【解析】(1)首先设∠BOD=x∘,由∠AOC的度数比∠BOD的度数的3倍多10度,且∠COD=90∘,可得方程:x+(3x+10)+90=180,解此方程即可求得答案;(2)由OE、OF分别平分∠BOD、∠BOC,可得∠BOE=12∠BOD,∠BOF=12∠BOC=12(∠BOD+∠COD),又由∠EOF=∠BOF−∠BOE=12∠COD,即可求得答案.此题考查了角的计算与角平分线的定义.此题难度适中,注意掌握数形结合思想与方程思想的应用.四、解答题(本大题共5小题,共42.0分)22.解方程:(1)5x−2=2x+1;(2)2x+13−5x−16=1.【答案】解:(1)5x−2=2x+1移项及合并同类项,得3x=3系数化为1,得x=1;(2)2x+13−5x−16=1去分母,得4(2x+1)−2(5x−1)=12去括号,得8x+4−10x+2=12移项及合并同类项,得−2x=6系数化为1,得x=−3.【解析】(1)根据解方程的方法可以解答此方程;(2)根据解方程的方法可以解答此方程.本题考查解一元一次方程,解答本题的关键是明确解方程的方法.23.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.(1)按下列要求画图:过点C画AB的平行线CD;过点C画AB的垂线CE,并在图中标出格点D和E.(2)根据所画的图形猜测两直线CD、CE的位置关系是______.(3)求三角形ABC的面积.【答案】垂直【解析】解:(1)如图所示:DC,CE即为所求;(2)两直线CD、CE的位置关系是:垂直;故答案为:垂直;(3)△ABC的面积为:3×3−12×2×3−12×1×2−12×1×3=3.5.(1)直接利用网格进而得出符合题意的答案;(2)直接利用网格进而得出直线CD、CE的位置关系;(3)利用△ABC所在矩形面积进而减去周围三角形面积进而得出答案.此题主要考查了应用设计与作图以及三角形面积求法,正确借助网格得出符合题意图形是解题关键.24.如图,B、C两点把线段AD分成2:5:3三部分(即:AB:BC:CD=2:5:3),M为AD的中点.(1)判断线段AB与CM的大小关系,说明理由.(2)若CM=6cm,求AD的长.【答案】解:(1)AB=CM.理由:设AB=2x,BC=5x,CD=3x,则AD=10x,∵M为AD的中点,∴AM=DM=12AD=5x,∴AM=BC,即:AB+BM=BM+CM,∴AB=CM;(2)∵CM=6cm,即:DM−CD=6cm,∴5x−3x=6,解得x=3,∴AD=10x=30cm.【解析】(1)设AB=2x,BC=5x,CD=3x,则AD=10x,根据M为AD的中点,可得AM=DM=12AD=5x,得到AM=BC,即:AB+BM=BM+CM,根据等式的性质即可求解;(2)由CM=6cm,可得DM−CD=6cm,得到关于x的方程,解方程即可求解.本题考查了两点间的距离,利用线段的和差,线段中点的性质是解题关键.25.某水果零售商店分两批次从批发市场共购进“红富士”苹果100箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款400元.(1)求第一、二次分别购进“红富士”苹果各多少箱?(2)商店对这100箱“红富士”苹果先按每箱60元销售了75箱后出现滞销,于是决定其余的每箱靠打折销售完.要使商店销售完全部“红富士”苹果所获得的利润不低于1300元,问其余的每箱至少应打几折销售?(注:按整箱出售,利润=销售总收人−进货总成本)【答案】解:(1)设第一次购进“红富士”苹果x箱,则第二次购进“红富士”苹果(100−x)箱,根据题意得:40(100−x)−50x=400,解得:x=40,∴100−x=60.答:第一次购进“红富士”苹果40箱,第二次购进“红富士”苹果60箱.(2)设其余的每箱应打y折销售,根据题意得:60×75+60×y10×25−40×60−50×40≥1300,解得:y≥8.答:其余的每箱至少应打8折销售.【解析】(1)设第一次购进“红富士”苹果x箱,则第二次购进“红富士”苹果(100−x)箱,根据总价=单价×数量结合第二次比第一次多付款400元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设其余的每箱应打y折销售,根据利润=销售总收人−进货总成本结合所获得的利润不低于1300元,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.26. 有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,A 、B 两点之间的距离是90米.甲、乙两机器人分别从A 、B 两点同时同向出发到终点C ,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C 点.设两机器人出发时间为t(分钟),当t =3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t ≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变. 请解答下面问题:(1)B 、C 两点之间的距离是______米.在4≤t ≤6分钟时,甲机器人的速度为______米/分. (2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t >6时,甲、乙两机器人之间的距离S.(用含t 的代数式表示) 【答案】450;50【解析】解:(1)∵乙机器人从B 点出发,以50米/分的速度行走9分钟到达C 点, ∴B 、C 两点之间的距离是50×9=450(米).