广东省广州市2011年普通高中毕业班综合测试(一)数学理(WORD版)

合集下载

2011年广东高考理科数学试题及答案(纯word版)

2011年广东高考理科数学试题及答案(纯word版)

2011年广东高考理科数学试题及答案(纯word版)D1. 设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i - C. 22i + D.22i -2.已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为A.0 B.1 C.2 D.3 3. 若向量a,b,c满足a∥b且a⊥b,则(2)c a b •+=A.4 B.3 C.2 D.04. 设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数B.()()f x g x -是奇函数C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5. 在平面直角坐标系xOy 上的区域D 由不等式组0222x y x y ⎧≤≤⎪≤⎨⎪≤⎩给定。

若(,)M x y 为D 上的动点,点A 的坐标为(2,1),则z OM ON =的最大值为 A .42 B .32 C .4 D .3 6. 甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347. 如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的. 若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A. ,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C. ,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的16. 填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2011 年广州市普通高中毕业班综合测试(一) 理科综合答案(word版)

2011 年广州市普通高中毕业班综合测试(一) 理科综合答案(word版)

2011 年广州市普通高中毕业班综合测试(一) 年广州市普通高中毕业班综合测试(
综合(理科) 综合(理科)试题参考答案及评分标准
理科综合- 理科综合-生物
1.A 26. 2.A 3.C 4.D (1)基因和环境
5.C
6.D
24.AD
25.CD
(2)促使多肽链形成(具有一定空间结构的)蛋白质 (3)多 抑制HSP90的活性(抑制HSP90基因的表达、降低HSP90的含量) (4)①吞噬细胞 27. 增殖分化 细胞免疫 ② 热休克蛋白-抗原复合体 (1) 碱性染料(改良苯酚品红染液、龙胆紫染液、醋酸洋红染液) 正常雄猫体细胞中没有巴氏小体,正常雌猫体细胞中有巴氏小体 (2) 2 (3)橙色 28. 转录
A a
XXY 父方 减数第一次分裂时 X 、Y 染色体没有分离 (1)太阳能和化学能 (3)微生物失水过多死亡 (5)无机盐被充分吸收 29. 生物群落 (2) 核酸 高(多) (4)挺水植物起遮光作用,影响浮游藻类进行光合作用 自我调节能力有限 (1)缺 Mg 导致叶绿素合成不足,植株通过光合作用合成的有机物减少 (2)少量碳酸钙 (3) 实验目的:探究锌肥施用量对番茄产量的影响(种植番茄时施用锌肥的最佳浓度范围) 实验步骤: 第一步:8 第二步:实验组喷施适量且等体积的不同浓度的硫酸锌溶液,对照组喷施等量的蒸馏水
A


第三步:称出每组番茄所结果实的重量 实验分析与讨论: ①12mg/L 至 16mg/L ②锌肥施用量超过最佳范围(16mg/L)时会使果实产量下降,并造成浪费
4

















2011年高考数学(广东卷,理科)word版(全解全析)

2011年高考数学(广东卷,理科)word版(全解全析)

2011年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”.2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求做大的答案无效。

4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。

漏涂、错涂、多涂的,答案无效。

5、 考生必须保持答题卡得整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.线性回归方程 y bxa =+ 中系数计算公式121()()()nii i nii xx y y b xx ==--=-∑∑ , ay b x =- . 其中,x y 表示样本均值.n 是正整数,则()n na b a b -=-12(n n a a b --++ (21)n n ab b --+).一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设复数z 满足()12i z +=,其中i 为虚数单位,则z =A .1i +B .1i -C .22i +D .22i - 【解析】B ;依题意得211z i i==-+,故选B .2.已知集合{(,)|A x y =,x y 为实数,且}221x y +=,{(,)|B x y =,x y 为实数,且}y x =,则A B 的元素个数为A .0B .1C .2D .3 【解析】C;题意等价于求直线y x =与圆221x y +=的交点个数,画大致图像可得答案为C . 3. 若向量a ,b ,c 满足a ∥b 且a ⊥c ,则⋅(2)=c a +bA .4B .3C .2D .0 【解析】D;因为a ∥b 且a ⊥c ,所以b ⊥c ,从而⋅⋅⋅(2)=20c a +b c a +c b =,故选D . 4. 设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是A .()()f x g x +是偶函数B .()()f x g x -是奇函数C .()()f x g x +是偶函数D .()()f x g x -是奇函数 【解析】A;依题意()(),()()f x f x g x g x -=-=-,故()|()|()|()|f x g x f x g x -+-=+,从而()|()|f x g x + 是偶函数,故选A .5. 在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(,)M x y 为D 上的动点,点A 的坐标为,则z OM OA =⋅的最大值为A .B .C .4D .3 【解析】C;目标函数即z y =+,画出可行域如图所示,代入端点比较之,易得当2x y ==时z 取得最大值4,故选C .6. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获 得冠军的概率为A .12B .35C .23D .34【解析】D;设甲队获得冠军为事件A ,则A 包含两种情况:(1)第一局胜;(2)第一局负但第二局胜;故所求概率1113()2224P A =+⨯=,从而选D .7. 如图1-3,某几何体的正视图(主视图)是平行四边形, 侧视图(左视图)和俯视图都是矩形,则该几何体的体积 为A .B .C .D .【解析】B ;该几何体是以正视图所在的平行四边形为底面,高为 3的四棱柱,又平行四边形的底边长为3,,所以面积 S=从而所求几何体的体积V Sh ==故选B . 8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的. 若T ,V 是Z 的两个不相交的非空子集,T V Z = 且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B . ,T V 中至多有一个关于乘法是封闭的C . ,T V 中有且只有一个关于乘法是封闭的D . ,T V 中每一个关于乘法都是封闭的【解析】A;因为T V Z = ,故必.有.1∈T 或1∈V ,不妨设1∈T ,则令1c =,依题意对,a b T ∀∈,有ab T ∈,从而T 关于乘法是封闭的;(其实到此已经可以选A 了,但为了严谨,我们往下证明可以有一个不封闭以及可以两个都封闭),取T N =,则V 为所有负整数组成的集合,显然T 封闭,但V 显然是不封闭的,如(1)(2)2V -⨯-=∉;同理,若{T =奇数},{V =偶数},显然两者都封闭,从而选A .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2011年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案

2011年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案

2011年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案一、选择题题 号 1 2 3 4 5 6 7 8 答 案 B C D A C D B A二、填空题 9. [1,)+∞; 10. 84; 11. 10;12. 2;13. 185;14. 25(1,)5;15.35;三、解答题 16.解:(1)55()2sin()2sin 241264f ππππ=-==; (2)10(3)2sin 213f παα+==,5sin 13α∴=,又[0,]2πα∈,12cos 13α∴=, 6(32)2sin()2cos 25f πβπββ+=+==,3cos 5β∴=, 又[0,]2πβ∈,4sin 5β∴=, 16cos()cos cos sin sin 65αβαβαβ+=-=. 17.解:(1)乙厂生产的产品总数为1453598÷=; (2)样品中优等品的频率为25,乙厂生产的优等品的数量为235145⨯=; (3)0,1,2ξ=,22325()i i C C P i C ξ-==(0,1,2)i =,ξ的分布列为 ξ 0 1 2P310 35 110均值314()125105E ξ=⨯+⨯=. 18.解:(1) 取AD 的中点G ,又PA =PD ,PG AD ∴⊥,由题意知ΔABC 是等边三角形,BG AD ∴⊥, 又PG , BG 是平面PGB 的两条相交直线,AD PGB ∴⊥平面,//,//EF PB DE GB , DEF PGB ∴平面//平面, AD DEF ∴⊥平面(2) 由(1)知PGB ∠为二面角P AD B --的平面角,在Rt PGA ∆中,2217()24PG =-=;在Rt BGA ∆中,222131()24BG =-=;在PGB ∆中,222cos 2PG BG PB PGB PG BG +-∠==⋅.19.解:(1)两圆半径都为2,设圆C 的半径为R,两圆心为1(0)F、20)F ,由题意得12||2||2R CF CF =-=+或21||2||2R CF CF =-=+,1212||||||4||CF CF F F ∴-=<=,可知圆心C 的轨迹是以12,F F 为焦点的双曲线,设方程为22221x y a b -=,则22224,2,1,1a a c b c a b ====-==,所以轨迹L 的方程为2214x y -=.(2)∵||||||||2MP FP MF -≤=,仅当(0)PM PF λλ=>时,取"=",由2MFk =-知直线:2(MF l y x =-,联立2214x y -=并整理得21590x -+=解得x =x =舍去),此时P 所以||||||MP FP -最大值等于2,此时P . 20.解(1)法一:112(1)n n n a ba n a n --=+-,得1112(1)121n n n n a n n n a ba b b a ---+--==+⋅, 设n n n b a =,则121n n b b b b-=⋅+(2)n ≥, (ⅰ)当2b =时,{}n b 是以12为首项,12为公差的等差数列, 即111(1)222n b n n =+-⨯=,∴2n a = (ⅱ)当2b ≠时,设12()n n b b b λλ-+=⋅+,则122(1)n n b b b bλ-=⋅+-, 令21(1)b b λ-=,得12b λ=-,1121()22n n b b b b b-∴+=⋅+--(2)n ≥,知12n b b +-是等比数列,11112()()22n n b b b b b -∴+=+⋅--,又11b b=, 12112()222n n n n nb b b b b b b -∴=⋅-=⋅---,(2)2n n n nnb b a b -∴=-. 法二:(ⅰ)当2b =时,{}n b 是以12为首项,12为公差的等差数列, 即111(1)222n b n n =+-⨯=,∴2n a = (ⅱ)当2b ≠时,1a b =,2222222(2)22b b b a b b -==+-,33223333(2)242b b b a b b b -==++-, 猜想(2)2n n n nnb b a b -=-,下面用数学归纳法证明:①当1n =时,猜想显然成立;②假设当n k =时,(2)2k k k kkb b a b -=-,则 1111(1)(1)(2)(1)(2)2(1)(2)2(2)2k k k k k k k k k k k b a k b kb b k b b a a n kb b k b b +++++⋅+⋅-+-===+--+⋅--, 所以当1n k =+时,猜想成立,由①②知,*n N ∀∈,(2)2n n n nnb b a b -=-. (2)(ⅰ)当2b =时,112212n n n a ++==+,故2b =时,命题成立;(ⅱ)当2b ≠时,22122n n n n b b ++≥=,21211222n n n n b b b --+⋅+⋅≥=,11111,222n n n n n n b b b +--++⋅+⋅≥=,以上n 个式子相加得2212n n b b -+⋅+111122n n n n b b +--++⋅+⋅+2121222n n n n b n b -++⋅+≥⋅,1221212112(2)[(222)2](2)2(2)2(2)n n n n n n n n n n n nn n nn b b b b b b b a b b +--++⋅-+⋅++⋅+-⋅-=≤-- 2212121(222)(2)2(2)2(2)n n n n n n n n nb b b b b b b --++⋅++⋅+--⋅-=- 2121111(2)222(2)n n n n n n n n nb b b b +++++--⋅+⋅=- 2111211(2)(22)2(2)n n n n n n n n n b b b b +++++-⋅+⋅-=-1112n n b ++=+.故当2b ≠时,命题成立; 综上(ⅰ)(ⅱ)知命题成立.21.解:(1)00011'|()|22AB x p x p k y x p =====, 直线AB 的方程为200011()42y p p x p -=-,即2001124y p x p =-, 2001124q p p p ∴=-,方程20x px q -+=的判别式2204()p q p p ∆=-=-, 两根001,2||22p p p p x ±-==或02pp -,00p p ⋅≥,00||||||||22p pp p ∴-=-,又00||||p p ≤≤, 000||||||||222p p p p ∴-≤-≤,得000||||||||||222p p pp p ∴-=-≤, 0(,)||2p p q ϕ∴=. (2)由240a b ->知点(,)M a b 在抛物线L 的下方,①当0,0a b >≥时,作图可知,若(,)M a b X ∈,则120p p >≥,得12||||p p >; 若12||||p p >,显然有点(,)M a b X ∈;(,)M a b X ∴∈12||||p p ⇔>. ②当0,0a b ><时,点(,)M a b 在第二象限,作图可知,若(,)M a b X ∈,则120p p >>,且12||||p p >; 若12||||p p >,显然有点(,)M a b X ∈;(,)M a b X ∴∈12||||p p ⇔>.根据曲线的对称性可知,当0a <时,(,)M a b X ∈12||||p p ⇔>, 综上所述,(,)M a b X ∈12||||p p ⇔>(*);由(1)知点M 在直线EF 上,方程20x ax b -+=的两根11,22p x =或12pa -, 同理点M 在直线''E F 上,方程20x ax b -+=的两根21,22p x =或22p a -, 若1(,)||2p a b ϕ=,则1||2p 不比1||2p a -、2||2p、2||2p a -小, 12||||p p ∴>,又12||||p p >(,)M a b X ⇒∈,1(,)||2p a b ϕ∴=⇒(,)M a b X ∈;又由(1)知,(,)M a b X ∈1(,)||2p a b ϕ⇒=; 1(,)||2p a b ϕ∴=⇔(,)M a b X ∈,综合(*)式,得证. (3)联立1y x =-,215(1)44y x =+-得交点(0,1),(2,1)-,可知02p ≤≤,过点(,)p q 作抛物线L 的切线,设切点为2001(,)4x x ,则20001142x qx x p -=-, 得200240x px q -+=,解得0x p =+又215(1)44q p ≥+-,即2442p q p -≤-,0x p ∴≤t =,20122x t t ∴≤-++215(1)22t =--+,0max max ||2x ϕ=,又052x ≤,max 54ϕ∴=; 1q p ≤-,0|2|2x p p p ∴≥+=+-=,min min ||12x ϕ∴==.。

