苏科版七年级苏科初一下册第二学期月考数学试卷百度文库

合集下载

最新苏科七年级苏科初一下册第二学期月考数学试卷(含答案)

最新苏科七年级苏科初一下册第二学期月考数学试卷(含答案)

最新苏科七年级苏科初一下册第二学期月考数学试卷(含答案)一、选择题1.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )2.把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为( )A .114°B .126°C .116°D .124° 3.下列计算中,正确的是( ) A .235235x x x += B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=- 4.下列等式从左到右的变形,属于因式分解的是( ) A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)2 5.下列方程组中,解是-51x y =⎧⎨=⎩的是( ) A .64x y x y +=⎧⎨-=⎩ B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩D .-4-4x y x y +=⎧⎨-=⎩ 6.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒7.计算23x x 的结果是( )A .5xB .6xC .8xD .23x8.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣8 9.△ABC 是直角三角形,则下列选项一定错误的是( ) A .∠A -∠B=∠CB .∠A=60°,∠B=40°C .∠A+∠B=∠CD .∠A :∠B :∠C=1:1:2 10.下列各式中,不能够用平方差公式计算的是( ) A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c ) 11.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b>的是( )A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->- 12.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题13.若(2x +3)x +2020=1,则x =_____.14.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm ,则正方形的面积与长方形的面积的差为_____(用含有字母a 的代数式表示).15.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .16.已知5m a =,3n a =,则2m n a -的值是_________.17.已知某种植物花粉的直径为0.00033cm ,将数据0.00033用科学记数法表示为 ________________.18.计算:5-2=(____________)19.分解因式:x 2﹣4x=__.20.某红外线波长为0.00000094米,数字0.00000094用科学记数法表示为_____.21.小马在解关于x的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 22.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.23.一个容量为40的样本的最大值为35,最小值为15,若取组距为4,则应该分的组数是为_______.24.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.三、解答题25.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.26.先化简,再求值(x-2)2+2(x+2)(x-4)-(x-3)(x+3);其中x=1.27.已知关于x 、y 的二元一次方程组21322x y x y k +=⎧⎪⎨-=-⎪⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若()2421y x +=,求k 的值; (3)若14k ≤,设364m x y =+,且m 为正整数,求m 的值. 28.先化简,再求值:(x ﹣2y )(x +2y )﹣(x ﹣2y )2,其中x =3,y =﹣1.29.计算:(1)201()2016|5|2----;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2.30.如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3. (1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.31.因式分解:(1)2()4()a x y x y ---(2)2242x x -+-(3)2616a a --32.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =12,b =﹣2. 33.解下列方程组: (1)32316x y x y -=⎧⎨+=⎩ (2)234229x y z x y z ⎧==⎪⎨⎪-+=-⎩ 34.因式分解:(1)a 3﹣a ;(2)4ab 2﹣4a 2b ﹣b 3;(3)a 2(x ﹣y )﹣9b 2(x ﹣y );(4)(y 2﹣1)2+6 (1﹣y 2)+9.35.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ;(2)根据(1)中的结论,若x+y =5,x•y =94,则x ﹣y = ; (3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.36.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解2.D解析:D【分析】利用平行线的性质求出∠3即可解决问题.【详解】如图,∵a ∥b ,∴∠2=∠3,∵∠3=∠1+90°,∠1=34°,∴∠3=124°,∴∠2=∠3=124°,故选:D .【点睛】此题考查平行线的性质,三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.3.C解析:C【解析】试题解析:A.不是同类项,不能合并,故错误.B.235236.x x x ⋅= 故错误.C.()3222.x xx ÷-=- 正确. D.()32628.x x -=- 故错误.故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减. 4.D解析:D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D 正确;故选D .【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.5.C解析:C【解析】试题解析:A. 的解是51x y =⎧⎨=⎩, 故A 不符合题意; B. 的解是06x y =⎧⎨=⎩,故B 不符合题意; C. 的解是51x y =-⎧⎨=⎩,故C 符合题意; D. 的解是40x y =-⎧⎨=⎩,故D 不符合题意; 故选C.点睛:解二元一次方程的方法有:代入消元法,加减消元法.6.C解析:C【分析】设∠B ′FE =x ,根据折叠的性质得∠BFE =∠B ′FE =x ,∠AEF =∠A ′EF ,则∠BFC =x−24°,再由第2次折叠得到∠C ′FB =∠BFC =x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A ′EF =180°−∠B ′FE =112°,所以∠AEF =112°.【详解】如图,设∠B ′FE =x ,∵纸条沿EF 折叠,∴∠BFE =∠B ′FE =x ,∠AEF =∠A ′EF ,∴∠BFC =∠BFE−∠CFE =x−24°,∵纸条沿BF 折叠,∴∠C ′FB =∠BFC =x−24°,而∠B ′FE +∠BFE +∠C ′FE =180°,∴x +x +x−24°=180°,解得x =68°,∵A ′D ′∥B ′C ′,∴∠A ′EF =180°−∠B ′FE =180°−68°=112°,∴∠AEF =112°.故选:C .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.7.A解析:A【分析】根据同底数幂相乘,底数不变,指数相加即可求解.【详解】解:∵23235x x x x +==,故选A .【点睛】本题考查同底数幂的运算性质,较容易,熟练掌握同底数幂的运算法则是解题的关键.8.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n 即可.【详解】解:0.00000012=1.2×10﹣7,故选:C.【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.B解析:B【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,和选项求出∠C(或∠B或∠A)的度数,再判断即可.【详解】解:A、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故A选项是正确的;B、∵∠A=60°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣40°=80°,∴△ABC是锐角三角形,故B选项是错误的;C、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故C选项是正确的;D、∵∠A:∠B:∠C=1:1:2,∴∠A+∠B=∠C,∵∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故D选项是正确的;故选:B.【点睛】本题考查了三角形的内角和定理的应用,主要考查学生的推理能力和辨析能力.10.B解析:B【分析】根据平方差公式:22()()a b a b a b +-=-进行判断.【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意;故选B .【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键.11.C解析:C【分析】根据不等式的性质逐项判断即可.【详解】解:A. ac bc >,由于不知道c 的符号,故无法得到a b >,故该选项不合题意;B. ma mb -<-,由于不知道-m 的符号,故无法得到a b >,故该选项不合题意;C. 22ac bc >,∵20c ≠,∴2c >0,∴a b >,故该选项符合题意;D. 22ac bc ->-,∵20c ≠,∴20c -<,∴a b <,故该选项不合题意.故选:C【点睛】本题考查了不等式的性质,熟知不等式的性质是解题关键.12.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x 轴上,为偶数时,从x 轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴∵452=2025∴第2025个点在x 轴上坐标为(45,0)则第2020个点在(45,5)故选:D .【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题13.﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此解析:﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此时:(2x+3)x+2020=1,当2x+3=﹣1时,解得x=﹣2,故x+2020=2018,此时:(2x+3)x+2020=1,当x+2020=0时,解得x=﹣2020,此时:(2x+3)x+2020=1,综上所述,x的值为:﹣2020或﹣1或﹣2.故答案为:﹣2020或﹣1或﹣2.【点睛】此题主要考查了零指数幂的性质以及有理数的乘方,正确分类讨论是解题关键.14.【分析】设长方形的宽为xcm,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方解析:24a 【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方形的宽为xcm ,则长方形的长为(x +a )cm ,∵图(1)的正方形的周长与图(2)的长方形的周长相等,∴正方形的边长为:2()242x a x x a +++=, ∴正方形的面积与长方形的面积的差为:22()2x a x x a +⎛⎫-+ ⎪⎝⎭ 222444x ax a x ax ++=-- =24a . 故答案为:24a . 【点睛】本题主要考查了列代数式,整式的混合运算,关键是读懂题意,正确列出代数式. 15.22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去.②当底边是4cm解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去. ②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=22cm .故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.16.【分析】根据同底数幂的乘除法计算法则进行计算即可.【详解】解:,∵,∴,∴,故答案为:.【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减. 解析:253【分析】根据同底数幂的乘除法计算法则进行计算即可.【详解】解:22m n m n a a a -=÷,∵5m a =,∴22525m a ==, ∴22252533m n m n a a a -=÷=÷=, 故答案为:253. 【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减.17.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:43.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据0.00033用科学记数法表示为43.310-⨯,故答案为:43.310-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.18.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==, 故答案为:125. 【点睛】本题考查了负整数指数幂的运算法则,比较简单.19.x (x ﹣4)【详解】解:x2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).解析:x (x ﹣4)【详解】解:x 2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).20.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000094=9.4×10﹣8,故答案是:9.4×10﹣8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.21.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.22.【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角解析:()45,5【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,按照此方法计算即可;【详解】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,∵245=2025,∴第2025个点在x轴上的坐标为()45,0,则第2020个点在()45,5.故答案为()45,5.【点睛】本题主要考查了规律题型点的坐标,准确判断是解题的关键.23.5【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为35,最小值为15,它们的差是,已知组距为4,那么由于,故可以分成5组.故答案为:解析:5【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为35,最小值为15,它们的差是351520-=,已知组距为4,那么由于2054=,故可以分成5组.故答案为:5.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.24.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab=7,∴ab=1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.三、解答题25.(1)图见解析;(2)图见解析.【详解】解:(1)△A′B′C′如下图;(2)高C′D′如下图.26.2x2-8x-3;-9.【解析】【分析】根据整式的乘法运算法则即可化简求值.【详解】解:原式=x 2-4x+4+2(x 2-2x-8)-(x 2-9)=x 2-4x+4+2x 2-4x-16-x 2+9=2x 2-8x-3当x=1时,原式=2-8-3=-9【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的运算法则.27.(1)218524k x ky -⎧=⎪⎪⎨-⎪=⎪⎩;(2)52k =或12k =-;(3)1或2. 【分析】(1)根据题意直接利用加减消元法进行计算求解即可;(2)由题意根据01(0)a a =≠和11n =以及2(1)1n -=(n 为整数)得到三个关于k 的方程,求出k 即可;(3)根据题意用含m 的代数式表示出k ,根据14k ≤,确定m 的取值范围,由m 为正整数,求得m 的值即可.【详解】 解:(1)21322x y x y k ⎧+=⎪⎪⎨⎪-=-⎪⎩①②, ①+②得:3412x k =+-,解得:218k x -=, ①-②得:3212y k =-+,解得:524k y -=, ∴二元一次方程组的解为:218524k x k y -⎧=⎪⎪⎨-⎪=⎪⎩. (2)∵01(0)a a =≠,2(42)1y x +=,∴20y =,即52204k -⨯=,解得:52k =; ∵11n =,2(42)1y x +=,∴421x +=,即214218k -⨯+=,解得:12k =-; ∵2(1)1n -=(n 为正整数),2(42)1y x +=,∴4212x y +=-,为偶数,即214218k -⨯+=-,解得:52k =-; 当52k =-时,3532115222y k =-+=++=,为奇数,不合题意,故舍去. 综上52k =或12k =-. (3)∵215213643647842k k m x y k --=+=⨯+⨯=+,即172m k =+, ∴2114m k -=, ∵14k ≤, ∴211144m k -=≤,解得94m ≤, ∵m 为正整数,∴m=1或2.【点睛】本题考查解二元一次方程组以及解一元一次不等式,根据题意列出不等式是解题的关键. 28.4xy ﹣8y 2,﹣20【分析】先根据整式的乘法法则和乘法公式算乘法,再合并同类项,最后代入求出即可.【详解】(x ﹣2y )(x +2y )﹣(x ﹣2y )2=x 2﹣4y 2﹣(x 2﹣4xy +4y 2)=x 2﹣4y 2﹣x 2+4xy ﹣4y 2=4xy ﹣8y 2,当x =3,y =﹣1时,原式=4×3×(﹣1)﹣8×(﹣1)2=﹣20.【点睛】本题考查整式的化简求值,涉及平方差公式、完全平方公式、合并同类项等知识,熟练掌握整式的乘法运算法则和乘法公式的运用是解答的关键.29.(1)﹣2;(2)7a 4+4a 6+a 2.【分析】(1)由负整数指数幂、零指数幂、绝对值的意义进行判断,即可得到答案; (2)由积的乘方,同底数幂相乘进行计算,然后合并同类项,即可得到答案.【详解】解:(1)201()2016|5|2----=4﹣1﹣5=﹣2;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2=9a 4﹣2a 4+4a 6+a 2=7a 4+4a 6+a 2.【点睛】本题考查了积的乘方,同底数幂相乘,负整数指数幂,零指数幂,以及绝对值,解题的关键是熟练掌握运算法则进行解题.30.(1)3,0,﹣2;(2)a +b =c ,理由见解析.【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a ,b ,c 的等式,然后根据幂的运算法则求解即可.【详解】(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0,∵2﹣2=14, ∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a +b =c .理由:∵(3,5)=a ,(3,6)=b ,(3,30)=c ,∴3a =5,3b =6,3c =30,∴3a ×3b =5×6=3c =30,∴3a ×3b =3c ,∴a +b =c .【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.31.(1)()(2)(2)x y a a -+-;(2)22(1)x --;(3)(2)(8)a a +-【分析】(1)先提公因式再利用平方差因式分解;(2)先提公因式再利用完全平方公式因式分解;(3)直接利用2(x+p)(x+q)x +(p+q)x+pq =公式因式分解. 【详解】解:(1)2()4()a x y x y ---()2()4x y a =--()(2)(2)x y a a =-+-(2)2242x x -+-()2221x x =--+22(1)x =--(3)2616a a --(2)(8)a a =+-【点睛】此题考查因式分解的几种常见的方法,主要考查运算能力.32.4ab+10b 2;36.【解析】【分析】先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将a ,b 的值代入计算可得.【详解】原式=4a 2+4ab +b 2﹣(4a 2﹣9b 2)=4a 2+4ab +b 2﹣4a 2+9b 2=4ab +10b 2当a 12=,b =﹣2时,原式=412⨯⨯(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36. 【点睛】 本题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解答本题的关键.33.(1)52x y =⎧⎨=⎩(2)234x y z =-⎧⎪=-⎨⎪=-⎩【分析】(1)用加减消元法求解即可;(2)令234x y z k ===,用k 表示出x ,y 和z ,代入229x y z -+=-中,求出k 值,从而得到方程组的解.【详解】解:(1)32316x y x y -=⎧⎨+=⎩①②, ①×3+②得:525x =,解得:x=5,代入①中,解得:y=2,∴方程组的解为:52x y =⎧⎨=⎩;(2)∵设234x y z k ===, ∴x=2k ,y=3k ,z=4k ,代入229x y z -+=-中,4389k k k -+=-,解得:k=-1,∴x=-2,y=-3,z=-4,∴方程组的解为:234x y z =-⎧⎪=-⎨⎪=-⎩. 【点睛】本题考查了二元一次方程组和三元一次方程组,解题的关键是选择合适的方法求解.34.(1)a (a+1)(a ﹣1);(2)﹣b (2a ﹣b )2;(3)(x ﹣y )(a+3b )(a ﹣3b );(4)(y+2)2(y ﹣2)2【分析】(1)直接提取公因式a ,进而利用平方差公式分解因式得出答案;(2)直接提取公因式﹣b ,进而利用完全平方公式分解因式即可;(3)直接提取公因式(x ﹣y ),进而利用平方差公式分解因式得出答案;(4)直接利用完全平方公式分解因式,再利用平方差公式分解因式即可.【详解】解:(1)a 3﹣a=a (a 2﹣1)=a (a+1)(a ﹣1);(2)4ab 2﹣4a 2b ﹣b 3=﹣b (﹣4ab+4a 2+b 2)=﹣b (2a ﹣b )2;(3)a 2(x ﹣y )﹣9b 2(x ﹣y )=(x ﹣y )(a 2﹣9b 2)=(x ﹣y )(a+3b )(a ﹣3b );(4)(y 2﹣1)2+6(1﹣y 2)+9=(y 2﹣1)2﹣6 (y 2﹣1)+9=(y 2﹣1﹣3)2=(y+2)2(y ﹣2)2.【点睛】此题主要考查因式分解的几种方法:提公因式法,公式法等,能熟练运用是解题关键.35.(1)(a+b)2-(a-b)2=4ab ;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy,将x+y=5,x•y=94代入(x+y)2-(x-y)2=4xy,即可求得x-y的值(3)因为(2019﹣m)+(m﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y=5,x•y=9 4∴52-(x-y)2=4×9 4∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m﹣2020)=-1∴[(2019﹣m)+(m﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1∵(2019﹣m)2+(m﹣2020)2=15∴2(2019﹣m)(m﹣2020)=1-15=-14∴(2019﹣m)(m﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.36.(1)24,21x xy y==⎧⎧⎨⎨==⎩⎩(2)-136(3)2.5xy=⎧⎨=⎩【解析】分析:(1)先对方程变形为x=6-2y,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m的值;(3)方程整理后,根据无论m如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21 x xy y==⎧⎧⎨⎨==⎩⎩(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260 x yx y+=⎧⎨+-=⎩和解得66 xy=-⎧⎨=⎩把66xy=-⎧⎨=⎩代入x-2y+mx+5=0,解得m=13 6 -(3)∵无论实数m取何值,方程x-2y+mx+5=0总有一个固定的解,∴x=0时,m的值与题目无关∴y=2.5∴2.5 xy=⎧⎨=⎩点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.。

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)百度文库

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)百度文库

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)百度文库一、选择题1.下列等式由左边到右边的变形中,属于因式分解的是( )A .(a ﹣2)(a+2)=a 2﹣4B .8x 2y =8×x 2yC .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2D .x 2+2x ﹣3=(x ﹣1)(x+3)2.下列运算正确的是 () A .()23524a a -= B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅= 3.下列条件中,能判定△ABC 为直角三角形的是( ).A .∠A=2∠B -3∠C B .∠A+∠B=2∠C C .∠A-∠B=30°D .∠A=12∠B=13∠C 4.不等式3x+2≥5的解集是( )A .x≥1B .x≥73C .x≤1D .x≤﹣1 5.如图,ABC ∆中,100ABC ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则EFD ∠ 的度数为( )A .80°B .60°C .40°D .20° 6.若(x-2y)2 =(x+2y)2+M,则M= ( )A .4xyB .- 4xyC .8xyD .-8xy 7.如图所示的四个图形中,∠1和∠2不是同位角的是( )A .B .C .D .8.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .9.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150° 10.能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A .一条高B .一条中线C .一条角平分线D .一边上的中垂线 11.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 12.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠4D .∠1=∠A二、填空题13.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______.14.一种微粒的半径是0.00004米,这个数据用科学记数法表示为____.15.已知2m+5n ﹣3=0,则4m ×32n 的值为____16.在第八章“幂的运算”中,我们学习了①同底数幂的乘法:a m ⋅a n =a m +n ;②积的乘方:(ab )n =a n b n ;③幂的乘方:(a m )n =a mn ;④同底数幂的除法:a m ÷a n =a m -n 等运算法则,请问算式()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭中用到以上哪些运算法则_________(填序号).17.若x a y b=⎧⎨=⎩是二元一次方程2x ﹣3y ﹣5=0的一组解,则4a ﹣6b =_____. 18.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.19.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.20.一艘船从A 港驶向B 港的航向是北偏东25°,则该船返回时的航向应该是_______.21.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.22.若方程4x ﹣1=3x +1和2m +x =1的解相同,则m 的值为_____.三、解答题23.因式分解(1) 228ax a (2) a 3-6a 2 b+9ab 2 (3) (a ﹣b )2+4ab24.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•- 25.先化简,再求值:()()()()2212112,x x x x x --+---其中2230x x --=.26.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX+∠ACX = °;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =140°,∠BG 1C =77°,求∠A 的度数.27.计算:(1)2a (a ﹣2a 2);(2)a 7+a ﹣(a 2)3;(3)(3a +2b )(2b ﹣3a );(4)(m ﹣n )2﹣2m (m ﹣n ).28.已知8m a =,2n a = .(1)填空:m n a += ; m n a -=__________.(2)求m 与n 的数量关系.29.某公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量如表所示:(1)已知一批商品有A、B两种型号,体积一共是20m3,质量一共是10.5吨,求A、B两种型号商品各有几件;(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:按车收费:每辆车运输货物到目的地收费900元;按吨收费:每吨货物运输到目的地收费300元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送方式,使所付运费最少,并求出该方式下的运费是多少元.30.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)百度文库

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)百度文库

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)百度文库一、选择题1.对于算式20203﹣2020,下列说法错误的是( )A .能被2019整除B .能被2020整除C .能被2021整除D .能被2022整除2.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯ 3.下列等式从左到右的变形,属于因式分解的是( ) A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)2 4.下列各式中,计算结果为x 2﹣1的是( ) A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+ 5.下列四个等式从左到右的变形是因式分解的是 ( ) A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 6.等腰三角形的两边长分别为3和6,那么该三角形的周长为( ) A .12 B .15 C .10D .12或15 7.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( )A .13B .9C .9-D .13-8.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .69.下列方程中,是二元一次方程的是( )A .x 2+x =1B .2x ﹣3y =5C .xy =3D .3x ﹣y =2z 10.计算a 10÷a 2(a≠0)的结果是( ) A .5aB .5a -C .8aD .8a - 11.若25a=,23b =,则232a b -等于( ) A .2725 B .109 C .35 D .252712.下列方程组中,是二元一次方程组的为( )A.1512nmmn⎧+=⎪⎪⎨⎪+=⎪⎩B.2311546a bb c-=⎧⎨-=⎩C.292xy x⎧=⎨=⎩D.xy=⎧⎨=⎩二、填空题13.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.14.计算()()12x x--的结果为_____;15.已知()4432234464a b a a b a b ab b+=++++,则()4a b-=__________.16.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为________________.17.如果42x-与231x mx++的乘积中不含x2项,则m=______________.18.计算:32(2)xy-=___________.19.已知2m+5n﹣3=0,则4m×32n的值为____20.我国开展的月球探测工程(即“嫦娥工程”)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为_______.21.目前,世界上能制造出的最小晶体管的长度只有0.00000004m,将0.00000004用科学记数法表示为_____.22.计算(﹣2xy)2的结果是_____.23.已知30m-=,7m n+=,则2m mn+=___________.24.一艘船从A港驶向B港的航向是北偏东25°,则该船返回时的航向应该是_______.三、解答题25.如图,已知AB∥CD,12∠=∠,BE与CF平行吗?26.已知在△ABC中,试说明:∠A+∠B+∠C=180°方法一:过点A作DE∥BC. 则(填空)∠B =∠ ,∠C =∠∵ ∠DAB +∠BAC + ∠CAE =180°∴∠A +∠B +∠C =180°方法二: 过BC 上任意一点D 作DE ∥AC ,DF ∥AB 分别交AB 、AC 于E 、F (补全说理过程 )27.计算(1) (-a 3) 2·(-a 2)3(2) (2x -3y )2-(y+3x )(3x -y )(3) ()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ 28.已知,关于x 、y 二元一次方程组237921x y a x y -=-⎧⎨+=-⎩的解满足方程2x-y=13,求a 的值.29.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点C 变换为点D ,点A 、B 的对应点分别是点E 、F . (1)在图中请画出△ABC 平移后得到的△EFD ;(2)在图中画出△ABC 的AB 边上的高CH ;(3)△ABC 的面积为_______.30.阅读下列各式:(a•b )2=a 2b 2,(a•b )3=a 3b 3,(a•b )4=a 4b 4…回答下列三个问题:(1)验证:(2×12)100= ,2100×(12)100= ; (2)通过上述验证,归纳得出:(a•b )n = ; (abc )n = .(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.31.(知识回顾):如图①,在△ABC 中,根据三角形内角和定理,我们知道∠A +∠B +∠C =180°.如图②,在△ABC 中,点D 为BC 延长线上一点,则∠ACD 为△ABC 的一个外角.请写出∠ACD 与∠A 、∠B 的关系,直接填空:∠ACD = .(初步运用):如图③,点D、E分别是△ABC的边AB、AC延长线上一点.(1)若∠A=70°,∠DBC=150°,则∠ACB=°.(直接写出答案)(2)若∠A=70°,则∠DBC+∠ECB=°.(直接写出答案)(拓展延伸):如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=70°,∠P=150°,则∠DBP+∠ECP=°.(请说明理由)(2)分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=40°,求出∠A和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.32.已知:如图EF∥CD,∠1+∠2=180°.(1)试说明GD∥CA;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.33.解方程组:(1)2531 y xx y=-⎧⎨+=-⎩;(2)3000.050.530.25300 x yx y+=⎧⎨+=⨯⎩.34.已知关于x、y的方程组354526x yax by-=⎧⎨+=-⎩与2348x yax by+=-⎧⎨-=⎩有相同的解,求a、b的值.35.解方程组:(1)23 38 y xx y=-⎧⎨-=⎩(2) 743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 36.计算: (1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:20203﹣2020=2020×(20202﹣1)=2020×(2020+1)×(2020﹣1)=2020×2021×2019,故能被2020、2021、2019整除,故选:D .2.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000081=-88.110⨯;故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.D解析:D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D 正确;故选D .【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.4.C解析:C【分析】运用多项式乘法法则对各个算式进行计算,再确定答案.【详解】解:A .原式=x 2﹣2x +1,B .原式=﹣(x ﹣1)2=﹣x 2+2x ﹣1;C .(x +1)(x ﹣1)=x 2﹣1;D .原式=x 2+2x ﹣x ﹣2=x 2+x ﹣2;∴计算结果为x 2﹣1的是C .故选:C .【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.5.B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关6.B解析:B【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】由题意,分以下两种情况:(1)当等腰三角形的腰为3时,三边为3,3,6此时336+=,不满足三角形的三边关系定理(2)当等腰三角形的腰为6时,三边为3,6,6此时366+>,满足三角形的三边关系定理则其周长为36615++=综上,该三角形的周长为15故选:B.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,依据题意,正确分两种情况讨论是解题关键.7.A解析:A【分析】先解方程组425x yx y+=⎧⎨-=⎩求出该方程组的解,然后把这个解分别代入7ax y+=与32x by+=-即可求出a、b的值,进一步即可求出答案.【详解】解:解方程组425x yx y+=⎧⎨-=⎩,得31xy=⎧⎨=⎩,把31xy=⎧⎨=⎩代入7ax y+=,得317a+=,解得:a=2,把31xy=⎧⎨=⎩代入32x by+=-,得92b+=-,解得:b=﹣11,∴a-b=2-(﹣11)=13.故选:A.【点睛】本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.8.C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x -<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得: x=52a -, ∵方程的解为非负整数, ∴52a -≥0, ∴a ≤5,又∵0≤a <4,∴a=1, 3,∴1+3=4,∴所有满足条件的整数a 的值之和为4.故选:C .【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.9.B解析:B【分析】根据二元一次方程的定义对各选项逐一判断即可得.【详解】解:A .x 2+x =1中x 2的次数为2,不是二元一次方程;B .2x ﹣3y =5中含有2个未知数,且含未知数项的最高次数为一次的整式方程,是二元一次方程;C .xy =3中xy 的次数为2,不是二元一次方程;D .3x ﹣y =2z 中含有3个未知数,不是二元一次方程;【点睛】本题主要考查了二元一次方程的定义判断,准确理解是解题的关键.10.C解析:C【解析】【分析】根据同底数幂的除法法则即可得.【详解】1021028(0)a a a a a -÷==≠故选:C.【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.11.D解析:D【分析】根据同底数幂的除法的逆运算法则及幂的乘方运算法则,进行代数式的运算即可求解.【详解】222233332(2)5252=2(2)327a a ab b b -=== 故选:D【点睛】 本题考查了同底数幂的除法的逆运算法,一般地,(0mm nn a a a a-=≠,m ,n 都是正整数,并且m >n),还考查了幂的乘方运算法则,(a m )n =a mn (m ,n 都是正整数).12.D 解析:D【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】A 、属于分式方程,不符合题意;B 、有三个未知数,为三元一次方程组,不符合题意;C 、未知数x 是2次方,为二次方程,不符合题意;D 、符合二元一次方程组的定义,符合题意;故选:D .【点睛】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.二、填空题13.65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解解析:65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.14.【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x−x+2=x²−3x+2,故答案为:x²−3x+2.点评:此题考查了多项式乘多项式,熟练掌握运算法则解析:2-32x x【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x−x+2=x²−3x+2,故答案为:x²−3x+2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.15.a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.【详解】解:根据题意得:(a-b)4=解析:a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.【详解】解:根据题意得:(a-b)4=[a+(-b)]4=a4-4a3b+6a2b2-4ab3+b4,故答案为:a4-4a3b+6a2b2-4ab3+b4【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键.16.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m )x-2,∵不含x2项, 解析:32【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x 2+mx+1)=12x 3+(4m-6)x 2+(4-2m )x-2,∵不含x 2项,∴4m-6=0,解得m=32. 故答案为32. 【点睛】此题考查多项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.18.【分析】根据积的乘方进行计算即可.【详解】解:,故答案为:.【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.解析:264x y【分析】根据积的乘方进行计算即可.【详解】解:3226(2)4xy x y -=,故答案为:264x y .【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘. 19.8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n −3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5解析:8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n −3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5n=23=8.故答案为8.20.【分析】根据科学记数法,把一个大于10的数表示成的形式,使用的是科学记数法,即可表示出来.【详解】解:∵,故答案为.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌 解析:53.8410⨯【分析】根据科学记数法,把一个大于10的数表示成10n a ⨯的形式()110a ≤<,使用的是科学记数法,即可表示出来.【详解】解:∵5384000=3.8410⨯,故答案为53.8410⨯.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌握其转化方法是顺利解题的关键.21.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000004,4的前面有8个0,所以n=8,所以0.00000004=4×10-8.故答案为:4×10-8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.22.4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.解析:4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.23.21【分析】由得,再将因式分解可得,然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 24.南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西,故答案为:南偏西.【点睛】解答此类题需要从运动的角度解析:南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西25︒,故答案为:南偏西25︒.【点睛】解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.三、解答题25.见解析.【分析】先根据平行线的性质得出ABC BCD ∠=∠,再根据角的和差得出EBC BCF ∠=∠,然后根据平行线的判定即可得.【详解】//BE CF ,理由如下:∵//AB CD∴ABC BCD ∠=∠(两直线平行,内错角相等)∵12∠=∠∴12ABC BCD ∠-∠=∠-∠即EBC BCF ∠=∠∴//BE CF .(内错角相等,两直线平行)【点睛】本题考查了角的和差、平行线的判定与性质,掌握平行线的判定与性质是解题关键.26.DAB ,CAE ;见解析【分析】方法一:根据平行线的性质:两直线平行,内错角相等解答;方法二:根据平行线的性质:两直线平行、同位角相等解答.【详解】方法一:∵DE ∥BC,∴∠B=∠DAB ,∠C=∠CAE ,故答案为:DAB ,CAE ;方法二:∵DE ∥AC ,∴∠A =∠BED ,∠C =∠BDE ,∵DF ∥AB ,∴∠EDF =∠BED ,∠B =∠CDF ,∵∠CDF +∠EDF +∠BDE =180°,∴∠A +∠B +∠C =180°.【点睛】此题考查平行线的性质,三角形内角和定理的证明过程,解题的关键是熟记平行线的性质并运用于解题.27.(1)-12a ;(2)-522x 10y 12xy +-;(3)1034. 【分析】(1)先计算幂的乘方,然后计算同底数幂相乘,即可得到答案;(2)先计算完全平方公式和平方差公式,然后合并同类项,即可得到答案;(3)先计算负整数指数幂,零指数幂,绝对值,然后合并同类项,即可得到答案.【详解】解:(1)32236612()()()a a a a a -•-=•-=-;(2)2(23)(3)(3)x y y x x y --+- =22224129(9)x xy y x y -+--=2251210x xy y --+;(3)()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ =311824+++ =3104; 【点睛】 本题考查了负整数指数幂,零指数幂,完全平方公式,平方差公式,以及同底数幂的乘法,解题的关键是熟练掌握运算法则进行解题.28.a=4【分析】先联立x+2y=−1与2x−y=13解出x ,y ,再代入2x−3y=7a−9即可求出a 值.【详解】依题意得21213x y x y +=-⎧⎨-=⎩ 解得53x y =⎧⎨=-⎩ , 代入2x−3y=7a−9,得:a=4,故a 的值为4.【点睛】此题主要考查二元一次方程组的解,解题的关键是熟知二元一次方程组的解法.29.(1)见详解;(2)见详解;(3)152.【分析】(1)按要求作图即可;(2)按要求作图即可;(3)根据勾股定理求出AB和CH的长即可得出面积.【详解】(1)△EFD如图所示,;(2)CH如图所示,;(3)根据勾股定理可得:223+635221+25∴S△ABC=12×AB×CH=12×355152.【点睛】本题考查了平移作图,勾股定理,掌握知识点是解题关键.30.(1)1, 1, (2)a n b n, a n b n c n,(3)132 .【解析】【分析】(1)先算括号内的乘法,再算乘方;先乘方,再算乘法;(2)根据有理数乘方的定义求出即可;(3)根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【详解】解:(1)(2×12)100=1,2100×(12)100=1;(2)(a•b)n=a n b n,(abc)n=a n b n c n,(3)原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×1 32=(﹣1)2015×1 32=﹣1×1 32=﹣1 32.【点睛】本题主要考查了同底数幂的乘法和积的乘方,掌握运算法则是解答此题的关键.31.知识回顾:∠A+∠B;初步运用:(1)80;(2)250;拓展延伸:(1)220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由见解析;(3)见解析.【分析】知识回顾:根据三角形内角和即可求解.初步运用:(1)根据知识与回顾可求出∠DBC度数,进而求得∠ACB度数;(2)已知∠A度数,即可求得∠ABC+∠ACB度数,进而求得∠DBC+∠ECB度数.拓展延伸:(1)连接AP,根据三角形外角性质,∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,得到∠DBP+∠ECP=∠BAC+∠BPC,已知∠BAC=70°,∠BPC=150°,即可求得∠DBP+∠ECP度数;(2)如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,即可求出∠A和∠P之间的数量关系;(3)如图,延长BP交CN于点Q,根据角平分线定义,∠DBP=2∠MBP,∠ECP=2∠NCP,且∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,得到∠BPC=∠MBP+∠NCP,因为∠BPC=∠PQC+∠NCP,证得∠MBP=∠PQC,进而得到BM∥CN.【详解】知识回顾:∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠B;故答案为:∠A+∠B;初步运用:(1)∵∠DBC=∠A+∠ACB,∠A=70°,∠DBC=150°,∴∠ACB=∠DBC﹣∠A=150°﹣70°=80°;故答案为:80;(2)∵∠A=70°,∴∠ABC+∠ACB=110°,∴∠DBC+∠ECB=360°﹣110°=250°,故答案为:250;拓展延伸:(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM∥CN.【点睛】本题考查了三角形内角和定理,三角形内角和为360°;三角形外角性质定理,三角形的任一外角等于不相邻的两个内角和;角平分线定义,根据角平分线定义证明;以及平行线的判定,内错角相等两直线平行.32.(1)见解析;(2)∠ACB=80°【分析】(1)利用同旁内角互补,说明GD∥CA;(2)由GD∥CA,得∠A=∠GDB=∠2=40°=∠ACD,由角平分线的性质可求得∠ACB 的度数.【详解】解:(1)∵EF∥CD∴∠1+∠ECD=180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD∥CA;(2)由(1)得:GD∥CA,∴∠BDG=∠A=40°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=40°,∴∠ACD=∠2=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°.【点睛】本题考查了角平分线的性质和平行线的性质.解决本题的关键熟练利用所学的性质进行解题.33.(1)21xy=⎧⎨=-⎩;(2)175125xy=⎧⎨=⎩.【分析】(1)利用代入消元法解二元一次方程组即可;(2)方程组整理后,利用加减消元法解二元一次方程组即可.【详解】解:(1)2531y x x y =-⎧⎨+=-⎩①②, 把①代入②得:x +6x ﹣15=﹣1,解得:x =2,把x =2代入①得:y =﹣1,则方程组的解为21x y =⎧⎨=-⎩; (2)方程组整理得:3005537500x y x y +=⎧⎨+=⎩①②, ①×53﹣②得:48x =8400,解得:x =175,把x =175代入①得:y =125,则方程组的解为175125x y =⎧⎨=⎩. 【点睛】此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键. 34.149299a b ⎧=⎪⎪⎨⎪=⎪⎩【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【详解】354526x y ax by -=⎧⎨+=-⎩①③ 和2348x y ax by +=-⎧⎨-=⎩②④ 解:联立①②得:35234x y x y -=⎧⎨+=-⎩解得:12x y =⎧⎨=-⎩将12x y =⎧⎨=-⎩代入③④得:4102628a b a b -=-⎧⎨+=⎩解得:149299 ab⎧=⎪⎪⎨⎪=⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.35.(1)57xy=⎧⎨=⎩;(2)6024xy=⎧⎨=-⎩【分析】(1)2338y xx y=-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x,将x值代入①可得y值,即可求得方程组的解.(2)743832x yx y⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)23 38 y xx y=-⎧⎨-=⎩①②由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57 xy=⎧⎨=⎩故答案为:57 xy=⎧⎨=⎩(2)7 438 32x yx y⎧+=⎪⎪⎨⎪+=⎪⎩①②①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60 故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩【点睛】本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;36.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.。