∵在4≤t ≤6分钟时,甲、乙两机器人之间的距离保持不变, ∴在4≤t ≤6分钟时,甲机器人的速度为50米/分. (2)设甲机器人前3分钟的速度为x 米/分, 则3x −50×3=90, 解得x =80.答:甲机器人前3分钟的速度为80米/分.(3)当t =4时,两人相距80−50=30米,且4≤t ≤6时,两人相距总是30米. 分三种情况说明:①甲在AB 间时,90−80t +50t =28,解得t =3115>98,此情形不存在. ②甲乙均在B 右侧,且甲在乙后时,90+50t −80t =28,解得t =3115. ③甲乙均在B 右侧,且乙在甲后时,80t −90−50t =28,解得t =5915. 答:两机器人前6分钟内出发3115s 或5915s 相距28米. (4)S ={450−50t(7.5≤t ≤8)30t−150(6<t<7.5).故答案为:450,50;(1)根据路程=速度×时间求出B 、C 两点之间的距离;根据在4≤t ≤6分钟时,甲、乙两机器人之间的距离保持不变,可得在4≤t ≤6分钟时,甲机器人的速度=乙机器人的速度=50米/分;(2)设甲机器人前3分钟的速度为x 米/分,根据当t =3分钟时,甲追上乙得出方程3x −50×3=90,解方程即可;(3)分三种情况进行讨论:①甲在AB 间时,②甲乙均在B 右侧,且甲在乙后时,③甲乙均在B 右侧,且乙在甲后时列出方程,解方程即可;(4)分两种情况进行讨论:①6<t <7.5,②7.5≤t ≤8,列出算式计算即可求解.本题考查了数轴、一元一次方程的运用,解题关键是理解题意,找到等量关系列出方程.。

2019-2020年安徽省淮北市濉溪县七年级上册期末数学试卷有答案【精品版】

2019-2020年安徽省淮北市濉溪县七年级上册期末数学试卷有答案【精品版】

安徽省淮北市濉溪县七年级(上)期末数学试卷一.选择题.共10小题,每小题3分,满分30分)1.我县2017年12月21日至24日每天的最高气温与最低气温如表:A .12月21日 B.12月22日 C .12月23日 D .12月24日 2.如图所示,A ,B 两点在数轴上,点A 对应的数为2.若线段AB 的长为3,则点B 对应的数为( )A .﹣1B .﹣2C .﹣3 D.﹣43.与算式32+32+32的运算结果相等的是( )A .33B .23C .35D .36 4.化简的结果是( ) A .﹣7+ B .﹣5+ C .﹣5+ D .﹣5﹣5.已知a ,b 满足方程组,则a ﹣b 的值为( ) A .﹣1 B .m ﹣1 C .0 D .16.如图,下列图形全部属于柱体的是( )A .B .C .D .7.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()A.30°B.45°C.50°D.60°8.如图,下列说法中错误的是()A.OA的方向是东北方向B.OB的方向是北偏西60°C.OC的方向是南偏西60°D.OD的方向是南偏东60°9.为了解我县七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本;⑤500名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个10.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm2二、填空题.本大题共4小题,每小题4分,满分16分11.已知∠α=36°14′25″,则∠α的余角的度数是.12.王老师每晚19:00都要看央视的“新闻联播”节目,这一时刻钟面上时针与分针的夹角是度.13.若方程2+1=3和的解相同,则a的值是.14.(4分)已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是cm.三、计算.本大题共2小题,每小题4分,满分8分15.计算(﹣3)2÷2÷(﹣)+4+22×(﹣)16.计算:﹣0.25÷(﹣)2×(﹣1)3+(+﹣3.75)×24.四、解方程组.本大题共2小题,每小题5分,满分10分17.(5分)解方程组:.18.(5分)解方程组:.五、本大题共2小题,每小题6分,满分12分19.(6分)先化简再求值:5(2a+b)2﹣2(2a+b)﹣4(2a+b)2+3(2a+b),其中a=,b=9.20.(6分)某生态示范园要对1号、2号、3号、4号四个品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出)(1)实验所用的2号果树幼苗的数量是株;(2)请求出3号果树幼苗的成活数,并把图2的统计图补充完整;(3)你认为应选哪一种品种进行推广?请通过计算说明理由.六、本题满分8分21.(8分)小王家购买了一套经济适用房,他家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)写出用含、y的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21m2,且地面总面积是卫生间面积的15倍,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?七、本题满分8分22.(8分)如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.八.本题满分8分23.(8分)已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.参考答案一.选择题1.【解答】解:12月21日:8﹣(﹣3)=11;12月22日:7﹣(﹣5)=12;12月23日:5﹣(﹣4)=9;12月24日:6﹣(﹣2)=8;∴温差最大的一天是12月22日,故选:B.2.【解答】解:根据数轴可知B<0,A>0,∴B点对应的数为2﹣3=﹣1.故选:A.3.【解答】解:原式=3×32=33,故选:A.4.