2011广东高考数学(理科)试题及详解

2011广东高考数学(理科)试题及详解

试卷类型:A2011年普通高等学校招生全国统一考试(广东卷)数学(理科)参考公式:柱体的体积公式V=Sh 其中S 为柱体的底面积,h 为柱体的高线性回归方程^^^y b x a =+中系数计算公式^^^121()(),()niii nii x x y y b a y b x x ==--==--∑∑,其中,x y 表示样本均值.n 是正整数,则-1-2-2-1-(-)()n n n n n n a b a b a a b ab b =++⋯⋯++一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设复数z 满足()12i z +=,其中i 为虚数单位,则z =( ) A .1i + B. 1i - C. 22i + D.22i -2.已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为( )A.0 B.1 C.2 D.33. 若向量a,b,c满足a∥b且a⊥b,则(2)c a b ∙+=( )A.4 B.3 C.2 D.04. 设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是( ) A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5. 在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。

若(,)M x y 为D 上的动点,点A的坐标为,则z OM ON =的最大值为( )A. B. C .4 D .36. 甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A .12 B .35 C .23 D .347. 如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( )A.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的. 若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是( )A. ,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C. ,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的16. 填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2011年广东高考理科数学试卷及答案解析

2011年广东高考理科数学试卷及答案解析

2011年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i - C. 22i + D.22i - 2.已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为A .0B .1C .2D .3 3.若向量a,b,c满足a∥b且a⊥b,则()2a a b ⋅+=A .4B .3C .2D .0 4.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是A .()()f x g x +是偶函数B .()()f x g x -是奇函数C .()()f xg x +是偶函数 D .()()f xg x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。

若(,)M x y 为D 上的动点,点A的坐标为,则z OM ON =的最大值为 A. B. C .4 D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为A .12B .35C .23D .347.如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为A .36B .39C .312D .3188.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A. ,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2011年广州市普通高中毕业班综合测试(一)分析

2011年广州市普通高中毕业班综合测试(一)分析

2011年广州市普通高中毕业班综合测试(一)分析专辑广州市教育局教学研究室2011-3-21 T eaching Research Office of Guangzhou Education Bureau eaching Research Office of Guangzhou Education Bureau T eaching Research Office of Guangzhou Education Bureau T eaching Research Office of Guangzhou Education Bureau 关于统计原则的说明:1.本专辑内的学校分组参照广州市人民政府教育督导室2010届评估分组,仅供质量分析参考,与2011届督导评估无关。

部分2010年未经市督导室分组的单位全部归入第7组。

2.本专辑内所有统计数据的得出,均建立在由广州市招生考试委员会办公室提供的考生名册、考生属性、考生报考科目、考生学籍所在学校等信息的基础之上。

本专辑内考生和学校的分区,均以学籍所在的属地为准。

3.本专辑内各项指标的统计口径,均严格按照市招考办的如下意见执行:(1)所有统计到区和校两级的指标,均以学籍所在学校为准,无学籍的考生则按其报名点代码归入各区社会青年。

(2)如果考生所有报考科目都未参加考试,或者虽然参加了英语听说考试但没有参加其他科目考试,则将其剔出不参与统计;如其有除英语听说外的任何一门已报考科目有分数,则将其报考而未考的科目记作0分,一并纳入统计。

一、数据统计项目1原始得分1.1分点得分。

每一考生在各学科每一得分点的原始得分情况,及该生本学科的合计得分。

1.2题组得分。

每一考生在各学科每一“知识板块”、“能力专项”或“题组”的原始得分情况,及本学科的合计得分。

1.3学科得分与总分。

每一考生各学科分数及4科(语文、文数或理数、英语、文综或理综)总分。

1.4总分排序。

每一考生4科总分从高到低排序名次(分文科、理科两类。

2011年广东省高考数学试卷(理科)答案与解析

2011年广东省高考数学试卷(理科)答案与解析

2011年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•广东)设复数Z满足(1+i)Z=2,其中i为虚数单位,则Z=()A.1+i B.1﹣i C.2+2i D.2﹣2i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】我们可以利用待定系数法求出Z,我们设Z=x+yi,结合已知中(1+i)Z=2,结合复数相等的充要条件,我们易构造出一个关于x,y的方程组,解方程组即可求出满足条件的复数Z的值.【解答】解:设Z=x+yi则(1+i)Z=(1+i)(x+yi)=x﹣y+(x+y)i=2即解得x=1,y=﹣1故Z=1﹣i故选B【点评】本题考查的知识点是复数代数形式的乘除运算,其中利用复数相等的充要条件,构造出一个关于x,y的方程组,是解答本题的关键.2.(5分)(2011•广东)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为()A.0 B.1 C.2 D.3【考点】交集及其运算.【专题】集合.【分析】据观察发现,两集合都表示的是点集,所以求两集合交集即为两函数的交点,则把两集合中的函数关系式联立求出两函数的交点坐标,交点有几个,两集合交集的元素就有几个.【解答】解:联立两集合中的函数解析式得:,把②代入①得:2x2=1,解得x=±,分别把x=±代入②,解得y=±,所以两函数图象的交点有两个,坐标分别为(,)和(﹣,﹣),则A∩B的元素个数为2个.故选C【点评】此题考查学生理解两个点集的交集即为两函数图象的交点个数,是一道基础题.3.(5分)(2011•广东)若向量,,满足∥且⊥,则•(+2)=()【考点】数量积判断两个平面向量的垂直关系;平面向量数量积的运算.【专题】平面向量及应用.【分析】利用向量共线的充要条件将用表示;垂直的充要条件得到;将的值代入,利用向量的分配律求出值.【解答】解:∵∴存在λ使∵∴=0∴=2=0故选D【点评】本题考查向量垂直的充要条件|考查向量共线的充要条件、考查向量满足的运算律.4.(5分)(2011•广东)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)﹣|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|﹣g(x)是奇函数【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g (x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.【解答】解:∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)﹣|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|﹣g(x)的奇偶性均不能确定故选A【点评】本题考查的知识点是函数奇偶性的判断,其中根据已知确定|f(x)|、|g(x)|也为偶函数,是解答本题的关键.5.(5分)(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=•的最大值为()【考点】二元一次不等式(组)与平面区域.【专题】不等式的解法及应用.【分析】首先画出可行域,z=•代入坐标变为z=x+y,即y=﹣x+z,z表示斜率为的直线在y轴上的截距,故求z的最大值,即求y=﹣x+z与可行域有公共点时在y轴上的截距的最大值.【解答】解:如图所示:z=•=x+y,即y=﹣x+z首先做出直线l0:y=﹣x,将l0平行移动,当经过B点时在y轴上的截距最大,从而z 最大.因为B(,2),故z的最大值为4.故选:C.【点评】本题考查线形规划问题,考查数形结合解题.6.(5分)(2011•广东)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为()A.B.C.D.【考点】相互独立事件的概率乘法公式.【专题】概率与统计.【分析】根据已知中的比赛规则,我们可得甲要获得冠军可分为甲第一场就取胜,或甲第一场失败,第二场取胜,由分类事件加法公式,我们分别求出两种情况的概率,进而即可得到结论.【解答】解:甲要获得冠军共分为两个情况一是第一场就取胜,这种情况的概率为一是第一场失败,第二场取胜,这种情况的概率为×=则甲获得冠军的概率为【点评】本题考查的知识点是相互独立事件的概率乘法公式,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.7.(5分)(2011•广东)如某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.6 B.9C.12D.18【考点】由三视图求面积、体积.【专题】立体几何.【分析】由已知中三视图我们可以确定,该几何体是以正视图为底面的直四棱柱,根据已知三视图中标识的数据,求出棱柱的底面积和高,代入棱柱体积公式即可得到答案.【解答】解:由已知中三视图该几何体为四棱柱,其底面底边长为3,底边上的高为:=,故底面积S=3×=3,又因为棱柱的高为3,故V=3×3=9,故选B.【点评】本题考查的知识点是由三视图求体积,其中根据三视图判断出几何体的形状及相应底面面积和高是解答本题的关键.8.(5分)(2011•广东)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的【考点】元素与集合关系的判断.【专题】集合.【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z拆分成两个互不相交的非空子集T,V的并集,如T为奇数集,V为偶数集,或T为负整数集,V为非负整数集进行分析排除即可.【解答】解:若T为奇数集,V为偶数集,满足题意,此时T与V关于乘法都是封闭的,排除B、C;若T为负整数集,V为非负整数集,也满足题意,此时只有V关于乘法是封闭的,排除D;从而可得T,V中至少有一个关于乘法是封闭的,A正确.【点评】此题考查学生理解新定义的能力,会判断元素与集合的关系,是一道比较难的题型.二、填空题(共7小题,每小题5分,其中14、15只能选做一题。