苏科七年级苏科初一下册第二学期月考数学试卷

苏科七年级苏科初一下册第二学期月考数学试卷

苏科七年级苏科初一下册第二学期月考数学试卷一、选择题1.若一个多边形的每个内角都为108°,则它的边数为( )A .5B .8C .6D .102.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( ) A .0B .1C .3D .7 3.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .724.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .256 5.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .66.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )A .B .C .D .7.下列各式从左到右的变形,是因式分解的是( )A .a 2-5=(a+2)(a-2)-1B .(x+2)(x-2)=x 2-4C .x 2+8x+16=(x+4)2D .a 2+4=(a+2)2-48.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82° 9.若一个三角形的两边长分别为3和6,则第三边长可能是( )A .6B .3C .2D .10 10.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150°11.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;A .①B .②C .③D .④12.下列说法:2a -没有算术平方根;若一个数的平方根等于它本身,则这个数是0或1;有理数和数轴上的点一一对应;负数没有立方根,其中正确的是( )A .0个B .1个C .2个D .3个二、填空题13.分解因式:m 2﹣9=_____.14.如图,直线//AB CD ,直线GE 交直线AB 于点E ,EF 平分AEG ∠.若∠1=58°,则AEF ∠的大小为____.15.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.16.已知关于x ,y 的方程组2133411x y m x y m+=+⎧⎨-=-⎩(m 为大于0的常数),且在x ,y 之间(不包含x ,y )有且只有3个整数,则m 取值范围______.17.()22x y --=_____.18.若2m =3,2n =5,则2m+n =______.19.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.20.已知(x ﹣4)(x +6)=x 2+mx ﹣24,则m 的值为_____.21.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.22.若2a x =,5b x =,那么2a b x +的值是_______ ;三、解答题23.因式分解:(1)16x 2-9y 2(2)(x 2+y 2)2-4x 2y 224.计算:(1)()20202011 3.142π-⎛⎫-+-+ ⎪⎝⎭ (2)()2462322x y x xy -- (3)()()22342a b a a b --- (4)()()2323m n m n -++-25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点C 变换为点D ,点A 、B 的对应点分别是点E 、F . (1)在图中请画出△ABC 平移后得到的△EFD ;(2)在图中画出△ABC 的AB 边上的高CH ;(3)△ABC 的面积为_______.26.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.27.解下列方程组(1)29321x y x y +=⎧⎨-=-⎩. (2)34332(1)11x y x y ⎧+=⎪⎨⎪--=⎩.(1)(12)﹣3﹣20160﹣|﹣5|;(2)(3a2)2﹣a2•2a2+(﹣2a3)2+a2;(3)(x+5)2﹣(x﹣2)(x﹣3);(4)(2x+y﹣2)(2x+y+2).29.解方程组:(1)2338y xx y=-⎧⎨-=⎩(2)743832x yx y⎧+=⎪⎪⎨⎪+=⎪⎩30.如图1,在△ABC的AB边的异侧作△ABD,并使∠C=∠D,点E在射线CA上.(1)如图,若AC∥BD,求证:AD∥BC;(2)若BD⊥BC,试解决下面两个问题:①如图2,∠DAE=20°,求∠C的度数;②如图3,若∠BAC=∠BAD,过点B作BF∥AD交射线CA于点F,当∠EFB=7∠DBF时,求∠BAD的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.2.A解析:A观察可以发现3n 的末位数字为4个一循环,故相加后末位数字为定值,而2020是4的整数倍,即可求解.【详解】解:通过观察可以发现3n 的末位数字为3、9、7、1……,4个为一循环,而12343333=392781=120++++++末尾数字为0,∵20204=505÷,故234202033333+++++…的末尾数字也为0.故选A .【点睛】本题属于找规律题型,难度不大,是中考的常考知识点,细心观察,总结规律是顺利解题的关键.3.B解析:B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=, 解得52x =, ∴原正方形的边长为52. 故选:B .【点睛】 此题考查了完全平方公式,找到等量关系列方程为解题关键.4.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.解析:A【解析】试题分析:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG 是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选A.考点:三角形中位线定理;三角形的面积.6.C解析:C【解析】【分析】根据平移不改变图形的形状和大小,结合图案,对选项一一分析,排除错误答案.【详解】解:A、图案自身的一部分围绕中心经旋转而得到,故错误;B、图案自身的一部分沿对称轴折叠而得到,故错误;C、图案自身的一部分沿着直线运动而得到,是平移,故正确;D、图案自身的一部分经旋转而得到,故错误.故选C.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.7.C解析:C【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、是因式分解,故本选项符合题意;D、不是因式分解,故本选项不符合题意;故选:C.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.8.C解析:C【分析】在图①的△ABC中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD中,得到另一个关于∠B、∠C度数的等量关系式,联立两式即可求得∠B的度数.【详解】在△ABC中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②;①-②,得:23∠B=52°,解得∠B=78°.故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.9.A解析:A【分析】根据三角形三边关系即可确定第三边的范围,进而可得答案.【详解】解:设第三边为x,则3<x<9,纵观各选项,符合条件的整数只有6.故选:A.【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.10.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.11.B解析:B【分析】根据平行线的判定定理求解,即可求得答案.【详解】解:①∵∠B+∠BCD=180°,∴AB ∥CD ;②∵∠1=∠2,∴AD ∥BC ;③∵∠3=∠4,∴AB ∥CD ;④∵∠B=∠5,∴AB ∥CD ;∴不能得到AB ∥CD 的条件是②.故选:B .【点睛】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.12.A解析:A【分析】根据负数没有算术平方根判断第一句,由1的平方根是1,± 判断第二句,数轴上的点也可以表示无理数判断第三句,任意实数都有立方根判断第四句.【详解】解:当20a -=有算术平方根,所以第一句错误,1的平方根是1,±所以第二句错误,数轴上的点与实数一一对应,所以第三句错误,任意实数都有立方根,所以第四句错误,故选A.【点睛】本题考查算术平方根、平方根、立方根以及实数与数轴的关系.理解相关定理是解题关键.二、填空题13.(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为解析:(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.14.61°【分析】根据平行线的性质可得∠GEB的度数,进而得的度数,再根据角平分线的定义即得答案.【详解】解:,,.EF平分,.故答案为:61°.【点睛】本题考查了平行线的性质、角解析:61°【分析】根据平行线的性质可得∠GEB 的度数,进而得AEG ∠的度数,再根据角平分线的定义即得答案.【详解】解://AB CD ,158GEB ∴∠=∠=︒,18058122AEG ∴∠=︒-︒=︒.EF 平分AEG ∠,61AEF ∴∠=︒.故答案为:61°.【点睛】 本题考查了平行线的性质、角平分线和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.15.-7【解析】【分析】利用配方法把变形为(x-2)-9,则可得到m 和k 的值,然后计算m+k 的值.【详解】x −4x −5=x −4x+4−4−5=(x −2) −9,所以m=2,k=−9,所以解析:-7【解析】【分析】利用配方法把245x x --变形为(x-2)2-9,则可得到m 和k 的值,然后计算m+k 的值.【详解】x 2−4x−5=x 2−4x+4−4−5=(x−2) 2−9,所以m=2,k=−9,所以m+k=2−9=−7.故答案为:-7【点睛】此题考查配方法的应用,解题关键在于掌握运算法则.16.【分析】由中的上式加下式乘以2得到,由中的上式乘以3减下式得到,则可得,再由题意为大于0的常数,在,之间(不包含,)有且只有3个整数得到,计算即可得到答案.【详解】由中的上式加下式乘以2得到解析:04m <<【分析】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m+=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,再由题意m 为大于0的常数,在x ,y 之间(不包含x ,y )有且只有3个整数得到33(52)x y m m -=--+,计算即可得到答案.【详解】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,因为在x ,y 之间(不包含x ,y )有且只有3个整数,而33(52)25x y m m m -=--+=--,又由于m 为大于0的常数,则x ,y 之差可以为-7,-12-17,即m 的值为1、2或者3,所以可得04m <<.【点睛】本题考查二元一次方程组和不等式,解题的关键是掌握解二元一次方程组.17.x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b )2=a2±2ab+b2.【详解】解:(﹣x ﹣2y )2=x2+4xy+4y2.故答案为:x2+4xy+4y2解析:x 2+4xy +4y 2【分析】根据完全平方公式进行计算即可.完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:(﹣x ﹣2y )2=x 2+4xy +4y 2.故答案为:x 2+4xy +4y 2.【点睛】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.该题要求熟练掌握完全平方公式,并灵活运用.18.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.19.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x ,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】 ∵方程3232a x x +=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.20.2【分析】利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m =2.【详解】解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,∴m=2,故答案为2解析:2【分析】利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m=2.【详解】解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,∴m=2,故答案为2.【点睛】本题主要考查了整式乘法的运算,准确分析题目中的式子是解题的关键.21.【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:故答案为【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键.解析:1. 3【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭ ()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 1.3=- 故答案为1.3-【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键.22.【分析】可从入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a)2×xb,接下来将已知条件代入求值即可.【详解】对逆用同底数幂的乘法法则,得(xa)2×xb,逆用幂的解析:【分析】可从2a b x +入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a )2×x b ,接下来将已知条件代入求值即可.【详解】对2a b x +逆用同底数幂的乘法法则,得(x a )2×x b ,逆用幂的乘方法则,得(x a )2×x b ,将2a x =、5b x =代入(x a )2× x b 中,得22×5=20,故答案为:20.【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则.三、解答题23.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.24.(1)4;(2)462x y -;(3)-4ab+9b 2;(4)m 2-4n 2+12n-9.【分析】(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用积的乘方运算法则计算,合并即可得到结果;(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.【详解】解:(1)原式=-1+1+4=4;(2)原式=464646242x y x y x y -=-;(3)原式=4a 2-12ab+9b 2-4a 2+8ab=-4ab+9b 2;(4)原式=m 2-(2n-3)2=m 2-4n 2+12n-9.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.25.(1)见详解;(2)见详解;(3)152. 【分析】(1)按要求作图即可;(2)按要求作图即可;(3)根据勾股定理求出AB 和CH 的长即可得出面积.【详解】(1)△EFD 如图所示,;(2)CH如图所示,;(3)根据勾股定理可得:223+635221+25∴S△ABC=12×AB×CH=12×355152.【点睛】本题考查了平移作图,勾股定理,掌握知识点是解题关键.26.70°【分析】由CD⊥AB,EF⊥AB可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD∥EF,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG∥BC,利用“两直线平行,同位角相等”可得出∠ADG的度数,在△ADG中,利用三角形内角和定理即可求出∠AGD的度数.【详解】解:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF,∴∠DCB=∠1.∵∠1=∠2,∴∠DCB=∠2,∴DG∥BC,∴∠ADG=∠B=45°.又∵在△ADG中,∠A=65°,∠ADG=45°,∴∠AGD =180°﹣∠A ﹣∠ADG =70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.27.(1)272x y =⎧⎪⎨=⎪⎩;(2)692x y =⎧⎪⎨=⎪⎩【分析】(1)根据加减消元法,即可求解;(2)先去分母,去括号,移项,合并同类项,再通过加减消元法,即可求解.【详解】(1)29321x y x y +=⎧⎨-=-⎩①②, +①②得:48x =.解得:2x =, 把2x =代入①得:229y +=,解得:72y =, ∴方程组的解为272x y =⎧⎪⎨=⎪⎩; (2)原方程可化为3436329x y x y +=⎧⎨-=⎩①②, ①-②得:627y =,解得:92y =, 把92y =代入②得:399x -=,解得:6x =, ∴方程组的解为692x y =⎧⎪⎨=⎪⎩. 【点睛】本题主要考查解二元一次方程组,掌握加减消元法,是解题的关键.28.(1)2;(2)7a 4+4a 6+a 2;(3)15x+19;(4)4x 2+4xy+y 2﹣4【分析】(1)首先利用负整数指数幂的性质、零次幂的性质、绝对值的性质进行计算,再算加减即可;(2)首先利用积的乘方的计算法则、单项式乘以单项式计算法则计算,再合并同类项即可;(3)首先利用完全平方公式、多项式乘以多项式计算法则计算,再合并同类项即可; (4)首先利用平方差计算,再利用完全平方公式进行计算即可.【详解】解:(1)原式=8﹣1﹣5=2;(2)原式=9a4﹣2a4+4a6+a2,=7a4+4a6+a2;(3)原式=x2+10x+25﹣(x2﹣3x﹣2x+6),=x2+10x+25﹣x2+3x+2x﹣6,=15x+19;(4)原式=(2x+y)2﹣4,=4x2+4xy+y2﹣4.【点睛】本题考查的是实数的运算,幂的运算及合并同类项,整式的混合运算,掌握以上知识点是解题的关键.29.(1)57xy=⎧⎨=⎩;(2)6024xy=⎧⎨=-⎩【分析】(1)2338y xx y=-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x,将x值代入①可得y值,即可求得方程组的解.(2)743832x yx y⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)23 38 y xx y=-⎧⎨-=⎩①②由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57 xy=⎧⎨=⎩故答案为:57 xy=⎧⎨=⎩(2)7 438 32x yx y⎧+=⎪⎪⎨⎪+=⎪⎩①②①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x-=∴x=60故方程组的解为:6024xy=⎧⎨=-⎩故答案为:6024xy=⎧⎨=-⎩【点睛】本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;30.(1)见解析;(2)35°;(3)117°【分析】(1)由AC∥BD得∠D=∠DAE,角的等量关系证明∠DAE与∠C相等,根据同位角得AD∥BC;(2)由BD⊥BC得∠HBC=90°,余角的性质和三角形外角性质解得∠C的度数为35°;(3)由BF∥AD得∠D=∠DBF,垂直的定义得∠DBC=90°,三角形的内角和定理,角的和差求得∠DBA=∠CBA=45°,由已知条件∠EFB=7∠DBF,角的和差得出∠BAD的度数为117°.【详解】解:(1)如图1所示:∵AC∥BD,∴∠D=∠DAE,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF∥AD,∴∠D=∠DBF,又∵∠C=∠D,∴∠C=∠D=∠DBF,又∵BD⊥BC,∴∠DBC=90°,又∵∠D+∠DBA+∠BAD=180°,∠C+∠CBA+∠BAC=180°.∠BAC=∠BAD,∴∠DBA=∠CBA=45°,又∵∠EFB=7∠DBF,∠EFB=∠FBC+∠C,∴7∠DBF=2∠DBF+∠DBC,解得:∠DBF=18°,∴∠BAD=180°﹣45°﹣18°=117°.【点睛】本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键.。