【解答】解:原式=+﹣6+=﹣5+故选:C.5.【解答】解:,②﹣①得:a﹣b=1,故选:D.6.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选:C.7.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选:A.8.【解答】解:A、OA的方向是北偏东45度即东北方向,故正确;B、OB的方向是北偏西60°,故正确;C、OC的方向是南偏西60°,故正确;D、OD的方向是南偏东30°,故错误.故选:D.9.【解答】解:这种调查方式是抽样调查;故①正确;总体是我县七年级6000名学生期中数学考试情况;故②错误;个体是每名学生的数学成绩;故③正确;样本是所抽取的500名学生的数学成绩,故④错误;样本容量是500,故⑤错误.故选:B.10.【解答】解:设一个小长方形的长为cm,宽为ycm,则可列方程组,解得,则一个小长方形的面积=40cm×10cm=400cm2.故选:A.二、填空题.本大题共4小题,每小题4分,满分16分11.【解答】解:根据定义,∠α的余角的度数是90°﹣36°14′25″=53°45′35″.故答案为53°45′35″.12.【解答】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°,故答案为:150.13.【解答】解:由2+1=3得=1,把=1代入中得:2﹣=0,解得:a=7.故填:7.14.【解答】解:①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10﹣4=6cm.∵M是线段BC的中点,∴CM=BC=2cm,∴AM=AC+CM=6+2=8cm;②当点C在点B的右侧时,∵BC=4cm,M是线段BC的中点,∴BM=BC=2cm,∴AM=AB+BM=10+2=12cm.综上所述,线段AM的长为8cm或12cm.故答案为:8或12.三、计算.本大题共2小题,每小题4分,满分8分15.【解答】解:(﹣3)2÷2÷(﹣)+4+22×(﹣)=9×=﹣6+4﹣6=4.16.【解答】解:原式=﹣×4×(﹣1)+33+56﹣80=1+33+56﹣80=0.四、解方程组.本大题共2小题,每小题5分,满分10分17.【解答】解:将原方程组整理可得,①×3﹣②,得:﹣4y=﹣3,解得:y=,将y=代入①,得:﹣=﹣1,解得:=,∴方程组的解为.18.【解答】解:由②得+2y=20 ③③﹣①得y=﹣40将y=﹣40代入①得=100,所以原方程组的解为.五、本大题共2小题,每小题6分,满分12分19.【解答】解:原式=(2a+b)2+(2a+b),∵a=,b=9,∴2a+b=1+9=10,则原式=100+10=110.20.【解答】解:(1)500×(1﹣25%×2﹣30%)=100(株);(2)500×25%×89.6%=112(株),补全统计图如图;(3)1号果树幼苗成活率为:×100%=90%,2号果树幼苗成活率为×100%=85%,4号果树幼苗成活率为×100%=93.6%,∵93.6%>90%>89.6%>85%,∴应选择4号品种进行推广.六、本题满分8分21.【解答】解:(1)地面的总面积为:3×4+2y+2×3+6=6+2y+18;(2)由题意得,解得:,2y+18=45(m2),∴地面总面积为:S(总)=6+∴铺地砖的总费用为:45×80=3600(元).答:那么铺地砖的总费用为3600元.七、本题满分8分22.【解答】解:设∠AOB=°,因为∠AOC与∠AOB互补,则∠AOC=180°﹣°.由题意,得.∴180﹣﹣=80,∴﹣2=﹣100,解得=50故∠AOB=50°,∠AOC=130°.八.本题满分8分23.【解答】解:设AB=2cm,BC=5cm,CD=3cm所以AD=AB+BC+CD=10cm因为M是AD的中点所以AM=MD=AD=5cm所以BM=AM﹣AB=5﹣2=3cm因为BM=6 cm,所以3=6,=2故CM=MD﹣CD=5﹣3=2=2×2=4cm,AD=10=10×2=20 cm.。

2019-2020学年七年级上学期期末考试数学试卷含解析版

2019-2020学年七年级上学期期末考试数学试卷含解析版

2019-2020学年七年级上学期期末考试数学试卷一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作( )A .﹣6℃B .﹣3℃C .0℃D .+3℃2.在﹣6,﹣5.01,﹣5,这四个数中,最大的数是( )A .﹣6B .﹣5.01C .﹣5D . 3.|﹣2|的倒数是( )A .2B .﹣2C .D .4.下列各式中,次数为5的单项式是( )A .5abB .a 5bC .a 5+b 5D .6a 2b 35.多项式﹣2x 2+2x +3中的二次项系数是( )A .﹣1B .2C .﹣2D .36.三个立体图形的展开图如图①②③所示,则相应的立体图形是( )A .①圆柱,②圆锥,③三棱柱B .①圆柱,②球,③三棱柱C .①圆柱,②圆锥,③四棱柱D .①圆柱,②球,③四棱柱 7.在数轴上表示有理数a ,﹣a ,﹣b ﹣1的点如图所示,则( )A .﹣b <﹣aB .|b +1|<|a |C .|a |>|b |D .b ﹣1<a8.已知等式3a =b +2c ,那么下列等式中不一定成立的是( )A .3a ﹣b =2cB .4a =a +b +2cC .a =b +cD .3=+9.某商店以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店卖出这两件衣服总的情况是()A.盈利0.05a元B.亏损0.05a元C.盈利0.15a元D.亏损0.15a元10.若关于x的方程有无数解,则3m+n的值为()A.﹣1B.1C.2D.