2011年广东一模理科数学试题

2011年广东一模理科数学试题

试卷类型:A2011年普通高等学校招生全国统一考试密卷数 学 (理 科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合}{220A x x x =-≤,}{11B x x =-<<, 则A B =A .}{01x x ≤<B .}{10x x -<≤ C .}{11x x -<< D .}{12x x -<≤ 2. 若复数(1-i )(a +i )是实数(i 是虚数单位),则实数a 的值为A .2-B .1-C .1D .23. 已知向量p ()2,3=-,q (),6x =,且//p q ,则+p q 的值为A B C .5 D .13 4. 函数ln xy x=在区间()1,+∞上 A .是减函数 B .是增函数 C .有极小值 D .有极大值 5. 阅读图1的程序框图. 若输入5n =, 则输出k 的值为. A .2 B .3 C .4 D .56. “a b >” 是“22a b ab +⎛⎫> ⎪⎝⎭”成立的A .充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件7. 将18个参加青少年科技创新大赛的名额分配给3所学校, 至少有一个名额且各校分配的名额互不相等, A .96 B .114C .128D .136DNMD 1C 1B 1A 1DCBA图3(度)150140110100 图1 8. 如图2所示,已知正方体1111ABCD A BC D -的棱长为2, 长 为2的线段MN 的一个端点M 在棱1DD 上运动, 另一端点N 在正方形ABCD 内运动, 则MN 的中点的轨迹的面积为 A .4π B .2π C .π D .2π图2 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.为了了解某地居民月均用电的基本情况, 抽 取出该地区若干户居民的用电数据, 得到频 率分布直方图如图3所示, 若月均用电量在 区间[)110,120上共有150户, 则月均用电量在区间[)120,150上的居民共有 户.10. 以抛物线2:8C y x =上的一点A 为圆心作圆,若该圆经过抛物线C 的顶点和焦点, 那么该圆的方程为 .11. 已知数列{}n a 是等差数列, 若468212a a a ++=, 则该数列前11项的和为 . 12. △ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知3,,3c C π== 2a b =,则b 的值为 .13. 某所学校计划招聘男教师x 名,女教师y 名, x 和y 须满足约束条件25,2,6.x y x y x -≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师最多是 名.(二)选做题(14~15题,考生只能从中选做一题) 14. (几何证明选讲选做题) 如图4, CD 是圆O 的切线, 切点为C ,点A 、B 在圆O 上,1,30BC BCD ︒=∠=,则圆O 的面积为 . 15. (坐标系与参数方程选讲选做题) 在极坐标系中,若过点()1,0且与 极轴垂直的直线交曲线4cos ρθ=于A 、B 两点,则AB = .图4 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()2sin cos cos2f x x x x =+(x ∈R ). (1) 当x 取什么值时,函数()f x 取得最大值,并求其最大值; (2) 若θ为锐角,且8f πθ⎛⎫+= ⎪⎝⎭,求tan θ的值.17.(本小题满分12分)某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润 (单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2. 若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为4.9元.表1 表2 (1) 求,a b 的值;(2) 从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.18.(本小题满分14分)DC 1A 1B 1CBA如图5,在三棱柱111-ABC A B C 中,侧棱1AA ⊥底面ABC ,,⊥AB BC D 为AC 的中点, 12A A AB ==.(1) 求证:1//AB 平面1BC D ;(2) 若四棱锥11-B AAC D 的体积为3, 求二面角1--C BC D 的正切值.图519.(本小题满分14分)已知直线2y =-上有一个动点Q ,过点Q 作直线1l 垂直于x 轴,动点P 在1l 上,且满足 OP OQ ⊥(O 为坐标原点),记点P 的轨迹为C . (1) 求曲线C 的方程;(2) 若直线2l 是曲线C 的一条切线, 当点()0,2到直线2l 的距离最短时,求直线2l 的方程.20.(本小题满分14分)已知函数()2f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x ≥,且1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭,令()()()10g x f x x λλ=-->. (1) 求函数()f x 的表达式;(2) 求函数()g x 的单调区间;(3) 研究函数()g x 在区间()0,1上的零点个数.21.(本小题满分14分)已知函数y =()f x 的定义域为R , 且对于任意12,x x ∈R ,存在正实数L ,使得 ()()1212f x f x L x x -≤-都成立. (1) 若()f x =求L 的取值范围;(2) 当01L <<时,数列{}n a 满足()1n n a f a +=,1,2,n = .① 证明:112111nk k k a a a a L+=-≤--∑; ② 令()121,2,3,k k a a a A k k ++== ,证明:112111nk k k A A a a L +=-≤--∑.2011年普通高等学校招生全国统一考试密卷数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 说明:第10小题写对一个答案给3分.9. 325 10. ()(2219x y -+±= 11. 33 12. 13. 1014.π 15. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数性质, 同角三角函数的基本关系、两倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力) (1) 解: ()2sin cos cos2f x x x x =+sin 2cos 2x x =+ …… 1分2222x x ⎫=+⎪⎪⎭…… 2分24x π⎛⎫=+ ⎪⎝⎭. …… 3分∴当2242x k πππ+=+,即(8x k k ππ=+∈Z )时,函数()f x 取得最大值, …… 5分(2)解法1:∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭. …… 6分 ∴1cos 23θ=. …… 7分 ∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 23θ==…… 8分∴sin 2tan 2cos 2θθθ==…… 9分∴22tan 1tan θθ=-. …… 10分2tan 0θθ+=.∴)(1tan 0θθ-=.∴tan θ=或tan θ=不合题意,舍去) …… 11分∴tan 2θ=. …… 12分解法2: ∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭. ∴1cos 23θ=. …… 7分 ∴212cos 13θ-=. …… 8分∵θ为锐角,即02πθ<<,∴cos θ=. …… 9分∴sin 3θ==. …… 10分∴sin tan cos 2θθθ==. …… 12分解法3:∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭. ∴1cos 23θ=. …… 7分 ∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 23θ==…… 8分 ∴sin tan cos θθθ=…… 9分 22sin cos 2cos θθθ= …… 10分sin 21cos 2θθ=+=…… 12分 17.(本小题满分12分)(本小题主要考查数学期望、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1)解:设1件产品的利润为随机变量ξ,依题意得ξ的分布列为:GFEODC 1A 1B 1CBA…… 2分 ∴ 60.6540.1 4.9E a b ξ=⨯++⨯-=,即50.9a b -=. …… 3分 ∵ 0.60.20.11a b ++++=, 即0.3a b +=, …… 4分 解得0.2,0.1a b ==.∴0.2,0.1a b == . …… 6分 (2)解:为了使所取出的3件产品的总利润不低于17元,则这3件产品可以有两种取法:3件都 是一等品或2件一等品,1件二等品. …… 8分故所求的概率P =30.6+C 2230.60.2⨯⨯0.432=. …… 12分18. (本小题满分14分)(本小题主要考查空间线面关系、二面角的平面角、锥体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明: 连接1B C ,设1B C 与1BC 相交于点O ,连接OD , ∵ 四边形11BCC B 是平行四边形,∴点O 为1B C 的中点. ∵D 为AC 的中点, ∴OD 为△1ABC 的中位线,∴ 1//OD AB . …… 2分 ∵OD ⊂平面1BC D ,1⊄AB 平面1BC D , ∴1//AB 平面1BC D . …… 4分 (2)解: 依题意知,12AB BB ==,∵1⊥AA 平面ABC ,1AA ⊂平面11AAC C ,∴ 平面ABC ⊥平面11AAC C ,且平面ABC 平面11AAC C AC =.作BE AC ⊥,垂足为E ,则BE ⊥平面11AAC C , ……6分 设BC a =,在Rt △ABC中,AC =AB BC BE AC ==∴四棱锥11-B AAC D 的体积()1111132V AC AD AA BE =⨯+126=a =. …… 8分依题意得,3a =,即3BC =. …… 9分 (以下求二面角1--C BC D 的正切值提供两种解法)解法1:∵11,,AB BC AB BB BC BB B ⊥⊥= ,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C , ∴AB ⊥平面11BB C C .取BC 的中点F ,连接DF ,则DF //AB ,且112DF AB ==. ∴DF ⊥平面11BB C C .作1FG BC ⊥,垂足为G ,连接DG , 由于1DF BC ⊥,且DF FG F = , ∴1BC ⊥平面DFG . ∵DG ⊂平面DFG , ∴1BC ⊥DG .∴DGF ∠为二面角1--C BC D 的平面角. …… 12分 由Rt △BGF ~Rt △1BCC ,得11GF BFCC BC =,得113213BF CC GF BC ⨯=== ,在Rt △DFG 中, tan DF DGF GF ∠=3=.∴二面角1--C BC D的正切值为3. …… 14分 解法2: ∵11,,AB BC AB BB BC BB B ⊥⊥= ,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C ,∴AB ⊥平面11BB C C .以点1B 为坐标原点,分别以11B C ,1B B ,11B A y 轴和z 轴,建立空间直角坐标系1B xyz -. 则()0,2,0B ,()13,0,0C ,()0,2,2A ,3,2,12D ⎛⎫⎪⎝⎭. ∴()13,2,0BC =- ,3,0,12BD ⎛⎫= ⎪⎝⎭设平面1BC D 的法向量为n (),,x y z =,由n 10BC = 及n 0BD = ,得320,30.2x y x z -=⎧⎪⎨+=⎪⎩令2x =,得3,3y z ==-.故平面1BC D 的一个法向量为n ()2,3,3=-, …… 11分又平面1BC C 的一个法向量为()0,0,2AB =-,∴cos 〈n ,AB 〉= ⋅n AB n AB200323⨯+⨯+-⨯-==. …… 12分 ∴sin 〈n ,AB 〉==. …… 13分 ∴tan 〈n ,AB 〉= 3.∴二面角1--C BC D 的正切值为3. …… 14分 19.(本小题满分14分)(本小题主要考查求曲线的轨迹方程、点到直线的距离、曲线的切线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识)(1) 解:设点P 的坐标为(),x y ,则点Q 的坐标为(),2x -. ∵OP OQ ⊥,∴1OP OQ k k =- .当0x ≠时,得21y x x-=-,化简得22x y =. …… 2分 当0x =时, P 、O 、Q 三点共线,不符合题意,故0x ≠.∴曲线C 的方程为22x y =()0x ≠. …… 4分 (2) 解法1:∵ 直线2l 与曲线C 相切,∴直线2l 的斜率存在.设直线2l 的方程为y kx b =+, …… 5分 由2,2,y kx b x y =+⎧⎨=⎩ 得2220x kx b --=. ∵ 直线2l 与曲线C 相切,∴2480k b ∆=+=,即22k b =-. …… 6分点()0,2到直线2l的距离d =212=…… 7分12⎫= …… 8分12≥⨯…… 9分=…… 10分=,即k =.此时1b =-. ……12分∴直线2l10y --=10y ++=. …… 14分 解法2:由22x y =,得'y x =, …… 5分 ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中21112y x =,则直线2l 的方程为:()111y y x x x -=-,化简得211102x x y x --=. …… 6分 点()0,2到直线2l的距离d =212=…… 7分12⎫= …… 8分12≥⨯ …… 9分=…… 10分=,即1x =. ……12分∴直线2l10y --=10y ++=. …… 14分 解法3:由22x y =,得'y x =, …… 5分 ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中211102y x =>, 则直线2l 的方程为:()111y y x x x -=-,化简得110x x y y --=. …… 6分 点()0,2到直线2l的距离d ==…… 7分12⎫=+…… 8分12≥⨯…… 9分=…… 10分=11y =时,等号成立,此时1x =. ……12分∴直线2l10y --=10y ++=. …… 14分 20.(本小题满分14分)(本小题主要考查二次函数、函数的性质、函数的零点、分段函数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识)(1) 解:∵()00f =,∴0c =. …… 1分 ∵对于任意x ∈R 都有1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 的对称轴为12x =-,即122b a -=-,得a b =. …… 2分 又()f x x ≥,即()210ax b x +-≥对于任意x ∈R 都成立, ∴0a >,且∆()210b =-≤. ∵()210b -≥, ∴1,1b a ==.∴()2f x x x =+. …… 4分(2) 解:()()1g x f x x λ=--()()22111,,111,.x x x x x x λλλλ⎧+-+≥⎪⎪=⎨⎪++-<⎪⎩…… 5分① 当1x λ≥时,函数()()211g x x x λ=+-+的对称轴为12x λ-=,若112λλ-≤,即02λ<≤,函数()g x 在1,λ⎛⎫+∞⎪⎝⎭上单调递增; …… 6分 若112λλ->,即2λ>,函数()g x 在1,2λ-⎛⎫+∞⎪⎝⎭上单调递增,在11,2λλ-⎛⎫ ⎪⎝⎭上单调递减.…… 7分 ② 当1x λ<时,函数()()211g x x x λ=++-的对称轴为112x λλ+=-<, 则函数()g x 在11,2λλ+⎛⎫-⎪⎝⎭上单调递增,在1,2λ+⎛⎫-∞- ⎪⎝⎭上单调递减. …… 8分 综上所述,当02λ<≤时,函数()g x 单调递增区间为1,2λ+⎛⎫-+∞ ⎪⎝⎭,单调递减区间为 1,2λ+⎛⎫-∞- ⎪⎝⎭; …… 9分当2λ>时,函数()g x 单调递增区间为11,2λλ+⎛⎫-⎪⎝⎭和1,2λ-⎛⎫+∞ ⎪⎝⎭,单调递减区间为1,2λ+⎛⎫-∞- ⎪⎝⎭和11,2λλ-⎛⎫ ⎪⎝⎭. …… 10分(3)解:① 当02λ<≤时,由(2)知函数()g x 在区间()0,1上单调递增, 又()()010,1210g g λ=-<=-->,故函数()g x 在区间()0,1上只有一个零点. …… 11分 ② 当2λ>时,则1112λ<<,而()010,g =-<21110g λλλ⎛⎫=+> ⎪⎝⎭, ()121g λ=--,(ⅰ)若23λ<≤,由于1112λλ-<≤,且()211111222g λλλλ---⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭()21104λ-=-+≥, 此时,函数()g x 在区间()0,1上只有一个零点; …… 12分 (ⅱ)若3λ>,由于112λ->且()121g λ=--0<,此时,函数()g x 在区间()0,1上有两个不同的零点. …… 13分 综上所述,当03λ<≤时,函数()g x 在区间()0,1上只有一个零点;当3λ>时,函数()g x 在区间()0,1上有两个不同的零点. …… 14分 21.(本小题满分14分)(本小题主要考查函数、数列求和、绝对值不等式等知识, 考查化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1) 证明:对任意12,x x ∈R ,有 ()()12f x f x -=-==. …… 2分由()()1212f x f x L x x -≤-,12L x x ≤-.当12x x ≠时,得L ≥.12,x x >>且1212x x x x +≥+,12121x x x x +<≤+. …… 4分∴要使()()1212f x f x L x x -≤-对任意12,x x ∈R 都成立,只要1L ≥. 当12x x =时, ()()1212f x f x L x x -≤-恒成立.∴L 的取值范围是[)1,+∞. …… 5分 (2) 证明:①∵()1n n a f a +=,1,2,n = ,故当2n ≥时,()()111n n n n n n a a f a f a L a a +---=-≤-()()21212112n n n n n L f a f a L a a L a a -----=-≤-≤≤- . …… 6分∴112233411nkk n n k aa a a a a a a a a ++=-=-+-+-++-∑()21121n L L La a -≤++++- …… 7分 1211nL a a L-=--. …… 8分 ∵01L <<, ∴112111nk k k a a a a L+=-≤--∑(当1n =时,不等式也成立). …… 9分 ②∵12kk a a a A k++=,∴1212111k k k k a a a a a a A A k k ++++++++-=-+ ()()12111k k a a a ka k k +=+++-+()()()()()12233411231k k a a a a a a k a a k k +=-+-+-++-+()()12233411231k k a a a a a a k a a k k +≤-+-+-++-+ . …… 11分 ∴1122311nkk n n k AA A A A A A A ++=-=-+-++-∑ ()()122311111121223123341a a a a n n n n ⎛⎫⎛⎫≤-++++-+++ ⎪ ⎪ ⎪ ⎪⨯⨯+⨯⨯+⎝⎭⎝⎭()()34111113344511n n a a n a a n n n n +⎛⎫+-+++++-⨯ ⎪ ⎪⨯⨯++⎝⎭ 1223112111111n n n a a a a a a n n n +⎛⎫⎛⎫⎛⎫=--+--++-- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭≤12231n n a a a a a a +-+-++- 1211a a L≤--. ……14分。

2011年广东高考理科数学试卷及答案解析

2011年广东高考理科数学试卷及答案解析

2011年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i - C. 22i + D.22i - 2.已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为A .0B .1C .2D .3 3.若向量a,b,c满足a∥b且a⊥b,则()2a a b ⋅+=A .4B .3C .2D .0 4.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是A .()()f x g x +是偶函数B .()()f x g x -是奇函数C .()()f xg x +是偶函数 D .()()f xg x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。

若(,)M x y 为D 上的动点,点A的坐标为,则z OM ON =的最大值为 A. B. C .4 D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为A .12B .35C .23D .347.如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为A .36B .39C .312D .3188.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A. ,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2011年普通高等学校招生全国统一考试(广东卷)数学试卷(理科)

2011年普通高等学校招生全国统一考试(广东卷)数学试卷(理科)

5
5
(3) ξ = 0, 1, 2 , P(ξ = i) = C2i C32−i (i = 0, 1, 2) ,ξ 的分布列为 C52
ξ
0
1
2
P
3
3
10
5
均值 E(ξ ) = 1× 3 + 2 × 1 = 4 . 5 10 5
18.解:(1) 取 AD 的中点 G,又 PA=PD,∴ PG ⊥ AD ,
试卷类型:A
2011 年普通高等学校招生全国统一考试(广东卷) 数学(理科)
本试题共 4 页,21 小题,满分 150 分,考试用时 120 分钟。 注意事项:
1、答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、 座位号,填写在答题卡上。用 2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。 将条形码横贴在答题卡右上角“条形码粘贴处”。
A.1 + i
B. 1− i
C. 2 + 2i
D. 2 − 2i
} 2.已知集合 A = {( x, y) ∣ x, y 为实数,且 x2 + y2 = 1 ,B = {( x, y) x, y 为实数,且 y = x} ,
则 A ∩ B 的元素个数为
A.0
B.1
C.2
D.3
3. 若向量a,b,c满足a∥b且a⊥b,则 c • (a + 2b) =
A.4
B.3
C.2
D.0
4. 设函数 f ( x) 和 g ( x) 分别是R上的偶函数和奇函数,则下列结论恒成立的是
A. f ( x) + g ( x) 是偶函数
B. f ( x) − g ( x) 是奇函数