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)一、选择题1.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE2.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )A .56°B .62°C .66°D .68° 3.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1- 4.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .145.x 2•x 3=( )A .x 5B .x 6C .x 8D .x 9 6.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=- 7.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC中AC 边上的高是( )A .CFB .BEC .AD D .CD8.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣8 9.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .610.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )A .B .C .D .11.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150° 12..已知2x a y =⎧⎨=-⎩是关于x ,y 的方程3x ﹣ay =5的一个解,则a 的值为( ) A .1 B .2 C .3 D .4二、填空题13.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABC S =,则图中阴影部分的面积是 ________.14.计算()()12x x --的结果为_____;15.某球形流感病毒的直径约为0.000000085m ,0.000000085用科学记数法表为_____.16.积的乘方公式为:(ab )m = .(m 是正整数).请写出这一公式的推理过程.17.若分解因式221(3)()x mx x x n +-=++,则m =__________. 18.已知5x m =,4y m =,则2x y m +=______________.19.已知关于x ,y 的方程组2133411x y m x y m+=+⎧⎨-=-⎩(m 为大于0的常数),且在x ,y 之间(不包含x ,y )有且只有3个整数,则m 取值范围______.20.在第八章“幂的运算”中,我们学习了①同底数幂的乘法:a m ⋅a n =a m +n ;②积的乘方:(ab )n =a n b n ;③幂的乘方:(a m )n =a mn ;④同底数幂的除法:a m ÷a n =a m -n 等运算法则,请问算式()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭中用到以上哪些运算法则_________(填序号).21.已知x 2+2kx +9是完全平方式,则常数k 的值是____________.22.一个n 边形的内角和是它外角和的6倍,则n =_______.23.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 24.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.三、解答题25.某口罩加工厂有,A B 两组工人共150人,A 组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B 两组工人每小时一共可加工口罩9300只. (1)求A B 、两组工人各有多少人?(2)由于疫情加重,A B 、两组工人均提高了工作效率,一名A 组工人和一名B 组工人每小时共可生产口罩200只,若A B 、两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩?26.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助于网格).(1)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(2)连接AD 、BE ,那么AD 与BE 的关系是 ,线段AB 扫过的部分所组成的封闭图形的面积为 .27.已知:如图,//AB DC ,AC 和BD 相交于点O ,E 是CD 上一点,F 是OD 上一点,且∠1=∠A .(1)求证://FE OC ;(2)若∠BFE =110°,∠A =60°,求∠B 的度数.28.已知a +b =5,ab =-2.求下列代数式的值:(1)22a b +;(2)22232a ab b -+.29.解不等式(组)(1)解不等式 114136x x x +-+≤-,并把解集在数轴上....表示出来. (2)解不等式835113x x x x ->⎧⎪+⎨≥-⎪⎩,并写出它的所有整数解. 30.已知a +a 1-=3, 求(1)a 2+21a (2)a 4+41a 31.如图,AB ∥CD ,点E 、F 在直线AB 上,G 在直线CD 上,且∠EGF =90°,∠BFG =140°,求∠CGE 的度数.32.如图,在△ABC 中,∠ACB =90°,∠ABC 与∠BAC 的角平分线相交于点P ,连接CP ,过点P 作DE ⊥CP 分别交AC 、BC 于点D 、E ,(1)若∠BAC =40°,求∠APB 与∠ADP 度数;(2)探究:通过(1)的计算,小明猜测∠APB =∠ADP ,请你说明小明猜测的正确性(要求写出过程).33.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩它的解是正数. (1)求m 的取值范围;(2)化简:22|2|(1)(1)m m m --+--;34.如图,已知:点A C 、、B 不在同一条直线,ADBE . (1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.35.计算:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).36.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________;(3)四边形BCC B ''的面积为_______.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB ∥CE .【详解】解:∵∠A =∠ACE ,∴AB ∥CE (内错角相等,两直线平行).故选:B .【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.2.D解析:D【解析】【分析】两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答.【详解】根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得: 2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°.故选D .【点睛】注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.3.D解析:D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.4.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a ,根据三角形的三边关系,得:4-3<a <4+3,即1<a <7,∵a 为整数,∴a 的最大值为6,则三角形的最大周长为3+4+6=13.故选:C .【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.5.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x 2•x 3=x 2+3=x 5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.6.A解析:A【分析】根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案.【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙. 所以()()a b a b +-22=a b -故选A .【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.7.B解析:B【解析】试题分析:根据图形,BE 是△ABC 中AC 边上的高.故选B .考点:三角形的角平分线、中线和高.8.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n即可.【详解】解:0.00000012=1.2×10﹣7,故选:C.【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.A解析:A【解析】试题分析:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG 是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选A.考点:三角形中位线定理;三角形的面积.10.C解析:C【解析】【分析】根据平移不改变图形的形状和大小,结合图案,对选项一一分析,排除错误答案.【详解】解:A、图案自身的一部分围绕中心经旋转而得到,故错误;B、图案自身的一部分沿对称轴折叠而得到,故错误;C、图案自身的一部分沿着直线运动而得到,是平移,故正确;D 、图案自身的一部分经旋转而得到,故错误.故选C .【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.11.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.12.A解析:A【解析】【分析】将x 和y 的值代入方程计算即可.【详解】将2x a y =⎧⎨=-⎩代入方程得:3(2)5a a -⋅-= 解得:1a =故选:A.【点睛】本题考查了已知二元一次方程的解求方程中未知数的值,理解题意是解题关键.二、填空题13.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案.【详解】解: 三边的中线AD 、BE 、CF 的公共点为G ,图中阴影部分的面积是故答案为:6.【点睛】解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案.【详解】 解: ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBDGCD GCE AGE AGF BGF S S S S S S ∴=== 2,BG GE = 2,BGCGEC S S ∴= ,DGC CGE S S ∴=GBD GCD GCE AGE AGF BGF S S S S S S ∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6.【点睛】 本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.14.【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x −x +2=x²−3x +2,故答案为:x²−3x +2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则解析:2-32x x +【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x ²−2x−x +2=x ²−3x +2,故答案为:x ²−3x +2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.15.5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000085=8.5×10﹣8.故答案为:8.5×10﹣8【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.:ambm,见解析.【解析】【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=ambm,理由:(ab)m=ab×ab×ab×ab×…×ab解析::a m b m,见解析.【解析】【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=a m b m,理由:(ab)m=ab×ab×ab×ab×…×ab=aa…abb…b=a m b m故答案为a m b m.【点睛】本题考查幂的乘方与积的乘方,解题的关键是明确它们的计算方法.17.【分析】将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.解:,∴,解得:,故答案为:.【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关 解析:4-【分析】将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.【详解】解:2(3)()(3)3x x n x n x n ++=+++,∴3321n m n +=⎧⎨=-⎩, 解得:74n m =-⎧⎨=-⎩, 故答案为:4-.【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关键. 18.100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把,代入进行计算即可.【详解】解:,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积解析:100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把5x m =,4y m =代入进行计算即可.【详解】解:2x y m +=()()2254100xy m m ⨯=⨯=,故答案为100.本题考查同底数幂的乘法法则、幂的乘方与积的乘方法则,先根据同底数幂的乘法法则把所求代数式进行化简是解答此题的关键.19.【分析】由中的上式加下式乘以2得到,由中的上式乘以3减下式得到,则可得,再由题意为大于0的常数,在,之间(不包含,)有且只有3个整数得到,计算即可得到答案.【详解】由中的上式加下式乘以2得到解析:04m <<【分析】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m+=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,再由题意m 为大于0的常数,在x ,y 之间(不包含x ,y )有且只有3个整数得到33(52)x y m m -=--+,计算即可得到答案.【详解】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,因为在x ,y 之间(不包含x ,y )有且只有3个整数,而33(52)25x y m m m -=--+=--,又由于m 为大于0的常数,则x ,y 之差可以为-7,-12-17,即m 的值为1、2或者3,所以可得04m <<.【点睛】本题考查二元一次方程组和不等式,解题的关键是掌握解二元一次方程组.20.②③【分析】在的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】在的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方解析:②③在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).21. 3【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】∵关于字母x 的二次三项式x2+2kx+9是完全平方式,∴k=±3,故答案为:3.【点睛】此题考查了完全平方式,熟练解析:±3【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】∵关于字母x 的二次三项式x 2+2kx+9是完全平方式,∴k=±3,故答案为:±3.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.22.14【分析】根据多边形的内角和公式及外角和列出等式,解出n 即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6解析:14【分析】根据多边形的内角和公式及外角和列出等式,解出n即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6,解得:n=14,故答案为:14.【点睛】本题是对多边形内角和及外角和的考查,熟练掌握多边形的内角和公式及外角和是解决本题的关键.23.-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a-b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=1,2∴a-b=-1÷1=-2,2故答案为-2.24.15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=解析:15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.三、解答题25.(1)A组工人有90人、B组工人有60人(2)A组工人每人每小时至少加工100只口罩【分析】(1)设A组工人有x人、B组工人有(150−x)人,根据题意列方程健康得到结论;(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200−a)只口罩;根据题意列不等式健康得到结论.【详解】(1)设A组工人有x人、B组工人有(150−x)人,根据题意得,70x+50(150−x)=9300,解得:x=90,150−x=60,答:A组工人有90人、B组工人有60人;(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200−a)只口罩;根据题意得,90a+60(200−a)≥15000,解得:a≥100,答:A组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.26.(1)见解析;(2)平行且相等; 9 .【分析】(1)将三个顶点分别上平移3格,再向右平移6格得到对应点,再顺次连接即可得;(2)根据图形平移的性质和平行四边形的面积公式即可得出结论【详解】(1)如图所示△DEF即为所求;(2)∵△DEF由△ABC平移而成,∴AD∥BE,AD=BE;S=⨯=线段AB扫过的部分所组成的封闭图形是□ABED,339ABED故答案为:平行且相等;9【点睛】本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.27.(1)见详解;(2)50°.【分析】AB DC,可知∠A=∠C ,然后等量代换得到∠C=∠1,利用同位角相等两直线平(1)由//行即可得证;(2)由EF与OC平行,利用两直线平行同旁内角互补得到∠BFE+∠DOC=180°,然后通过三角形内角和即可求出∠B的度数.【详解】(1)证明:∵AB∥CD,∴∠A=∠C ,又∵∠1=∠A,∴∠C=∠1,∴FE∥OC;(2)解:∵FE∥OC,∴∠BFE+∠DOC=180°,又∵∠BFE=110°,∴∠DOC=180°-110°=70°,∴∠AOB=∠DOC=70°,∵∠A=60°,∴∠B=180°-60°-70°=50°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.28.(1)29;(2)64.【分析】(1)根据完全平方公式得到()2222a b a b ab +=+-,然后整体代入计算即可; (2)根据完全平方公式得到()22223227a ab b a b ab -+=+-,然后整体代入计算即可.【详解】解:(1)()()2222252229a b a b b a =+-=-⨯-=+;(2)()()222222232242727257264a ab b a ab b ab a b ab -+=++-=+-=⨯-⨯-=.【点睛】本题考查了代数式求值,完全平方公式和整体代入的思想,熟练掌握完全平方公式是解题的关键.29.(1)x ≤2,图见详解;(2)22x -≤<;-2、-1、0、1.【分析】(1)由题意直接根据解不等式的步骤逐步进行计算求解,并把解集在数轴上表示出来即可.(2)根据题意分别解出两个不等式,取公共部分得出其解集从而写出它的所有整数解即可.【详解】解:(1)去分母,得 6x+2(x+1)≤6-(x-14),去括号,得 6x+2x+2≤6-x+14,移项,合并同类项,得 9x ≤18,两边都除以9,得 x ≤2.解集在数轴上表示如下:(2)835113x x x x ->⎧⎪⎨+≥-⎪⎩①② 解①得:2x <,解②得:2x ≥-,则不等式组的解集是:22x -≤<.它的所有整数解有:-2、-1、0、1.【点睛】本题考查的是一元一次不等式(组)的解法,注意掌握求不等式(组)的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.30.(1)7;(2)47.【分析】(1)根据13a a -+=得出13a a +=,进而得出219a a ⎛⎫+= ⎪⎝⎭,从而可得出结论; (2)根据(1)中的结论可知2217a a +=,故2221()49a a +=,从而得出441a a +的值. 【详解】解:(1)∵13a a -+=, ∴13a a+=, ∴21()9a a +=,即:22129a a++=, ∴2217a a+=; (2)由(1)知:2217a a +=, ∴2221()49a a +=,即:441249a a++=, ∴44147a a+=. 【点睛】本题主要考查的是负整数指数幂和分式的运算,解题的关键是熟练掌握完全平方公式的灵活应用.31.50︒.【分析】先根据平行线的性质得出BFG FGC ∠=∠,再根据CGE FGC EGF ∠=∠-∠结合已知角度即可求解.【详解】证明://AB CD ,∠BFG =140°,BFG FGC ∴∠=∠=140°,又∵CGE FGC EGF ∠=∠-∠,∠EGF =90°,1409050CGE ∴∠=︒-︒=︒. 【点睛】本题考查的是平行线的性质,熟知平行线及角平分线的性质是解答此题的关键.解题时注意:两直线平行,内错角相等.32.(1)135APB ∠=︒,135PDA ∠=︒;(2)正确,理由见解析.【分析】(1)根据三角形的三条角平分线交于一点可知CP 平分∠BCA ,可得∠PCD =45°,从而由三角形外角性质可求∠ADP =135°,再∠BAC =40°,可求∠BAC 度数,根据角平分线的定义求出PBA PAB ∠+∠,然后利用三角形的内角和定理列式计算即可得解.(2)同理(1)直接可得135PDA ∠=︒.由角平分线可求()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒,进而可得135APB ∠=︒,由此得出结论. 【详解】解:(1)180ABC ACB BAC ∠+∠+∠=︒,90ACB ∠=︒,∠BAC =40°, 50ABC =∴∠︒.ABC ∠与ACB ∠的角平分线相交于点P ,1252PBA ABC ∴∠=∠=︒,1202PAB BAC ∠=∠=︒. 114522PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.终上所述:135APB ∠=︒,135PDA ∠=︒.∴PCD+ADP ∠=∠∠ ∠ADP =(2)小明猜测是正确的,理由如下:ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.ABC ∠与ACB ∠的角平分线相交于点P ,12PBA ABC ∴∠=∠,12PAB BAC ∠=∠. ∵90ACB ∠=︒,∴90ABC BAC ∠+∠=︒()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.故∠APB =∠ADP .【点睛】本题考查三角形的内角和定理,三角形的角平分线的定义,整体思想的利用和有效的进行角的等量代换是正确解答本题的关键.33.(1)213m -<< (2)m -【分析】(1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.【详解】解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩, 得321x m y m =+⎧⎨=-⎩因为解为正数,则32010m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.34.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒ (2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.35.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.36.(1)见解析;(2)平行且相等;(3)28【分析】(1)根据平移的性质画出点A 、C 平移后的对应点A '、C '即可画出平移后的△A B C '''; (2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】解:(1)如图,ΔA B C '''即为所求;(2)根据平移的性质可得:BB '与CC '的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B ''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.。

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)一、选择题1.如图所示图形中,把△ABC 平移后能得到△DEF 的是( )A .B .C .D .2.从边长为a 的大正方形板挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证的公式为( )A .()222a b a b -=- B .()2222a b a ab b +=++C .()2222a b a ab b -=-+D .()()22a b a b a b +-=-3.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为21x y =⎧⎨=-⎩,则a ,b 的值是( )A .12a b =⎧⎨=⎩B .21a b =⎧⎨=⎩C .12a b =-⎧⎨=-⎩D .21a b =⎧⎨=-⎩4.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( ) A .a ﹣b B .a +bC .b ﹣aD .﹣a ﹣b5.下列计算错误的是( )A .2a 3•3a =6a 4B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0)6.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=- 7.下列计算中,正确的是( ) A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 28.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82° 9.若多项式224a kab b ++是完全平方式,则k 的值为( ) A .4B .2±C .4±D .8±10.△ABC 是直角三角形,则下列选项一定错误的是( )A .∠A -∠B=∠CB .∠A=60°,∠B=40°C .∠A+∠B=∠CD .∠A :∠B :∠C=1:1:211.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )A .0个B .1个C .2个D .3个12.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( )A .10m -<≤B .10m -≤<C .01m ≤<D .01m <≤二、填空题13.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.14.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________. 15.()a b -+(__________) =22a b -.16.如图,直线//AB CD ,直线GE 交直线AB 于点E ,EF 平分AEG ∠.若∠1=58°,则AEF ∠的大小为____.17.20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ =______.18.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.19.因式分解:=______.20.计算:22020×(12)2020=_____. 21.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.22.计算(﹣2xy )2的结果是_____.23.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.24.已知关于x ,y 的二元一次方程(32)(23)11100a x a y a +----=,无论a 取何值,方程都有一个固定的解,则这个固定解为_______.三、解答题25.因式分解:(1)()()36x m n y n m ---;(2)()222936x x +-26.已知:方程组2325x y ax y +=-⎧⎨+=⎩,是关于x 、y 的二元一次方程组.(1)求该方程组的解(用含a 的代数式表示);(2)若方程组的解满足0x <,0y >,求a 的取值范围. 27.已知有理数,x y 满足:1x y -=,且221xy,求22x xy y ++的值.28.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0.29.如图,网格中每个小正方形边长为1,△ABC 的顶点都在格点上.将△ABC 向左平移2格,再向上平移3格,得到△A ′B ′C ′. (1)请在图中画出平移后的△A ′B ′C ′; (2)画出平移后的△A ′B ′C ′的中线B ′D ′(3)若连接BB ′,CC ′,则这两条线段的关系是________ (4)△ABC 在整个平移过程中线段AB 扫过的面积为________(5)若△ABC 与△ABE 面积相等,则图中满足条件且异于点C 的格点E 共有______个 (注:格点指网格线的交点)30.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y q x y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.31.计算:(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭(2)3()6m m n mn -+ (3)4(2)(2)x x -+-(4)2(2)(2)a b a a b ---32.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =12,b =﹣2. 33.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”. (2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围.34.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W 元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品. (1)若24W =万元,求领带及丝巾的制作成本是多少? (2)若用W 元钱全部用于制作领带,总共可以制作几条?(3)若用W 元钱恰好能制作300份其他的礼品,可以选择a 条领带和b 条丝巾作为一份礼品(两种都要有),请求出所有可能的a 、b 的值.35.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量36.已知:5x y +=,(2)(2)3x y --=-.求下列代数式的的值. (1)xy ;(2)224x xy y ++; (3)25x xy y ++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据平移的概念判断即可,注意区分图形的平移和旋转. 【详解】根据平移的概念,平移后的图形与原来的图形完全重合.A 是通过平移得到;B 通过旋转得到;C 通过旋转加平移得到;D 通过旋转得到.【点睛】本题主要考查图形的平移,特别要注意区分图形的旋转和平移.2.D解析:D 【分析】分别表示出图甲和图乙中阴影部分的面积,二者相等,从而可得答案. 【详解】解:图甲中阴影部分的面积为:22a b -, 图乙中阴影部分的面积为:()()()1()4=22a b a b a b a b -+⨯⨯⨯+-, 甲乙两图中阴影部分的面积相等22()()a b a b a b ∴-=+-∴可以验证成立的公式为22()()a b a b a b +-=-故选:D . 【点睛】本题考查了平方差公式的几何背景,属于基础题型,比较简单.3.A解析:A 【分析】 把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得到关于a ,b 的二元一次方程组,解之即可. 【详解】解:把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得:2=06210a b a b -⎧⎨+=⎩, 解得:=1=2a b ⎧⎨⎩,故选A. 【点睛】本题考查了二元一次方程组的解,正确掌握代入法和解二元一次方程组的方法是解题的关键.4.A解析:A 【分析】根据多项式与多项式相乘知(x ﹣a )(x +b )=x 2+(b ﹣a )x ﹣ab ,据此可以求得k 的值.解:∵(x ﹣a )(x +b )=x 2+(b ﹣a )x ﹣ab , 又∵x 2﹣kx ﹣ab =(x ﹣a )(x +b ), ∴x 2﹣kx ﹣ab =x 2+(b ﹣a )x ﹣ab , ∴﹣k =b ﹣a , k =a ﹣b , 故选:A . 【点睛】本题主要考查多项式与多项式相乘,熟记计算方法是解题的关键.5.C解析:C 【分析】A .根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A 进行判断B .根据幂的乘方运算法则对B 进行判断C .根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C 进行判断D .根据同底数幂除法运算法则对D 进行判断 【详解】A .2a 3•3a =6a 4,故A 正确,不符合题意B .(﹣2y 3)2=4y 6,故B 正确,不符合题意C .3a 2+a ,不能合并同类项,无法计算,故C 错误,符合题意D .a 5÷a 3=a 2(a≠0),故D 正确,不符合题意 故选:C 【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.6.A解析:A 【分析】根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案. 【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙.所以()()a b a b +-22=a b - 故选A . 【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.7.D【分析】直接利用同底数幂的乘除运算法则,积的乘方运算法则以及合并同类项法则分别计算得出答案. 【详解】解:A 、(a 2)3=a 6,故此选项错误; B 、a 8÷ a 2=a 6,故此选项错误; C 、(2a )3=8a 3,,故此选项错误; D 、a 2+ a 2=2 a 2,故此选项正确. 故选:D 【点睛】此题主要考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握运算法则是解题关键.8.C解析:C 【分析】在图①的△ABC 中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD ,即可在△CBD 中,得到另一个关于∠B 、∠C 度数的等量关系式,联立两式即可求得∠B 的度数. 【详解】在△ABC 中,∠A=30°,则∠B+∠C=150°…①; 根据折叠的性质知:∠B=3∠CBD ,∠BCD=∠C ; 在△CBD 中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②; ①-②,得:23∠B=52°, 解得∠B=78°. 故选:C . 【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B 和∠CBD 的倍数关系是解答此题的关键.9.C解析:C 【分析】根据完全平方式的特征解答即可. 【详解】∵224a kab b ++是一个完全平方式, ∴224a kab b ++=(a ±2b )2, 而(a ±2b )2=a 2±4ab+24b ,故选C.【点睛】本题考查了完全平方式,根据完全平方式的特点得到k=±4是解决问题的关键. 10.B解析:B【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,和选项求出∠C(或∠B或∠A)的度数,再判断即可.【详解】解:A、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故A选项是正确的;B、∵∠A=60°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣40°=80°,∴△ABC是锐角三角形,故B选项是错误的;C、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故C选项是正确的;D、∵∠A:∠B:∠C=1:1:2,∴∠A+∠B=∠C,∵∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故D选项是正确的;故选:B.【点睛】本题考查了三角形的内角和定理的应用,主要考查学生的推理能力和辨析能力.11.B解析:B【分析】观察图象,明确每一段行驶的路程、时间,即可做出判断.【详解】由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确; 从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确, 故选:B .【点睛】此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.12.C解析:C【分析】首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m 的不等式,求得m 的范围.【详解】解:0233(2)x m x x ->⎧⎨-≥-⎩①② 解不等式①,得x>m.解不等式②,得x ≤3.∴不等式组得解集为m<x ≤3.∵不等式组有三个整数解,∴01m ≤<.故选C.【点睛】本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题13.32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣解析:32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:1(5﹣2)×180°=108°,5则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.14.6【分析】设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边解析:6【分析】设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边形的边数是n,重复计算的内角的度数是x,则(n﹣2)•180°=840°﹣x,n=6…120°,∴这个多边形的边数是6,故答案为:6.【点睛】本题考查了多边形的内角和公式,正确理解多边形角的大小的特点,以及多边形的内角和定理是解决本题的关键.15.【分析】根据平方差公式即可求出答案.【详解】解:,故答案为:.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.解析:a b --【分析】根据平方差公式即可求出答案.【详解】解:()2222()()a b a b a b a b -+--==---,故答案为:a b --.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 16.61°【分析】根据平行线的性质可得∠GEB 的度数,进而得的度数,再根据角平分线的定义即得答案.【详解】解:,,.EF 平分,.故答案为:61°.【点睛】本题考查了平行线的性质、角解析:61°【分析】根据平行线的性质可得∠GEB 的度数,进而得AEG ∠的度数,再根据角平分线的定义即得答案.【详解】解://AB CD ,158GEB ∴∠=∠=︒,18058122AEG ∴∠=︒-︒=︒.EF 平分AEG ∠,61AEF ∴∠=︒.故答案为:61°.【点睛】 本题考查了平行线的性质、角平分线和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.17.【分析】根据同底数的幂的乘法运算的逆运算,先将分成 ,再根据积的乘方的逆运算,把指数相同的数相乘即可.【详解】解:故答案为: .【点睛】本题考查幂的乘方和积的乘方,将不同底数 解析:5-12【分析】 根据同底数的幂的乘法运算的逆运算,先将2019512⎛⎫- ⎪⎝⎭分成2018551212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭ ,再根据积的乘方的逆运算,把指数相同的数相乘即可.【详解】 解:20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ 20182018551212125⎛⎫⎛⎫⎛⎫=-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 20182018512512512⎛⎫⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2018512512512⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭ ()20185112⎛⎫=-⨯- ⎪⎝⎭ 512=- 故答案为:512-. 【点睛】本题考查幂的乘方和积的乘方,将不同底数且不同指数的幂转化为底数相同或者指数相同的幂是解题关键.18.128【分析】由ADBC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵A解析:128【分析】由AD//BC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵AD//BC,∠1=64°,∴∠DEF=∠1=64°,由折叠的性质可得∠FEG=∠DEF=64°,∴∠2=∠1+∠EFG=64°+64°=128°.故答案为:128.【点睛】本题主要考察两直线平行的性质、折叠的性质以及矩形的性质,重点在于利用已知条件找到角度之间的关系.19.2(x+3)(x﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18=2(x2-9)=2(x+3)(x-3).考点:因式分解.解析:2(x+3)(x﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x2-9)=2(x+3)(x-3).考点:因式分解.20.1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.解析:1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×12)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.21.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000004,4的前面有8个0,所以n=8,所以0.00000004=4×10-8.故答案为:4×10-8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.22.4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.解析:4x 2y 2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy )2=4x 2y 2.故答案为:4x 2y 2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.23.【分析】先按照多项式乘以多项式,再把同类项合并,利用不含项即这一项的系数为,即可得到答案.【详解】解:而上式不含项,,故答案为:【点睛】本题考查的是多项式的乘法运算,同时解析:2.-【分析】先按照多项式乘以多项式,再把同类项合并,利用不含2x 项即这一项的系数为0,即可得到答案.【详解】解:()()232212222x x px px x px x px +-+=+++--()()32222px p x p x =+++--而上式不含2x 项,20p ∴+=,2,p ∴=-故答案为: 2.-【点睛】本题考查的是多项式的乘法运算,同时考查多项式的概念中的项的次数,及不含某项的条件,掌握以上知识是解题的关键.24.【分析】根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.【详解】∵无论取何值,方程都有一个固定的解,∴a 值可任意取两个值,解析:41x y =⎧⎨=⎩【分析】根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.【详解】∵无论a 取何值,方程都有一个固定的解,∴a 值可任意取两个值,可取a=0,方程为23110x y +-=,取a=1,方程为5210x y +-=,联立两个方程解得4,1x y ==,将4,1x y ==代入(32)(23)11100a x a y a +----=,得(32)4(23)111101282311100a a a a a a +⨯--⨯--=+-+--=对任意a 值总成立,所以这个固定解是41x y =⎧⎨=⎩, 故答案为:41x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握带有参数的方程的解法是解答的关键.三、解答题25.(1)3()(2)m n x y -+;(2)22(3)(3)x x +-.【分析】(1)原式变形后,提取公因式即可;(2)原式先利用平方差公式进行因式分解,再利用完全平方公式分解即可.【详解】(1)原式3()6()x m n y m n =-+-3()3()2m n x m n y =-⋅+-⋅3()(2)m n x y =-+(2)原式()2229(6)x x =+-()()229696x x x x =+++-22(3)(3)x x =+-【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.26.(1)1213x a y a=+⎧⎨=-⎩;(2)12a <- 【分析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)①2⨯,得 2242x y a +=-.③②-③,得12x a =+把12x a =+代入①,得13y a =-所以原方程组的解是1213x a y a =+⎧⎨=-⎩(2)根据题意,得120130a a +<⎧⎨->⎩解不等式组,得,12a <- 所以a 的取值范围是:12a <-. 【点睛】 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.27.【分析】利用1x y -=将221x y 整理求出xy 的值,然后将22x xy y ++利用完全平方公式变形,将各自的值代入计算即可求出值.【详解】∵221x y , ∴化简得:241xy x y , ∵1x y -=,∴241xy x y 可化为:241xy ,即有:5xy =,∴2222313516x xy y x y xy .【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.28.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.29.(1)画图见解析;(2)画图见解析;(3)平行且相等;(4)12;(5)9【分析】(1)利用网格特点和平移的性质分别画出点A 、B 、C 的对应点A′、B′、C′即可得到△A′B′C′;(2)找出线段A′C′的中点E′,连接B′E′;(3)根据平移的性质求解;(4)由于线段AB 扫过的部分为平行四边形,则根据平行四边形的面积公式可求解. (5)根据同底等高面积相等可知共有9个点.【详解】(1)△A ′B ′C ′如图所示;(2)B ′D ′如图所示;(3)BB′∥CC′,BB′=CC′;(4)线段AB 扫过的面积=4×3=12;(5)有9个点.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.30.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B (4,8)时,m ﹣1=4,22n +=8, 解得:m =5,n =14,显然2m ≠8+n ,所以B 点不是“爱心点”; (2)A 、B 两点的中点C 在第四象限,理由如下:∵点A (a ,﹣4)是“爱心点”,∴m ﹣1=a ,22n +=﹣4, 解得:m =a +1,n =﹣10.代入2m =8+n ,得2(a +1)=8﹣10,解得:a =﹣2,所以A 点坐标为(﹣2,﹣4);∵点B (4,b )是“爱心点”,同理可得m =5,n =2b ﹣2,代入2m =8+n ,得:10=8+2b ﹣2,解得:b =2.所以点B 坐标为(4,2).∴A 、B 两点的中点C 坐标为(2442,22-+-+),即(1,﹣1),在第四象限. (3)解关于x ,y的方程组3x y q x y q⎧+=+⎪⎨-=-⎪⎩,得:2x q y q ⎧=-⎪⎨=⎪⎩. ∵点B (x ,y )是“爱心点”,∴m ﹣1﹣q ,22n +=2q , 解得:m﹣q +1,n =4q ﹣2.代入2m =8+n ,得:﹣2q +2=8+4q ﹣2,整理得﹣6q =4.∵p ,q 为有理数,若使p ﹣6q 结果为有理数4,则P =0,所以﹣6q =4,解得:q =﹣23. 所以P =0,q =﹣23. 【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.31.(1)12;(2)233m mn +;(3)28x -;(4)224ab b -+.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)先做单项式乘多项式,再合并同类项即可得出答案;(3)先利用平方差公式计算,再合并同类项即可得出答案;(4)先利用完全平方公式以及单项式乘多项式计算,再合并同类项即可得出答案.【详解】解:(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭5116=--12=-;(2)3()6m m n mn -+2336m mn mn =-+233m mn =+;(3)4(2)(2)x x -+-()244x =--244x ==-+28x =-;(4)()()222a b a a b --- ()()222442a ab b a ab =-+--222442a ab b a ab =-+-+224ab b +=-.【点睛】此题主要考查了平方差公式以及完全平方公式、实数运算,正确应用公式是解题关键. 32.4ab+10b 2;36.【解析】【分析】先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将a ,b 的值代入计算可得.【详解】原式=4a 2+4ab +b 2﹣(4a 2﹣9b 2)=4a 2+4ab +b 2﹣4a 2+9b 2=4ab +10b 2当a 12=,b =﹣2时,原式=412⨯⨯(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36. 【点睛】 本题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解答本题的关键.33.(1)2P ;(2)2-;(3)3t >【分析】(1)将P 1(3,1)和P 2(-3,1)分别代入等式即可得出结果;(2)将点P (m ,n )代入等式即可得出m+n 的值;(3)根据“好点”的定义,将P 点代入即可得到关于m 和n 的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=-对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+,2222m n n t m t -=+--①,2222m n m t n t +=+++②,得()()2()0m n m n m n -++-=,即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++,∴4242,4mn t mn t -=-+=-,∵m n ≠,∴2()0m n ->,∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键.34.(1)领带的制作成本是120元,丝巾的制作成本是160元;(2)可以制作2000条领带;(3)42a b =⎧⎨=⎩【分析】(1)设领带及丝巾的制作成本是x 元和y 元,根据题意列出方程组求解即可; (2)由600(2)W x y =+与400(3)W x y =+可得到43y x =,代入可得2000W x =,即可求得答案;(3)根据44600(2)300()33x x ax bx +=+即可表达出a 、b 的关系式即可解答. 【详解】解:(1)设领带及丝巾的制作成本是x 元和y 元, 则600(2)240000400(3)240000x y x y +=⎧⎨+=⎩解得:120160x y =⎧⎨=⎩答:领带的制作成本是120元,丝巾的制作成本是160元.(2)由题意可得:600(2)W x y =+,且400(3)W x y =+,∴600(2)400(3)x y x y +=+, 整理得:43y x =,代入 600(2)W x y =+ 可得:4600(2)20003W x x x =+=, ∴可以制作2000条领带.(3)由(2)可得:43y x =, ∴44600(2)300()33x x ax bx +=+ 整理可得:3420a b +=∵a 、b 都为正整数,∴42a b =⎧⎨=⎩【点睛】本题考查了二元一次方程组的综合应用,解题的关键是根据题意列出方程,并对已知条件进行适当的变形.35.(1)证明过程见解析;(2)12N AEM NFD ∠=∠-∠,理由见解析;(3)13∠N+∠PMH=180°. 【分析】(1)根据同旁内角互补,两直线平行即可判定AB ∥CD ;(2)设∠N=2α,∠M=3α,∠AEM=x ,∠NFD=y ,过M 作MP ∥AB ,过N 作NQ ∥AB 可得∠PMN=3α-x ,∠QNM=2α-y ,根据平行线性质得到3α-x =2α-y ,化简即可得到12N AEM NFD ∠=∠-∠; (3)过点M 作MI ∥AB 交PN 于O ,过点N 作NQ ∥CD 交PN 于R ,根据平行线的性质可得∠BPM=∠PMI ,由已知得到∠MON=∠MPN+∠PMI=3∠PMI 及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD ,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM ,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13∠FNP ,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,即得到13∠FNP=180°-∠PMH ,即13∠N+∠PMH=180°. 【详解】(1)证明:∵∠1=∠BEF ,12180︒∠+∠=∴∠BEF+∠2=180°∴AB ∥CD.(2)解:12N AEM NFD ∠=∠-∠ 设∠N=2α,∠M=3α,∠AEM=x ,∠NFD=y过M 作MP ∥AB ,过N 作NQ ∥AB∵//AB CD,MP∥AB,NQ∥AB ∴MP∥NQ∥AB∥CD∴∠EMP=x,∠FNQ=y∴∠PMN=3α-x,∠QNM=2α-y ∴3α-x=2α-y即α=x-y∴12N AEM NFD ∠=∠-∠故答案为12N AEM NFD ∠=∠-∠(3)解:13∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.∵//AB CD,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM∴∠MON+∠PRF+∠RFM=360°-∠OMF即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI=13∠FNP ∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH∠FNP-2×13∠FNP=180°-∠PMH 13∠FNP=180°-∠PMH 即13∠N+∠PMH=180° 故答案为13∠N+∠PMH=180° 【点睛】 本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.36.(1)3;(2)31;(3)25.【分析】(1)把多项式乘积展开,再将已知5x y +=代入,即可求解;(2)根据(1)得到3xy =,再利用完全平方公式,即可求解;(3)根据5x y +=将x 用y 来表示,再代入25x xy y ++,合并同类项即可求解.【详解】解:(1)∵()(2)(2)22424=3x y xy x y xy x y --=--+=-++-,而5x y +=, ∴ ()=324=3254=3xy x y -++--+⨯-.故答案为3.(2)由(1)知3xy =,∴ ()22224=2=523=31x xy y x y xy +++++⨯. 故答案为31.(3)∵5x y +=,得5x y =-,则()()22225=55525105525x xy y y y y y y y y y y ++-+-+=-++-+=. 故答案为25.【点睛】本题目考查整式的乘法,难度一般,是常考知识点,熟练掌握代数式之间的转化是顺利解题的关键.。