以上答案都不对二、填空题(本大题共6小题,每小题3分,满分18分)11.﹣2019的相反数是.12.目前我国年可利用的淡水资源总量约为38050亿立方米,是世界上严重缺水的国家之一.38050用科学记数法表示为.13.若x与3的积等于x与﹣16的和,则x=.14.若﹣x m y4与x3y n是同类项,则(m﹣n)9=.15.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为.16.如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,4…),第n个图形中共有个顶点(结果用含n的式子表示).三、解答題(本大题共8小题,满分72分,解答须写出文字说明、推理过程)17.计算:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)(2)﹣(﹣1)10×2+(﹣2)3÷418.先化简,再求值:,其中x=﹣2,y=﹣319.解下列方程:(1)2(x+3)=5(x﹣3)(2)20.有理数a,b,c在数轴上的位置如图所示请化简:﹣|a|﹣|b+2|+2|c|﹣|a+b|+|c﹣a|.21.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.22.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?23.如图1,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,求∠MON的度数;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<126且n≠54),求∠MON的度数.24.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.参考答案与试题解析一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作()A.﹣6℃B.﹣3℃C.0℃D.+3℃【分析】根据负数的意义,可得气温上升记为“+”,则气温下降记为“﹣”,据此解答即可.【解答】解:因为气温上升3℃,记作+3℃,所以气温下降3℃,记作﹣3℃.故选:B.【点评】此题主要考查了负数的意义及其应用,要熟练掌握,解答此题的关键是要明确:气温上升记为“+”,则气温下降记为“﹣”.2.在﹣6,﹣5.01,﹣5,这四个数中,最大的数是()A.﹣6B.﹣5.01C.﹣5D.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣6<﹣5.01<﹣5<﹣,∴这四个数中,最大的数是﹣.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.|﹣2|的倒数是()A.2B.﹣2C.D.【分析】根据绝对值和倒数的定义作答.【解答】解:∵|﹣2|=2,2的倒数是,∴|﹣2|的倒数是.故选:C.【点评】一个负数的绝对值是它的相反数.若两个数的乘积是1,我们就称这两个数互为倒数.4.下列各式中,次数为5的单项式是()A.5ab B.a5b C.a5+b5D.6a2b3【分析】直接利用单项式以及多项式次数确定方法分别分析得出答案.【解答】解:A、5ab是次数为2的单项式,故此选项错误;B、a5b是次数为6的单项式,故此选项错误;C、a5+b5是次数为5的多项式,故此选项错误;D、6a2b3是次数为5的单项式,故此选项正确.故选:D.【点评】此题主要考查了单项式以及多项式次数,正确把握单项式次数确定方法是解题关键.5.多项式﹣2x2+2x+3中的二次项系数是()A.﹣1B.2C.﹣2D.3【分析】根据多项式的概念即可求出答案.【解答】解:二次项系数为﹣2,故选:C.【点评】本题考查多项式的概念,解题的关键熟练运用多项式的概念,本题属于基础题型.6.三个立体图形的展开图如图①②③所示,则相应的立体图形是()A.①圆柱,②圆锥,③三棱柱B.①圆柱,②球,③三棱柱C.①圆柱,②圆锥,③四棱柱D.①圆柱,②球,③四棱柱【分析】根据圆柱、圆锥、三棱柱表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是圆柱、圆锥、三棱柱.故选:A.【点评】本题考查圆锥、三棱柱、圆柱表面展开图,记住这些立体图形的表面展开图是解题的关键.7.在数轴上表示有理数a,﹣a,﹣b﹣1的点如图所示,则()A.﹣b<﹣a B.|b+1|<|a|C.|a|>|b|D.b﹣1<a【分析】因为a与﹣a互为相反数,所以根据图示知,a<0<﹣a<﹣b﹣1,由此对选项进行一一分析.【解答】解:∵a与﹣a互为相反数,∴根据图示知,a<0<﹣a<﹣b﹣1,∴|﹣a|=|a|<|﹣b﹣1|=|b+1|,则|b+1|>|a|,故B选项错误;∴﹣b>﹣a,故A选项错误;∴|a|>|b|,故C选项错误;∴b﹣1<a,故D选项正确.故选:D.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.8.已知等式3a=b+2c,那么下列等式中不一定成立的是()A.3a﹣b=2c B.4a=a+b+2c C.a=b+c D.3=+【分析】根据等式的基本性质逐一判断即可得.【解答】解:A、原等式两边都减去b即可得3a﹣b=2c,此选项正确;B、原等式两边都加上a即可得4a=a+b+2c,此选项正确;C、原等式两边都除以3即可得a=b+c,此选项正确;D、在a≠0的前提下,两边都除以a可得3=+,故此选项不一定成立;故选:D.【点评】本题主要考查等式的性质,解题的关键是掌握等式两边加同一个数(或式子)结果仍得等式、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.