2011年广州市普通高中毕业班综合测试(word格式)

2011年广州市普通高中毕业班综合测试(word格式)

2011年广州市普通高中毕业班综合测试(一)理科综合一、单项选择题:本大题共6小题,每小题4分,共24分。

在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。

1.下列有关生物膜的说法正确的是A.生物膜的功能主要由膜蛋白实现的 B.丙酮酸的分解是在线粒体内膜上进行的C.细胞内的ATP都是在生物膜上合成的 D.细胞中的囊泡都是由高尔基体形成的2.下图哪支试管中的氧气含量下降最快?3.科学家发现种植转抗除草剂基因作物后,附近许多与其亲缘关系较近的野生植物也获得了抗除草剂性状。

这些野生植物的抗性变异来源于A.基因突变 B.染色体数目变异 C.基因重组 D.染色体结构变异4.以下实验不能说明组别1 2 3步骤l 2%蔗糖液2mL 2%蔗糖液2mL 2%蔗糖液2mL2 蒸馏水lmL 酵母提取液lmL 稀释唾液lmL3 37%恒温水浴,保温10分钟4 斐林试剂1 mL 斐林试剂1 mL 斐林试剂1 mL5 50~65~C温水中加热2分钟实验结果蓝色砖红色蓝色A.酵母提取液含有蔗糖酶 B.酶具有专一性C.蔗糖不是还原糖 D.高温使酶失活5.下列叙述正确的是A.脱落酸能促进马铃薯发芽B.果实发育过程只受生长素和乙烯的调节C.赤霉素和生长素都能促进植物生长D.根具有向地性是由于近地侧生长素浓度高而长得快6.以下关于生物技术的说法不正确的是A.需借助胚胎移植技术才能获得克隆牛B.单倍体育种过程涉及脱分化和再分化C.用自身干细胞培育的器官,移植后一般不会产生免疫排斥反应D.果酒与果醋的整理过程需要保持缺氧状态二、双项选择题:本大题共2小题,每小题6分,共12分。

在每小题给出的四个选项中,只有两个选项符合题目要求,选对一个的得3分,选对两个得6分,选错或不答的得0分。

24.下列说法正确的是A.嗜热细菌的遗传物质一定是DNAB.基因在细胞中总是成对存在的C.若一双链DNA中的A+T=40%,则A+C=60%D.孟德尔发现遗传定律运用了假说一演绎法25.关于人体生命活动调节的叙述,正确的是A.细胞外液渗透压下降时,血液中抗利尿激素含量增加B.血糖调节只有激素调节,没有神经调节C.不少内分泌腺直接或间接受中枢神经系统的调节D.体温保持相对恒定是机体产热量和散热量维持动态平衡的结果三、非选择题:本大题共4小题,共64分。

2011年广东高考数学理科试题及答案详解(含有所有题目及详解)

2011年广东高考数学理科试题及答案详解(含有所有题目及详解)

2011年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1、答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”. 2、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求做大的答案无效。

4、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。

漏涂、错涂、多涂的,答案无效。

5、考生必须保持答题卡得整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.线性回归方程y bx a =+中系数计算公式121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-.其中,x y 表示样本均值.n 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+).一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设复数z 满足()12i z +=,其中i 为虚数单位,则z =A .1i +B .1i -C .22i +D .22i -.,1)1()1()12(12z :B i i i i i 故选解析-=-+-=+=【解析】B ;依题意得211z i i==-+,故选B .2.已知集合{(,)|A x y =,x y 为实数,且}221x y +=,{(,)|B x y =,x y 为实数,且}y x =,则A B 的元素个数为xyO 2 2 AA .0B .1C .2D .33. 若向量a ,b ,c 满足a ∥b 且a ⊥c ,则⋅(2)=c a +bA .4B .3C .2D .0【解析】D;因为a ∥b 且a ⊥c ,所以b ⊥c ,从而⋅⋅⋅(2)=20c a +b c a +c b =,故选D .4. 设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是 A .()()f x g x +是偶函数 B .()()f x g x -是奇函数C .()()f x g x +是偶函数D .()()f x g x -是奇函数【解析】A;依题意()(),()()f x f x g x g x -=-=-,故()|()|()|()|f x g x f x g x -+-=+,从而()|()|f x g x + 是偶函数,故选A .5. 在平面直角坐标系xOy 上的区域D 由不等式组0222x y x y⎧≤≤⎪≤⎨⎪≤⎩给定,若(,)M x y 为D 上的动点,点A 的坐标为(2,1),则z OM OA =⋅的最大值为 A .42 B .32 C .4 D .3【解析】C;目标函数即2z x y =+,画出可行域如图所示,代入端点比较之,易得当2,2x y ==时z 取得最大值4,故选C .6. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军, 乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获 得冠军的概率为A .12B .35C .23D .34【解析】D;设甲队获得冠军为事件A ,则A 包含两种情况:(1)第一局胜;(2)第一局负但第二局胜;故所求概率1113()2224P A =+⨯=,从而选D .7. 如图1-3,某几何体的正视图(主视图)是平行四边形, 侧视图(左视图)和俯视图都是矩形,则该几何体的体积 为C.,O(0,0),,x y ;1A :22故选故直线与圆有两个交点由于直线经过圆内的点组成的集体上的所有点表示直线集合上的所有点组成的集合表示由圆集合解析==+B y xA .63B .93C .123D .183【解析】B ;该几何体是以正视图所在的平行四边形为底面,高为3的四棱柱,又平行四边形的底边长为3,高为3,所以面积 33S =,从而所求几何体的体积93V Sh ==,故选B .8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的. 若T ,V 是Z 的两个不相交的非空子集,T V Z =且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B . ,T V 中至多有一个关于乘法是封闭的C . ,T V 中有且只有一个关于乘法是封闭的D . ,T V 中每一个关于乘法都是封闭的【解析】A;因为T V Z =,故必有..1∈T 或1∈V ,不妨设1∈T ,则令1c =,依题意对,a b T ∀∈,有ab T ∈,从而T 关于乘法是封闭的;(其实到此已经可以选A 了,但为了严谨,我们往下证明可以有一个不封闭以及可以两个都封闭),取T N =,则V 为所有负整数组成的集合,显然T 封闭,但V 显然是不封闭的,如(1)(2)2V -⨯-=∉;同理,若{T =奇数},{V =偶数},显然两者都封闭,从而选A .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2011年广东高考数学理科试卷(带详解)

2011年广东高考数学理科试卷(带详解)