苏科七年级苏科初一下册第二学期月考数学试卷百度文库

苏科七年级苏科初一下册第二学期月考数学试卷百度文库

苏科七年级苏科初一下册第二学期月考数学试卷百度文库一、选择题1.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭2.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm + 3.下列代数运算正确的是( )A .x•x 6=x 6B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 34.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80°5.如图所示的四个图形中,∠1和∠2不是同位角的是( ) A .B .C .D .6.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°7.下列四个等式从左到右的变形是因式分解的是 ( ) A .22()()a b a b a b +-=- B .2()ab a a b a -=- C .25(1)5x x x x +-=+-D .21()x x x x x+=+8.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( ) A .(2,﹣5)B .(﹣2,5)C .(5,﹣2)D .(﹣5,2)9.下列各式从左到右的变形,是因式分解的是( ) A .a 2-5=(a+2)(a-2)-1 B .(x+2)(x-2)=x 2-4 C .x 2+8x+16=(x+4)2D .a 2+4=(a+2)2-410.下列计算不正确的是( ) A .527a a a = B .623a a a ÷= C .2222a a a += D .(a 2)4=a 8 11.下列给出的线段长度不能与4cm ,3cm 能构成三角形的是( )A .4cmB .3cmC .2cmD .1cm12.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( )A .23m ≤B .23m <C .23m ≥D .23m >二、填空题13.若等式0(2)1x -=成立,则x 的取值范围是_________.14.20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ =______.15.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm .16.一个n 边形的内角和是它外角和的6倍,则n =_______.17.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种. 18.分解因式:ab ﹣ab 2=_____.19.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .20.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.21.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.22.某校七年级社会实践小组去商场调查商品的销售情况,了解到该商场以每件80元的价格购进某品牌衬衫500件,并以每件120元的价格销售400件.该商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫至多降价______元,销售完这批衬衫才能达到盈利45%的预期目标. 三、解答题23.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆. (1)补全'''A B C ∆,利用网格点和直尺画图; (2)图中AC 与''A C 的位置关系是: ; (3)画出ABC ∆中AB 边上的中线CE ;(4)平移过程中,线段AC 扫过的面积是: .24.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值; (3)若25,2x y xy +==,求2x y -的值.25.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元. (1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a 箱,苹果b 箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果. ①若老徐在甲店获利600元,则他在乙店获利多少元? ②若老徐希望获得总利润为1000元,则a b +=? 26.因式分解: (1)12abc ﹣9a 2b ; (2)a 2﹣25; (3)x 3﹣2x 2y +xy 2; (4)m 2(x ﹣y )﹣(x ﹣y ).27.已知a ,b ,c 是△ABC 的三边,若a ,b ,c 满足a 2+c 2=2ab +2bc -2b 2,请你判断△ABC 的形状,并说明理由.28.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?29.启秀中学初一年级组计划将m 本书奖励给本次期中考试中取得优异成绩的n 名同学,如果每人分4本,那么还剩下78本;如果每人分8本,那么最后一人分得的书不足8本,但不少于4本.最终,年级组讨论后决定,给n 名同学每人发6本书,那么将剩余多少本书?30.阅读理解并解答:为了求1+2+22+23+24+…+22009的值. 可令S =1+2+22+23+24+…+22009 则2S =2+22+23+24+…+22009+22010因此2S ﹣S =(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1 所以S =22010﹣1即1+2+22+23+24+…+22009=22010﹣1 请依照此法,求:1+5+52+53+54+…+52020的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】首先分析题意,找到规律,并进行推导得出答案. 【详解】 根据题意得,n ≥2, S 1=12π×12=12π, S 2=12π﹣12π×(12)2, … S n =12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n ﹣1]2, S n +1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n ﹣1]2﹣12π×[(12)n ]2, ∴S n ﹣S n +1=12π×(12)2n =(12)2n +1π. 故选C . 【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.2.D解析:D 【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算. 【详解】 矩形的面积为: (a+4)2-(a+1)2 =(a 2+8a+16)-(a 2+2a+1) =a 2+8a+16-a 2-2a-1 =6a+15. 故选D .3.B解析:B 【分析】根据同底数幂的乘法,幂的乘方,完全平方公式,积的乘方运算判断即可. 【详解】A .67=x x x ,故A 选项错误;B .()32236x x x ⨯==,故B 选项正确;C .22(2)44x x x +=++,故C 选项错误;D .3333(2)28x x x =⋅=,故D 选项错误. 故选B . 【点睛】本题考查整式的乘法公式,熟练掌握同底数幂的乘法,幂的乘方,完全平方公式和积的乘方是解题的关键.4.B解析:B 【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2. 【详解】解:如图,延BA ,CD 交于点E . ∵直尺为矩形,两组对边分别平行 ∴∠1+∠4=180°,∠1=115° ∴∠4=180°-∠1=180°-115°=65° ∵∠EDA 与∠4互为对顶角 ∴∠EDA=∠4=65°∵△EBC 为等腰直角三角形 ∴∠E=45°∴在△EAD 中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70° ∵∠2与∠EAD 互为对顶角 ∴∠2=∠EAD =70° 故选:B . 【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.5.C解析:C 【分析】根据同位角的定义,逐一判断选项,即可得到答案. 【详解】A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意. 故选C . 【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.6.B解析:B 【详解】解:根据题意得:∠1=180°-60°=120°. 故选:B 【点睛】本题考查直角三角板中的角度的计算,难度不大.7.B解析:B 【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解. 【详解】解:根据因式分解的概念, A 选项属于整式的乘法,错误; B 选项符合因式分解的概念,正确; C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误. 故选B . 【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.8.A解析:A 【分析】先根据到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可. 【详解】∵M 到x 轴的距离为5,到y 轴的距离为2,∴M 纵坐标可能为±5,横坐标可能为±2.∵点M 在第四象限,∴M 坐标为(2,﹣5). 故选:A . 【点睛】本题考查点的坐标的确定;用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.9.C解析:C 【分析】根据因式分解的定义逐个判断即可. 【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、是因式分解,故本选项符合题意;D 、不是因式分解,故本选项不符合题意; 故选:C . 【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.10.B解析:B 【分析】根据同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 逐项判定即可 . 【详解】解:∵527a a a =,∴选项A 计算正确,不符合题意; ∵624a a a ÷=,∴选项B 计算不正确,符合题意; 2222a a a ,∴选项C 计算正确,不符合题意;428()a a =,∴选项D 计算正确,不符合题意;故选:B . 【点睛】此题主要考查了同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 要熟练掌握 .11.D解析:D 【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案. 【详解】解:设第三边为xcm ,根据三角形的三边关系:4343x -<<+,解得:17x <<.故选项ABC 能构成三角形,D 选项1cm 不能构成三角形, 故选:D . 【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,两边之差小于第三边.12.A解析:A 【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m 的取值范围. 【详解】 解:202x m x m -<⎧⎨+>⎩①②解不等式①,得x<2m. 解不等式②,得x>2-m. 因为不等式组无解, ∴2-m ≥2m. 解得23m ≤. 故选A. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.二、填空题13.【分析】根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可. 【详解】 解:成立, ,解得. 故答案为:. 【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠【分析】根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可.【详解】解:0(2)1x -=成立, 20x ∴-≠,解得2x ≠.故答案为:2x ≠. 【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.14.【分析】根据同底数的幂的乘法运算的逆运算,先将分成 ,再根据积的乘方的逆运算,把指数相同的数相乘即可. 【详解】 解:故答案为: . 【点睛】本题考查幂的乘方和积的乘方,将不同底数 解析:5-12【分析】根据同底数的幂的乘法运算的逆运算,先将2019512⎛⎫- ⎪⎝⎭分成2018551212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭,再根据积的乘方的逆运算,把指数相同的数相乘即可. 【详解】解:20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝20182018551212125⎛⎫⎛⎫⎛⎫=-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭20182018512512512⎛⎫⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2018512512512⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭()20185112⎛⎫=-⨯- ⎪⎝⎭ 512=- 故答案为:512-. 【点睛】本题考查幂的乘方和积的乘方,将不同底数且不同指数的幂转化为底数相同或者指数相同的幂是解题关键.15.【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽解析:2375mm【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩∴小长方形的面积为:22515375xy mm 【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程.16.14【分析】根据多边形的内角和公式及外角和列出等式,解出n 即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6解析:14【分析】根据多边形的内角和公式及外角和列出等式,解出n 即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6,解得:n=14,故答案为:14.【点睛】本题是对多边形内角和及外角和的考查,熟练掌握多边形的内角和公式及外角和是解决本题的关键.17.4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x ,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,解析:4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.18.ab(1﹣b)【分析】根据题意直接提取公因式ab,进而分解因式即可得出答案.【详解】解:ab﹣ab2=ab(1﹣b).故答案为:ab(1﹣b).【点睛】本题主要考查提取公因式法分解因式解析:ab(1﹣b)【分析】根据题意直接提取公因式ab,进而分解因式即可得出答案.【详解】解:ab﹣ab2=ab(1﹣b).故答案为:ab(1﹣b).【点睛】本题主要考查提取公因式法分解因式,熟练掌握并正确找出公因式是解题的关键.19.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.20.【分析】先按照多项式乘以多项式,再把同类项合并,利用不含项即这一项的系数为,即可得到答案.【详解】解:而上式不含项,,故答案为:【点睛】本题考查的是多项式的乘法运算,同时解析:2.-【分析】先按照多项式乘以多项式,再把同类项合并,利用不含2x 项即这一项的系数为0,即可得到答案.【详解】解:()()232212222x x px px x px x px +-+=+++--()()32222px p x p x =+++--而上式不含2x 项,20p ∴+=,2,p ∴=-故答案为: 2.-【点睛】本题考查的是多项式的乘法运算,同时考查多项式的概念中的项的次数,及不含某项的条件,掌握以上知识是解题的关键.21.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点先向上平移个单位长度,得到,再向左平移个单位长度后得到:, 故答案为:;【点睛】本题考查了坐标与图解析:()1,2--【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点()2,3P -先向上平移1个单位长度,得到()()2,312,2-+=-,再向左平移3个单位长度后得到:()()23,21,2--=--,故答案为:()1,2--;【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.22.【分析】设每件衬衫降价x 元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x 元,正好达到预期目标,根据题意得:120解析:20【分析】设每件衬衫降价x 元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x 元,正好达到预期目标,根据题意得:120×400+(120-x )×(500-400)-80×500=80×500×45%,解得:x=20.答:每件衬衫降价10元,正好达到预期目标.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题23.(1)图见详解;(2)平行且相等;(3)图见详解;(4)28.【分析】(1)根据图形平移的性质画出△A B C '''即可;(2)根据平移的性质可得出AC 与A C ''的关系;(3)先取AB 的中点E ,再连接CE 即可;(4)线段AC 扫过的面积为平行四边形AA C C ''的面积,根据平行四边形的底为4,高为7,可得线段AC 扫过的面积.【详解】解:(1)如图所示,△A B C '''即为所求;(2)由平移的性质可得,AC 与A C ''的关系是平行且相等;故答案为:平行且相等;(3)如图所示,线段CE 即为所求;(4)如图所示,连接AA ',CC ',则线段AC 扫过的面积为平行四边形AA C C ''的面积,由图可得,线段AC 扫过的面积4728=⨯=.故答案为:28.【点睛】本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.24.(1)224()()xy x y x y =+--;(2)16xy =;(3)23x y -=±. 【分析】(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为:224()()xy x y x y =+--;故答案为:224()()xy x y x y =+--;(2)∵2(32)5x y -=,∴2291245x xy y -+=①,∵2(32)9x y +=,∴2291249x xy y ++=②,∴由②-①,得 24954xy =-=, ∴16xy =; (3)∵25,2x y xy +==, ∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.25.(1)草莓35箱,苹果25箱;(2)①340元,②53或52【分析】(1)抓住题中关键的已知条件,老徐购得草莓和苹果共60箱,刚好花费3100元,设未知数列方程组,求解方程即可;(2)①由题意列二元一次方程,可得到34120a b +=,列式求出他在乙店获利;②根据老徐希望获得总利润为1000元,建立关于a 、b 的二元一次方程,整理可得18034a b -=,再根据a 、b 的取值范围及a 一定是4的整数倍,即可求出结果; 【详解】(1)解:设草莓购买了x 箱,苹果购买了y 箱,根据题意得:6060403100x y x y ⎧+=⎨+=⎩, 解得3525x y ⎧=⎨=⎩. 答:草莓购买了35箱,苹果购买了25箱;(2)解:①若老徐在甲店获利600元,则1520600a b +=,整理得:34120a b +=,他在乙店的获利为:()()12351625a b -+-, =()820434a b -+,=820-4120⨯,=340元;②根据题意得:()()1520123516251000a b a b ++-+-=, 整理得:34180ab +=, 得到18034ab -=,∵a、b 均为正整数,∴a 一定是4的倍数,∴a 可能是0,4,8…,∵035a ≤≤,025b ≤≤, ∴当且仅当a=32,b=21或a=25,b=24时34180a b +=成立, ∴322153a b +=+=或28+24=52.故答案为340元;53或52.【点睛】本题主要考查了二元一次方程组的应用,根据题意列式是解题的关键.26.(1)3ab (4c ﹣3a );(2)(a +5)(a ﹣5);(3)x (x ﹣y )2;(4)(x ﹣y )(m +1)(m ﹣1)【分析】(1)由题意原式直接提取公因式即可;(2)根据题意原式利用平方差公式分解即可;(3)由题意原式提取公因式,再利用完全平方公式分解即可;(4)根据题意原式提取公因式,再利用平方差公式分解即可.【详解】解:(1)12abc ﹣9a 2b =3ab (4c ﹣3a );(2)a 2﹣25=(a +5)(a ﹣5);(3)x 3﹣2x 2y +xy 2=x (x 2﹣2xy +y 2)=x (x ﹣y )2;(4)m 2(x ﹣y )﹣(x ﹣y )=(x ﹣y )(m 2﹣1)=(x ﹣y )(m +1)(m ﹣1).【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.27.△ABC 是等边三角形,理由见解析.【分析】运用完全平方公式将等式化简,可求a=b=c ,则△ABC 是等边三角形.【详解】解:△ABC 是等边三角形,理由如下:∵a 2+c 2=2ab +2bc -2b 2∴a 2-2ab+ b 2+ b 2- 2bc +c 2=0∴(a-b )2+(b-c )2=0∴a-b=0,b-c=0,∴a=b ,b=c ,∴a=b=c∴△ABC 是等边三角形.【点睛】本题考查了因式分解的应用,整式的混合运算,熟练运用完全平方公式解决问题是本题的关键.28.2辆大货车与1辆小货车可以一次运货11吨【分析】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.【详解】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨由题意得:32175429x y x y +=⎧⎨+=⎩解得:51x y =⎧⎨=⎩ 则225111x y +=⨯+=答:2辆大货车与1辆小货车可以一次运货11吨.【点睛】本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.29.38本【分析】先表示书的总量,利用不等关系列不等式组,求不等式组的正整数解即可得到答案.【详解】解:由题意得:4788(1)84788(1)4n n n n +--⎧⎨+--≥⎩< ①② 由①得:12n >19 由②得:1202n ≤∴ 不等式组的解集是:111922≤<n 20 n 为正整数,20,n ∴=478158,m n ∴=+=15820638.∴-⨯=答:剩下38本书.【点睛】本题考查的是不等式组的应用,掌握利用不等关系列不等式组是解题的关键.30.2021514- 【分析】根据题目信息,设S =1+5+52+53+…+52020,求出5S ,然后相减计算即可得解.【详解】解:设S =1+5+52+53+ (52020)则5S =5+52+53+54 (52021)两式相减得:5S ﹣S =4S =52021﹣1, 则202151.4S -= ∴1+5+52+53+54+…+52020的值为2021514-. 【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.。

苏科版初一下册第二学期月考数学试卷百度文库

苏科版初一下册第二学期月考数学试卷百度文库

苏科版初一下册第二学期月考数学试卷百度文库一、选择题1.已知,则a 2-b 2-2b 的值为A .4B .3C .1D .02.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为21x y =⎧⎨=-⎩,则a ,b 的值是( )A .12a b =⎧⎨=⎩B .21a b =⎧⎨=⎩C .12a b =-⎧⎨=-⎩D .21a b =⎧⎨=-⎩3.下列计算中正确的是( )A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a = 4.已知一粒米的质量是0.00021kg ,这个数用科学记数法表示为 ( )A .4 2.110-⨯kgB .52.110-⨯kgC .42110-⨯kgD .62.110-⨯kg5.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2 D .14a 2 6.下列线段能构成三角形的是( ) A .2,2,4B .3,4,5C .1,2,3D .2,3,67.已知()22316x m x --+是一个完全平方式,则m 的值可能是( ) A .7- B .1C .7-或1D .7或1-8.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=-9.下列说法中,正确的个数有( ) ①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°, ④两个角的两边分别平行,则这两个角相等 A .1个 B .2个 C .3 个 D .4个 10.若(2x+3y)(mx-ny)=9y 2-4x 2,则m 、n 的值为 ( ) A .m=2,n=3 B .m=-2,n=-3 C .m=2,n=-3 D .m=-2,n=3 11.若多项式224a kab b ++是完全平方式,则k 的值为( ) A .4B .2±C .4±D .8±12.下列各式中,不能够用平方差公式计算的是( )A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c )二、填空题13.若a m =5,a n =3,则a m +n =_____________.14.某球形流感病毒的直径约为0.000000085m ,0.000000085用科学记数法表为_____. 15.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm . 16.分解因式:29a -=__________.17.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.18.已知关于x ,y 的方程组2133411x y mx y m+=+⎧⎨-=-⎩(m 为大于0的常数),且在x ,y 之间(不包含x ,y )有且只有3个整数,则m 取值范围______.19.如图,∠1、∠2是△ABC 的外角,已知∠1+∠2=260°,求∠A 的度数是______.20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.21.若29x kx -+是完全平方式,则k =_____. 22.已知关于x ,y 的方程22146m n m n xy --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.三、解答题23.如图,点F 在线段AB 上,点E ,G 在线段CD 上,FG ∥AE ,∠1=∠2. (1)求证:AB ∥CD ;(2)若FG ⊥BC 于点H ,BC 平分∠ABD ,∠D =112°,求∠1的度数.24.定义:对于任何数a ,符号[]a 表示不大于a 的最大整数. (1)103⎡⎤-=⎢⎥⎣⎦(2)如果2333x -⎡⎤=-⎢⎥⎣⎦,求满足条件的所有整数x 。

新苏科版初一数学下册第二学期月月考试卷及答案百度文库

新苏科版初一数学下册第二学期月月考试卷及答案百度文库

新苏科版初一数学下册第二学期月月考试卷及答案百度文库一、选择题1.已知,则a 2-b 2-2b 的值为A .4B .3C .1D .0 2.若(x+2)(2x-n)=2x 2+mx-2,则( ) A .m=3,n=1; B .m=5,n=1; C .m=3,n=-1; D .m=5,n=-1; 3.下列代数运算正确的是( ) A .x•x 6=x 6B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 34.a 5可以等于( ) A .(﹣a )2•(﹣a )3 B .(﹣a )•(﹣a )4 C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2)5.下列方程组中,解是-51x y =⎧⎨=⎩的是( )A .64x y x y +=⎧⎨-=⎩B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩D .-4-4x y x y +=⎧⎨-=⎩6.下列计算错误的是( ) A .2a 3•3a =6a 4 B .(﹣2y 3)2=4y 6 C .3a 2+a =3a 3 D .a 5÷a 3=a 2(a≠0) 7.等腰三角形的两边长分别为3和6,那么该三角形的周长为( ) A .12 B .15 C .10 D .12或15 8.计算28+(-2)8所得的结果是( )A .0B .216C .48D .299.如图,在△ABC 中,BC =6,∠A =90°,∠B =70°.把△ABC 沿BC 方向平移到△DEF 的位置,若CF =2,则下列结论中错误的是( )A .BE =2B .∠F =20°C .AB ∥DED .DF =6 10.若一个三角形的两边长分别为3和6,则第三边长可能是( )A .6B .3C .2D .1011.下列说法:2a -没有算术平方根;若一个数的平方根等于它本身,则这个数是0或1;有理数和数轴上的点一一对应;负数没有立方根,其中正确的是( ) A .0个 B .1个C .2个D .3个12.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b>的是( )A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->-二、填空题13.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.14.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D '、C '的位置,ED '的延长线与BC 相交于点G ,若∠EFG =50°,则∠1=_______.15.分解因式:29a -=__________. 16.若(x ﹣2)x =1,则x =___.17.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.18.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.19.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.20.若长方形的长为a +3b ,宽为a +b ,则这个长方形的面积为_____.21.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠=_____________︒.22.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.三、解答题23.分解因式:(1)3222x x y xy -+; (2)2296(1)(1)x x y y -+++;(3)()214(1)mm m -+-.24.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案) (2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).25.若关于x,y 的二元一次方程组 38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩有相同的解.(1)求这个相同的解; (2)求m n -的值.26.已知m 2,3n a a ==,求①m n a +的值; ②3m-2n a 的值27.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?28.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2. (1)由图2,可得等式 ;(2)利用(1)所得等式,解决问题:已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值. (3)如图3,将两个边长为a 、b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF ,若这两个正方形的边长a 、b 如图标注,且满足a+b =10,ab =20.请求出阴影部分的面积.(4)图4中给出了边长分别为a 、b 的小正方形纸片和两边长分别为a 、b 的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a 2+5ab+2b 2的长方形,并仿照图1、图2画出拼法并标注a 、b ;②研究①拼图发现,可以分解因式2a 2+5ab+2b 2= . 29.计算: (1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).30.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。