某商店以每件a元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店卖出这两件衣服总的情况是()A.盈利0.05a元B.亏损0.05a元C.盈利0.15a元D.亏损0.15a元【分析】设盈利的衣服的进价为x元/件,亏损的衣服的进价为y元/件,根据售价﹣进价=利润,可得出关于x(y)的一元一次方程,解之即可得出x(y)的值,再利用总利润=两件衣服的售价﹣两件衣服的进价,即可得出结论.【解答】解:设盈利的衣服的进价为x元/件,亏损的衣服的进价为y元/件,依题意,得:a﹣x=25%x,a﹣y=﹣20%y,解得:x=0.8a,y=1.25a,∴2a﹣x﹣y=﹣0.05a,∴商店卖出这两件衣服总的情况是亏损0.05a元.故选:B.【点评】本题考查了一元一次方程的应用以及列代数式,找准等量关系,正确列出一元一次方程是解题的关键.10.若关于x的方程有无数解,则3m+n的值为()A.﹣1B.1C.2D.以上答案都不对【分析】原方程经过移项,合并同类项,根据“该方程有无数解”,得到关于m和关于n的一元一次方程,解之,代入3m+n,计算求值即可得到答案.【解答】解:mx+=﹣x,移项得:mx+x=﹣,合并同类项得:(m+1)x=,∵该方程有无数解,∴,解得:,把m=﹣1,n=2代入3m+n得:原式=﹣3+2=﹣1,故选:A.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分)11.﹣2019的相反数是2019.【分析】直接利用相反数的定义进而得出答案.【解答】解:﹣2019的相反数是:2019.故答案为:2019.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.12.目前我国年可利用的淡水资源总量约为38050亿立方米,是世界上严重缺水的国家之一.38050用科学记数法表示为 3.805×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:38050=3.805×104.故答案为:3.805×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.若x与3的积等于x与﹣16的和,则x=﹣8.【分析】由题意列出方程进而解方程得出答案.【解答】解:由题意可得:3x=x﹣16,解得:x=﹣8.故答案为:﹣8.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.14.若﹣x m y4与x3y n是同类项,则(m﹣n)9=﹣1.【分析】首先根据同类项定义可得m=3,n=4,再代入(m﹣n)9进行计算即可.【解答】解:由题意得:m=3,n=4,则(m﹣n)9=﹣1,故答案为:﹣1.【点评】此题主要考查了同类项,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.15.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为2.【分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【解答】解:由设计的程序,知依次输出的结果是50,25,32,16,8,4,2,1,8,4,2,1…,发现从8开始循环.则2019﹣4=2015,2015÷4=503…3,故第2019次输出的结果是2.故答案为:2【点评】此题主要考查了数字的变化规律,正确发现循环的规律,根据循环的规律进行推广.该题中除前4次不循环外,后边是4个一循环.16.如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,4…),第n个图形中共有(n+2)(n+3)个顶点(结果用含n的式子表示).【分析】由已知图形得出顶点的个数是序数分别与2、3和的乘积,据此可得.【解答】解:由图形知,当n=1时,顶点的个数为12=3×4;当n=2时,顶点的个数20=4×5;当n=3时,顶点的个数30=5×6;当n=4时,顶点的个数42=6×7;……所以第n个图形中顶点的个数为(n+2)(n+3)(个),故答案为:(n+2)(n+3).【点评】本题主要考查图形的变化规律,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.三、解答題(本大题共8小题,满分72分,解答须写出文字说明、推理过程)17.计算:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)(2)﹣(﹣1)10×2+(﹣2)3÷4【分析】(1)先化简,再计算加减法即可求解;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)=﹣7﹣5+13﹣10=﹣22+13=﹣9;(2)﹣(﹣1)10×2+(﹣2)3÷4=﹣1×2+(﹣8)÷4=﹣2﹣2=﹣4.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:,其中x=﹣2,y=﹣3【分析】先去掉括号,然后合并同类项,再把x、y的值代入进行计算即可得解.【解答】解:原式==﹣3x+y2,把x=﹣2,y=﹣3代入﹣3x+y2=﹣3×(﹣2)+(﹣3)2=6+9=15.【点评】本题考查了整式加减,先化简然后再代入数据进行求值更加简便,整式的加减实质就是去括号,合并同类项的运算.19.解下列方程:(1)2(x+3)=5(x﹣3)(2)【分析】(1)直接去括号进而合并同类项解方程即可;(2)直接去分母进而移项合并同类项解方程即可.