2011年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足(1i)2z +=,其中i 为虚数单位,则z = ( ) A . 1i + B . 1i - C . 22i + D . 22i - 【测量目标】复数代数形式的四则运算.【考查方式】给出复数的等式形式,变形为分数形式再通分化简即可求其代数形式. 【难易程度】容易 【参考答案】B【试题解析】∵(1i)2z +=,∴22(1i)1i 1i (1i)(1i)z -===-++-. 2. 已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则A B 的元素个数为 ( )A . 0B . 1C . 2D . 3 【测量目标】集合的交集运算(描述法).【考查方式】给出一个一元二次方程和一个二元二次方程,联立求出解,进而得出交集元素. 【难易程度】容易 【参考答案】C【试题解析】联立两集合的函数解析式得:221x y y x⎧+=⎨=⎩⇒221x =,解得22x =±,分别把22x =±代入y x =,解得22y =±, 所以两函数的交点有两个,坐标分别为22(,)22和22(,)22--,则A B 的元素个数为2个. 3.若向量,a b,c 满足a b ∥且⊥a c ,则(2)c a +b= ( ) A . 4 B . 3 C . 2 D . 0 【测量目标】平面向量的数量积运算.【考查方式】给出向量间垂直或平行的关系,进而求出向量积. 【难易程度】容易【参考答案】D【试题解析】∵a b ∥且⊥a c ,∴(2)20=c a +b c a +c b =. 4.设函数()f x 和()g x 分别是R 上的奇函数和偶函数,则下列结论成立的是 ( )A . ()()f x g x +是偶函数B . ()()f x g x -是奇函数C . ()()f x g x +是偶函数D . ()()f x g x -是奇函数 【测量目标】函数奇偶性的判断.【考查方式】由奇函数和偶函数的特性,考查加上绝对值符号后奇偶性的变化关系. 【难易程度】容易 【参考答案】A【试题解析】∵()g x 是R 上的奇函数,∴ )(x g 是R 上的偶函数,从而()()f x g x +是偶函数,故选A.5. 已知平面直角坐标系xOy 上的区域D 由不等式组0222x y x y⎧⎪⎨⎪⎩剟……给定,若(),M x y 为D 上的动点,点A 的坐标为(2,1),则z OM OA =的最大值为 ( )A .3B .4C .32D .42【测量目标】二元线性规划求目标函数的最值,向量的数量积运算.【考查方式】利用向量积构造出目标函数,由不等式组画出可行域,进而求出其最值. 【难易程度】中等 【参考答案】B【试题解析】作出可行域如图所示(步骤1)∵2z OM OA x y ==+,∴当直线02=+y x 平移到)2,2(M 时,z 取到最大值4.(步骤2)6.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军. 若两队胜每局的概率相同,则甲队获得冠军的概率为 ( )第5题图A .12 B .35 C .23 D .34【测量目标】随机事件与概率.【考查方式】给出两人获胜概率相等的条件,根据条件求出其中某人获胜的概率. 【难易程度】容易 【参考答案】D 【试题解析】43212121=⨯+=P . 7.如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为 ( )A .63B .93C .123D .183 【测量目标】由三视图求几何体(棱柱)的体积.【考查方式】给出几何体的三视图,推测出几何体的形状,进而由线段关系得出体积. 【难易程度】中等 【参考答案】B【试题解析】由三视图可推测该几何体为四棱柱.(步骤1)高为31222=-=h ,底面面积为933=⨯=s ,∴39==sh V .(步骤2)8.设S 是整数集Z 的非空子集,如果,a b S ∀∈,有a b S ∈,则称S 关于数的乘法是封闭的.若,T V 是Z 的两个不相交的非空子集, T V =Z ,且,,a b c T ∀∈,有abc T ∈;,,x y z V ∀∈,有xyz V ∈,则下列结论恒成立的是 ( )第7题图A .,T V 中至少有一个关于乘法是封闭的B . ,T V 中至多有一个关于乘法是封闭的C . ,T V 中有且只有一个关于乘法是封闭的D . ,T V 中每一个关于乘法都是封闭的 【测量目标】集合间的关系.【考查方式】给出集合的特殊关系,利用特殊值法或假设法判断对应的选项. 【难易程度】较难 【参考答案】A【试题解析】 当{=T 奇数},V {=偶数},T ,V 关于乘法都是封闭的,故B,C 错误;(步骤1) ∵T V =Z ,∴整数1一定在T ,V 两个集合中的一个中,不妨设T ∈1,则T b a ∈,,(步骤2)∵T b a ∈1,,,∴ 1a b T ∈,即 a b T ∈ ,∴T 对乘法封闭,即V T ,中至少有一个关于乘法是封闭的;(步骤3)当{=T 非负整数},V {=负整数},T 关于乘法封闭,而V 关于乘法不封闭,故D 错误.(步骤4) 二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9.不等式130x x +--…的解集是 . 【测量目标】解绝对值不等式.【考查方式】给出绝对值不等式,利用平方去绝对值符号,再进行求解. 【难易程度】容易 【参考答案】),1[+∞【试题解析】∵13x x +-…,∴22(1)(3)x x +-…,解得1x …. 10.7)2(xx x -的展开式中4x 的系数是 (用数字作答). 【测量目标】二项式定理.【考查方式】由二项式展开式的通项公式得出所求系数的通项,再根据所给乘积关系求出所满足项的系数. 【难易程度】中等 【参考答案】84【试题解析】所求的4x 的系数就是7)2(xx -展开式中3x 的系数,(步骤1) ∵7)2(xx -的通项为772177C (2)(2)C r r r r r r r r T x x x ---+=-=-,(步骤2) ∴令327=-r ,解得2=r . ∴令4x 的系数是227(2)C 84-=.(步骤3)11.等差数列{}n a 的前9项和等于前4项和,若0,141=+=a a a k ,则=k . 【测量目标】等差数列的通项.【考查方式】给出等差数列的通项所满足的关系和首项的值,由此求出等式中的对应参数. 【难易程度】中等 【参考答案】10【试题解析】∵}{n a 的前9项和等于前4项和,且11=a ,∴d d 23442899⨯+=⨯+,解得61-=d .(步骤1)∴06223)1(114=+-=++-+=+k d a d k a a a k ,解得10=k .(步骤2) 12.函数13)(23+-=x x x f 在=x 处取得极小值. 【测量目标】利用导数求函数的极值.【考查方式】给出函数的解析式,利用导数求出单调区间和极值点,进而判断得出极小值. 【难易程度】容易 【参考答案】2【试题解析】∵()f x ')2(3632-=-=x x x x ,(步骤1)∴)2,0(∈x 时,()0f x '<;),2(+∞∈x 时,()0f x '>;(步骤2) ∴13)(23+-=x x x f 在2=x 处取得极小值.(步骤3)13.某数学老师身高176cm ,他爷爷,父亲,儿子的身高分别是173cm,170cm 和182cm ,因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高是 cm . 【测量目标】线性回归方程.【考查方式】由所给数据求出直线回归方程,进而求出对应的数值. 【难易程度】中等 【参考答案】185【试题解析】根据题中所提供的信息,可知父亲和儿子的对应数据可列表如下:∵176,173==y x ,∴3132221()()361(3)3()iii ii x x y y b x x ==--⨯===-+-∑∑, 父亲的身高(x ) 173 170 176 儿子的身高(y )1701761821761733a y bx =-=-=, ∴回归直线方程为3+=x y ,(步骤1) ∴预测他孙子的身高是182+3=185cm .(步骤2) (二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知两曲线参数方程分别为5cos (0π)sin x y θθθ⎧=⎪<⎨=⎪⎩…和⎪⎩⎪⎨⎧==ty t x 245()t ∈R ,它们的交点坐标为.【测量目标】坐标系与参数方程.【考查方式】给出曲线的参数方程形式,转化为普通方程,联立求出交点坐标. 【难易程度】中等 【参考答案】)552,1( 【试题解析】两曲线的方程分别为1522=+y x 和x y 542=,(步骤1) 由05454152222=-+⇒⎪⎪⎩⎪⎪⎨⎧==+x x x y y x ,∴1=x 或5-=x (舍去),∴⎪⎩⎪⎨⎧±==5521y x .(步骤2) ∵sin (0π)y θθ=<…,∴]1,0[∈y ,∴⎪⎩⎪⎨⎧==5521y x (步骤3).15.(几何证明选讲选做题)如图,过圆O 外一点P 分别做圆的切线和割线交圆于A 、B 两点,且7=PB ,C 是圆上一点使得5=BC ,APB BAC ∠=∠,则=AB .第15题图【测量目标】圆的性质与应用.【考查方式】结合三角形和圆的位置关系,利用三角形相似得出比例关系,进而求出对应线段长度. 【难易程度】中等 【参考答案】35【试题解析】∵APB BAC ∠=∠,BCA PAB ∠=∠,∴BAP △∽BCA △,(步骤1)∴ABBCPB AB =,∴35AB PB BC == . (步骤2) 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数1π()2sin(),36f x x x =-∈R .(1)求5π()4f 的值; (2)设π,[0,]2αβ∈,π10(3)213f α+=,6(32π)5f β+=,求cos()αβ+的值.【测量目标】三角函数的图象及其变换,同角三角函数的基本关系,两角和的余弦.【考查方式】给出三角函数的解析式,直接求其对应未知数的函数值;由解析式满足的关系,利用诱导公式和同角三角函数的基本关系变形化简得出余弦值和正弦值,再求出对应的三角函数值. 【难易程度】中等 【试题解析】(1)5π15πππ()2sin()2sin 243464f =⨯-==. (2)∵π1ππ10(3)2sin[(3)]2sin 232613f ααα+=⨯+-==,∴5sin 13α=.(步骤1)∵π6(32π)2sin()2cos 25f βββ+=+==,∴3cos 5β=.(步骤2)∵π,[0,]2αβ∈,∴124cos ,sin 135αβ==.(步骤3)∴16cos()cos cos sin sin 65αβαβαβ+=-=.(步骤4)17.(本小题满分13分)为了解甲,乙两厂的产品质量,采取分层抽样的方法从甲,乙两厂的产品中分别抽取14件和5件,测量产品中微量元素y x ,的含量(单位:毫克).下表是乙厂的5件产品的测量数据:编号1 2 3 4 5 x169 178 166 175 180 y7580777081(1) 已知甲厂生产的产品共有98件,求乙厂生产的产品数量;(2) 当产品中微量元素y x ,满足175x …且75y …时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;(3) 从乙厂抽出的上述5件产品中,随即抽取2件,求抽出的2件产品中优等品数ξ的分布列及其均值(即数学期望).【测量目标】分层抽样,分布列与期望.【考查方式】利用样本和总体的比例关系求出某层的样本容量;由给定条件得出概率进而求出满足的样本容量;直接利用给定条件画出分布列得出离散型随机变量的期望. 【难易程度】中等【试题解析】(1)设乙厂生产的产品数量为m 件,则14985m=,解得35=m . 答:乙厂生产的产品数量为35件.(步骤1)(2)∵产品中微量元素y x ,满足175x …且75y …时的概率为52,(步骤2) ∴用上述样本数据估计乙厂生产的优等品的数量为143552=⨯.(步骤3) (3)∵ξ的可能值为0,1,2,则 2223()C ()()55iiiP i ξ-==, 0,1,2i =.(步骤4)ξ的分布列为∴ξ的数学期望为54522)(=⨯=ξE .(步骤5) 18.(本小题满分13分)如图,在锥体P ABCD -中,A B C D 是边长为1的菱形,且60DAB ∠= ,2PA PD ==,2PB E F =,,分别是BC PC ,的中点.(1) 证明:AD ⊥平面DEF ; (2) 求二面角B AD P --的平面角.第18题图【测量目标】线面垂直和线面平行的判定与线面角的求法. 【考查方式】线线垂直⇒线面垂直,由对应线段关系利用余弦定理求出线面角. 【难易程度】较难【试题解析】(1)设AD 中点为H ,连接BH PH ,,X 012P9251225425,,PA PD PH AD =∴⊥ 1,1,60,2AH AB DAB ==∠= 可得出3,2BH =(步骤1)从而222,,AH BH AB AH HB +=∴⊥即,AD HB ⊥AD ∴⊥平面,PHB (步骤2)又,E F 分别是,BC PC 的中点,,EF PB EF ∴∴∥∥平面,PHB 又显然,BH DE DE ∴∥∥平面,PHB 又,DE EF ⊂平面,,DEF DE EF E = ∴平面DEF ∥平面,PHB (步骤3) AD ⊥ 平面,PHB AD ∴⊥平面.DEF (步骤4)(2)由(1)知,,,PH AD BH AD ⊥⊥且PH ⊂平面,PAD BH ⊂平面,BAD PHB ∴∠就是二面角P AD B --的平面角,(步骤5)22173(2)(),,2,222PH BH PB =-===(步骤6)2227334321442cos ,277321212222PH BH PB PHB PH BH +--+-∴∠====-=-⨯⨯即二面角P AD B --的余弦值为21.7-(步骤7)第18题图19.(本小题满分14分)设圆C 与两圆22(5)4x y ++=,22(5)4x y -+=中的一个内切,另一个外切. (1) 求圆C 的圆心轨迹L 的方程; (2) 已知点M (553,554),)0,5(F ,且P 为L 上的动点,求FP MP -的最大值及此时点P 的坐标.【测量目标】圆与圆的位置关系,双曲线的标准方程,直线与双曲线的位置关系和圆锥曲线的综合应用. 【考查方式】给出曲线与两圆之间的位置关系,利用圆心距求出曲线的轨迹方程;根据双曲线上动点与定点的线段关系,联立直线方程与曲线方程求出交点,进而得出取最值时的点坐标. 【难易程度】较难【试题解析】(1)设两圆22(5)4x y ++=,22(5)4x y -+=的圆心分别为21,O O ,半径为r , 则r CO CO 221=-, ∴点C 轨迹L 为双曲线,其中1,2,5===b a c ,(步骤1)∴圆C 的圆心轨迹L 的方程为1422=-y x .(步骤2) (2)直线MF 的方程为)5(2)5(5553554--=--=x x y ,(步骤3) 由⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎩⎪⎨⎧--==-155215514)5(21422y x x y y x 或⎪⎪⎩⎪⎪⎨⎧-==552556y x .设)552,556(),1552,15514(-Q E , ∴当点P 在点Q处时,满足2MP FPMF -==.(步骤4)20.(本小题满分14分)设0>b ,数列}{n a 满足b a =1,11(2)22n n n nba a n a n --=+-….(1)求数列}{n a 的通项公式;(2)证明:对于一切正整数n ,1112n n n ba +++….【测量目标】已知递推关系求通项,不等式恒成立问题.【考查方式】由递推关系化简变形求出最简式,再利用配凑法或书数学归纳法求出其通项;利用并项求合法、放缩法以及均值不等式得出不等式恒成立的关系. 【难易程度】较难【试题解析】(1)由1122n n n nba a a n --=+-得1211n n n n a b a b--=+ ,当2b =时, 1112n n n n a a ---=, 所以{}n n a 是以首项为1112a =,公差为12的等差数列,所以11(1)222n n nn a =+-= ,从而2n a =.(步骤1)当2b ≠时, 11211()22n n n n a b b a b --+=+--,所以1{}2n n a b +-是首项为11122(2)a b b b +=--,公比为2b 的等比数列,所以11222()2(2)(2)nn n n n a b b b b b b -+==--- ,从而(2)2n n n n nb b a b -=-. 综上所述,数列{}n a 的通项公式为2,2(2),22n n n n b a nb b b b=⎧⎪=⎨-≠⎪-⎩(步骤2) (Ⅱ)当2b =时,不等式显然成立;当2b ≠时,要证1112n n n b a +++…,只需证11(2)122n n n n n nb b b b ++-+-…,即证11122(2)2n n n n n n b n b b b +++-+- …(*) 因为1111122312(2)(2)(222)2n nn n n n n n n n b b b b b b b ++++-----+=+++++- (步骤3) 1122222111(222)(22)n n n n n n n n n b b b b b +-+---+=+++++++ 1112121222[()()]222n n n n nn n n b b b b b b b --++=+++++++ 21122311222[()()()]222n nn n n n b b b b b b b -++=++++++ 2111122311222(222)2(111)2222n nn nn n n n n n b b b b b n b b b b -+++++++=+++= …(步骤4) 所以不等式(*)成立,从而原不等式成立;综上所述,当0b >时,对于一切正整数n ,11 1.2n n n b a +++…(步骤5) 21.(本小题满分14分)在平面直角坐标系xOy 上,给定抛物线21:4L y x =,实数,p q 满足240p q -…,12,x x 是方程20x px q -+=的两根,记12(,)max{||,||}p q x x ϕ=.(1) 过点20001(,)(0)4A p p p ≠作L 的切线交y 轴于点B .证明:对线段AB 上的任一点(,)Q p q ,有0||(,)2p p q ϕ=; (2) 设(,)M a b 是定点,其中,a b 满足240,0a b a ->≠.过(,)M a b 作L 的两条切线12,l l ,切点分别为22112211(,),(,)44E p p E p p ',12,l l 与y 轴分别交于,F F '.线段EF 上异于两端点的点集记为X , 证明:112||(,)||||(,)2p M a b X p p a b ϕ∈⇔>⇔=; (3) 设215{(,)|1,(1)}44D x y y x y x =-+-剠,当点(,)p q 取遍D 时,求(,)p q ϕ的最小值(记为min ϕ)和最大值(记为max ϕ).【测量目标】抛物线与直线的位置关系,导数在实际问题中的应用,不等式的大小比较.【考查方式】应用导数建立直线方程,求出抛物线上点与线段的对应关系,得出证明;利用切线方程的关系,得出不等式的推导关系;在所给范围内代入函数解析式求出对应的最值.【难易程度】较难【试题解析】(1)00011|()|22AB x p x p k y x p =='===, 直线AB 的方程为200011()42y p p x p -=-,即2001124y p x p =-,(步骤1) 2001124q p p p ∴=-,方程20x px q -+=的判别式2204()p q p p ∆=-=-, 两根001,2||22p p p p x ±-==或02p p -,(步骤2) 00p p …,00||||||||22p p p p ∴-=-,又00||||p p 剟, 000||||||||222p p p p ∴--剟,得000||||||||||222p p p p p ∴-=-…,(步骤3) 0(,)||2p p q ϕ∴=.(步骤4) (2)由240a b ->知点(,)M a b 在抛物线L 的下方,(步骤5)①当0,0a b >…时,作图可知,若(,)M a b X ∈,则120p p >…,得12||||p p >; 若12||||p p >,显然有点(,)M a b X ∈; (,)M a b X ∴∈12||||p p ⇔>.(步骤6) ②当0,0a b ><时,点(,)M a b 在第二象限,作图可知,若(,)M a b X ∈,则120p p >>,且12||||p p >; 若12||||p p >,显然有点(,)M a b X ∈;(,)M a b X ∴∈12||||p p ⇔>.(步骤7)根据曲线的对称性可知,当0a <时,(,)M a b X ∈12||||p p ⇔>, 综上所述,(,)M a b X ∈12||||p p ⇔>(*);(步骤8) 由(1)知点M 在直线EF 上,方程20x ax b -+=的两根11,22p x =或12p a -, 同理点M 在直线E F ''上,方程20x ax b -+=的两根21,22p x =或22p a -,(步骤9) 若1(,)||2p a b ϕ=,则1||2p 不比1||2p a -、2||2p 、2||2p a -小, 12||||p p ∴>,又12||||p p >(,)M a b X ⇒∈, 1(,)||2p a b ϕ∴=⇒(,)M a b X ∈;又由(1)知,(,)M a b X ∈1(,)||2p a b ϕ⇒=; 1(,)||2p a b ϕ∴=⇔(,)M a b X ∈,综合(*)式,得证.(步骤10) (3)联立1y x =-,215(1)44y x =+-得交点(0,1),(2,1)-,可知02p 剟,(步骤11)过点(,)p q 作抛物线L 的切线,设切点为2001(,)4x x ,则20001142x q x x p -=-,得200240x px q -+=,解得204x p p q =+-,(步骤12) 又215(1)44q p +-…,即2442p q p --…, 042x p p ∴+-…,设42p t -=,20122x t t ∴-++…215(1)22t =--+,(步骤13) 0max max ||2x ϕ= ,又052x …,max 54ϕ∴=;(步骤14) 1q p - …,2044|2|2x p p p p p ∴+-+=+-=…, 0min min ||12x ϕ∴==.(步骤15)。