最新苏科初一下册第二学期月考数学试卷(含答案)百度文库

最新苏科初一下册第二学期月考数学试卷(含答案)百度文库

最新苏科初一下册第二学期月考数学试卷(含答案)百度文库一、选择题1.下列分解因式正确的是( ) A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )2.把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为( )A .114°B .126°C .116°D .124°3.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭4.下列计算中正确的是( )A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a =5.下列计算中,正确的是( ) A .235235x x x += B .236236x x x = C .322()2x x x÷-=-D .236(2)2x x -=-6.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y7.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( )A .0B .1C .3D .7 8.等腰三角形的两边长分别为3和6,那么该三角形的周长为( ) A .12B .15C .10D .12或159.如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A .25︒B .65︒C .90︒D .115︒10.下列各式中,能用平方差公式计算的是( ) A .(p +q )(p +q ) B .(p ﹣q )(p ﹣q ) C .(p +q )(p ﹣q )D .(p +q )(﹣p ﹣q )11.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠4D .∠1=∠A12.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8B .6C .2D .0二、填空题13.()a b -+(__________) =22a b -.14.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.15.如图,将边长为6cm 的正方形ABCD 先向下平移2cm ,再向左平移1cm ,得到正方形A 'B 'C 'D ',则这两个正方形重叠部分的面积为______cm 2.16.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm . 17.不等式1x 2x 123>+-的非负整数解是______. 18.已知关于x ,y 的方程组2133411x y mx y m+=+⎧⎨-=-⎩(m 为大于0的常数),且在x ,y 之间(不包含x ,y )有且只有3个整数,则m 取值范围______.19.()()3a 3b 13a 3b 1899+++-=,则a b += ______ . 20.已知23x y +=,用含x 的代数式表示y =________.21.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________.22.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.23.一个容量为40的样本的最大值为35,最小值为15,若取组距为4,则应该分的组数是为_______.24.计算:x (x ﹣2)=_____三、解答题25.计算(1)112(2)3π-⎛⎫---+- ⎪⎝⎭; (2)52482(2)()()x x x x +-÷-.26.如果a c = b ,那么我们规定(a ,b )=c ,例如:因为23= 8 ,所以(2,8)=3. (1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2,14)= ; (2)若记(3,5)=a ,(3,6)=b ,(3,30)=c ,求证: a + b = c . 27.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积. (经验发展)面积比和线段比的联系:(1)如图1,M 为△ABC 的AB 上一点,且BM =2AM .若△ABC 的面积为a ,若△CBM 的面积为S ,则S =_______(用含a 的代数式表示). (结论应用)(2)如图2,已知△CDE 的面积为1,14CD AC =,13CE CB =,求△ABC 的面积.(迁移应用)(3)如图3.在△ABC 中,M 是AB 的三等分点(13AM AB =),N 是BC 的中点,若△ABC 的面积是1,请直接写出四边形BMDN 的面积为________.28.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE 平分∠ACB ,求∠BEC 的度数.29.若关于x,y 的二元一次方程组 38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩有相同的解.(1)求这个相同的解; (2)求m n -的值.30.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角尺OCD 沿AB 的方向平移至图②的位置,使得顶点O 与点N 重合,CD 与MN 相交于点E ,求∠CEN 的度数;(2)将图①中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在∠MON 的内部,如图③,且OD 恰好平分∠MON ,CD 与MN 相交于点E ,求∠CEN 的度数;(3)将图①中三角尺OCD 绕点O 按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第 秒时,边CD 恰好与边MN 平行;在第 秒时,直线CD 恰好与直线MN 垂直. 31.因式分解: (1)a 3﹣a ; (2)4ab 2﹣4a 2b ﹣b 3; (3)a 2(x ﹣y )﹣9b 2(x ﹣y ); (4)(y 2﹣1)2+6 (1﹣y 2)+9.32.解方程组:41325x y x y +=⎧⎨-=⎩.33.(1)填一填 21-20=2( ) 22-21=2( ) 23-22=2( ) ⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+⋯+22019.34.己知关于,x y 的方程组4325x y a x y a -=-⎧⎨+=-⎩,(1)请用a 的代数式表示y ;(2)若,x y 互为相反数,求a 的值. 35.计算:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭;(2)(x+1)(2x﹣3).36.先化简,再求值:(a-1)(2a+1)+(1+a)(1-a),其中a=2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A、没有完全分解,还可以利用平方差公式进行;B、正确;C、不是因式分解;D、无法进行因式分解.考点:因式分解2.D解析:D【分析】利用平行线的性质求出∠3即可解决问题.【详解】如图,∵a∥b,∴∠2=∠3,∵∠3=∠1+90°,∠1=34°,∴∠3=124°,∴∠2=∠3=124°,故选:D.【点睛】此题考查平行线的性质,三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.3.C解析:C【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n ≥2, S 1=12π×12=12π, S 2=12π﹣12π×(12)2, … S n =12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n ﹣1]2, S n +1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n ﹣1]2﹣12π×[(12)n ]2, ∴S n ﹣S n +1=12π×(12)2n =(12)2n +1π. 故选C . 【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.4.C解析:C 【分析】根据同底数幂的加法和乘法法则进行计算判断即可. 【详解】解:A 、23a a +无法合并,故A 选项错误; B 、23a a +无法合并,故B 选项错误; C 、235a a a =,故C 选项正确; D 、235a a a =,故D 选项错误. 故选:C 【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.5.C解析:C 【解析】试题解析:A.不是同类项,不能合并,故错误. B.235236.x x x ⋅= 故错误.C.()3222.x xx ÷-=- 正确.D.()32628.x x -=- 故错误.故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.6.D解析:D 【解析】 【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式. 【详解】解:6x 3y 2-3x 2y 3=3x 2y 2(2x-y ), 因此6x 3y 2-3x 2y 3的公因式是3x 2y 2. 故选:D. 【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.7.A解析:A 【分析】观察可以发现3n 的末位数字为4个一循环,故相加后末位数字为定值,而2020是4的整数倍,即可求解. 【详解】解:通过观察可以发现3n 的末位数字为3、9、7、1……,4个为一循环, 而12343333=392781=120++++++末尾数字为0, ∵20204=505÷,故234202033333+++++…的末尾数字也为0. 故选A . 【点睛】本题属于找规律题型,难度不大,是中考的常考知识点,细心观察,总结规律是顺利解题的关键.8.B解析:B 【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形. 【详解】由题意,分以下两种情况:(1)当等腰三角形的腰为3时,三边为3,3,6 此时336+=,不满足三角形的三边关系定理 (2)当等腰三角形的腰为6时,三边为3,6,6此时366+>,满足三角形的三边关系定理 则其周长为36615++= 综上,该三角形的周长为15 故选:B . 【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,依据题意,正确分两种情况讨论是解题关键.9.C解析:C 【分析】先根据平行线的性质求出∠EFB 的度数,再利用三角形的外角性质解答即可. 【详解】解:∵AB ∥CD ,115C ∠=︒, ∴115EFB C ∠=∠=︒, ∵EFB A E ∠=∠+∠,25A ∠=︒ ∴1152590E ∠=︒-︒=︒. 故选:C . 【点睛】本题考查了平行线的性质和三角形的外角性质,属于基础题型,熟练掌握上述基本知识是解题关键.10.C解析:C 【分析】利用完全平方公式和平方差公式对各选项进行判断. 【详解】(p +q )(p +q )=(p +q )2=p 2+2pq +q 2; (p ﹣q )(p ﹣q )=(p ﹣q )2=p 2﹣2pq +q 2; (p +q )(p ﹣q )=p 2﹣q 2;(p +q )(﹣p ﹣q )=﹣(p +q )2=﹣p 2﹣2pq ﹣q 2. 故选:C . 【点睛】本题考查了完全平方公式和平方差公式,熟练掌握公式的结构及其运用是解答的关键.11.D解析:D 【分析】根据平行线的判定定理对各选项进行逐一判断即可. 【详解】A 、∵∠A +∠2=180°,∴AB ∥DF ,故本选项错误; B 、∵∠A =∠3,∴AB ∥DF ,故本选项错误;C 、∵∠1=∠4,∴AB ∥DF ,故本选项错误;D 、∵∠1=∠A ,∴AC ∥DE ,故本选项正确. 故选:D . 【点睛】点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.12.D解析:D 【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可. 【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0. 故选:D . 【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.二、填空题13.【分析】根据平方差公式即可求出答案. 【详解】 解:, 故答案为:. 【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 解析:a b --【分析】根据平方差公式即可求出答案. 【详解】解:()2222()()a b a b a b a b -+--==---, 故答案为:a b --. 【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.14.100 【分析】利用完全平方公式解答. 【详解】解:原式=(10.1﹣0.1)2=102=100. 故答案是:100. 【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(解析:100 【分析】利用完全平方公式解答. 【详解】解:原式=(10.1﹣0.1)2=102=100. 故答案是:100. 【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.15.20 【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积 【详解】 解:如图,向下平移2cm ,即AE=2,解析:20 【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积 【详解】 解:如图,向下平移2cm ,即AE=2,则DE=AD-AE=6-2=4cm向左平移1cm,即CF=1,则DF=DC-CF=6-1=5cm则S矩形DEB'F=DE•D F=4×5=20cm2故答案为20【点睛】此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.16.22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长. 【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答. 17.0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x )>2(2x-1)去括号得3+3x >4x解析:0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x )>2(2x-1)去括号得3+3x >4x-2移项合并同类项得x <5非负整数解是0,1,2,3,4.【点睛】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.18.【分析】由中的上式加下式乘以2得到,由中的上式乘以3减下式得到,则可得,再由题意为大于0的常数,在,之间(不包含,)有且只有3个整数得到,计算即可得到答案.【详解】由中的上式加下式乘以2得到解析:04m <<【分析】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,再由题意m 为大于0的常数,在x ,y 之间(不包含x ,y )有且只有3个整数得到33(52)x y m m -=--+,计算即可得到答案.【详解】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m=-⎧⎨=+⎩,因为在x ,y 之间(不包含x ,y )有且只有3个整数,而33(52)25x y m m m -=--+=--,又由于m 为大于0的常数,则x ,y 之差可以为-7,-12-17,即m 的值为1、2或者3,所以可得04m <<.【点睛】本题考查二元一次方程组和不等式,解题的关键是掌握解二元一次方程组.19.【解析】【分析】原式利用平方差公式化简,整理即可求出a+b 的值.【详解】已知等式整理得:9(a+b )2-1=899,即(a+b )2=100,开方得:a+b=±10,故答案为:±10【解析:10±【解析】【分析】原式利用平方差公式化简,整理即可求出a+b 的值.【详解】已知等式整理得:9(a+b )2-1=899,即(a+b )2=100,开方得:a+b=±10,故答案为:±10【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.20.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x .解析:y=3-2x【解析】23x y +=移项得:y=3-2x.故答案是:y=3-2x .21.【分析】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,由题意得,,故答案为:.【解析:541403276x y x y +=⎧⎨+=⎩【分析】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,由题意得,541403276x y x y +=⎧⎨+=⎩, 故答案为:541403276x y x y +=⎧⎨+=⎩. 【点睛】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.22.2【分析】设圆珠笔x 支,表示出练习簿的数量,根据圆珠笔和练习簿数量都是整数,求出x 的值即可.【详解】设圆珠笔x 支,则练习簿本,圆珠笔和练习簿数量都是整数,则x=2时,, 故答案为2.【点睛解析:2【分析】设圆珠笔x 支,表示出练习簿的数量,根据圆珠笔和练习簿数量都是整数,求出x 的值即可.【详解】设圆珠笔x 支,则练习簿1434x -本,圆珠笔和练习簿数量都是整数,则x=2时,14324x -=, 故答案为2.【点睛】明确圆珠笔和练习簿数量都是整数是本题的关键,难度较小.23.5【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为35,最小值为15,它们的差是,已知组距为4,那么由于,故可以分成5组.故答案为:解析:5【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为35,最小值为15,它们的差是351520-=,已知组距为4,那么由于2054=,故可以分成5组.故答案为:5.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.24.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.三、解答题25.(1)2-;(2)103x【分析】(1)根据负整数指数幂以及零指数幂运算即可求解;(2)根据同底数幂相乘(除),底数不变,指数相加(减),即可求解.【详解】解:(1)原式=213=2---;(2)原式12252481010122101010221=24443xx x x x x x x xx x⨯+-⎛⎫⋅+⋅-=-=-=-=⎪⎝⎭.【点睛】本题目考查整数指数幂,涉及知识点有正整数指数幂、零指数幂、负整数指数幂等,难度一般,熟练掌握整数指数幂的运算法则是顺利解题的关键.26.(1)3;0;-2;(2)证明见解析.【分析】(1)根据已知和同底数的幂法则得出即可;(2)根据已知得出3a=5,3b=6,3c=30,求出3a×3b=30,即可得出答案.【详解】(1)(3,27)=3,(4,1)=0,(2,14)=-2,故答案为3;0;-2;(2)证明:由题意得:3a= 5,3b= 6,3c= 30,∵ 5⨯ 6=30,∴ 3a⨯ 3b= 3c,∴ 3a+b= 3c,∴ a + b = c.【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.27.(1)23a(2)12(3)512【分析】(1)根据三角形的面积公式及比例特点即可求解;(2)连接AE,先求出△ACE的面积,再得到△ABC的面积即可;(3)连接BD,设△ADM的面积为a,则△BDM的面积为2a,设△CDN的面积为b,则△BDN的面积为b,根据图形的特点列出方程组求出a,b,故可求解.【详解】(1)设△ABC中BC边长的高为h,∵BM=2AM.∴BM=23 AB∴S=12BM×h=12×23AB×h=23S△ABC=23a故答案为:23 a;(2)如图2,连接AE,∵14 CD AC=∴CD=14 AC∴S△DCE=14S△ACE=1∴S△ACE=4,∵13 CE CB=∴CE=13 CB∴S△ACE=13S△ABC=4∴S△ABC=12;(3)如图3,连接BD,设△ADM的面积为a,∵13 AM AB=∴BM=2AM,BM=23 AB,∴S△BDM=2S△ABM=2a, S△BCM=23S△ABC=23设△CDN的面积为b,∵N是BC的中点,∴S△CDN=S△BDN=b,S△ABN=12S△ABC=12∴122223a a bb b a⎧++=⎪⎪⎨⎪++=⎪⎩,解得11214ab⎧=⎪⎪⎨⎪=⎪⎩∴四边形BMDN的面积为2a+b=5 12故答案为5 12.【点睛】此题主要考查三角形面积公式的应用,解题的关键是根据题意找到面积的之间的关系.28.131°【解析】【分析】先根据∠A=65°,∠ACB=72°得出∠ABC的度数,再由∠ABD=30°得出∠CBD的度数,根据CE平分∠ACB得出∠BCE的度数,根据∠BEC=180°-∠BCE-∠CBD即可得出结论【详解】在△ABC中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC﹣∠ABD=13°∵CE平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE中,∠BEC=180°﹣13°﹣36°=131°.【点睛】本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键29.(1)这个相同的解为21xy=⎧⎨=⎩;(2)1【分析】(1)根据两个方程组有相同解可得方程组31x yx y+=⎧⎨-=⎩,解此方程组即可得出答案;(2)将(1)求解出的x和y的值代入其余两个式子,解出m和n的值,再代入m-n中即可得出答案.【详解】解:(1)∵关于x,y的二元一次方程组38x ymx ny+=⎧⎨+=⎩与14x ymx ny-=⎧⎨-=⎩有相同的解,∴31 x yx y+=⎧⎨-=⎩解得21 xy=⎧⎨=⎩∴这个相同的解为21x y =⎧⎨=⎩(2)∵关于x,y 的二元一次方程组38x y mx ny +=⎧⎨+=⎩与14x y mx ny -=⎧⎨-=⎩相同的解为21x y =⎧⎨=⎩, ∴2824m n m n +=⎧⎨-=⎩解得32m n =⎧⎨=⎩∴m-n=3-2=1【点睛】本题考查的是二元一次方程组的同解问题:将两组方程组中只含有x 和y 的方程组合到一起,求解即可.30.(1)105°;(2)150°;(3)5或17;11或23.【分析】(1)根据三角形的内角和定理可得180CEN DCN MNO ∠=︒-∠-∠,代入数据计算即可得解;(2)根据角平分线的定义求出45DON ∠=︒,利用内错角相等两直线平行求出//CD AB ,再根据两直线平行,同旁内角互补求解即可;(3)①分CD 在AB 上方时,//CD MN ,设OM 与CD 相交于F ,根据两直线平行,同位角相等可得60OFD M ∠=∠=︒,然后根据三角形的内角和定理列式求出MOD ∠,即可得解;CD 在AB 的下方时,//CD MN ,设直线OM 与CD 相交于F ,根据两直线平行,内错角相等可得60DFO M ∠=∠=︒,然后利用三角形的内角和定理求出DOF ∠,再求出旋转角即可;②分CD 在OM 的右边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出CGN ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和求出CON ∠,再求出旋转角即可,CD 在OM 的左边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出NGD ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出AOC ∠ ,然后求出旋转角,计算即可得解.【详解】解:(1)在CEN ∆中,180CEN DCN MNO ∠=︒-∠-∠1804530=︒-︒-︒105=︒;(2)OD 平分MON ∠,11904522DON MPN ∴∠=∠=⨯︒=︒, 45DON D ∴∠=∠=︒,//CD AB ∴,180********CEN MNO ∴∠=︒-∠=︒-︒=︒;(3)如图1,CD 在AB 上方时,设OM 与CD 相交于F , //CD MN ,60OFD M ∴∠=∠=︒,在ODF ∆中,180MOD D OFD ∠=︒-∠-∠,1804560=︒-︒-︒,75=︒,∴旋转角为75︒,75155t =︒÷︒=秒;CD 在AB 的下方时,设直线OM 与CD 相交于F ,//CD MN ,60DFO M ∴∠=∠=︒,在DOF ∆中,180180456075DOF D DFO ∠=︒-∠-∠=︒-︒-︒=︒, ∴旋转角为75180255︒+︒=︒,2551517t =︒÷︒=秒;综上所述,第5或17秒时,边CD 恰好与边MN 平行; 如图2,CD 在OM 的右边时,设CD 与AB 相交于G , CD MN ⊥,90903060NGC MNO ∴∠=︒-∠=︒-︒=︒,604515CON NGC OCD ∴∠=∠-∠=︒-︒=︒,∴旋转角为180********CON ︒-∠=︒-︒=︒,1651511t =︒÷︒=秒,CD 在OM 的左边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGD MNO ∴∠=︒-∠=︒-︒=︒,604515AOC NGD C ∴∠=∠-∠=︒-︒=︒,∴旋转角为36036015345AOC ︒-∠=︒-︒=︒,3451523t =︒÷︒=秒,综上所述,第11或23秒时,直线CD 恰好与直线MN 垂直. 故答案为:5或17;11或23.【点睛】本题考查了旋转的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记各性质并熟悉三角板的度数特点是解题的关键.31.(1)a(a+1)(a﹣1);(2)﹣b(2a﹣b)2;(3)(x﹣y)(a+3b)(a﹣3b);(4)(y+2)2(y﹣2)2【分析】(1)直接提取公因式a,进而利用平方差公式分解因式得出答案;(2)直接提取公因式﹣b,进而利用完全平方公式分解因式即可;(3)直接提取公因式(x﹣y),进而利用平方差公式分解因式得出答案;(4)直接利用完全平方公式分解因式,再利用平方差公式分解因式即可.【详解】解:(1)a3﹣a=a(a2﹣1)=a(a+1)(a﹣1);(2)4ab2﹣4a2b﹣b3=﹣b(﹣4ab+4a2+b2)=﹣b(2a﹣b)2;(3)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(4)(y2﹣1)2+6(1﹣y2)+9=(y2﹣1)2﹣6 (y2﹣1)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.【点睛】此题主要考查因式分解的几种方法:提公因式法,公式法等,能熟练运用是解题关键.32.11717 xy⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①② 由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.33.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.34.(1)31y a =-+;(2)12a =-. 【分析】(1)通过消元的方法,消去x ,即可用a 的代数式表示y ;(2)令y x =-,再将x 、x -代入方程组,即可求解.【详解】解:(1)由43x y a -=-得:43x a y =-+,将其代入25x y a +=-得:4325a y y a -++=-,整理得:393y a =-+,即31y a =-+.故答案为31y a =-+.(2)若x 、y 互为相反数,则y x =-再将x 、y 代入方程组:4325x x a x x a +=-⎧⎨-=-⎩, 解得12a =-. 故答案为12a =-. 【点睛】 本题考查次二元一次方程组的运用,难度一般,熟练掌握消元法是顺利解题的关键.35.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.36.a 2-a ,2【分析】分别根据多项式的乘法法则和平方差公式计算每一项,再合并同类项,然后把a 的值代入化简后的式子计算即可.【详解】解:(a -1)(2a +1)+(1+a )(1-a )=2a 2-a -1+1-a 2= a 2-a ,当a =2时,原式=22-2=2.【点睛】本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握多项式的乘法法则是解题的关键.。

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)百度文库

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)百度文库

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)百度文库一、选择题1.对于算式20203﹣2020,下列说法错误的是( )A .能被2019整除B .能被2020整除C .能被2021整除D .能被2022整除2.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE3.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( ) A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b 4.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( )A .4种B .5种C .6种D .7种 5.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .6.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .727.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A .ab 2B .a +b 2C .a 2b 3D .a 2+b 3 8.x 2•x 3=( )A .x 5B .x 6C .x 8D .x 9 9.计算a 2•a 3,结果正确的是( ) A .a 5B .a 6C .a 8D .a 9 10.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .11.若(2x+3y)(mx-ny)=9y 2-4x 2,则m 、n 的值为 ( ) A .m=2,n=3 B .m=-2,n=-3C .m=2,n=-3D .m=-2,n=3 12.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .二、填空题13.计算:23()a =____________.14.若多项式29x mx ++是一个完全平方式,则m =______.15.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为______.16.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且△ABC 的面积等于4cm 2,则阴影部分图形面积等于_____cm 217.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.18.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.19.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.20.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____. 21.一艘船从A 港驶向B 港的航向是北偏东25°,则该船返回时的航向应该是_______.22.下列各数中: 3.14-,327-,π2,17-,是无理数的有______个. 三、解答题23.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•- 24.先化简,再求值: (1)()()()462a a a a --+-,其中12a =-; (2)2(x 2)(2x 1)(2x 1)4x(x 1)+++--+,其中13x =. 25.分解因式:(1)3222x x y xy -+;(2)2296(1)(1)x x y y -+++;(3)()214(1)m m m -+-.26.解不等式(组) (1)解不等式 114136x x x +-+≤-,并把解集在数轴上....表示出来. (2)解不等式835113x x x x ->⎧⎪+⎨≥-⎪⎩,并写出它的所有整数解. 27.如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3. (1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.28.先化简,再求值:2(1)(3)(2)(2)x x x x x ---++-,其中x =﹣2.29.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC 先向右平移5个单位长度,再向上平移2个单位长度所得的△A 1B 1C 1; (2)画出△ABC 的中线AD ;(3)画出△ABC 的高CE 所在直线,标出垂足E :(4)在(1)的条件下,线段AA 1和CC 1的关系是30.利用多项式乘法法则计算:(1)()()22+-+a b a ab b = ;()()22a b a ab b -++ = .在多项式的乘法公式中,除了平方差公式,完全平方公式之外,如果把上面计算结果作为结论逆运用,则成为因式分解中的立方和与立方差公式.已知2,1a b ab -==,利用自己所学的数学知识,以及立方和与立方差公式,解决下列问题:(2)22a b += ;(直接写出答案)(3)33a b -= ;(直接写出答案)(4)66a b += ;(写出解题过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:20203﹣2020=2020×(20202﹣1)=2020×(2020+1)×(2020﹣1)=2020×2021×2019,故能被2020、2021、2019整除,故选:D .2.B解析:B【解析】【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB ∥CE .【详解】解:∵∠A =∠ACE ,∴AB ∥CE (内错角相等,两直线平行).故选:B .【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.3.C解析:C【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解.【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=, ∴它们的大小关系是:b <a <d <c故选:C【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.4.B解析:B【分析】设1元和5元的纸币分别有x 、y 张,得到方程x+5y=20,然后根据x 、y 都是正整数即可确定x 、y 的值.【详解】解:设1元和5元的纸币分别有x 、y 张,则x+5y=20,∴x=20-5y ,而x≥0,y≥0,且x 、y 是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B .【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.5.D解析:D【详解】解:A 、能通过其中一个四边形平移得到,不符合题意;B 、能通过其中一个四边形平移得到,不符合题意;C 、能通过其中一个四边形平移得到,不符合题意;D 、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意. 故选D .6.B解析:B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=, 解得52x =, ∴原正方形的边长为52. 故选:B .【点睛】 此题考查了完全平方公式,找到等量关系列方程为解题关键.7.A解析:A【分析】将已知等式代入22m +6n =22m ×26n =(22)m •(23)2n =4m •82n =4m •(8n )2可得.【详解】解:∵4m =a ,8n =b ,∴22m+6n =22m ×26n=(22)m •(23)2n=4m •82n=4m •(8n )2=ab 2,故选:A .【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.8.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x 2•x 3=x 2+3=x 5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.9.A【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答..【详解】同底数幂相乘,底数不变,指数相加.m n m n a a a +⋅=所以23235.a a a a +⋅==故选A.【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键.10.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x -x >1-3,合并同类项,得x >﹣2,不等式的解集在数轴上表示为:.故选:A .【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.11.B解析:B【解析】【分析】先把等式左边利用多项式乘多项式的法则展开并整理,根据对应项系数相等列出等式,求解即可.【详解】解:将(2x+3y)(mx-ny)展开,得2mx 2-2nxy+3mxy-3ny 2,根据题意可得2mx 2-2nxy+3mxy-3ny 2=9y 2-4x 2,根据多项式相等,则对应项及其系数相等,可得2m=-4,-3n=9,解得m=-2,n=-3故选B .本题是一道有关多项式乘法的题目,明确多项式的乘法法则是解题的关键.12.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.二、填空题13..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.-.解析:6a【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236a a a.()=(1)()-.故答案为:6a【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.14.-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为解析:-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为-6或6.【点睛】本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.7【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,从而有S四边形AEOH+S四边形CGOF=S四边形DHO解析:7【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,从而有S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,由此即可求得答案.【详解】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,∴S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得:S四边形DHOG=7,故答案为:7.【点睛】本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.16.1【分析】由点为的中点,可得的面积是面积的一半;同理可得和的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点是的中点,的底是,的底是,即,而高相等,,是的中点,,,,解析:1【分析】由点E 为AD 的中点,可得EBC ∆的面积是ABC ∆面积的一半;同理可得BCE ∆和EFB ∆的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点F 是CE 的中点,BEF 的底是EF ,BEC ∆的底是EC ,即12EF EC =,而高相等, 12BEF BEC S S ∆∆∴=, E 是AD 的中点,12BDE ABD S S ∆∆∴=,12CDE ACD S S ∆∆=, 12EBC ABC S S ∆∆∴=, 14BEF ABC S S ∆∆∴=,且24ABC S cm ∆=, 21BEF S cm ∆∴=,即阴影部分的面积为21cm .故答案为1.【点睛】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.17.【详解】解:由题意得,∠A 的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.故答案为:300.【点睛】本题考查多边解析:300【详解】解:由题意得,∠A 的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.故答案为:300.【点睛】本题考查多边形外角性质,补角定义.18.a >﹣1【分析】根据新运算法则可得关于a 、b 的方程与不等式:2a ﹣b=﹣4①,3a+2b >1②,于是由①可用含a 的代数式表示出b ,所得的式子代入②即得关于a 的不等式,解不等式即得答案.【详解】解析:a >﹣1【分析】根据新运算法则可得关于a 、b 的方程与不等式:2a ﹣b =﹣4①,3a +2b >1②,于是由①可用含a 的代数式表示出b ,所得的式子代入②即得关于a 的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a ﹣b =﹣4①,3a +2b >1②,由①得,b =2a +4③,把③代入②,得3a +2(2a +4)>1,解得:a >﹣1.故答案为:a >﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.19.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=±18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.20.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.【详解】解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案.【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键.21.南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西,故答案为:南偏西.【点睛】解答此类题需要从运动的角度解析:南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西25︒,故答案为:南偏西25︒.【点睛】解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.22.【分析】根据无理数的定义判断即可.【详解】解:在,,,,五个数中,无理数有,,两个.故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.解析:2【分析】根据无理数的定义判断即可.【详解】解:在 3.14-,π,17-五个数中,无理数有π,两个. 故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 三、解答题23.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a+•-=121254a a -=12a .【点睛】 此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.24.(1)-8a+12,16;(2)x 2+3,139【分析】(1)直接利用多项式乘法去括号,进而合并同类项,再将已知数据代入求出答案; (2)直接利用多项式乘法去括号,进而合并同类项,再将已知数据代入求出答案.【详解】解:(1)原式=a 2-4a-(a 2-2a+6a-12)=a 2-4a-(a 2+4a-12)=a 2-4a-a 2-4a+12=-8a+12 把12a =-代入得:原式=-8×(1-2)+12=16; (2)原式=x 2+4x+4+4x 2-1-4x 2-4x=x 2+3把13x =代入得:原式=(13)2+3=139. 【点睛】 本题考查了多项式乘法,合并同类项,平方差公式和完全平方公式.细心运算是解题关键.25.(1)x (x-y )2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x ,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x (x 2-2xy+y 2)=x (x-y )2;(2)原式=(3x )2-2×(3x )(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m 2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.26.(1)x ≤2,图见详解;(2)22x -≤<;-2、-1、0、1.【分析】(1)由题意直接根据解不等式的步骤逐步进行计算求解,并把解集在数轴上表示出来即可.(2)根据题意分别解出两个不等式,取公共部分得出其解集从而写出它的所有整数解即可.【详解】解:(1)去分母,得 6x+2(x+1)≤6-(x-14),去括号,得 6x+2x+2≤6-x+14,移项,合并同类项,得 9x ≤18,两边都除以9,得 x ≤2.解集在数轴上表示如下:(2)835113x x x x ->⎧⎪⎨+≥-⎪⎩①② 解①得:2x <,解②得:2x ≥-,则不等式组的解集是:22x -≤<.它的所有整数解有:-2、-1、0、1.【点睛】本题考查的是一元一次不等式(组)的解法,注意掌握求不等式(组)的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.27.(1)3,0,﹣2;(2)a +b =c ,理由见解析.【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a ,b ,c 的等式,然后根据幂的运算法则求解即可.【详解】(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0,∵2﹣2=14, ∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a +b =c .理由:∵(3,5)=a ,(3,6)=b ,(3,30)=c ,∴3a =5,3b =6,3c =30,∴3a ×3b =5×6=3c =30,∴3a ×3b =3c ,∴a +b =c .【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.28.23x x +-;1-【分析】先通过整式的乘法及乘法公式对原式进行去括号,然后通过合并同类项进行计算即可化简原式,再将2x =-代入即可得解.【详解】解:原式222221343x x x x x x x =-+-++-=+-将2x =-代入,原式2(2)(2)34231=-+--=--=-.【点睛】本题主要考查了整式的混合运算,熟练掌握整式的乘法公式及合并同类项的运算方法是解决本题的关键.29.(1)见解析;(2)见解析;(3)见解析;(4)平行且相等【分析】(1)利用网格特点和平移的性质画出A 、B 、C 的对应点A 1、B 1、C 1即可;(2)根据三角形中线的定义画出图形即可;(3)根据三角形高的定义画出图形即可;(4)根据平移的性质即可得出结论.【详解】解:(1)如图,△A 1B 1C 1即为所作图形;(2)如图,线段AD 即为所作图形;(3)如图,直线CE 即为所作图形;(4)∵△A 1B 1C 1是由△ABC 平移得到,∴A 和A 1,C 和C 1是对应点,∴AA 1和CC 1的关系是:平行且相等.【点睛】本题考查了平移作图,平移的性质,三角形的高和中线的画法,熟练掌握平移的性质是解题的关键.30.(1)33+a b ,33a b -;(2)6;(3)14;(4)198【分析】(1)根据整式的混合运算法则展开计算即可;(2)利用完全平方公式变形,再代入求值;(3)利用立方差公式和完全平方公式变形,再代入求值;(4)利用立方差公式和完全平方公式变形,再代入求值;【详解】解:(1)()()22+-+a b a ab b=322223a a b ab a b ab b -++-+=33+a b()()22a b a ab b -++ =322223a a b ab a b ab b ++--- =33a b -,故答案为:33+a b ,33a b -; (2)22a b + =()22a b ab -+ =2221+⨯=6;(3)33a b - =()()22a b a ab b -++=()()23a b a b ab ⎡⎤--+⎣⎦ =()22231⨯+⨯ =14;(4)66a b + =()()224224a b aa b b +-+ =()()22222223a b ab a b a b ⎡⎤⎡⎤-++-⎢⎥⎣⎦⎣⎦ =()()2222163+⨯- =198【点睛】本题考查了因式分解-运用公式法,正确的理解已知条件中的公式是解题的关键.。