【解答】解:(1)2(x+3)=5(x﹣3)2x+6=5x﹣15,则3x=21,解得:x=7;(2)45﹣5(2x﹣1)=3(4﹣3x)﹣15x,整理得:14x=38,解得:x=.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.20.有理数a,b,c在数轴上的位置如图所示请化简:﹣|a|﹣|b+2|+2|c|﹣|a+b|+|c﹣a|.【分析】根据数轴上点的位置,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】根据题意得:a=﹣2.5,b=﹣0.5,c=1.5,则b+2>0,a+b<0,c﹣a<0,则化简得:a﹣(b+2)+2c+(a+b)﹣(c﹣a)=3a+c代入数值a=﹣2.5,b=﹣0.5,c=1.5,原式=﹣6.【点评】本题考查了合并同类项,利用绝对值的性质化简绝对值,利用合并同类项,代数数值得出答案.21.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.【分析】(1)根据和解方程的定义即可得出关于m的一元一次方程,解之即可得出结论;(2)根据和解方程的定义即可得出关于m、n的二元二次方程组,解之即可得出m、n的值.【解答】解:(1)∵方程3x=m是和解方程,∴=m+3,解得:m=﹣.(2)∵关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,∴﹣2n=mn+n,且mn+n﹣2=n,解得m=﹣3,n=﹣.【点评】本题考查了一元一次方程的解、解一元一次方程以及二元二次方程组,解题的关键是:根据“和解方程“的定义列出关于m的一元一次方程;根据和解方程的定义列出关于m、n的二元二次方程组.22.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【分析】(1)设甲购书x本,则乙购书为(15﹣x)本,再根据总价格列出方程即可;(2)先计算7.5折后的价格,加上办卡的费用,与原来的价格差即为节省的钱数.【解答】解:(1)甲购书x本,则乙购书为(15﹣x)本,由题意得30x×0.9+15(15﹣x)×0.9=283.5解得x=6则15﹣x=9答:甲购书6本,乙购书9本.(2)购书7.5折的应付款表示为283.5÷0.9×0.75=236.25办卡节省的费用为283.5﹣236.25﹣20=22.25答:办卡购书比不办卡购书共节省22.25元.【点评】本题考查的是一元一次方程应用中的打折销售问题,明确等量关系,并正确列出方程是解题的关键.23.如图1,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,求∠MON的度数;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<126且n≠54),求∠MON的度数.【分析】(1)根据∠MON=∠BOM+∠BON计算即可;(2)分两种情形分别计算即可.【解答】解:(1)由题意;∠MON=∠AOB+∠COD=86°+28°=114°;(2)①当0<n<54°时,如图1中,∠AOC=126°﹣n°,∠BOD=54°﹣n°,∴∠MON=∠MOC+∠COB+∠BON=(126°﹣n°)+n°+(54°﹣n°)=114°,②当60°<n<120°时,如图2中,∠AOC=126°﹣n°,∠COD=54°,∠BOD=n°﹣54°∴∠MON=∠MOC+∠COD+∠DON=(126°﹣n°)+54°+(n°﹣54°)=114°.综上所述,∠MON=114°【点评】本题考查角的和差定义,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题.24.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x<﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB =PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.【解答】解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.(1)设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【点评】本题考查了一元一次方程的应用、数轴以及绝对值的非负性,解题的关键是:(1)分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况,找出关于x的一元一次方程;(2)利用两点间的距离公式求出AB﹣BC=6.。

2019-2020学年七年级上学期期末考试数学试题及解答

2019-2020学年七年级上学期期末考试数学试题及解答

2019-2020学年七年级上学期期末考试数学试题一、选择题(本大题共12小题,共24.0分)1.的倒数是A. 6B.C.D.【答案】D【解析】解:的倒数是.故选:D.根据倒数的定义求解.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为A. B. C. D.【答案】B【解析】解:将13000用科学记数法表示为:.故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是非负数;当原数的绝对值时,n是负数.此题考查了科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.下列调查中,适宜采用普查方式的是A. 了解一批圆珠笔的寿命B. 了解全国九年级学生身高的现状C. 检查一枚用于发射卫星的运载火箭的各零部件D. 