2011年广州市普通高中毕业班综合测试(理科)(一)

2011年广州市普通高中毕业班综合测试(理科)(一)

2011年广州市高三年级调研测试数学(理科)本试卷共4 页,共21 题,满分150 分。

考试用时120 分钟。

2011. 01注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上, 并用2B 铅笔在答题卡上的相应位置填涂考生号。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4. 作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只 有一项是符合题目要求的. 1. 函数()3g x x =+的定义域为A .{3x x ≥-} B .{3x x >-} C .{3x x ≤-} D .{3x x <-}2. 已知i 为虚数单位, 则复数i (1+i )的模等于A .12 B. 22C. 2D. 23. 已知,x y 满足约束条件,1,1.y x x y y ≤⎧⎪+≤⎨⎪≥-⎩则2z x y =+的最大值为A . 3- B. 32-C. 32D. 34. 已知:2p x ≤,:02q x ≤≤,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5. 如果执行图1的程序框图,若输入6,4n m ==,那么输出的p 等于 图1A. 720 B . 360 C . 240 D. 120图2侧视图俯视图正视图3x46. 已知随机变量X 服从正态分布2(,)N μσ,且(22)0.9544P X μσμσ-<≤+=,()0.6826P X μσμσ-<≤+=,若4μ=,1σ=, 则(56)P X <<= A .0.1358 B .0.1359 C .0.2716 D .0.27187. 一空间几何体的三视图如图2所示, 该几何体的 体积为8512π+,则正视图中x 的值为 A. 5 B . 4 C. 3 D . 28.若把函数()=y f x 的图象沿x 轴向左平移4π个单位, 沿y 轴向下平移1个单位,然后再把图象上每个点的 横坐标伸长到原来的2倍(纵坐标保持不变),得到函数 sin =y x 的图象,则()=y f x 的解析式为A. sin 214⎛⎫=-+ ⎪⎝⎭y x π B. sin 212⎛⎫=-+ ⎪⎝⎭y x πC. 1sin 124⎛⎫=+-⎪⎝⎭y x π D. 1sin 122⎛⎫=+- ⎪⎝⎭y x π二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9. 某社区有500个家庭, 其中高收入家庭125户, 中等收入家庭280户, 低收入家庭95户. 为了调查社会购买力的某项指标, 采用分层抽样的方法从中抽取1个容量为若干户的样 本, 若高收入家庭抽取了25户, 则低收入家庭被抽取的户数为 . 10. 已知直线l 经过坐标原点,且与圆22430x y x +-+=相切,切点在第四象限,则直线l 的方程为 .11. 等比数列{a n }的前n 项和为S n ,若246,30S S ==,则6S = . 12. 922()2x x-展开式的常数项是 .(结果用数值作答)图3MP 13. 设函数()()[)22,,1,,1,.x x f x x x -⎧∈-∞⎪=⎨∈+∞⎪⎩ 若()4f x >,则x 的取值范围是 .(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,四边形ABCD 内接于⊙O ,BC 是直径,MN 与⊙O 相切, 切点为A ,MAB ∠35︒=,则D ∠= .15.(坐标系与参数方程选讲选做题)已知直线l 的参数方程为:2,14x t y t =⎧⎨=+⎩(t 为参数),圆C 的极坐标方程为22ρθ=,则直线l 与圆C 的位置关系为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 在ABC ∆中,角,,A B C 的对边分别为,,a b c . 已知向量=m 2cos,sin 22A A ⎛⎫ ⎪⎝⎭, =n c o s,2s i n 22A A ⎛⎫- ⎪⎝⎭, 1∙=-m n . (1) 求cos A 的值;(2) 若23a =, 2b =, 求c 的值.17.(本小题满分12分)某商店储存的50个灯泡中, 甲厂生产的灯泡占60%, 乙厂生产的灯泡占40%, 甲厂生产的灯泡的一等品率是90%, 乙厂生产的灯泡的一等品率是80%.(1) 若从这50个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等), 则它是甲厂生产的一等品的概率是多少?(2) 若从这50个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等), 这两个灯泡中是甲厂生产的一等品的个数记为ξ, 求E ξ的值.18.(本小题满分l4分)如图4,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,2PA AD ==,1AB =,BM PD ⊥于点M . (1) 求证:AM ⊥PD ;(2) 求直线CD 与平面ACM 所成的角的余弦值.图4 19.(本小题满分14分)已知椭圆(222:133x y E a a +=>的离心率12e =. 直线x t =(0t >)与曲线E 交于 不同的两点,M N ,以线段MN 为直径作圆C ,圆心为C . (1) 求椭圆E 的方程;(2) 若圆C 与y 轴相交于不同的两点,A B ,求ABC ∆的面积的最大值.20.(本小题满分14分) 已知函数()(af x x a x=+∈R ), ()ln g x x =. (1) 求函数()()()F x f x g x =+的单调区间;(2) 若关于x 的方程()()22g x f x e x=-(e 为自然对数的底数)只有一个实数根, 求a 的值.21.(本小题满分14分)如图5,过曲线C :x y e =上一点0(0,1)P 作曲线C 的切线0l 交x 轴于点11(,0)Q x ,又过1Q 作x 轴的垂线交曲线C 于点111(,)P x y ,然后再过111(,)P x y 作曲线C 的切线1l 交x 轴于点 22(,0)Q x ,又过2Q 作x 轴的垂线交曲线C 于点222(,)P x y ,,以此类推,过点n P 的切线n l与x 轴相交于点11(,0)n n Q x ++,再过点1n Q +作x 轴的垂线交曲线C 于点111(,)n n n P x y +++(n ∈N *).(1) 求1x 、2x 及数列{}n x 的通项公式;2011年广州市高三调研测试数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 9.19 10.33y x =- 11. 126 12. 212-13.()(),22,-∞-+∞14.125︒15.相交三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查平面向量, 同角三角函数的基本关系、解三角形等知识, 考查化归与转化的数学思想方法和运算求解能力)题号 1 2 3 4 5 6 7 8 答案ACDBBBCB(1) 解: ∵=m 2cos ,sin 22A A ⎛⎫ ⎪⎝⎭,=n cos ,2sin 22A A ⎛⎫- ⎪⎝⎭, 1=-m n ,∴ 222cos2sin 122A A-=-. ……2分 ∴ 1cos 2A =-. ……4分(2)解: 由(1)知1cos 2A =-,且0A π<<,∴ 23A π=. ……6分∵23a =2b =,由正弦定理得sin sin a b A B =,即2322sin sin3B π=,∴1sin 2B =. ……8分 ∵0,B B A π<<<, ∴6B π=. ……10分∴6C A B ππ=--=.∴2c b ==. ……12分17. (本小题满分12分) (本小题主要考查条件概率、数学期望等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1) 解法1: 设事件A 表示“甲厂生产的灯泡”, 事件B 表示“灯泡为一等品”, 依题意有()0.6P A =, ()0.9P B A =,根据条件概率计算公式得()()()0.60.90.54P AB P A P B A ==⨯=. ……4分解法2: 该商店储存的50个灯泡中是甲厂生产的灯泡有5060%30⨯=个, 乙厂生产的灯泡有5040%20⨯=个, 其中是甲厂生产的一等品有3090%27⨯=个, 乙厂生产的 一等品有2080%16⨯=个,故从这50个灯泡中随机抽取出一个灯泡, 它是甲厂生产的一等品的概率是 270.5450P ==. ……4分(2) 解: ξ的取值为0,1,2, ……5分()22325025301225C P C ξ===, ()11272325062111225C C P C ξ===, ()22725035121225C P C ξ=== (8)分∴ξ的分布列为:∴2536213511323012 1.081225122512251225E ξ=⨯+⨯+⨯==. ……12分18.(本小题满分l4分)(本小题主要考查空间线面关系、直线与平面所成的角等知识, 考查数形结合的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明:∵ PA ⊥平面ABCD ,AB ⊂平面ABCD ,∴PA AB ⊥.∵AB AD ⊥,,AD PA A AD =⊂平面PAD ,PA ⊂平面∴AB ⊥平面PAD . ∵PD ⊂平面PAD∴AB PD ⊥, ……3分 ∵BM PD ⊥, AB BM B =,AB ⊂平面ABM ,BM ⊂平面∴PD ⊥平面ABM . ∵AM ⊂平面ABM ,∴AM ⊥PD . ……6分 (2)解法1:由(1)知,AM PD ⊥,又PA AD =, 则M 是PD 的中点, 在Rt △PAD 中,得2AM =Rt △CDM 中,得223MC MD DC =+=∴1622ACM S AM MC ∆=⋅= 设点D 到平面ACM 的距离为h ,由D ACM M ACD V V --=, ……8分 得111332ACM ACD S h S PA ∆∆=. ξ 012P2531225 6211225 3511225解得6h =, ……10分 设直线CD 与平面ACM 所成的角为θ,则6sin h CD θ==, ……12分 ∴3cos θ=.∴ 直线CD 与平面ACM 3……14分解法2: 如图所示,以点A 为坐标原点,建立空间直角坐标系A xyz -,则()0,0,0A ,()0,0,2P ,()1,0,0B ,()1,2,0C ,()0,2,0D ,()0,1,1M . ∴()()()1,2,0,0,1,1,1,0,0AC AM CD ===-. ……8分设平面ACM 的一个法向量为(,,)n x y z =, 由,n AC n AM ⊥⊥可得:20,0.x y y z +=⎧⎨+=⎩令1z =,得2,1x y ==-.∴(2,1,1)n =-. ……10分 设直线CD 与平面ACM 所成的角为α,则6sin 3CD n CD nα⋅==. ……12分 ∴3cos 3α=. ∴直线CD 与平面ACM 所成的角的余弦值为33. ……14分 19.(本小题满分14分)(本小题主要考查椭圆、圆、直线与圆的位置关系等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识)(1)解:∵椭圆(222:133x y E a a +=>的离心率12e =, 2312a -=. …… 2分解得2a =.∴ 椭圆E 的方程为22143x y +=. …… 4分 (2)解法1:依题意,圆心为(,0)(02)C t t <<.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=.∴ 圆C 的半径为21232t r -=. …… 6分∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴ 212302t t -<<,即22107t <<.∴ 弦长22222123||221274t AB r d t t -=-=-- …… 8分∴ABC ∆的面积211272S t =⋅- …… 9分 )2712727t t =-()227127227tt +-≤37=…… 12分 27127t t =-,即42t =. ∴ ABC ∆的面积的最大值为377. …… 14分 解法2:依题意,圆心为(,0)(02)C t t <<.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=. ∴ 圆C 的半径为2123t r -=. …… 6分∴ 圆C 的方程为222123()4t x t y --+=.∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴ 21230t t -<<2210t <<.在圆C 的方程222123()4t x t y --+=中,令0x =,得21272t y -=±∴ 弦长2||127AB t =- …… 8分 ∴ABC ∆的面积211272S t =⋅- …… 9分 )2712727t t =-()227127227tt +-≤377=……12分 27127t t =-,即427t =. ∴ ABC ∆37…… 14分20.(本小题满分14分)(本小题主要考查函数、导数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识) (1)解: 函数()()()ln aF x f x g x x x x=+=++的定义域为()0,+∞. ∴()'211a F x x x =-+22x x ax +-=.① 当140a ∆=+≤, 即14a ≤-时, 得20x x a +-≥,则()'0F x ≥. ∴函数()F x 在()0,+∞上单调递增. ……2分② 当140a ∆=+>, 即14a >-时, 令()'0,F x = 得20x x a +-=, 解得121141140,a ax x --+-++=<=.(ⅰ) 若104a -<≤, 则21140ax -++=≤.∵()0,x ∈+∞, ∴()'0F x >,∴函数()F x 在()0,+∞上单调递增. …… 4分(ⅱ)若0a >,则114a x ⎛-++∈ ⎝⎭时, ()'0F x <; 114a x ⎫-++∈+∞⎪⎪⎝⎭时, ()'0F x >, ∴函数()F x 在区间114a ⎛-++ ⎝⎭上单调递减, 在区间114a ⎫-+++∞⎪⎪⎝⎭上单调递增. …… 6分 综上所述, 当0a ≤时, 函数()F x 的单调递增区间为()0,+∞;当0a >时, 函数()F x 的单调递减区间为1140,2a ⎛-++ ⎝⎭, 单调递增区间为1142a ⎛⎫-+++∞ ⎪ ⎪⎝⎭. …… 8分 (2) 解: 由()()22g x f x e x=-, 得2ln 2x a x e x x =+-, 化为2ln 2x x ex a x =-+. 令()ln x h x x =, 则()'21ln x h x x-=. 令()'0h x =, 得x e =.当0x e <<时, ()'0h x >; 当x e >时, ()'0h x <.∴函数()h x 在区间()0,e 上单调递增, 在区间(),e +∞上单调递减. ∴当x e =时, 函数()h x 取得最大值, 其值为()1h e e=. …… 10分而函数()()2222m x x ex a x e a e =-+=-+-,当x e =时, 函数()m x 取得最小值, 其值为()2m e a e =-. (12)分∴ 当21a e e -=, 即21a e e =+时, 方程()()22g x f x e x=-只有一个根. …… 14分21. (本小题满分14分)(本小题主要考查导数、数列、不等式、定积分等知识, 考查化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1) 解: 由x y e '=,设直线n l 的斜率为n k ,则n xn k e =.∴直线0l 的方程为1y x =+.令0y =,得11x =-, ……2分∴111x y e e ==, ∴11(1,)P e -. ∴111x k e e==. ∴直线1l 的方程为11(1)y x e e-=+.令0y =,得22x =-. ……4分一般地,直线n l 的方程为()nn x x n y ee x x -=-,由于点11(,0)n n Q x ++在直线n l 上, ∴11n n x x +-=-.∴数列{}n x 是首项为1-,公差为1-的等差数列.∴n x n =-. ……6分 (2)解:11(1)(1)111()()222|nn x x n n n n n n n n n n S e dx x x y e y e e e ------+-+-+=--=-=--⎰ =212ne e e -⋅. ……8分 (3)证明:1211[1()]2111221(1)1222(1)1n n n n e e e e e T e e e e e ee e e----⎛⎫=⋅+++=⋅=⋅- ⎪-⎝⎭-. ……10分∴111111111111n n n n n n n T e e e T e e e e e+++++---===+---,1(1)11n n x n x n n +-+==+-. 要证明11n n n nT x T x ++<,只要证明111n e e e n +-<-,即只要证明1(1)n e e n e +>-+. ……11分 证法1:(数学归纳法)① 当1n =时,显然222(1)021(1)e e e e e e ->⇔>-⇔>-+成立;② 假设n k =时,1(1)k ee k e +>-+成立,则当1n k =+时,21[(1)]k k e e e e e k e ++=⋅>-+,而2[(1)][(1)(1)](1)(1)0e e k e e k e e k -+--++=-+>.∴[(1)](1)(1)e e k e e k e -+>-++.∴2(1)(1)k ee k e +>-++.这说明,1n k =+时,不等式也成立.由①②知不等式11n n n nT x T x ++<对一切n ∈N *都成立. ……14分 证法2: 110111111[1(1)](1)(1)n n n n n n n e e C C e C e +++++++=+-=+-++- 0111(1)1(1)(1)(1)n n C C e n e e n e ++>+-=++-=-+. ∴不等式11n n n nT x T x ++<对一切n ∈N *都成立. ……14分证法3:令()()11x f x e e x e +=---,则()()'11x f x e e +=--,当0x >时, ()()'11x f x e e +=--()110e e >--=>, ∴函数()f x 在()0,+∞上单调递增.∴当0x >时, ()()00f x f >=.∵n ∈N *, ∴()0f n >, 即()110n ee n e +--->.∴()11n ee n e +>-+.∴不等式11n n n nT x T x ++<对一切n ∈N *都成立. ……14分。