苏科七年级苏科初一下册第二学期月考数学试卷百度文库

苏科七年级苏科初一下册第二学期月考数学试卷百度文库

苏科七年级苏科初一下册第二学期月考数学试卷百度文库一、选择题1.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CDB .AD ∥BC C .∠B =∠D D .∠1=∠2 2.已知,则a 2-b 2-2b 的值为 A .4B .3C .1D .0 3.下列计算中正确的是( ) A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a = 4.下列等式从左到右的变形,属于因式分解的是( ) A .8x 2 y 3=2x 2⋅4 y 3 B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)2 5.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y6.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5 B .k=5 C .k=-10 D .k=107.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .256 8.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=- 9.在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A .钝角三角形B .直角三角形C .锐角三角形D .无法确定 10.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( )A .1-B .1-或11-C .1D .1或11 11.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( )A .23m ≤B .23m <C .23m ≥D .23m > 12.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题13.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.14.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.15.如果62x y =⎧⎨=-⎩是关于x 、y 的二元一次方程mx -10=3y 的一个解,则m 的值为_____. 16.已知5m a =,3n a =,则2m n a -的值是_________.17.若多项式x 2-kx +25是一个完全平方式,则k 的值是______.18.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .19.计算:5-2=(____________)20.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.21.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.22.已知(x ﹣4)(x +6)=x 2+mx ﹣24,则m 的值为_____.23.已知a+b=5,ab=3,求:(1)a 2b+ab 2; (2)a 2+b 2.24.内角和等于外角和2倍的多边形是__________边形.三、解答题25.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2.26.因式分解(1) 228ax a (2) a 3-6a 2 b+9ab 2 (3) (a ﹣b )2+4ab27.如图,甲长方形的两边长分别为1m +,7m +;乙长方形的两边长分别为2m +,4m +.(其中..m 为正整数....)(1)图中的甲长方形的面积1S ,乙长方形的面积2S ,比较: 1S 2S (填“<”、“=”或“>”);(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S 与图中的甲长方形面积1S 的差(即1S S -)是一个常数,求出这个常数;(3)在(1)的条件下,若某个图形的面积介于1S 、2S 之间(不包括1S 、2S )并且面积为整数,这样的整数值有且只有16个,求m 的值. 28.已知:如图,//AB DC ,AC 和BD 相交于点O ,E 是CD 上一点,F 是OD 上一点,且∠1=∠A .(1)求证://FE OC ;(2)若∠BFE =110°,∠A =60°,求∠B 的度数.29.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(2)图中AC 与A 1C 1的关系是:_____.(3)画出△ABC 的AB 边上的高CD ;垂足是D ;(4)图中△ABC 的面积是_____.30.已知a ,b ,c 是△ABC 的三边,若a ,b ,c 满足a 2+c 2=2ab +2bc -2b 2,请你判断△ABC 的形状,并说明理由.31.因式分解:(1)43312x x -(2)2()a b x a b -+-(3)2169x -(4)(1)(5)4x x +++32.平面内的两条直线有相交和平行两种位置关系.①如图a ,若//AB CD ,点P 在AB 、CD 外部,则BPD ∠、B 、D ∠之间有何数量关系?解:BPD B D ∠=∠-∠.证明:∵//AB CD ,∴B BOD ∠=∠,又∵POD BOD ∠+∠=______,在POD 中,由三角形内角和定理可得____________180POD ∠+∠+∠=︒, 故______BPD D ∠=∠+∠,从而得BPD B D ∠=∠-∠.②若//AB CD ,将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论; ③在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,则BPD ∠、B 、D ∠、BQD ∠之间有何数量关系?请证明你的结论;33.解方程组(1)2431y x x y =-⎧⎨+=⎩(2)121632(1)13(2)x y x y --⎧-=⎪⎨⎪-=-+⎩.34.化简与计算:(1)1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭(2)(﹣2a 3)3+(﹣4a )2•a 7﹣2a 12÷a 335.已知:5x y +=,(2)(2)3x y --=-.求下列代数式的的值.(1)xy ;(2)224x xy y ++;(3)25x xy y ++.36.先化简,再求值:(a -1)(2a +1)+(1+a )(1-a ),其中a =2.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据内错角相等,两直线平行即可得出结论.【详解】∵∠1=∠2,∴AB ∥DC(内错角相等,两直线平行).故选A .【点睛】考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.2.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用.3.C解析:C【分析】根据同底数幂的加法和乘法法则进行计算判断即可.【详解】解:A 、23a a +无法合并,故A 选项错误;B 、23a a +无法合并,故B 选项错误;C 、235a a a =,故C 选项正确;D 、235a a a =,故D 选项错误.故选:C【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.4.D解析:D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D 正确;故选D .【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.5.D解析:D【解析】【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x 3y 2-3x 2y 3=3x 2y 2(2x-y ),因此6x 3y 2-3x 2y 3的公因式是3x 2y 2.故选:D.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的. 6.A解析:A【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值.【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x y x y -=⎧⎨-=⎩, 解得,1015x y =-⎧⎨=-⎩ ; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.7.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 8.A解析:A根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案.【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙. 所以()()a b a b +-22=a b -故选A .【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.9.A解析:A【分析】根据三角形的内角和是180︒列方程即可;【详解】 ∵1135A B C ∠=∠=∠,∴3B A ∠=∠,5C A ∠=∠,∵180A B C ∠+∠+∠=︒,∴35180A A A ∠+∠+∠=︒,∴30A ∠=︒,∴100C ∠=︒,∴△ABC 是钝角三角形.故答案选A .【点睛】本题主要考查了三角形内角和定理的应用,在准确进行分析列式是解题的关键.10.D解析:D【解析】【分析】此题先把a 2-ab -ac +bc 因式分解,再结合a 、b 、c 是正整数和a >b 探究它们的可能值,从而求解.【详解】解:根据已知a 2-ab -ac +bc =11,即a (a -b )-c (a -b )=11,(a -b )(a -c )=11,∵a >b ,∴a -b >0,∴a -c >0,∵a 、b 、c 是正整数,∴a -c =1或a -c =11【点睛】此题考查了因式分解;能够借助因式分解分析字母的取值范围是解决问题的关键.11.A解析:A【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m的取值范围.【详解】解:202x mx m-<⎧⎨+>⎩①②解不等式①,得x<2m.解不等式②,得x>2-m.因为不等式组无解,∴2-m≥2m.解得23 m≤.故选A.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.12.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题13.65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解解析:65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.14.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB∥CD,∴∠B=180°﹣∠C=180°﹣105°=75°,∵BC∥DE,∴∠AFE=∠B=75°,在△AEF中,∠AED=∠A+∠AFE=20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.15.【分析】把x、y的值代入方程计算即可求出m的值.【详解】解:把代入方程得:6m-10=﹣6,解得:m=故答案为:【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右解析:2 3【分析】把x、y的值代入方程计算即可求出m的值.【详解】解:把62xy=⎧⎨=-⎩代入方程得:6m-10=﹣6,解得:m=2 3故答案为:23【点睛】 本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右两边相等.16.【分析】根据同底数幂的乘除法计算法则进行计算即可.【详解】解:,∵,∴,∴,故答案为:.【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减. 解析:253【分析】根据同底数幂的乘除法计算法则进行计算即可.【详解】解:22m n m n a a a -=÷,∵5m a =,∴22525m a ==, ∴22252533m n m n a a a -=÷=÷=, 故答案为:253. 【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减.17.±10【解析】【分析】根据完全平方公式,可知-kx=±2×5•x,求解即可.【详解】解:∵x2-kx+25是一个完全平方式,∴-kx=±2×5•x,解得k=±10.故答案为±1解析:±10【解析】【分析】根据完全平方公式()2222a b a ab b ±=±+,可知-kx=±2×5•x ,求解即可.【详解】解:∵x 2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±10【点睛】本题考查了完全平方公式,熟练掌握相关公式是解题关键. 18.【解析】【分析】原式利用平方差公式化简,整理即可求出a+b 的值.【详解】已知等式整理得:9(a+b )2-1=899,即(a+b )2=100,开方得:a+b=±10,故答案为:±10【解析:10±【解析】【分析】原式利用平方差公式化简,整理即可求出a+b 的值.【详解】已知等式整理得:9(a+b )2-1=899,即(a+b )2=100,开方得:a+b=±10,故答案为:±10【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.19.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==, 故答案为:125. 【点睛】本题考查了负整数指数幂的运算法则,比较简单.20.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b =4,a ﹣b =1,∴(a+1)2﹣(b ﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b =4,a ﹣b =1,∴(a+1)2﹣(b ﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b )(a ﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答. 21.7【分析】设甲队胜了x 场,则平了(10-x )场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x 的最小整数解.【详解】设甲队胜了x场,则平了(10-x解析:7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,由题意得,3x+(10-x)≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.22.2【分析】利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m =2.【详解】解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,∴m=2,故答案为2解析:2【分析】利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m=2.【详解】解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,∴m=2,故答案为2.【点睛】本题主要考查了整式乘法的运算,准确分析题目中的式子是解题的关键.23.(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=a解析:(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=ab(a+b)=3×5=15(2)a2+b2=(a+b)2-2ab=52-2×3=19【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.24.六【解析】【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:1解析:六【解析】【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:180(n-2)=360×2,解得:n=6,故答案为:六.【点睛】本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).三、解答题x ;-1125.73【分析】根据整式的运算法则即可求出答案.【详解】解:22222511xx x x x 222445521x x x x x73x 当2x =-时,原式14311. 【点睛】本题考查整式化简求值,熟练运用运算法则是解题的关键.26.(1)2a (x+2)(x-2); (2)2a a 3b -();(3)2a b)+(. 【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式先将(a ﹣b )2展开,再利用完全平方公式分解即可.【详解】(1)原式=22(4)a x -=2a (x+2)(x-2);(2)原式=22(69)a a ab b =2a a 3b -()(3)原式=2224a ab b ab -++=222a ab b ++=2a b)+( 【点睛】本题主要考查了多项式的因式分解,在因式分解时,有公因式的首先提公因式,然后用公式法进行因式分解,注意分解要彻底.27.(1)>;(2)9;(3)9.【分析】(1)根据矩形的面积公式计算即可;(2)根据矩形和正方形的周长和面积公式即可得到结论;(3)根据题意列出不等式,然后求解即可得到结论.【详解】解:(1)图①中长方形的面积21(7)(1)87S m m m m , 图②中长方形的面积22(4)(2)68S m m m m , 1221S S m ,m 为正整数,m 最小为1,2110m ,12S S ∴>;(2)依题意得,正方形的边长为:2(71)44m m m ; 则:221(4)(87)9S S m m m ,是一个定值;(3)由(1)得,1221S S m ,根据某个图形的面积介于1S 、2S 之间(不包括1S 、2S )并且面积为整数,这样的整数值有且只有16个,∴当162117m 时,∴179m,2m为正整数,∴=.9m【点睛】本题考查了完全平方方公式的几何背景,多项式的乘法,整式的混合运算,一元一次不等式,熟记相关运算法则是解题的关键.28.(1)见详解;(2)50°.【分析】AB DC,可知∠A=∠C ,然后等量代换得到∠C=∠1,利用同位角相等两直线平(1)由//行即可得证;(2)由EF与OC平行,利用两直线平行同旁内角互补得到∠BFE+∠DOC=180°,然后通过三角形内角和即可求出∠B的度数.【详解】(1)证明:∵AB∥CD,∴∠A=∠C ,又∵∠1=∠A,∴∠C=∠1,∴FE∥OC;(2)解:∵FE∥OC,∴∠BFE+∠DOC=180°,又∵∠BFE=110°,∴∠DOC=180°-110°=70°,∴∠AOB=∠DOC=70°,∵∠A=60°,∴∠B=180°-60°-70°=50°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.29.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8【分析】(1)根据网格结构找出点A、B、C向右平移4个单位后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质解答;(3)延长AB,作出AB的高CD即可;(4)利用△ABC所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】解:(1)如图所示,(2)根据平移的性质得出,AC与A1C1的关系是:平行且相等;(3)如图所示,(4)△ABC 的面积=5×7-12×7×5-12×7×2-12×5×1=8. 30.△ABC 是等边三角形,理由见解析.【分析】运用完全平方公式将等式化简,可求a=b=c ,则△ABC 是等边三角形.【详解】解:△ABC 是等边三角形,理由如下:∵a 2+c 2=2ab +2bc -2b 2∴a 2-2ab+ b 2+ b 2- 2bc +c 2=0∴(a-b )2+(b-c )2=0∴a-b=0,b-c=0,∴a=b ,b=c ,∴a=b=c∴△ABC 是等边三角形.【点睛】本题考查了因式分解的应用,整式的混合运算,熟练运用完全平方公式解决问题是本题的关键.31.(1)3x 3(x ﹣4);(2)(a ﹣b )(1+2x );(3)(4﹣3x )(4+3x );(4)2(3)x +.【分析】(1)原式提取公因式3x 3即可;(2)原式提取公因式-a b 即可;(3)原式利用平方差公式分解即可;(4)原式变形后,利用完全平方公式分解即可.【详解】解:(1)原式=3x 3(x ﹣4);(2)原式=(a ﹣b )(1+2x );(3)原式=(4﹣3x )(4+3x );(4)原式=2554x x x ++++=269x x ++=2(3)x +.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.32.①见解析;②BPD B D ∠=∠+∠,证明见解析;③BPD B D BQD ∠=∠+∠+∠,证明见解析.【分析】①先根据平行线的性质可得B BOD ∠=∠,再根据平角的定义可得180POD BOD ∠+∠=︒,然后根据三角形的内角和定理可得180POD BPD D ∠+∠+∠=︒,最后根据等量代换即可得证;②如图(见解析),先根据平行线的性质可得B BQD ∠=∠,再根据三角形的外角性质可得BPD BQD D ∠=∠+∠,然后根据等量代换即可得;③如图(见解析),先根据三角形的外角性质可得BED B BQD ∠=∠+∠,BPD D BED ∠=∠+∠,再根据等量代换即可得.【详解】①BPD B D ∠=∠-∠.证明:∵//AB CD ,∴B BOD ∠=∠,又∵180POD BOD ∠+∠=︒,在POD 中,由三角形内角和定理可得180POD BPD D ∠+∠+∠=︒,故BOD BPD D ∠=∠+∠,从而得BPD B D ∠=∠-∠;②BPD B D ∠=∠+∠,证明如下:如图,延长BP ,交CD 于点Q ,∵//AB CD ,B BQD ∴∠=∠,由三角形的外角性质得:BPD BQD D ∠=∠+∠,BPD B D ∴∠=∠+∠;③BPD B D BQD ∠=∠+∠+∠,证明如下:如图,延长BP ,交CD 于点E ,由三角形的外角性质得:BED B BQD BPD D BED ∠=∠+∠⎧⎨∠=∠+∠⎩, 则BPD B D BQD ∠=∠+∠+∠.【点睛】本题考查了平行线的性质、三角形的内角和定理、三角形的外角性质等知识点,熟练掌握三角形的外角性质是解题关键.33.(1)12xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)2431y xx y=-⎧⎨+=⎩①②,把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩;(2)121632(1)13(2) x yx y--⎧-=⎪⎨⎪-=-+⎩方程组整理得:211 213x yx y+=⎧⎨+=⎩①②,①×2﹣②得:3y=9,解得:y=3,把y=3代入②得:x=5,则方程组的解为53 xy=⎧⎨=⎩.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,要根据方程特点选择合适的方法简化运算.34.(1)-11;(2)6a9【分析】(1)根据负指数幂运算法则,零指数幂运算法则进行运算即可求解(2)根据幂的乘方运算法则,同底数幂乘方和除法运算法则,先算乘法,后算乘除即可求解.【详解】(1)1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭=391--+=-11故答案为:-11(2)(﹣2a 3)3+(﹣4a )2•a 7﹣2a 12÷a 3=-8a 9+16a 2•a 7-2a 9=-8a 9+16a 9-2a 9=6a 9故答案为:6a 9【点睛】本题考查了整式的混合运算,有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.要熟练掌握负指数幂运算法则,零指数幂运算法,幂的乘方运算法则,同底数幂乘法和除法运算法等.35.(1)3;(2)31;(3)25.【分析】(1)把多项式乘积展开,再将已知5x y +=代入,即可求解;(2)根据(1)得到3xy =,再利用完全平方公式,即可求解;(3)根据5x y +=将x 用y 来表示,再代入25x xy y ++,合并同类项即可求解.【详解】解:(1)∵()(2)(2)22424=3x y xy x y xy x y --=--+=-++-,而5x y +=, ∴ ()=324=3254=3xy x y -++--+⨯-.故答案为3.(2)由(1)知3xy =,∴ ()22224=2=523=31x xy y x y xy +++++⨯. 故答案为31.(3)∵5x y +=,得5x y =-,则()()22225=55525105525x xy y y y y y y y y y y ++-+-+=-++-+=. 故答案为25.【点睛】本题目考查整式的乘法,难度一般,是常考知识点,熟练掌握代数式之间的转化是顺利解题的关键.36.a 2-a ,2【分析】分别根据多项式的乘法法则和平方差公式计算每一项,再合并同类项,然后把a的值代入化简后的式子计算即可.【详解】解:(a-1)(2a+1)+(1+a)(1-a)=2a2-a-1+1-a2= a2-a,当a=2时,原式=22-2=2.【点睛】本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握多项式的乘法法则是解题的关键.。

最新苏科七年级苏科初一数学下册第二学期月月考试卷及答案

最新苏科七年级苏科初一数学下册第二学期月月考试卷及答案

最新苏科七年级苏科初一数学下册第二学期月月考试卷及答案一、选择题1.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 22.计算:202020192(2)--的结果是( )A .40392B .201932⨯C .20192-D .23.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯4.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2D .14a 2 5.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-8 6.计算a 2•a 3,结果正确的是( )A .a 5B .a 6C .a 8D .a 9 7.下列各式从左到右的变形,是因式分解的是( )A .a 2-5=(a+2)(a-2)-1B .(x+2)(x-2)=x 2-4C .x 2+8x+16=(x+4)2D .a 2+4=(a+2)2-48.计算28+(-2)8所得的结果是( )A .0B .216C .48D .299.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠4D .∠1=∠A 10.七边形的内角和是( ) A .360°B .540°C .720°D .900° 11.下列各式中,不能够用平方差公式计算的是( )A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c ) 12.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1-二、填空题13.若等式0(2)1x -=成立,则x 的取值范围是_________.14.已知()223420x y x y -+--=,则x=__________,y=__________.15.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.16.一个n 边形的内角和为1080°,则n=________.17.因式分解:=______.18.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.19.已知x 2a +y b ﹣1=3是关于x 、y 的二元一次方程,则ab =_____.20.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.21.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.22.一艘船从A 港驶向B 港的航向是北偏东25°,则该船返回时的航向应该是_______.23.若2a x =,5b x =,那么2a b x +的值是_______ ;24.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.三、解答题25.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2.26.如图,在△ABC 中,∠ABC =56º,∠ACB =44º,AD 是BC 边上的高,AE 是△ABC 的角平分线,求出∠DAE 的度数.27.如图,网格中每个小正方形边长为1,△ABC 的顶点都在格点上.将△ABC 向左平移2格,再向上平移3格,得到△A ′B ′C ′.(1)请在图中画出平移后的△A ′B ′C ′;(2)画出平移后的△A ′B ′C ′的中线B ′D ′(3)若连接BB ′,CC ′,则这两条线段的关系是________(4)△ABC 在整个平移过程中线段AB 扫过的面积为________(5)若△ABC 与△ABE 面积相等,则图中满足条件且异于点C 的格点E 共有______个 (注:格点指网格线的交点)28.因式分解:(1)43312x x -(2)2()a b x a b -+-(3)2169x -(4)(1)(5)4x x +++29.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩它的解是正数. (1)求m 的取值范围;(2)化简:22|2|(1)(1)m m m --+- 30.已知关于x ,y 的二元一次方程组533221x y n x y n +=⎧⎨-=+⎩的解适合方程x +y =6,求n 的值.31.计算:(1)-22+30(2)(2a )3+a 8÷(-a )5(3)(x +2y -3)(x -2y +3)(4)(m +2)2(m -2)232.先化简,再计算:(2a +b )(b -2a )-(a -b )2,其中a =-1,b =-233.解方程组:(1)2338y x x y =-⎧⎨-=⎩(2)7 43832x yx y⎧+=⎪⎪⎨⎪+=⎪⎩34.已知关于x,y的方程组260250x yx y mx+-=⎧⎨-++=⎩(1)请直接写出方程260x y+-=的所有正整数解(2)若方程组的解满足x+y=0,求m的值(3)无论实数m取何值,方程x-2y+mx+5=0总有一个固定的解,请直接写出这个解?35.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a,若//AB CD,点P在AB、CD外部,我们过点P作AB、CD的平行线PE,则有////AB CD PE,则BPD∠,B,D∠之间的数量关系为_________.将点P 移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则BPD∠、B、D∠之间有何数量关系?请证明你的结论.(2)迎“20G”科技节上,小兰制作了一个“飞旋镖”,在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,他很想知道BPD∠、ABP∠、D∠、BQD∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF交AC于点P,AE交DF于点Q,已知126APB∠=︒,100AQF∠=︒,直接写出B E F∠+∠+∠的度数为_______度,A∠比F∠大______度.36.如图,在边长为1个单位长度的小正方形网格中,ΔABC经过平移后得到ΔA B C''',图中标出了点B的对应点B',点A'、C'分别是A、C的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________;(3)四边形BCC B ''的面积为_______.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A 、(ab 2)2=a 2b 4,故此选项正确;B 、a 2+a 2=2a 2,故此选项错误;C 、a 2•a 3=a 5,故此选项错误;D 、a 6÷a 3=a 3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.2.B解析:B【分析】将原式整理成2020201922+,再提取公因式计算即可.【详解】解:202020192(2)--=2020201922+=20192(21)⨯+=201932⨯,故选:B .【点睛】此题考查提公因式法进行运算,理解幂是乘方运算的结果是解此题的关键.3.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000081=-88.110⨯;故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D解析:D【分析】设长方形的宽为x cm ,则长为(x +a )cm ,可得正方形的边长为22x a +;求出两个图形面积然后做差即可.【详解】解:设长方形的宽为x cm ,则长为(x +a )cm ,则正方形的边长为()2242x a x x a ⨯+++=; 正方形的面积为222244224x a x a x ax a ++++=, 长方形的面积为()2x x a x ax +=+, 二者面积之差为()222244144x ax a x ax a ++-+=, 故选:D .【点睛】本题考查了整式的混合运算,设出长方形的宽,然后表示出正方形和长方形的面积表达式是解题的关键.5.B解析:B(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++- 由于不含一次项,m+8=0,得m=-8.6.A解析:A【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答..【详解】同底数幂相乘,底数不变,指数相加.m n m n a a a +⋅=所以23235.a a a a +⋅==故选A.【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键.7.C解析:C【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、是因式分解,故本选项符合题意;D 、不是因式分解,故本选项不符合题意;故选:C .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.8.D解析:D【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.【详解】解:28+(-2)8=28+28=2×28=29.【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.9.D解析:D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A 、∵∠A +∠2=180°,∴AB ∥DF ,故本选项错误;B 、∵∠A =∠3,∴AB ∥DF ,故本选项错误;C 、∵∠1=∠4,∴AB ∥DF ,故本选项错误;D 、∵∠1=∠A ,∴AC ∥DE ,故本选项正确.故选:D .【点睛】点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.10.D解析:D【分析】n 边形的内角和是(n ﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【详解】(7﹣2)×180°=900°.故选D .【点睛】本题考查了多边形的内角和与外角和定理,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.11.B解析:B【分析】根据平方差公式:22()()a b a b a b +-=-进行判断.【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意;故选B .【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键.12.B解析:B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解:∵P 在第二象限,且点P 到x 轴、y 轴的距离分别是1,3,∴点P 的横坐标为-3,纵坐标为1,∴P 点的坐标为(-3,1).故选:B .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.二、填空题13.【分析】根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可.【详解】解:成立,,解得.故答案为:.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠【分析】根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可.【详解】解:0(2)1x -=成立,20x ∴-≠,解得2x ≠.故答案为:2x ≠.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.14..【解析】试题分析:因,所以,解得.考点:和的非负性;二元一次方程组的解法.解析:⎩⎨⎧==12y x .【解析】 试题分析:因()223420x y x y -+--=,所以⎩⎨⎧=--=-024302y x y x ,解得⎩⎨⎧==12y x . 考点:a 和2a 的非负性;二元一次方程组的解法.15.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 16.8【分析】直接根据内角和公式计算即可求解.【详解】(n ﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.解析:8【分析】n-⋅︒计算即可求解.直接根据内角和公式()2180【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】n-⋅︒.主要考查了多边形的内角和公式.多边形内角和公式:()218017.2(x+3)(x﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18=2(x2-9)=2(x+3)(x-3).考点:因式分解.解析:2(x+3)(x﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x2-9)=2(x+3)(x-3).考点:因式分解.18.7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x解析:7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,由题意得,3x+(10-x)≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.19.1【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b的值,代入计算即可.【详解】解:∵是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,解析:1【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b 的值,代入计算即可.【详解】解:∵2a b-1x+y=3是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,b-1=1,解得a=12,b=2,则ab=122=1,故答案为:1.【点睛】该题考查了二元一次方程的定义,即含有两个未知量,且未知量的指数为1,将其代数式进行求解,即可求出答案.20.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.21.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=± 18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,∴-⨯⨯=k2481k∴=⨯,∴=±k18.±故答案为:18.【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.22.南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西,故答案为:南偏西.【点睛】解答此类题需要从运动的角度解析:南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西25︒,故答案为:南偏西25︒.【点睛】解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.23.【分析】可从入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(xa)2×xb,接下来将已知条件代入求值即可.【详解】对逆用同底数幂的乘法法则,得(xa)2×xb,逆用幂的解析:【分析】可从2a b x +入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a )2×x b ,接下来将已知条件代入求值即可.【详解】对2a b x +逆用同底数幂的乘法法则,得(x a )2×x b ,逆用幂的乘方法则,得(x a )2×x b ,将2a x =、5b x =代入(x a )2× x b 中,得22×5=20,故答案为:20.【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则.24.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a-b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.三、解答题x+;-1125.73【分析】根据整式的运算法则即可求出答案.【详解】解:2x x x x x2222511222x x x x x44552173xx=-时,原式14311.当2【点睛】本题考查整式化简求值,熟练运用运算法则是解题的关键.26.6°【解析】试题分析:先根据三角形内角和求出∠BAC的度数,由AE是△ABC的角平分线,求出∠DAC的度数,由AD是BC边上的高,求出∠EAC的度数,再利用角的和差求出∠DAE的度数.解:∵在△ABC中,∠ABC=56°,∠ACB=44°∴∠BA C=180°-∠ABC-∠ACB=80°∵AE是△ABC的角平分线∠BA C=40°∴∠EAC=12∵AD是BC边上的高,∠ACB=44°∴∠DAC=90°-∠ACB=46°∴∠DAE=∠DAC-∠EAC=6°27.(1)画图见解析;(2)画图见解析;(3)平行且相等;(4)12;(5)9【分析】(1)利用网格特点和平移的性质分别画出点A、B、C的对应点A′、B′、C′即可得到△A′B′C′;(2)找出线段A′C′的中点E′,连接B′E′;(3)根据平移的性质求解;(4)由于线段AB扫过的部分为平行四边形,则根据平行四边形的面积公式可求解.(5)根据同底等高面积相等可知共有9个点.【详解】(1)△A′B′C′如图所示;(2)B′D′如图所示;(3)BB′∥CC′,BB′=CC′;(4)线段AB 扫过的面积=4×3=12;(5)有9个点.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.28.(1)3x 3(x ﹣4);(2)(a ﹣b )(1+2x );(3)(4﹣3x )(4+3x );(4)2(3)x +.【分析】(1)原式提取公因式3x 3即可;(2)原式提取公因式-a b 即可;(3)原式利用平方差公式分解即可;(4)原式变形后,利用完全平方公式分解即可.【详解】解:(1)原式=3x 3(x ﹣4);(2)原式=(a ﹣b )(1+2x );(3)原式=(4﹣3x )(4+3x );(4)原式=2554x x x ++++=269x x ++=2(3)x +.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.29.(1)213m -<< (2)m -【分析】(1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.【详解】解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩, 得321x m y m =+⎧⎨=-⎩因为解为正数,则32010m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.30.116【分析】方程组消去n 后,与已知方程联立求出x 与y 的值,即可确定出n 的值.【详解】解:方程组消去n 得,-7x-8y=1,联立得:7816x y x y --=⎧⎨+=⎩解得4943x y =⎧⎨=-⎩把x=49,y=-43代入方程组,解得n=116.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.31.(1)-3 (2)7a 3(3)x 2-4y 2+12y -9(4)m 4-8m 2+16【分析】(1)原式利用零指数幂法则及乘方的意义化简,计算即可得到结果;(2)先 利用积的乘方公式和同底数幂的除法公式计算,然后合并即可得到结果; (3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式先利用平方差方式计算,再利用完全平方公式计算即可得到结果.【详解】(1)2042331=-+-=-+;(2)()()533833()872a a a a a a ÷=+-=+-; (3) ()()()()23232323x y x y y x x y +--+---=+⎡⎤⎡⎤⎣⎦⎣⎦()2222234129x y x y y =--=-+-;(4)()()()()2222222m m m m +-+-=⎡⎤⎣⎦ ()42228146m m m =-+-=.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.32.-5a 2+2ab ,-1【分析】先利用平方差公式和完全平方公式进行计算,然和合并同类项,最后把a ,b 的值代入即可.【详解】()()()22222()=4222b a a a b b a ab b a b --++----2222=42b a a b ab ---+ 252a ab =-+,当a =-1,b =-2时,原式=-1.【点睛】本题考查了整式的化简求值,解题的关键是熟练掌握混合运算的顺序和整式的乘法公式.33.(1)57x y =⎧⎨=⎩;(2)6024x y =⎧⎨=-⎩ 【分析】(1)2338y x x y =-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x ,将x 值代入①可得y 值,即可求得方程组的解.(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)2338y x x y =-⎧⎨-=⎩①② 由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57x y =⎧⎨=⎩故答案为:57x y =⎧⎨=⎩(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60 故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩【点睛】本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;34.(1)24,21x x y y ==⎧⎧⎨⎨==⎩⎩(2)-136(3)02.5x y =⎧⎨=⎩【解析】分析:(1)先对方程变形为x=6-2y ,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m 的值;(3)方程整理后,根据无论m 如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21x x y y ==⎧⎧⎨⎨==⎩⎩(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260 x yx y+=⎧⎨+-=⎩和解得66 xy=-⎧⎨=⎩把66xy=-⎧⎨=⎩代入x-2y+mx+5=0,解得m=13 6 -(3)∵无论实数m取何值,方程x-2y+mx+5=0总有一个固定的解,∴x=0时,m的值与题目无关∴y=2.5∴2.5 xy=⎧⎨=⎩点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.35.(1)∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE,∠D=∠DPE,即可得出∠BPD=∠B-∠D;将点P移到AB、CD内部,延长BP交DC于M,由平行线的性质得出∠B=∠BMD,即可得出∠BPD=∠B+∠D;(2)由平行线的性质得出∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,即可得出结论;(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.【详解】解(1)∵AB∥CD∥PE,∴∠B=∠BPE,∠D=∠DPE,∵∠BPE=∠BPD+∠DPE,∴∠BPD=∠B-∠D,故答案为:∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,理由如下:延长BP交DC于M,如图b所示:∵AB∥CD,∴∠B=∠BMD,∵∠BPD=∠BMD+∠D,∴∠BPD=∠B+∠D;(2)∵A′B∥CD,∴∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,∴∠BPD=∠ABP+∠D+∠BQD,故答案为:∠BPD=∠ABP+∠D+∠BQD;(3)过点E作EN∥BF,如图d所示:则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,∴∠EQF=∠B+∠E+∠F,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F;∵∠AMP=∠FMQ,∴126°-∠A=80°-∠F,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.36.(1)见解析;(2)平行且相等;(3)28【分析】''';(1)根据平移的性质画出点A、C平移后的对应点A'、C'即可画出平移后的△A B C (2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】'''即为所求;解:(1)如图,ΔA B C(2)根据平移的性质可得:BB'与CC'的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.。