考察人们保护海洋的意识【答案】C【解析】解:A、了解一批圆珠笔的寿命适宜采用抽样调查方式,A错误;B、了解全国九年级学生身高的现状适宜采用抽样调查方式,B错误;C、检查一枚用于发射卫星的运载火箭的各零部件适宜采用普查方式,B正确;D、考察人们保护海洋的意识适宜采用抽样调查方式,D错误;故选:C.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下列计算正确的是A. B.C. D.【答案】D【解析】解:A、3m和2y不是同类项,不能合并,故本选项错误;B、和不是同类项,不能合并,故本选项错误;C、,故本选项错误;D、,故本选项正确;故选:D.先判断是不是同类项,再根据合并同类项的法则进行计算,即可得出正确答案.本题考查了合并同类项,掌握同类项的定义和合并同类项的法则是解题的关键,是一道基础题.5.下列说法中,错误的是A. 正多边形的各边都相等B. 各边都相等的多边形是正多边形C. 正三角形的三条边都相等D. 正六边形的六个内角都相等【答案】B【解析】解:正多边形的各边都相等,正确;各边都相等且各内角都相等的多边形是正多边形,错误;C. 正三角形的三条边都相等,正确;正六边形的六个内角都相等,正确故选:B.根据正多边形的定义:各个边相等,各个角相等的多边形是正多边形,除正三边形以外,各边相等,各角相等,两个条件必须同时成立.本题考查了正多边形的定义,注意除正三边形以外,各边相等,各角相等,两个条件必须同时成立.6.三个连续奇数排成一行,第一个数为x,最后一个数为y,且用下列整式表示中间的奇数时,不正确的一个是A. B. C. D.【答案】C【解析】解:三个连续奇数排成一行,第一个数为x,则第二个奇数为;当最后一个数为y,则第二个奇数可表示为;第二个奇数也表示为.故选:C.由于相邻奇数相差为2,则中间的奇数可表示为或或.本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式列代数式五点注意:仔细辨别词义认真审题,抓住关键词语,仔细辩析词义,分清数量之间的关系.7.如图,,点O为线段AB上的任意一点,C为AO的中点,D为OB的中点,则线段CD长为A. 3cmB. 4cmC. 5cmD. 6cm【答案】C【解析】解:为AO的中点,D为OB的中点,,故选:C.由中点定义可得,,即可求CD的长.本题考查了两点间的距离,中点定义,熟练运用中点定义是本题的关键.8.已知,,且,则代数式的值为A. 1或7B. 1或C. 或D. 或【答案】A【解析】解:,;,;,,,或,,,时,;,时,;代数式的值为1或7.故选:A.首先根据,可得;再根据,可得;然后根据,可得,据此求出a、b的值各是多少,即可求出代数式的值为多少.此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算如果给出的代数式可以化简,要先化简再求值题型简单总结以下三种:已知条件不化简,所给代数式化简;已知条件化简,所给代数式不化简;已知条件和所给代数式都要化简.9.甲、乙二人从相距21千米的两地同时出发,相向而行,120分钟相遇甲每小时比乙多走500米,设乙的速度为x千米小时,下面所列方程正确的是A. B.C. D.【答案】B【解析】解:设乙的速度为x千米时,则甲的速度为千米时,依题意得:.故选:B.设乙的速度为x千米时,则甲的速度为千米时,根据题意可得等量关系:乙2小时的路程甲2小时的路程千米,根据等量关系列出方程即可.此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系.10.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是A. 4B. 5C. 6D. 7【答案】B【解析】解:几何体分布情况如下图所示:则小正方体的个数为,故选:B.根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答可得.本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.11.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么的值是A. 1B. 4C. 7D. 9【答案】A【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“”是相对面,“y”与“”是相对面,“z”与“3”是相对面,相对面上所标的两个数互为相反数,,,,.故选:A.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.如图所示是一个运算程序的示意图,若开始输入的x值为27,则第5次输出的结果为A. 3B. 27C. 9D. 1【答案】D【解析】解:把代入得:,把代入得:,把代入得:,把代入得:,依此类推,则第5次输出的结果为1,故选:D.把x的值代入运算程序中计算即可.此题考查了代数式求值,弄清程序中的运算是解本题的关键.二、填空题(本大题共5小题,共15.0分)13.在数轴上与所对应的点相距4个单位长度的点表示的数是______.【答案】2或【解析】解:当该点在的右边时,由题意可知:该点所表示的数为2,当该点在的左边时,由题意可知:该点所表示的数为,故答案为:2或由于题目没有说明该点的具体位置,故要分情况讨论.本题考查数轴,涉及有理数的加减运算、分类讨论的思想.14.若,则______.【答案】【解析】解:,,故答案为:.根据,可以求得的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15.已知,,OC在它的内部,且把分成1:3两部分,则度数为______.【答案】或【解析】解:,OC在它的内部,且把分成1:3的两个角,或.故答案为:或.