2011年普通高等学校招生全国统一考试数学理试题(广东卷)(精校版 含答案)

2011年普通高等学校招生全国统一考试数学理试题(广东卷)(精校版 含答案)

2011年普通高等学校招生全国统一考试(广东卷)数学(理科)试卷类型:A 成本文参考公式:柱体的体积公式V =Sh ,其中S 为柱体的底面积,h 为柱体的高; 线性回归方程y bx a =+中系数计算公式为1122211()()()nnii i ii i nniii i xx y y x yxyb xx xnxη====---==--∑∑∑∑,a y bx =-,其中,x y 表示样本均值;若n 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+).一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i -C. 22i +D.22i -2.已知集合(){,A x y =∣,x y 为实数,且}221xy +=,(){,B x y =∣,x y 为实数,且}y x =,则AB 的元素个数为A.0 B.1 C.2 D.3 3.若向量a, b, c 满足a ∥b 且a ⊥c ,则(2)⋅+=c a bA.4 B.3C.2D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D 由不等式组给定。

若(,)M x y 为D 上的动点,点A的坐标为,则=⋅z OM OA 的最大值为A. B. C .4 D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如下图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为正视图侧视图A.B.C.D.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T ,V 是Z 的两个不相交的非空子集,TV Z =且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2011年广州市普通高中毕业班综合测试(一) 理科综合

2011年广州市普通高中毕业班综合测试(一) 理科综合

试卷类型:A2011年广州市普通高中毕业班综合测试(一)理科综合2011.3满分为300分。

考试用时150分钟。

—、单项选择题:本大题共16小题,每小题4分,共64分。

在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。

1. 下列有关生物膜的说法正确的是A.生物膜的功能主要由膜蛋白实现的B.丙酮酸的分解是在线粒体内膜上进行的C.细胞内的ATP都是在生物膜上合成的D.细胞中的囊泡都是由高尔基体形成的2. 下图哪支试管中的氧气含量下降最快?3. 科学家发现种植转抗除草剂基因作物后,附近许多与其亲缘关系较近的野生植物也获得了抗除草剂性状。

这些野生植物的抗性变异来源于A.基因突变B.染色体数目变异C.基因重组D.染色体结构变异4.以下实验不能说明A.酵母提取液含有蔗糖酶B.酶具有专一性C.蔗糖不是还原糖D.高温使酶失活5. 下列叙述正确的是A. 脱落酸能促进马铃薯发芽B. 果实发育过程只受生长素和乙烯的调节C. 赤霉素和生长素都能促进植物生长D. 根具有向地性是由于近地侧生长素浓度高而长得快6. 以下关于生物技术的说法不正确的是A. 需借助胚胎移植技术才能获得克隆牛B. 单倍体育种过程涉及脱分化和再分化C. 用自身干细胞培育的器官,移植后一般不会产生免疫排斥反应D. 果酒与果醋的制作过程需要保持缺氧状态7. 下列说法正确的是A. P和S属于第三周期元素,P原子半径比S小B. Na和Rb属于第I A族元素,Rb失电子能力比Na强C. C和汾属于第IVA族元素,SiH4比CH4稳定D. Cl和份属于第VIIA族元素,HClO4酸性比HBrO4弱8. 下列实验装置设计正确,且能达到目的的是9. 下列说法正确的是A.乙烯和苯都能发生加成反应B.乙醇和乙酸都能与氢氧化钠溶液反应C.淀粉和蛋白质水解产物都是氨基酸D.葡萄糖和蔗糖都可发生银镜反应10. 电解法精炼含有Fe、Zn、Ag等杂质的粗铜。

2011年广东高考理综试题(高清版)

2011年广东高考理综试题(高清版)

2011年普通高等学校招生全国统一考试(广东卷)理科综合一、单项选择题:(本大题共16小题,每小题4分,共64分。

在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分)1.小陈在观察成熟叶肉细胞的亚显微结构照片后得出如下结论,不正确...的是()A、叶绿体和线粒体都有双层膜B、核糖体附着在高尔基体上C、内质网膜与核膜相连D、液泡是最大的细胞器2、艾弗里和同事用R型和S型肺炎双球菌进行实验,结果如下表。

从表可知()验组号接种菌型加入S型菌物质培养皿长菌情况R 蛋白质R型R 荚膜多糖R型R DNA R型、S型R DNA(经DNA酶处理)R型A.①不能证明S型菌的蛋白质不是转化因子B.②说明S型菌的荚膜多糖有酶活性C.③和④说明S型菌的DNA是转化因子D.①~④说明DNA是主要的遗传物质3.华南虎是国家一级保护动物,可采用试管动物技术进行人工繁殖,该技术包括的环节有①转基因②核移植③体外受精④体细胞克隆⑤胚胎移植()A. ①③B. ①④C. ②⑤D. ③⑤4.短跑运动员听到发令枪声后迅速起跑,下列叙述正确的是()A.起跑动作的产生是非条件反射的结果B.调节起跑动作的神经中枢是听觉中枢C.该反射有多个中间神经元先后兴奋D.起跑反应的快慢取决于小脑兴奋的程度5.以下关于猪血红蛋白提纯的描述,不正确...的是()A.洗涤红细胞时,使用生理盐水可防止红细胞破裂B.猪成熟红细胞中缺少细胞器和细胞核,提纯时杂蛋白较少C.血红蛋白的颜色可用于凝胶色谱法分离过程的监测D.在凝胶色谱法分离过程中,血红蛋白比分子量较小的杂蛋白移动慢6.某班同学对一种单基因遗传病进行调查,绘制并分析了其中一个家系的系谱图(如图)。