苏科七年级苏科初一下册第二学期月考数学试卷百度文库

苏科七年级苏科初一下册第二学期月考数学试卷百度文库

苏科七年级苏科初一下册第二学期月考数学试卷百度文库一、选择题1.已知一粒米的质量是0.00021kg ,这个数用科学记数法表示为 ( ) A .4 2.110-⨯kgB .52.110-⨯kgC .42110-⨯kgD .62.110-⨯kg2.不等式3x+2≥5的解集是( ) A .x≥1B .x≥73C .x≤1D .x≤﹣13.若a >b ,则下列结论错误的是( ) A .a −7>b −7B .a+3>b+3C .a 5>b 5D .−3a>−3b4.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( ) A .﹣4B .2C .3D .45.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y6.下列各式由左边到右边的变形,是因式分解的是( )A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++⎪⎝⎭7.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 2 8.下列等式从左到右的变形属于因式分解的是( )A .a 2﹣2a+1=(a ﹣1)2B .a (a+1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .211()x x x x+=+9.如图所示的四个图形中,∠1和∠2不是同位角的是( ) A .B .C .D .10.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( ) A .2B .52C .3D .7211.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .012.下列各式从左到右的变形,是因式分解的是( ) A .a 2-5=(a+2)(a-2)-1 B .(x+2)(x-2)=x 2-4 C .x 2+8x+16=(x+4)2D .a 2+4=(a+2)2-4二、填空题13.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm ,则正方形的面积与长方形的面积的差为_____(用含有字母a 的代数式表示).14.等式01a =成立的条件是________. 15.已知方程组,则x+y=_____.16.不等式1x 2x 123>+-的非负整数解是______. 17.一种微粒的半径是0.00004米,这个数据用科学记数法表示为____. 18.多项式4a 3bc +8a 2b 2c 2各项的公因式是_________.19.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.20.因式分解:=______.21.计算(﹣2xy )2的结果是_____.22.已知m a =2,n a =3,则2m n a -=_______________.23.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.24.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____.三、解答题25.计算: (1)022019()32020-- (2)4655x x x x ⋅+⋅26.如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围.(2)数轴上表示数2x -+的点应落在( ) A .点A 的左边 B .线段AB 上 C .点B 的右边27.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在ABC ∆中,点I 是ABC ∠、ACB ∠的平分线的交点,点D 是MBC ∠、NCB ∠平分线的交点,,BI DC 的延长线交于点E .(1)若50BAC ∠=︒,则BIC ∠= °;(2)若BAC x ∠=︒ (090x <<),则当ACB ∠等于多少度(用含x 的代数式表示)时,//CE AB ,并说明理由; (3)若3D E ∠=∠,求BAC ∠的度数.28.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点C 变换为点D ,点A 、B 的对应点分别是点E 、F . (1)在图中请画出△ABC 平移后得到的△EFD ; (2)在图中画出△ABC 的AB 边上的高CH ; (3)△ABC 的面积为_______.29.⑴ 如图,试用a 的代数式表示图形中阴影部分的面积; ⑵ 当a =2时,计算图中阴影部分的面积.30.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.轴于B,点C在31.如图(1),在平面直角坐标系中,点A在x轴负半轴上,直线l x直线l上,点C在x轴上方.(1)(),0A a ,(),2C b ,且,a b 满足2()|4|0a b a b ++-+=,如图(2),过点C 作MN ∥AB ,点Q 是直线MN 上的点,在x 轴上是否存在点P ,使得ABC ∆的面积是BPQ 的面积的23?若存在,求出P 点坐标;若不存在,请说明理由.(2)如图(3),直线l 在y 轴右侧,点E 是直线l 上动点,且点E 在x 轴下方,过点E 作DE ∥AC 交y 轴于D ,且AF 、DF 分别平分CAB ∠、ODE ∠,则AFD ∠的度数是否发生变化?若不变,求出AFD ∠的度数;若变化,请说明理由.32.先化简,再求值:(x ﹣2y )(x +2y )﹣(x ﹣2y )2,其中x =3,y =﹣1. 33.阅读下列各式:(a•b )2=a 2b 2,(a•b )3=a 3b 3,(a•b )4=a 4b 4… 回答下列三个问题: (1)验证:(2×12)100= ,2100×(12)100= ; (2)通过上述验证,归纳得出:(a•b )n = ; (abc )n = . (3)请应用上述性质计算:(﹣0.125)2017×22016×42015.34.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项). 请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.35.3321130y x --=,|1|24z x y -=--+,求x y z ++的平方根.36.先化简,再求值:4(x ﹣1)2﹣(2x +3)(2x ﹣3),其中x =﹣1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.1,a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。

最新苏科七年级苏科初一下册第二学期月考数学试卷百度文库

最新苏科七年级苏科初一下册第二学期月考数学试卷百度文库

最新苏科七年级苏科初一下册第二学期月考数学试卷百度文库一、选择题1.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )2.如图,ABC ∆中,100ABC ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则EFD ∠ 的度数为( )A .80°B .60°C .40°D .20° 3.下列代数运算正确的是( ) A .x•x 6=x 6B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 3 4.下列线段能构成三角形的是( )A .2,2,4B .3,4,5C .1,2,3D .2,3,6 5.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠1 6.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80°7.下列计算错误的是( )A .2a 3•3a =6a 4B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0)8.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°9.下列图案中,可以看成是由图案自身的一部分经平移后得到的是( )A .B .C .D .10.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A .ab 2B .a +b 2C .a 2b 3D .a 2+b 311.下列各式从左到右的变形中,是因式分解的为( )A .ab +ac +d =a (b +c )+dB .(x +2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x +16=(x ﹣4)2 12.下列各式能用平方差公式计算的是()A .()()22a b b a +-B .()()11x x +--C .()()m n m n ---+D .()()33x y x y --+ 二、填空题13.已知2x +3y -5=0,则9x •27y 的值为______.14.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.15.若24x mx ++是完全平方式,则m =______.16.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.17.若多项式29x mx ++是一个完全平方式,则m =______.18.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.19.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .20.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 21.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.22.若2m =3,2n =5,则2m+n =______.23.已知代数式2x-3y 的值为5,则-4x+6y=______.24.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.三、解答题25.分解因式(1)321025a a a ++;(2)(1)(2)6t t ++- .26.仔细阅读下列解题过程:若2222690a ab b b ++-+=,求a b 、的值.解:2222690a ab b b ++-+=222222690()(3)003033a ab b b b a b b a b b a b ∴+++-+=∴++-=∴+=-=∴=-=,,根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值;(2)已知2254210a b ab b +--+=,求a b 、的值;(3)若248200m n mn t t =++-+=,,求2m t n -的值.27.已知在△ABC 中,试说明:∠A +∠B +∠C =180°方法一: 过点A 作DE ∥BC . 则(填空)∠B=∠ ,∠C =∠∵ ∠DAB +∠BAC + ∠CAE =180°∴∠A +∠B +∠C =180°方法二: 过BC 上任意一点D 作DE ∥AC ,DF ∥AB 分别交AB 、AC 于E 、F (补全说理过程 )28.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 .29.某口罩加工厂有,A B 两组工人共150人,A 组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B 两组工人每小时一共可加工口罩9300只.(1)求A B 、两组工人各有多少人?(2)由于疫情加重,A B 、两组工人均提高了工作效率,一名A 组工人和一名B 组工人每小时共可生产口罩200只,若A B 、两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩?30.已知,关于x 、y 二元一次方程组237921x y a x y -=-⎧⎨+=-⎩的解满足方程2x-y=13,求a 的值.31.已知有理数,x y 满足:1x y -=,且221x y ,求22x xy y ++的值. 32.解二元一次方程组:(1) 523150x y x y =+⎧⎨+-=⎩ (2) 3()4()427x y x y x y +--=⎧⎨+=⎩33.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?34.计算:(1)2x 3y •(﹣2xy )+(﹣2x 2y )2;(2)(2a +b )(b ﹣2a )﹣(a ﹣3b )2.35.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE 平分∠ACB ,求∠BEC 的度数.36.先化简,再求值:(2a ﹣b )2﹣(a +1﹣b )(a +1+b )+(a +1)2,其中a =12,b =﹣2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解2.C解析:C【分析】连接FB ,根据三角形内角和和外角知识,进行角度计算即可.【详解】解:如图连接FB ,∵AEF AFE ∠=∠,CFD CDF ∠=∠,∴AEF AFE EFB EBF ∠=∠=∠+∠,CFD CDF BFD FBD ∠=∠=∠+∠ ∴AFE CFD EFB EBF BFD FBD ∠+∠=∠+∠+∠+∠,即AFE CFD EFD EBD ∠+∠=∠+∠,又∵180AFE EFD DFC ∠+∠+∠=︒,∴2180EFD EBD ∠+∠=︒,∵100ABC ∠=︒, ∴180100=402EFD ︒-︒∠=︒, 故选:C .【点睛】此题考查三角形内角和和外角定义,掌握三角形内角和为180°,三角形一个外角等于不相邻两内角之和是解题关键. 3.B解析:B【分析】根据同底数幂的乘法,幂的乘方,完全平方公式,积的乘方运算判断即可.【详解】A .67=x x x ,故A 选项错误;B .()32236x x x ⨯==,故B 选项正确;C .22(2)44x x x +=++,故C 选项错误;D .3333(2)28x x x =⋅=,故D 选项错误.故选B .【点睛】本题考查整式的乘法公式,熟练掌握同底数幂的乘法,幂的乘方,完全平方公式和积的乘方是解题的关键.4.B解析:B【解析】试题分析:A 、2+2=4,不能构成三角形,故本选项错误;B 、3、4、5,满足任意两边之和大于第三边,能构成三角形,故本选项正确;C 、1+2=3,不能构成三角形,故本选项错误;D 、2+3<6,不能构成三角形,故本选项错误.故选B .考点:三角形三边关系.5.D解析:D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A 、∠C=∠1不能判定任何直线平行,故本选项错误;B 、∠A=∠2不能判定任何直线平行,故本选项错误;C 、∠C=∠3不能判定任何直线平行,故本选项错误;D 、∵∠A=∠1,∴EB ∥AC ,故本选项正确.故选:D .【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.6.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA,CD交于点E.∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD互为对顶角∴∠2=∠EAD =70°故选:B.【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.7.C解析:C【分析】A.根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A进行判断B.根据幂的乘方运算法则对B进行判断C.根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C进行判断D.根据同底数幂除法运算法则对D进行判断【详解】A.2a3•3a=6a4,故A正确,不符合题意B.(﹣2y3)2=4y6,故B正确,不符合题意C.3a2+a,不能合并同类项,无法计算,故C错误,符合题意D.a5÷a3=a2(a≠0),故D正确,不符合题意故选:C【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.8.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.9.A解析:A【分析】根据平移的定义,逐一判断即可.【详解】解:A、是平移;B、轴对称变换,不是平移;C、是旋转变换,不是平移.D、图形的大小发生了变化,不是平移.故选:A.【点睛】本题考查平移变换,判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.10.A解析:A【分析】将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【详解】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.11.D解析:D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确.故选D .【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.12.C解析:C【分析】平方差公式是指:(a+b)(a-b)=22a b -,要能使用平方差公式,则两个单项式的符号必须一个相同,一个互为相反数.【详解】A. ()()22a b b a +-不能用平方差公式,不符合题意;B. ()()11x x +--不能用平方差公式,不符合题意;C. ()()m n m n ---+=(-m )2-n 2=m 2-n 2;符合题意;D. ()()33x y x y --+不能用平方差公式,不符合题意.故选C二、填空题13.243【解析】【分析】先将9x•27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x 27y=32x解析:243【解析】【分析】先将9x •27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x⋅27y=32x⋅33y=32x+3y=35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则. 14.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.15.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去和2积的2倍,故,故答案为:.【点睛】本题是完全平方公解析:4±【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去x和2积的2倍,m=±,故4.故答案为:4【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.16.30°【解析】【分析】设较小的锐角是,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角解析:30°【解析】【分析】设较小的锐角是x,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.17.-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为解析:-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为-6或6.【点睛】本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.18.14【分析】根据等底等高的三角形的面积相等,求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△A解析:14【分析】根据等底等高的三角形的面积相等,求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△ABC=12∴S△ACE=12S△ABC=12×12=6,∵AD=2BD,S△ABC=12∴S△ACD=23S△ABC=23×12=8,∴S1+S2=S△ACD+S△ACE=8+6=14.故答案为:14.【点睛】本题主要考查了三角形中线的性质,正确理解三角形中线的性质并学会举一反三是解题关键,要熟练掌握“等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比”.19.【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【解析:10【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.20.-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a-b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=1,2∴a-b=-1÷1=-2,2故答案为-2.21.5【分析】设正方形A,B的边长分别为a,b,根据图形构建方程组即可解决问题.【详解】解:设正方形A,B的边长分别为a,b.由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 22.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.23.-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题解析:-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题考查了代数式求值,熟练掌握运算法则是解题的关键.24.【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角45,5解析:()【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,按照此方法计算即可;【详解】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,∵245=2025,∴第2025个点在x轴上的坐标为()45,0,45,5.则第2020个点在()45,5.故答案为()【点睛】本题主要考查了规律题型点的坐标,准确判断是解题的关键.25.(1)()25a a +;(2)()()41t t +-. 【分析】(1)首先利用提公因式法,提出a ,再利用公式法,即可分解因式;(2)首先将两个多项式的乘积展开,合并同类项后,再利用十字相乘法即可分解因式.【详解】解:(1)()()23221025=10255a a a a a a a a ++++=+; (2)()()22(1)(2)6=3263441t t t t t t t t ++-++-=+-=+-. 【点睛】本题考查因式分解,难度不大,是中考的常考点,熟练掌握分解因式的方法是顺利解题的关键.26.(1)23x y +=;(2)21a b ==,;(3)21m t n -=.【分析】(1)首先把第3项22y 裂项,拆成22y y +,再用完全平方公式因式分解,利用非负数的性质求得x y 、代入求得数值;(2)首先把第2项25b 裂项,拆成224b b +,再用完全平方公式因式分解,利用非负数的性质求得a b 、代入求得数值;(3)先把4m n =+代入28200mn t t +-+=,得到关于n 和 t 的式子,再仿照(1)(2)题.【详解】解:(1)2222210x xy y y -+-+=2222210x xy y y y ∴-++-+=22()(1)0x y y ∴-+-=010x y y ∴-=-=,,11x y ∴==,,23x y ∴+=;(2)2254210a b ab b +--+=22244210a b ab b b ∴+-+-+=22(2)(1)0a b b ∴-+-=2010a b b ∴-=-=,21a b ∴==,;(3)4m n =+,2(4)8200n n t t ∴++-+=22448160n n t t ∴+++-+=22(2)(4)0n t ∴++-=2040n t ∴+=-=,24n t ∴=-=,42m n ∴=+=20(2)1m t n -∴=-=【点睛】本题考查的分组分解法、配方法和非负数的性质,对于项数较多的多项式因式分解,分组分解法是一个常用的方法. 首先要观察各项特征,寻找熟悉的式子,熟练掌握平方差公式和完全平方公式是基础.27.DAB ,CAE ;见解析【分析】方法一:根据平行线的性质:两直线平行,内错角相等解答;方法二:根据平行线的性质:两直线平行、同位角相等解答.【详解】方法一:∵DE ∥BC,∴∠B=∠DAB ,∠C=∠CAE ,故答案为:DAB ,CAE ;方法二:∵DE ∥AC ,∴∠A =∠BED ,∠C =∠BDE ,∵DF ∥AB ,∴∠EDF =∠BED ,∠B =∠CDF ,∵∠CDF +∠EDF +∠BDE =180°,∴∠A +∠B +∠C =180°.【点睛】此题考查平行线的性质,三角形内角和定理的证明过程,解题的关键是熟记平行线的性质并运用于解题.28.(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式; (4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.29.(1)A 组工人有90人、B 组工人有60人(2)A 组工人每人每小时至少加工100只口罩【分析】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意列方程健康得到结论; (2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意列不等式健康得到结论.【详解】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意得,70x +50(150−x )=9300,解得:x =90,150−x =60,答:A 组工人有90人、B 组工人有60人;(2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意得,90a +60(200−a )≥15000,解得:a ≥100,答:A 组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.30.a=4【分析】先联立x+2y=−1与2x−y=13解出x ,y ,再代入2x−3y=7a−9即可求出a 值.【详解】依题意得21213x y x y +=-⎧⎨-=⎩解得53x y =⎧⎨=-⎩, 代入2x−3y=7a−9,得:a=4,故a 的值为4.【点睛】此题主要考查二元一次方程组的解,解题的关键是熟知二元一次方程组的解法. 31.【分析】利用1x y -=将221x y 整理求出xy 的值,然后将22x xy y ++利用完全平方公式变形,将各自的值代入计算即可求出值. 【详解】∵221x y ,∴化简得:241xy x y , ∵1x y -=,∴241xy x y 可化为:241xy ,即有:5xy =,∴2222313516x xy y x y xy .【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.32.(1) 61x y =⎧⎨=⎩;(2) 31x y =⎧⎨=⎩【分析】(1)用代入法解得即可;(2)将方程组去括号整理后,用加减法解答即可;【详解】解:(1) 523150x y x y =+⎧⎨+-=⎩①② 把方程①代入方程()253150y y ++-=解得1y =把1y =代入到①,得156x =+=所以方程组的解为:61x y =⎧⎨=⎩(2) 原方程组化简,得7427x y x y -+=⎧⎨+=⎩①②①×2+②,得1515y =解得y=1把y=1代入到②,得217x +=解得x=3所以方程组的解为:31x y =⎧⎨=⎩【点睛】本题考查了解二元一次方程组,解题的关键是熟记代入法和加减法解方程组的步骤,并根据方程选择合适方法解题.33.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==,解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.34.(1)0;(2)﹣5a 2+6ab ﹣8b 2.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式利用平方出根是,以及完全平方公式化简,去括号合并即可得到结果.【详解】解:(1)原式=﹣4x 4y 2+4x 4y 2=0;(2)原式=﹣4a 2+b 2﹣(a 2﹣6ab +9b 2)=﹣4a 2+b 2﹣a 2+6ab ﹣9b 2=﹣5a 2+6ab ﹣8b 2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则及公式是解本题的关键.35.131°【解析】【分析】先根据∠A=65°,∠ACB=72°得出∠ABC 的度数,再由∠ABD=30°得出∠CBD 的度数,根据CE 平分∠ACB 得出∠BCE 的度数,根据∠BEC=180°-∠BCE-∠CBD 即可得出结论【详解】在△ABC 中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC ﹣∠ABD=13°∵CE 平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE 中,∠BEC=180°﹣13°﹣36°=131°.【点睛】本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键 36.22442a ab b -+;13【分析】原式利用平方差公式及完全平方公式展开,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】解:原式=4a2﹣4ab+b2﹣(a2+2a+1﹣b2)+a2+2a+1=4a2﹣4ab+b2﹣a2﹣2a﹣1+b2+a2+2a+1=4a2﹣4ab+2b2,当a=12,b=﹣2时,原式=1+4+8=13.【点睛】此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.。