根据OC在的内部,且把分成1:3的两个角,则或,然后把代入计算即可.本题考查了角度的计算,正确的理解题意是解题的关键.16.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则化简______.【答案】0【解析】解:由数轴得,,,因而,,.原式.故答案为:0.由数轴可知:,,所以可知:,,根据负数的绝对值是它的相反数可求值.此题主要是考查学生对数轴和绝对值的理解,学生要对这些概念性的东西牢固掌握.17.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第是大于0的整数个图形需要黑色棋子的个数是______.【答案】【解析】解:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子个,则第n个图形需要黑色棋子的个数是.故答案为:.根据题意,分析可得第1个图形需要黑色棋子的个数为,第2个图形需要黑色棋子的个数为,第3个图形需要黑色棋子的个数为,依此类推,可得第n个图形需要黑色棋子的个数是,计算可得答案.此题考查规律型:图形的变化类,解题时注意图形中有重复的点,即多边形的顶点.三、计算题(本大题共2小题,共26.0分)18.计算:化简求值:,其中,.【答案】解:原式;原式;原式,当,时,原式.【解析】根据有理数的运算法则即可求出答案.先根据整式的运算法则进行化简,然后将x与y的值代入即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.19.某校组织7年级师生外出进行研究性学习活动,学校联系了旅游公司提供车辆该公司现有50座和35座两种车型如果用35座的,会有5人没座位;如果全部换乘50座的,则可比35座车少用2辆,而且多出15个座位若35座客车日租金为每辆250元,50座客车日租金为每辆300元,请你算算参加互动师生共多少人?请你设计一个方案,使租金最少,并说明理由.【答案】解:设参加互动师生共x人,由题意得:即:解得:人,所以,参与本次师生互动的人共有285人.设计方案为:租用1辆35座的车,租用5辆50座的车.设租用x辆35座的,则还需租用辆50座的,其中由题意得:由于辆,需要租金:元;所以当时,,需要租金:元;当时,辆,需租金:元;当时,辆,需租金:元;当时,辆,需租金:元;当时,辆,需租金:元;当时,辆,需租金:元;当时,辆,需租金:元;当时,辆,需租金:元;当时,,此时需租金:元;综合上述比较当租用1辆35座的车,租用5辆50座的车时,所需资金最少另法:假设租了35座汽车x辆,其余人乘坐50座客车,则所花租金等于:,若要使租金最少,即要使值最小,当时,租金为1750元时为最低.故租了35座汽车1辆,50座客车5辆最合算.【解析】设参加互动师生共x人,那么如果用35座的需辆,全部换乘50座的需辆,已知:如果全部换乘50座的,则可比35座车少用2辆,以此为等量关系列出方程求解;分类讨论,看什么时候所用租金最少,就选择该方案.本题主要考查一元一次方程的应用,关键在于理解清楚题意,找出等量关系,列出方程求解;运用“分类讨论”的方法,得出租金最少时的方案.四、解答题(本大题共5小题,共35.0分)20.解方程【答案】解:方程两边同时乘以6得:,去括号得:,移项得:,合并同类项得:,系数化为1得:.【解析】依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状.【答案】解:如图所示【解析】根据三视图的概念作图即可得.本题考查作图三视图在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉本题画几何体的三视图时应注意小正方形的数目及位置.22.武侯区为了丰富群众的文体生活,开展了“行随我动”跳绳比赛,该活动得到了学校的积极响应,某校为了了解七年级学生跳绳的训练情况,随机抽取了七年级部分学生进行60秒跳绳测试,并将这些学生的测试成绩即60秒跳绳的个数,且这些测试成绩都是~范围内分段后给出相应等级,具体为:测试成绩在~范围内的记为D级,~范围内的记为C级,~范围内的记为B级,~范围内的记为A级,现将数据整理绘制成如下两幅不完整的统计图,请根据图中的信息解答下列问题:在扇形统计图中,A级所占百分比为______;在这次测试中,一共抽取了______名学生,并补全频数分布直方图;在的基础上,在扇形统计图中,求D级对应的圆心角的度数.【答案】100【解析】解:级所在扇形的圆心角的度数为,级所占百分比为;故答案为:;级有25人,占,抽查的总人数为人,级有人,频数分布图为:类的圆心角为:.根据A级所在扇形的圆心角为求得其所占的百分比即可;用A级的人数除以其所占的百分比即可求得总人数;用D级的人数除以总人数乘以周角的度数即可求得对应的圆心角的度数.本题考查了频数分布直方图及扇形统计图的知识,解题的关键是从统计图中整理出相关的信息,难度不大.23.如图,,OP平分,OQ平分,求的度数【答案】解:,平分,OQ平分,,,.【解析】根据角平分线的定义求出与的度数,然后相减即可得到的度数.本题考查了角的计算与角平分线的定义,准确识图,找出的等量关系是解题的关键.24.阅读材料:求值:,解答:设,将等式两边同时乘2得:,将得:,即.请你类比此方法计算:.其中n为正整数【答案】解:设,将等式两边同时乘2得:,将下式减去上式得:,即,则;设,两边同时乘3得:,得:,即,则.【解析】设,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;同理即可得到所求式子的值.本题考查了规律型:数字的变化类,有理数的混合运算,解题的关键是明确题意,运用题目中的解题方法,运用类比的数学思想解答问题.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档