下列说法正确的是()A.该病为常染色体显性遗传病B.II-5是该病致病基因的携带者C. II-5和II-6再生患病男孩的概率为1/2D.III-9与正常女性结婚,建议生女孩7.下列说法正确的是A.纤维素和淀粉遇碘水均显蓝色B.蛋白质、乙酸和葡萄糖均属电解质C.溴乙烷与NaOH乙醇溶液共热生成乙烯D.乙酸乙酯和食用植物油均可水解生成乙醇8.能在水溶液中大量共存的一组离子是A. H+、I―、NO3―、SiO32-B. Ag+、Fe3+、Cl―、SO42―C.K+、SO42-、Cu2+、NO3―D.NH4+、OH-、Cl-、HCO3-9.设n A为阿伏伽德罗常数的数值,下列说法正确的是MN4图1F 2F30603F P 5图铅柱钩码3图 A 、常温下,23g NO 2含有n A 个氧原子 B 、1L0.1mol•L -1的氨水含有0.1n A 个OH ― C 、常温常压下,22.4LCCl 4含有个n A CCl 4分子D 、1molFe 2+与足量的H 2O 2溶液反应,转移2n A 个电子10.某同学通过系列实验探究Mg 及其化合物的性质,操作正确且能达到目的的是 A 、将水加入浓硫酸中得到稀硫酸,置镁条于其中探究Mg 的活泼性 B 、将NaOH 溶液缓慢滴入MgSO 4溶液中,观察Mg(OH)2沉淀的生成 C 、将Mg(OH)2浊液直接倒入已装好滤纸的漏斗中过滤,洗涤并收集沉淀D 、将Mg(OH)2沉淀转入蒸发皿中,加足量稀盐酸,加热蒸干得无水MgCl 2固体 11.对于0.1mol•L -1 Na 2SO 3溶液,正确的是 A 、升高温度,溶液的pH 降低B 、c (Na +)=2c (SO 32―)+ c (HSO 3―)+ c (H 2SO 3)C 、c (Na +)+c (H +)=2 c (SO 32―)+ 2c (HSO 3―)+ c (OH ―)D 、加入少量NaOH 固体,c (SO 32―)与c (Na +)均增大12.某小组为研究电化学原理,设计如图装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷类型:A2011年广州市普通高中毕业班综合测试(一)数 学 (理 科) 2011.3本试卷共4页,21小题, 满分150分. 考试用时120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己的市、县/区、学校,以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高. 球的表面积公式24S R π=, 其中R 为球的半径.如果事件A 、B 互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}{220A x x x =-≤,}{11B x x =-<<, 则A B =A .}{01x x ≤<B .}{10x x -<≤ C .}{11x x -<< D .}{12x x -<≤ 2. 若复数(1-i )(a +i )是实数(i 是虚数单位),则实数a 的值为A .2-B .1-C .1D .2 3. 已知向量p ()2,3=-,q (),6x =,且//p q ,则+p q 的值为A B C .5 D .13 4. 函数ln xy x=在区间()1,+∞上 A .是减函数 B .是增函数 C .有极小值 D .有极大值NMD 1C 1B 1A 1DCBA图3(度)1501401101005. 阅读图1的程序框图. 若输入5n =, 则输出k 的值为. A .2 B .3 C .4 D .56. “a b >” 是“22a b ab +⎛⎫> ⎪⎝⎭”成立的A .充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件7. 将18个参加青少年科技创新大赛的名额分配给3所学校, 至少有一个名额且各校分配的名额互不相等, A .96 B .114C .128D .136图1 8. 如图2所示,已知正方体1111ABCD A BC D -的棱长为2, 长 为2的线段MN 的一个端点M 在棱1DD 上运动, 另一端点N 在正方形ABCD 内运动, 则MN 的中点的轨迹的面积为 A .4π B .2π C .π D .2π图2 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.为了了解某地居民月均用电的基本情况, 抽 取出该地区若干户居民的用电数据, 得到频 率分布直方图如图3所示, 若月均用电量在 区间[)110,120上共有150户, 则月均用电量在区间[)120,150上的居民共有 户.D 10. 以抛物线2:8C y x=上的一点A为圆心作圆,若该圆经过抛物线C的顶点和焦点,那么该圆的方程为.11. 已知数列{}n a是等差数列, 若468212a a a++=, 则该数列前11项的和为.12.△ABC的三个内角A、B、C所对边的长分别为a、b、c,已知3,,3c Cπ==2a b=, 则b的值为 .13. 某所学校计划招聘男教师x名,女教师y名, x和y须满足约束条件25,2,6.x yx yx-≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师最多是名.(二)选做题(14~15题,考生只能从中选做一题)14. (几何证明选讲选做题)如图4, CD是圆O的切线, 切点为点A、B在圆O上,1,30BC BCD︒=∠=,则圆O15. (坐标系与参数方程选讲选做题)在极坐标系中,若过点(极轴垂直的直线交曲线4cosρθ=于A、B两点,则AB图4三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数()2sin cos cos2f x x x x=+(x∈R).(1)当x取什么值时,函数()f x取得最大值,并求其最大值;(2)若θ为锐角,且83fπθ⎛⎫+=⎪⎝⎭,求tanθ的值.DC 1A 1B 1CBA某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润 (单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2. 若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为4.9元.表1 表2 (1) 求,a b 的值;(2) 从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.18.(本小题满分14分)如图5,在三棱柱111-ABC A B C 中,侧棱1AA ⊥底面ABC ,,⊥AB BC D 为AC 的中点, 12A A AB ==.(1) 求证:1//AB 平面1BC D ;(2) 若四棱锥11-B AAC D 的体积为3, 求二面角1--C BC D 的正切值.图5已知直线2y =-上有一个动点Q ,过点Q 作直线1l 垂直于x 轴,动点P 在1l 上,且满足 OP OQ ⊥(O 为坐标原点),记点P 的轨迹为C . (1) 求曲线C 的方程;(2) 若直线2l 是曲线C 的一条切线, 当点()0,2到直线2l 的距离最短时,求直线2l 的方程.20.(本小题满分14分)已知函数()2f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x ≥,且1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭,令()()()10g x f x x λλ=-->. (1) 求函数()f x 的表达式; (2) 求函数()g x 的单调区间;(3) 研究函数()g x 在区间()0,1上的零点个数.21.(本小题满分14分)已知函数y =()f x 的定义域为R , 且对于任意12,x x ∈R ,存在正实数L ,使得 ()()1212f x f x L x x -≤-都成立. (1) 若()f x =求L 的取值范围;(2) 当01L <<时,数列{}n a 满足()1n n a f a +=,1,2,n = .① 证明:112111nk k k a a a a L+=-≤--∑; ② 令()121,2,3,k k a a a A k k ++== ,证明:112111nk k k A A a a L +=-≤--∑.2011年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 说明:第10小题写对一个答案给3分. 9. 325 10. ()(2219x y -+±= 11. 3312. 13. 1014.π15. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数性质, 同角三角函数的基本关系、两倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力)(1) 解: ()2sin cos cos2f x x x x =+sin 2cos 2x x =+ …… 1分2222x x ⎫=+⎪⎪⎭…… 2分24x π⎛⎫=+ ⎪⎝⎭. …… 3分∴当2242x k πππ+=+,即(8x k k ππ=+∈Z )时,函数()f x 取得最大值,…… 5分 (2)解法1:∵83f πθ⎛⎫+= ⎪⎝⎭,223πθ⎛⎫+= ⎪⎝⎭. …… 6分∴1cos 23θ=. …… 7分 ∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 2θ==…… 8分∴sin 2tan 2cos 2θθθ==…… 9分∴22tan 1tan θθ=-…… 10分2tan 0θθ+-=.∴)(1tan 0θθ-+=.∴tan 2θ=或tan θ=不合题意,舍去) …… 11分∴tan 2θ=. …… 12分解法2: ∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭. ∴1cos 23θ=. …… 7分 ∴212cos 13θ-=. …… 8分∵θ为锐角,即02πθ<<,∴cos 3θ=. …… 9分∴sin 3θ==. …… 10分∴sin tan cos 2θθθ==…… 12分解法3:∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭. ∴1cos 23θ=. …… 7分∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 2θ==…… 8分 ∴sin tan cos θθθ=…… 9分 22sin cos 2cos θθθ= …… 10分sin 21cos 2θθ=+2=. …… 12分 17.(本小题满分12分)(本小题主要考查数学期望、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1)解:设1件产品的利润为随机变量ξ,依题意得ξ的分布列为:…… 2分 ∴ 60.6540.1 4.9E a b ξ=⨯++⨯-=,即50.9a b -=. …… 3分 ∵ 0.60.20.11a b ++++=, 即0.3a b +=, …… 4分 解得0.2,0.1a b ==.∴0.2,0.1a b == . …… 6分 (2)解:为了使所取出的3件产品的总利润不低于17元,则这3件产品可以有两种取法:3件都 是一等品或2件一等品,1件二等品. …… 8分故所求的概率P =30.6+C 2230.60.2⨯⨯0.432=. …… 12分18. (本小题满分14分)(本小题主要考查空间线面关系、二面角的平面角、锥体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明: 连接1B C ,设1B C 与1BC 相交于点O ,连接OD , ∵ 四边形11BCC B 是平行四边形,GFEODC 1A 1B 1CBA∴点O 为1B C 的中点. ∵D 为AC 的中点, ∴OD 为△1ABC 的中位线,∴ 1//OD AB . …… 2分 ∵OD ⊂平面1BC D ,1⊄AB 平面1BC D , ∴1//AB 平面1BC D . …… 4分 (2)解: 依题意知,12AB BB ==,∵1⊥AA 平面ABC ,1AA ⊂平面11AAC C ,∴ 平面ABC ⊥平面11AAC C ,且平面ABC 平面11AAC C AC =.作BE AC ⊥,垂足为E ,则BE ⊥平面11AAC C , ……6分 设BC a =,在Rt △ABC中,AC =AB BC BE AC ==, ∴四棱锥11-B AAC D 的体积()1111132V AC AD AA BE =⨯+126=a =. …… 8分依题意得,3a =,即3BC =. …… 9分 (以下求二面角1--C BC D 的正切值提供两种解法)解法1:∵11,,AB BC AB BB BC BB B ⊥⊥= ,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C , ∴AB ⊥平面11BB C C .取BC 的中点F ,连接DF ,则DF //AB ,且112DF AB ==. ∴DF ⊥平面11BB C C .作1FG BC ⊥,垂足为G ,连接DG , 由于1DF BC ⊥,且DF FG F = ,∴1BC ⊥平面DFG . ∵DG ⊂平面DFG , ∴1BC ⊥DG .∴DGF ∠为二面角1--C BC D 的平面角. …… 12分 由Rt △BGF ~Rt △1BCC ,得11GF BFCC BC =,得113213BF CC GF BC ⨯=== ,在Rt △DFG 中, tan DF DGF GF ∠==∴二面角1--C BC D…… 14分 解法2: ∵11,,AB BC AB BB BC BB B ⊥⊥= ,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C ,∴AB ⊥平面11BB C C .以点1B 为坐标原点,分别以11B C ,1B B ,11B A y 轴和z 轴,建立空间直角坐标系1B xyz -. 则()0,2,0B ,()13,0,0C ,()0,2,2A ,3,2,12D ⎛⎫⎪⎝⎭. ∴()13,2,0BC =- ,3,0,12BD ⎛⎫= ⎪⎝⎭设平面1BC D 的法向量为n (),,x y z =,由n 10BC = 及n 0BD = ,得320,30.2x y x z -=⎧⎪⎨+=⎪⎩令2x =,得3,3y z ==-.故平面1BC D 的一个法向量为n ()2,3,3=-, …… 11分又平面1BC C 的一个法向量为()0,0,2AB =-,∴cos 〈n ,AB 〉= ⋅n AB n AB200323⨯+⨯+-⨯-==…… 12分 ∴sin 〈n ,AB 〉==…… 13分 ∴tan 〈n ,AB 〉= 3.∴二面角1--C BC D …… 14分 19.(本小题满分14分)(本小题主要考查求曲线的轨迹方程、点到直线的距离、曲线的切线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识) (1) 解:设点P 的坐标为(),x y ,则点Q 的坐标为(),2x -. ∵OP OQ ⊥,∴1OP OQ k k =- .当0x ≠时,得21y x x-=-,化简得22x y =. …… 2分 当0x =时, P 、O 、Q 三点共线,不符合题意,故0x ≠.∴曲线C 的方程为22x y =()0x ≠. …… 4分 (2) 解法1:∵ 直线2l 与曲线C 相切,∴直线2l 的斜率存在.设直线2l 的方程为y kx b =+, …… 5分 由2,2,y kx b x y =+⎧⎨=⎩ 得2220x kx b --=. ∵ 直线2l 与曲线C 相切,∴2480k b ∆=+=,即22k b =-. …… 6分点()0,2到直线2l 的距离d =212= …… 7分12⎫= …… 8分12≥⨯…… 9分=…… 10分=,即k =.此时1b =-. ……12分∴直线2l10y --=10y ++=. …… 14分 解法2:由22x y =,得'y x =, …… 5分 ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中21112y x =, 则直线2l 的方程为:()111y y x x x -=-,化简得211102x x y x --=. …… 6分 点()0,2到直线2l的距离d =212= …… 7分12⎫=+ …… 8分12≥⨯…… 9分=…… 10分=,即1x =. ……12分∴直线2l10y --=10y ++=. …… 14分 解法3:由22x y =,得'y x =, …… 5分 ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中211102y x =>, 则直线2l 的方程为:()111y y x x x -=-,化简得110x x y y --=. …… 6分点()0,2到直线2l的距离d ==…… 7分12⎫= …… 8分12≥⨯…… 9分=…… 10分=11y =时,等号成立,此时1x =……12分∴直线2l10y --=10y ++=. …… 14分 20.(本小题满分14分)(本小题主要考查二次函数、函数的性质、函数的零点、分段函数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识)(1) 解:∵()00f =,∴0c =. …… 1分 ∵对于任意x ∈R 都有1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 的对称轴为12x =-,即122b a -=-,得a b =. …… 2分 又()f x x ≥,即()210ax b x +-≥对于任意x ∈R 都成立, ∴0a >,且∆()210b =-≤. ∵()210b -≥, ∴1,1b a ==.∴()2f x x x =+. …… 4分(2) 解:()()1g x f x x λ=--()()22111,,111,.x x x x x x λλλλ⎧+-+≥⎪⎪=⎨⎪++-<⎪⎩…… 5分① 当1x λ≥时,函数()()211g x x x λ=+-+的对称轴为12x λ-=,若112λλ-≤,即02λ<≤,函数()g x 在1,λ⎛⎫+∞⎪⎝⎭上单调递增; …… 6分若112λλ->,即2λ>,函数()g x 在1,2λ-⎛⎫+∞⎪⎝⎭上单调递增,在11,2λλ-⎛⎫ ⎪⎝⎭上单调递减.…… 7分 ② 当1x λ<时,函数()()211g x x x λ=++-的对称轴为112x λλ+=-<, 则函数()g x 在11,2λλ+⎛⎫-⎪⎝⎭上单调递增,在1,2λ+⎛⎫-∞- ⎪⎝⎭上单调递减. …… 8分 综上所述,当02λ<≤时,函数()g x 单调递增区间为1,2λ+⎛⎫-+∞ ⎪⎝⎭,单调递减区间为 1,2λ+⎛⎫-∞- ⎪⎝⎭; …… 9分当2λ>时,函数()g x 单调递增区间为11,2λλ+⎛⎫-⎪⎝⎭和1,2λ-⎛⎫+∞ ⎪⎝⎭,单调递减区间为 1,2λ+⎛⎫-∞- ⎪⎝⎭和11,2λλ-⎛⎫ ⎪⎝⎭. …… 10分(3)解:① 当02λ<≤时,由(2)知函数()g x 在区间()0,1上单调递增, 又()()010,1210g g λ=-<=-->,故函数()g x 在区间()0,1上只有一个零点. …… 11分 ② 当2λ>时,则1112λ<<,而()010,g =-<21110g λλλ⎛⎫=+> ⎪⎝⎭, ()121g λ=--,(ⅰ)若23λ<≤,由于1112λλ-<≤,且()211111222g λλλλ---⎛⎫⎛⎫=+-+⎪ ⎪⎝⎭⎝⎭()21104λ-=-+≥,此时,函数()g x 在区间()0,1上只有一个零点; …… 12分 (ⅱ)若3λ>,由于112λ->且()121g λ=--0<,此时,函数()g x 在区间()0,1上有两个不同的零点. …… 13分 综上所述,当03λ<≤时,函数()g x 在区间()0,1上只有一个零点;当3λ>时,函数()g x 在区间()0,1上有两个不同的零点. …… 14分 21.(本小题满分14分)(本小题主要考查函数、数列求和、绝对值不等式等知识, 考查化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1) 证明:对任意12,x x ∈R ,有 ()()12f x f x -===. …… 2分由()()1212f x f x L x x -≤-,12L x x ≤-.当12x x ≠时,得L ≥.12,x x >>且1212x x x x +≥+,12121x x x x +<≤+. …… 4分∴要使()()1212f x f x L x x -≤-对任意12,x x ∈R 都成立,只要1L ≥. 当12x x =时, ()()1212f x f x L x x -≤-恒成立.∴L 的取值范围是[)1,+∞. …… 5分 (2) 证明:①∵()1n n a f a +=,1,2,n = ,故当2n ≥时,()()111n n n n n n a a f a f a L a a +---=-≤-()()21212112n n n n n L f a f a L a a L a a -----=-≤-≤≤- . …… 6分∴112233411nkk n n k aa a a a a a a a a ++=-=-+-+-++-∑()21121n L L La a -≤++++- …… 7分1211nL a a L-=--. …… 8分 ∵01L <<, ∴112111nk k k a a a a L+=-≤--∑(当1n =时,不等式也成立). …… 9分 ②∵12kk a a a A k++=,∴1212111k k k k a a a a a a A A k k ++++++++-=-+ ()()12111k k a a a ka k k +=+++-+()()()()()12233411231k k a a a a a a k a a k k +=-+-+-++-+()()12233411231k k a a a a a a k a a k k +≤-+-+-++-+ . …… 11分 ∴1122311nkk n n k AA A A A A A A ++=-=-+-++-∑ ()()122311111121223123341a a a a n n n n ⎛⎫⎛⎫≤-++++-+++ ⎪ ⎪ ⎪ ⎪⨯⨯+⨯⨯+⎝⎭⎝⎭()()34111113344511n n a a n a a n n n n +⎛⎫+-+++++-⨯ ⎪ ⎪⨯⨯++⎝⎭ 1223112111111n n n a a a a a a n n n +⎛⎫⎛⎫⎛⎫=--+--++-- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭≤12231n n a a a a a a +-+-++- 1211a a L≤--. ……14分。

相关文档
最新文档