苏科七年级苏科初一下册第二学期月考数学试卷

苏科七年级苏科初一下册第二学期月考数学试卷

苏科七年级苏科初一下册第二学期月考数学试卷一、选择题1.下列条件中,能判定△ABC为直角三角形的是().A.∠A=2∠B-3∠C B.∠A+∠B=2∠C C.∠A-∠B=30°D.∠A=12∠B=13∠C2.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cm C.8cm、6cm、3cm D.11cm、4cm、6cm3.下列方程组中,解是-51xy=⎧⎨=⎩的是()A.64x yx y+=⎧⎨-=⎩B.6-6x yx y+=⎧⎨-=⎩C.-4-6x yx y+=⎧⎨-=⎩D.-4-4x yx y+=⎧⎨-=⎩4.已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A.(﹣1,﹣1).B.(﹣1,1)C.(1,1)D.(1,﹣1)5.下列各式从左到右的变形中,是因式分解的为()A.ab+ac+d=a(b+c)+d B.(x+2)(x﹣2)=x2﹣4C.6ab=2a⋅3b D.x2﹣8x+16=(x﹣4)26.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为()A.8312x yx y+=⎧⎨-=⎩B.8312x yx y-=⎧⎨-=⎩C.18312x yx y+=⎧⎨+=⎩D.8312x yx y-=⎧⎨+=⎩7.如图,在△ABC 中,CE⊥AB 于 E,DF⊥AB 于 F,AC∥ED,CE 是∠ACB 的平分线,则图中与∠FDB 相等的角(不包含∠FDB)的个数为()A.3 B.4 C.5 D.68.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°9.一个多边形的每个内角都等于140°,则这个多边形的边数是()A.7 B.8 C.9 D.1010.△ABC是直角三角形,则下列选项一定错误的是()A.∠A-∠B=∠C B.∠A=60°,∠B=40°C.∠A+∠B=∠C D.∠A:∠B:∠C=1:1:211.下列说法:2a-没有算术平方根;若一个数的平方根等于它本身,则这个数是0或1;有理数和数轴上的点一一对应;负数没有立方根,其中正确的是()A.0个B.1个C.2个D.3个12.若关于x的一元一次不等式组202x mx m-<⎧⎨+>⎩无解,则m的取值范围是()A.23m≤B.23m<C.23m≥D.23m>二、填空题13.如图,若AB∥CD,∠C=60°,则∠A+∠E=_____度.14.已知关于x的不等式组()531235x a xx⎧->-⎨-≤⎩的所有整数解的和为7则a的取值范围是__________.15.计算:20202019120192019⎛⎫⨯-⎪⎝⎭=________.16.如图,点B在线段AC上(BC>AB),在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME 的面积记为S2;当AB=3时,△AME的面积记为S3;则S2020﹣S2019=_____.17.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为__________2mm.18.已知:()521x x ++=,则x =______________.19.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.20.因式分解:=______.21.若2m =3,2n =5,则2m+n =______.22.已知一个多边形的每个外角都是24°,此多边形是_________边形.23.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______. 24.计算:x (x ﹣2)=_____三、解答题25.观察下列式子:2×4+1=9;4×6+1=25;6×8+1=49;… (1)请你根据上面式子的规律直接写出第4个式子: ; (2)探索以上式子的规律,试写出第n 个等式,并说明等式成立的理由. 26.已知△ABC中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点. (1)如图1,连接CE , ①若CE ∥AB ,求∠BEC 的度数; ②若CE 平分∠ACD ,求∠BEC 的度数.(2)若直线CE 垂直于△ABC 的一边,请直接写出∠BEC 的度数.27.解下列方程组或不等式组(1)24231x yx y+=⎧⎨-=⎩(2)()211113x xxx⎧--≤⎪⎨+>-⎪⎩28.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x、y的等式表示) ;(2)若2(32)5x y-=,2(32)9x y+=,求xy的值;(3)若25,2x y xy+==,求2x y-的值.29.计算:(1)2x3y•(﹣2xy)+(﹣2x2y)2;(2)(2a+b)(b﹣2a)﹣(a﹣3b)2.30.⑴如图,试用a的代数式表示图形中阴影部分的面积;⑵当a=2时,计算图中阴影部分的面积.31.阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题: (1)验证:(2×12)100= ,2100×(12)100= ; (2)通过上述验证,归纳得出:(a•b )n = ; (abc )n = . (3)请应用上述性质计算:(﹣0.125)2017×22016×42015. 32.解方程组:(1)2531y x x y =-⎧⎨+=-⎩;(2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩.33.利用多项式乘法法则计算: (1)()()22+-+a b a ab b= ;()()22a b a ab b -++ = .在多项式的乘法公式中,除了平方差公式,完全平方公式之外,如果把上面计算结果作为结论逆运用,则成为因式分解中的立方和与立方差公式.已知2,1a b ab -==,利用自己所学的数学知识,以及立方和与立方差公式,解决下列问题:(2)22a b += ;(直接写出答案) (3)33a b -= ;(直接写出答案) (4)66a b += ;(写出解题过程) 34.如图,已知:点A C 、、B 不在同一条直线,AD BE .(1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有ACQB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.35.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.36.己知关于,x y 的方程组4325x y a x y a -=-⎧⎨+=-⎩,(1)请用a 的代数式表示y ;(2)若,x y 互为相反数,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断. 【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011°,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B选项错误;C、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B选项错误;D、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C,则∠C=90°,所以D选项正确.故选:D.【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.2.C解析:C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm、6cm、3cm能组成三角形,故符合题意;D. ∵4+6<11,∴11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键. 3.C解析:C【解析】试题解析:A. 的解是51xy=⎧⎨=⎩,故A不符合题意;B. 的解是6xy=⎧⎨=⎩,故B不符合题意;C. 的解是51xy=-⎧⎨=⎩,故C符合题意;D. 的解是4xy=-⎧⎨=⎩,故D不符合题意;故选C.点睛:解二元一次方程的方法有:代入消元法,加减消元法.4.C解析:C【分析】直接利用角平分线上点的坐标特点得出2x﹣3=3﹣x,进而得出答案.【详解】解:∵点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,∴2x﹣3=3﹣x,解得:x=2,故2x﹣3=1,3﹣x=1,则M点的坐标为:(1,1).故选:C.【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.5.D解析:D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C、等式左边是单项式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选D.【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.6.A解析:A【分析】设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.【详解】解:设这个队胜x场,负y场,根据题意,得8 312 x yx y+=⎧⎨-=⎩.故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.7.B解析:B【解析】分析:推出DF∥CE,推出∠FDB=∠ECB,∠EDF=∠CED,根据DE∥AC推出∠ACE=∠DEC,根据角平分线得出∠ACE=∠ECB,即可推出答案.详解:∵CE⊥AB,DF⊥AB,∴DF∥CE,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.8.B解析:B【解析】试题分析:由DA⊥AC,∠ADC=35°,可得∠ACD=55°,根据两线平行,同位角相等即可得∵AB∥CD,∠1=∠ACD=55°,故答案选B.考点:平行线的性质.9.D解析:D【分析】一个外角的度数是:180°-140°=40°,则多边形的边数为:360°÷40°=9;故选C.【详解】10.B解析:B【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,和选项求出∠C(或∠B或∠A)的度数,再判断即可.【详解】解:A、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A =90°,∴△ABC 是直角三角形,故A 选项是正确的; B 、∵∠A =60°,∠B =40°, ∴∠C =180°﹣∠A ﹣∠B =180°﹣60°﹣40° =80°,∴△ABC 是锐角三角形,故B 选项是错误的; C 、∵∠A +∠B =∠C ,∠A +∠B +∠C =180°, ∴2∠C =180°, ∴∠C =90°,∴△ABC 是直角三角形,故C 选项是正确的; D 、∵∠A :∠B :∠C =1:1:2, ∴∠A +∠B =∠C , ∵∠A +∠B +∠C =180°, ∴2∠C =180°, ∴∠C =90°,∴△ABC 是直角三角形,故D 选项是正确的; 故选:B . 【点睛】本题考查了三角形的内角和定理的应用,主要考查学生的推理能力和辨析能力.11.A解析:A 【分析】根据负数没有算术平方根判断第一句,由1的平方根是1,± 判断第二句,数轴上的点也可以表示无理数判断第三句,任意实数都有立方根判断第四句. 【详解】解:当20a -=有算术平方根,所以第一句错误, 1的平方根是1,±所以第二句错误,数轴上的点与实数一一对应,所以第三句错误, 任意实数都有立方根,所以第四句错误, 故选A . 【点睛】本题考查算术平方根、平方根、立方根以及实数与数轴的关系.理解相关定理是解题关键.12.A解析:A 【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m 的取值范围. 【详解】解:202x mx m-<⎧⎨+>⎩①②解不等式①,得x<2m.解不等式②,得x>2-m.因为不等式组无解,∴2-m≥2m.解得23 m≤.故选A.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.二、填空题13.60【解析】【分析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于解析:60【解析】【分析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于与它不相邻的两内角之和,所以∠A+∠E=∠C=60度.故答案为60.【点睛】本题考查了平行线的性质,三角形的外角等于和它不相邻的两个内角的和. ①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角. 14.7≤a <9或-3≤a <-1.【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】解:,∵解不等式①得:,解不等式②得:x≤4,∴不等式组的解析:7≤a <9或-3≤a <-1.【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】解:()531235x a x x ⎧->-⎨-≤⎩①②, ∵解不等式①得:32a x ->, 解不等式②得:x≤4, ∴不等式组的解集为342a x -<≤, ∵关于x 的不等式组()531235x a x x ⎧->-⎨-≤⎩的所有整数解的和为7, ∴当32a ->0时,这两个整数解一定是3和4, ∴2≤32a -<3, ∴79a ≤<, 当32a -<0时,-3≤32a -<−2, ∴-3≤a <-1, ∴a 的取值范围是7≤a <9或-3≤a <-1.故答案为:7≤a <9或-3≤a <-1.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.15.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】=故答案为.【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则. 解析:12019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯ ⎪⎝⎭=12019 故答案为12019. 【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.16.【分析】先连接BE ,则BE ∥AM ,利用△AME 的面积=△AMB 的面积即可得出 , ,即可得出Sn-Sn-1的值,再把n=2020代入即可得到答案【详解】如图,连接BE ,∵在线段AC 同侧作 解析:40392【分析】 先连接BE ,则BE ∥AM ,利用△AME 的面积=△AMB 的面积即可得出212n S n =,211122n S n n -=-+ ,即可得出S n -S n-1的值,再把n=2020代入即可得到答案 【详解】 如图,连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF ,∴BE ∥AM ,∴△AME 与△AMB 同底等高,∴△AME 的面积=△AMB 的面积,∴当AB=n 时,△AME 的面积记为212n S n =, 221111(1)222n S n n n -=-=-+ ∴当n ≥2时,221111121()22222n n n S S n n n n ---=--+=-= , ∴S 2020﹣S 2019=220201403922⨯-= , 故答案为:40392. 【点睛】此题主要考查了三角形面积求法以及正方形的性质,根据已知得出正确图形,得出S 与n 的关系是解题关键. 17.【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽解析:2375mm【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩∴小长方形的面积为:22515375xy mm【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程.18.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.19.128【分析】由ADBC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵A解析:128【分析】由AD//BC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵AD//BC,∠1=64°,∴∠DEF=∠1=64°,由折叠的性质可得∠FEG=∠DEF=64°,∴∠2=∠1+∠EFG=64°+64°=128°.故答案为:128.【点睛】本题主要考察两直线平行的性质、折叠的性质以及矩形的性质,重点在于利用已知条件找到角度之间的关系.20.2(x+3)(x ﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18=2(x2-9)=2(x+3)(x-3).考点:因式分解.解析:2(x +3)(x ﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x 2-9)=2(x+3)(x-3).考点:因式分解. 21.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.22.十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°24=15故答案:十五此题主解析:十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°÷24=15故答案:十五【点睛】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都是360°,已知每个外角度数就可以求出多边形边数.23.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点先向上平移个单位长度,得到,再向左平移个单位长度后得到:, 故答案为:;【点睛】本题考查了坐标与图解析:()1,2--【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点()2,3P -先向上平移1个单位长度,得到()()2,312,2-+=-,再向左平移3个单位长度后得到:()()23,21,2--=--,故答案为:()1,2--;【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.24.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x .此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.三、解答题25.(1)8×10+1=81;(2)2n(2n+1)+1=(2n+1)2,理由见解析.【分析】(1)根据上面式子的规律即可写出第4个式子;(2)探索以上式子的规律,结合(1)即可写出第n个等式.【详解】解:观察下列式子:2×4+1=9=32;4×6+1=25=52:6×8+1=49=72;…(1)发现规律:第4个式子:8×10+1=81=92;故答案为:8×10+1=81;(2)第n个等式为:2n(2n+1)+1=(2n+1)2,理由:2n(2n+1)+1=4n2+4n+1=(2n+1)2.【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律,总结规律.26.(1)①40°;②30°;(2)50°,130°,10°【解析】试题分析:(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE=12∠ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°-∠ACB=140°,根据角平分线的定义得到∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①如图1,当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.试题解析:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=12∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°-∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,∴∠BEC=∠ECD-∠CBE=30°;(2)①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-40°-40°-90°=10°.【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.27.(1)21xy=⎧⎨=⎩(2)12x≤<【分析】(1)运用加减消元法先消除x,求y的值后代入方程②求x得解;(2)先分别解每个不等式,然后求公共部分,确定不等式组的解集.【详解】解:(1)24 231 x yx y+=⎧⎨-=⎩①②①×2-②,得 7y=7,∴y=1.把y=1代入②,得 x=2.∴21x y =⎧⎨=⎩. (2)解不等式 ()211x x --≤得 1x ≥. 解不等式113x x +>- 得 2x <. ∴不等式组的解集为12x ≤<.【点睛】此题考查解方程组和不等式组,属常规基础题,难度不大.28.(1)224()()xy x y x y =+--;(2)16xy =;(3)23x y -=±. 【分析】(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为: 224()()xy x y x y =+--;故答案为:224()()xy x y x y =+--;(2)∵2(32)5x y -=, ∴2291245x xy y -+=①,∵2(32)9x y +=,∴2291249x xy y ++=②,∴由②-①,得 24954xy =-=, ∴16xy =; (3)∵25,2x y xy +==, ∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.29.(1)0;(2)﹣5a 2+6ab ﹣8b 2.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式利用平方出根是,以及完全平方公式化简,去括号合并即可得到结果.【详解】解:(1)原式=﹣4x4y2+4x4y2=0;(2)原式=﹣4a2+b2﹣(a2﹣6ab+9b2)=﹣4a2+b2﹣a2+6ab﹣9b2=﹣5a2+6ab﹣8b2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则及公式是解本题的关键.30.24【分析】(1)由2个矩形面积之和表示出阴影部分面积即可;(2)将x的值代入计算即可求出值.【详解】(1)根据题意得:阴影部分的面积=a(2a+3)+a(2a+3−a)=3a2+6a;(2)当a=2时,原式=3×22+2×6=24.答:图中阴影部分的面积是24.【点睛】本题考查代数式求值和列代数式,解题的关键是根据题意列代数式.31.(1)1, 1, (2)a n b n, a n b n c n,(3)132 .【解析】【分析】(1)先算括号内的乘法,再算乘方;先乘方,再算乘法;(2)根据有理数乘方的定义求出即可;(3)根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【详解】解:(1)(2×12)100=1,2100×(12)100=1;(2)(a•b)n=a n b n,(abc)n=a n b n c n,(3)原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×1 32=(﹣1)2015×1 32=﹣1×1 32=﹣132. 【点睛】 本题主要考查了同底数幂的乘法和积的乘方,掌握运算法则是解答此题的关键.32.(1)21x y =⎧⎨=-⎩;(2)175125x y =⎧⎨=⎩. 【分析】(1)利用代入消元法解二元一次方程组即可;(2)方程组整理后,利用加减消元法解二元一次方程组即可.【详解】解:(1)2531y x x y =-⎧⎨+=-⎩①②, 把①代入②得:x +6x ﹣15=﹣1,解得:x =2,把x =2代入①得:y =﹣1,则方程组的解为21x y =⎧⎨=-⎩; (2)方程组整理得:3005537500x y x y +=⎧⎨+=⎩①②, ①×53﹣②得:48x =8400,解得:x =175,把x =175代入①得:y =125,则方程组的解为175125x y =⎧⎨=⎩. 【点睛】此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键.33.(1)33+a b ,33a b -;(2)6;(3)14;(4)198【分析】(1)根据整式的混合运算法则展开计算即可;(2)利用完全平方公式变形,再代入求值;(3)利用立方差公式和完全平方公式变形,再代入求值;(4)利用立方差公式和完全平方公式变形,再代入求值;【详解】解:(1)()()22+-+a b a ab b=322223a a b ab a b ab b -++-+=33+a b()()22a b a ab b -++=322223a a b ab a b ab b ++---=33a b -,故答案为:33+a b ,33a b -;(2)22a b +=()22a b ab -+=2221+⨯=6;(3)33a b -=()()22a b a ab b -++=()()23a b a b ab ⎡⎤--+⎣⎦ =()22231⨯+⨯=14;(4)66a b +=()()224224a b aa b b +-+ =()()22222223a b ab a b a b ⎡⎤⎡⎤-++-⎢⎥⎣⎦⎣⎦=()()2222163+⨯-=198【点睛】本题考查了因式分解-运用公式法,正确的理解已知条件中的公式是解题的关键.34.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒ (2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.35.(1)∠BPD=∠B-∠D ;将点P 移到AB 、CD 内部,∠BPD=∠B-∠D 不成立,∠BPD=∠B+∠D ,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD ;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE ,∠D=∠DPE ,即可得出∠BPD=∠B-∠D ;将点P 移到AB 、CD 内部,延长BP 交DC 于M ,由平行线的性质得出∠B=∠BMD ,即可得出∠BPD=∠B+∠D ;(2)由平行线的性质得出∠A ′BQ=∠BQD ,同(1)得:∠BPD=∠A ′BP+∠D ,即可得出结论;(3)过点E 作EN ∥BF ,则∠B=∠BEN ,同(1)得:∠FQE=∠F+∠QEN ,得出∠EQF=∠B+∠E+∠F ,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A ,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F ,∠AMP=∠FMQ ,得出126°-∠A=80°-∠F ,即可得出结论.【详解】解(1)∵AB ∥CD ∥PE ,∴∠B=∠BPE ,∠D=∠DPE ,∵∠BPE=∠BPD+∠DPE ,∴∠BPD=∠B-∠D ,故答案为:∠BPD=∠B-∠D ;将点P 移到AB 、CD 内部,∠BPD=∠B-∠D 不成立,∠BPD=∠B+∠D ,理由如下:延长BP 交DC 于M ,如图b 所示:∵AB ∥CD ,∴∠B=∠BMD ,∵∠BPD=∠BMD+∠D ,∴∠BPD=∠B+∠D ;(2)∵A ′B ∥CD ,∴∠A ′BQ=∠BQD ,同(1)得:∠BPD=∠A ′BP+∠D ,∴∠BPD=∠ABP+∠D+∠BQD ,故答案为:∠BPD=∠ABP+∠D+∠BQD ;(3)过点E 作EN ∥BF ,如图d 所示:则∠B=∠BEN ,同(1)得:∠FQE=∠F+∠QEN ,∴∠EQF=∠B+∠E+∠F ,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A ,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F ; ∵∠AMP=∠FMQ ,∴126°-∠A=80°-∠F ,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.36.(1)31y a =-+;(2)12a =-. 【分析】(1)通过消元的方法,消去x ,即可用a 的代数式表示y ;(2)令y x =-,再将x 、x -代入方程组,即可求解.【详解】解:(1)由43x y a -=-得:43x a y =-+,将其代入25x y a +=-得:4325a y y a -++=-,整理得:393y a =-+,即31y a =-+.故答案为31y a =-+.(2)若x 、y 互为相反数,则y x =-再将x、y代入方程组:4325x x ax x a+=-⎧⎨-=-⎩,解得12a=-.故答案为12 a=-.【点睛】本题考查次二元一次方程组的运用,难度一般,熟练掌握消元法是顺利解题的关键.。

最新苏科七年级苏科初一下册第二学期月考数学试卷(含答案)百度文库

最新苏科七年级苏科初一下册第二学期月考数学试卷(含答案)百度文库

最新苏科七年级苏科初一下册第二学期月考数学试卷(含答案)百度文库一、选择题1.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 2 2.下列各式从左到右的变形中,是因式分解的是( ). A .x (a-b )=ax-bx B .x 2-1+y 2=(x-1)(x+1)+y 2 C .y 2-1=(y+1)(y-1)D .ax+bx+c=x (a+b )+c3.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( ) A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b4.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭5.下列图形可由平移得到的是( )A .B .C .D .6.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( ) A .﹣4B .2C .3D .47.下列方程中,是二元一次方程的是( ) A .x ﹣y 2=1B .2x ﹣y =1C .11y x+= D .xy ﹣1=08.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106B .3.8×106C .3.8×105D .38×1049.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( )A .5036241440x y x y +=⎧⎨+=⎩B .5024361440x y x y +=⎧⎨+=⎩C .144036241440x y x y +=⎧⎨+=⎩D .144024361440x y x y +=⎧⎨+=⎩10.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( )A .(2,﹣5)B .(﹣2,5)C .(5,﹣2)D .(﹣5,2)11.下列图形中,∠1和∠2是同位角的是( )A .B .C .D .12.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠2二、填空题13.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________. 14.已知方程组,则x+y=_____.15.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________.16.若x +3y -4=0,则2x •8y =_________.17.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.18.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 19.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.20.不等式1x 2x 123>+-的非负整数解是______. 21.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.22.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.23.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.24.下列各数中: 3.14-,327-,π,2,17-,是无理数的有______个. 三、解答题25.观察下列等式,并回答有关问题:3322112234+=⨯⨯;333221123344++=⨯⨯;33332211234454+++=⨯⨯; …(1)若n 为正整数,猜想3333123n +++⋅⋅⋅+= ; (2)利用上题的结论比较3333(),()()f x x g x x ==与25055的大小.26.已知,关于x 、y 二元一次方程组237921x y a x y -=-⎧⎨+=-⎩的解满足方程2x-y=13,求a 的值.27.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC 的三个顶点均在格点上.(1)将三角形ABC 先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A 1B 1C 1,画出平移后的三角形A 1B 1C 1;(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标;(3)求三角形ABC 的面积. 28.若关于x,y 的二元一次方程组 38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩有相同的解.(1)求这个相同的解; (2)求m n -的值.29.已知:如图,直线BD 分别交射线AE 、CF 于点B 、D ,连接A 、D 和B 、C ,12180∠+∠=,A C ∠=∠,AD 平分BDF ∠,求证:()1//AD BC ;()2BC 平分DBE ∠.30.计算:(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭(2)3()6m m n mn -+ (3)4(2)(2)x x -+-(4)2(2)(2)a b a a b ---31.如图,AB ∥CD ,点E 、F 在直线AB 上,G 在直线CD 上,且∠EGF =90°,∠BFG =140°,求∠CGE 的度数.32.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC 先向右平移5个单位长度,再向上平移2个单位长度所得的△A 1B 1C 1; (2)画出△ABC 的中线AD ;(3)画出△ABC 的高CE 所在直线,标出垂足E : (4)在(1)的条件下,线段AA 1和CC 1的关系是33.如图,在△ABC 中,∠ACB =90°,∠ABC 与∠BAC 的角平分线相交于点P ,连接CP ,过点P 作DE ⊥CP 分别交AC 、BC 于点D 、E ,(1)若∠BAC =40°,求∠APB 与∠ADP 度数;(2)探究:通过(1)的计算,小明猜测∠APB =∠ADP ,请你说明小明猜测的正确性(要求写出过程). 34.解方程组: (1)2531y x x y =-⎧⎨+=-⎩;(2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩.35.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到222()2a b a ab b +=++这个等式,请解答下列问题:(1)写出图2中所表示的数学等式 . (2)根据整式乘法的运算法则,通过计算验证上述等式. (3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张长宽分别为a 、b 的长方形纸片拼出一个面积为2)(4)a b a b ++(的长方形,则x y z ++= .36.解方程组:41325x y x y +=⎧⎨-=⎩.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】 【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案. 【详解】解:A 、(ab 2)2=a 2b 4,故此选项正确; B 、a 2+a 2=2a 2,故此选项错误; C 、a 2•a 3=a 5,故此选项错误; D 、a 6÷a 3=a 3,故此选项错误; 故选:A. 【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.2.C解析:C 【解析】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积,故B 错误;C. 把一个多项式转化成几个整式积,故C 正确;D. 没把一个多项式转化成几个整式积,故D 错误; 故选C.3.C解析:C 【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解. 【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=,∴它们的大小关系是:b <a <d <c 故选:C 【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.4.C解析:C 【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n≥2,S1=12π×12=12π,S2=12π﹣12π×(12)2,…S n=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2,S n+1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2﹣12π×[(12)n]2,∴S n﹣S n+1=12π×(12)2n=(12)2n+1π.故选C.【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.5.A解析:A【详解】解:观察可知A选项中的图形可以通过平移得到,B、C选项中的图形需要通过旋转得到,D选项中的图形可以通过翻折得到,故选:A6.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.7.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.8.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:380000=3.8×105.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.B解析:B【分析】本题有2个相等关系:购进A种商品件数+购进B种商品件数=50,购进A种商品x件的费用+购进B种商品y件的费用=1440元,据此解答即可.【详解】解:设购进A种商品x件、B种商品y件,依题意可列方程组50 24361440 x yx y+=⎧⎨+=⎩.故选:B.【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.10.A解析:A【分析】先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).故选:A.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.11.D解析:D【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】解:根据同位角定义观察图形可知A、B、C选项中的均不符合同位角的定义,只有选项D 中的图形符合,故选D.【点睛】本题考查同位角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.12.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.二、填空题13.6【分析】设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边解析:6【分析】设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边形的边数是n,重复计算的内角的度数是x,则(n﹣2)•180°=840°﹣x,n=6…120°,∴这个多边形的边数是6,故答案为:6.【点睛】本题考查了多边形的内角和公式,正确理解多边形角的大小的特点,以及多边形的内角和定理是解决本题的关键.14.2【解析】由题意得,两个方程左右相加可得,4x+4y=8⇒x+y=2,故答案为2.解析:2【解析】由题意得,两个方程左右相加可得,,故答案为2.15.m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.16.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.17.【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>,∵不等式3x - m+1>解析:4<7m ≤【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>-13m , ∵不等式3x - m+1>0的最小整数解为2,∴1≤-13m <3, 解之得4<7m ≤.故答案为:4<7m ≤.【点睛】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m 的不等式是解答本题的关键.18.12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.19.2【分析】根据点F是CE的中点,推出S△BEF=S△BEC,同理得S△EBC=S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC解析:2【分析】根据点F是CE的中点,推出S△BEF=12S△BEC,同理得S△EBC=12S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,高相等;∴S△BEF=12S△BEC,同理得S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=8,∴S△BEF=2,故答案为:2.【点睛】本题考查了三角形的性质,充分运用三角形的面积公式以及三角形的中线的性质是解本题的关键.20.0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x)>2(2x-1)去括号得3+3x>4x解析:0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x)>2(2x-1)去括号得3+3x>4x-2移项合并同类项得x<5非负整数解是0,1,2,3,4.【点睛】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.21.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键.解析:1 2020【分析】设1120182019m=+,代入原式化简即可得出结果.【详解】原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 22.【详解】解:由题意得,∠A 的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.故答案为:300.【点睛】本题考查多边解析:300【详解】解:由题意得,∠A 的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.故答案为:300.【点睛】本题考查多边形外角性质,补角定义.23.【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式,去括号,得,移项,得,合并同类项,得,系数化为1,得,则最小的整数解为-解析:72【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=, 解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键.24.【分析】根据无理数的定义判断即可.【详解】解:在,,,,五个数中,无理数有,,两个.故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.解析:2【分析】根据无理数的定义判断即可.【详解】解:在 3.14-,π,17-五个数中,无理数有π,两个. 故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.三、解答题25.(1)221(1)4n n + (2)< 【分析】(1)根据所给的数据,找出变化规律,即是14乘以最后一个数的平方,再乘以最后一个数加1的平方,即可得出答案;(2)根据(1)所得出的规律,算出结果,再与50552进行比较,即可得出答案.【详解】解:(1)根据所给的数据可得:13+23+33+…+n 3=14n 2(n+1)2. 故答案为:14n 2(n+1)2. (2)13+23+33+ (1003)2211001014⨯⨯ =21(100101)2⨯⨯=25050<25055 所以13+23+33+…+1003=<25055.【点睛】此题考查规律型:数字的变化类,通过观察、分析、总结得出题中的变化规律是解题的关键.26.a=4【分析】先联立x+2y=−1与2x−y=13解出x ,y ,再代入2x−3y=7a−9即可求出a 值.【详解】依题意得21213x y x y +=-⎧⎨-=⎩解得53x y =⎧⎨=-⎩, 代入2x−3y=7a−9,得:a=4,故a 的值为4.【点睛】此题主要考查二元一次方程组的解,解题的关键是熟知二元一次方程组的解法.27.(1)见解析;(2)(2,6);(3)192【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;(2)利用A点坐标画出直角坐标系,再写出A1坐标即可;(3)利用分割法求出坐标即可.【详解】解:(1)画出平移后的△A1B1C1如下图;;(2)如上图建立平面直角坐标系,使得点A的坐标为(-4,3),由图可知:点A1的坐标为(2,6);(3)由(2)中的图可知:A(-4,3),B(5,-1),C(0,0),∴S△ABC=11119 (45)434512222 +⨯-⨯⨯-⨯⨯=.【点睛】本题考查了作图——平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.28.(1)这个相同的解为21xy=⎧⎨=⎩;(2)1【分析】(1)根据两个方程组有相同解可得方程组31x yx y+=⎧⎨-=⎩,解此方程组即可得出答案;(2)将(1)求解出的x和y的值代入其余两个式子,解出m和n的值,再代入m-n中即可得出答案.【详解】解:(1)∵关于x,y的二元一次方程组38x ymx ny+=⎧⎨+=⎩与14x ymx ny-=⎧⎨-=⎩有相同的解,∴31 x yx y+=⎧⎨-=⎩解得21 xy=⎧⎨=⎩∴这个相同的解为21 xy=⎧⎨=⎩(2)∵关于x,y的二元一次方程组38x ymx ny+=⎧⎨+=⎩与14x ymx ny-=⎧⎨-=⎩相同的解为21xy=⎧⎨=⎩,∴28 24 m nm n+=⎧⎨-=⎩解得32 mn=⎧⎨=⎩∴m-n=3-2=1【点睛】本题考查的是二元一次方程组的同解问题:将两组方程组中只含有x和y的方程组合到一起,求解即可.29.(1)见解析;(2)见解析.【解析】【分析】()1求出1BDC∠=∠,根据平行线的判定得出//AB CF,根据平行线的性质得出C EBC∠=∠,求出A EBC∠=∠,根据平行线的判定得出即可;()2根据角平分线定义求出FDA ADB∠=∠,根据平行线的性质得出FDA C∠=∠,ADB DBC∠=∠,C EBC∠=∠,求出EBC DBC∠=∠即可.【详解】()12180BDC∠+∠=,12180∠+∠=,1BDC∴∠=∠,//AB CF∴,C EBC∴∠=∠,A C∠=∠,A EBC∴∠=∠,//AD BC∴;()2AD平分BDF∠,FDA ADB∴∠=∠,//AD BC,FDA C∴∠=∠,ADB DBC∠=∠,C EBC∠=∠,EBC DBC∴∠=∠,BC∴平分DBE∠.【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,考查了学生运用性质进行推理的能力,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.30.(1)12;(2)233m mn +;(3)28x -;(4)224ab b -+.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)先做单项式乘多项式,再合并同类项即可得出答案;(3)先利用平方差公式计算,再合并同类项即可得出答案;(4)先利用完全平方公式以及单项式乘多项式计算,再合并同类项即可得出答案.【详解】解:(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭5116=--12=-;(2)3()6m m n mn -+2336m mn mn =-+233m mn =+;(3)4(2)(2)x x -+-()244x =--244x ==-+28x =-;(4)()()222a b a a b --- ()()222442a ab b a ab =-+--222442a ab b a ab =-+-+224ab b +=-.【点睛】此题主要考查了平方差公式以及完全平方公式、实数运算,正确应用公式是解题关键.31.50︒.【分析】先根据平行线的性质得出BFG FGC ∠=∠,再根据CGE FGC EGF ∠=∠-∠结合已知角度即可求解.【详解】证明://AB CD ,∠BFG =140°,BFG FGC ∴∠=∠=140°,又∵CGE FGC EGF ∠=∠-∠,∠EGF =90°,1409050CGE ∴∠=︒-︒=︒. 【点睛】本题考查的是平行线的性质,熟知平行线及角平分线的性质是解答此题的关键.解题时注意:两直线平行,内错角相等.32.(1)见解析;(2)见解析;(3)见解析;(4)平行且相等【分析】(1)利用网格特点和平移的性质画出A 、B 、C 的对应点A 1、B 1、C 1即可;(2)根据三角形中线的定义画出图形即可;(3)根据三角形高的定义画出图形即可;(4)根据平移的性质即可得出结论.【详解】解:(1)如图,△A 1B 1C 1即为所作图形;(2)如图,线段AD 即为所作图形;(3)如图,直线CE 即为所作图形;(4)∵△A 1B 1C 1是由△ABC 平移得到,∴A 和A 1,C 和C 1是对应点,∴AA 1和CC 1的关系是:平行且相等.【点睛】本题考查了平移作图,平移的性质,三角形的高和中线的画法,熟练掌握平移的性质是解题的关键.33.(1)135APB ∠=︒,135PDA ∠=︒;(2)正确,理由见解析.【分析】(1)根据三角形的三条角平分线交于一点可知CP 平分∠BCA ,可得∠PCD =45°,从而由三角形外角性质可求∠ADP =135°,再∠BAC =40°,可求∠BAC 度数,根据角平分线的定义求出PBA PAB ∠+∠,然后利用三角形的内角和定理列式计算即可得解.(2)同理(1)直接可得135PDA ∠=︒.由角平分线可求()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒,进而可得135APB ∠=︒,由此得出结论. 【详解】解:(1)180ABC ACB BAC ∠+∠+∠=︒,90ACB ∠=︒,∠BAC =40°,50ABC =∴∠︒.ABC ∠与ACB ∠的角平分线相交于点P ,1252PBA ABC ∴∠=∠=︒,1202PAB BAC ∠=∠=︒.114522PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.终上所述:135APB ∠=︒,135PDA ∠=︒.∴PCD+ADP ∠=∠∠ ∠ADP =(2)小明猜测是正确的,理由如下:ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.ABC ∠与ACB ∠的角平分线相交于点P ,12PBA ABC ∴∠=∠,12PAB BAC ∠=∠. ∵90ACB ∠=︒,∴90ABC BAC ∠+∠=︒()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.故∠APB =∠ADP .【点睛】本题考查三角形的内角和定理,三角形的角平分线的定义,整体思想的利用和有效的进行角的等量代换是正确解答本题的关键.34.(1)21x y =⎧⎨=-⎩;(2)175125x y =⎧⎨=⎩. 【分析】(1)利用代入消元法解二元一次方程组即可;(2)方程组整理后,利用加减消元法解二元一次方程组即可.【详解】解:(1)2531y x x y =-⎧⎨+=-⎩①②, 把①代入②得:x +6x ﹣15=﹣1,解得:x =2,把x =2代入①得:y =﹣1,则方程组的解为21x y =⎧⎨=-⎩; (2)方程组整理得:3005537500x y x y +=⎧⎨+=⎩①②, ①×53﹣②得:48x =8400,解得:x =175,把x =175代入①得:y =125,则方程组的解为175125x y =⎧⎨=⎩. 【点睛】此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键.35.(1) ()2222222.a b c a b c ab ac bc ++=+++++(2)证明见解析;(3) 30; (4) 15.【分析】(1)依据正方形的面积=()2a b c ++ ;正方形的面积=222a +b +c +2ab+2ac+2bc.,可得等式;(2)运用多项式乘多项式进行计算即可;(3)依据()2222a b +c a b c -2ab-2ac-2bc,+=++ 进行计算即可;(4)依据所拼图形的面积为:22xa yb zab ++ , 而()()222224284249a b a b a ab ab b a b ab ++=+++=++ ,即可得到x, y, z 的值,即可求解.【详解】解: (1) 正方形的面积=()2a b c ++ ;大正方形的面积=222a +b +c +2ab+2ac+2bc. 故答案为:()2222222.a b c a b c ab ac bc ++=+++++(2)证明: (a+b+c) (a+b+c) ,=222a ab ac ab b bc ac bc c ++++++++ ,=222222a b c ab ac bc +++++ .(3)()2222222,a b c a b c ab ac bc ++=++---=()2102ab ac bc -++ ,=100235-⨯ ,=30.故答案为: 30;(4)由题可知,所拼图形的面积为:22xa yb zab ++ ,(2a+b) (a+4b)=222a 8ab ab 4b ,+++=222a 4b 9ab,++∴x=2,y=4, z=9.∴x+y+z=2+4+9=15.故答案为: 15.【点睛】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.36.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①② 由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.。

新苏科七年级苏科初一数学下册第二学期月月考试卷及答案

新苏科七年级苏科初一数学下册第二学期月月考试卷及答案

新苏科七年级苏科初一数学下册第二学期月月考试卷及答案一、选择题1.a 5可以等于( )A .(﹣a )2•(﹣a )3B .(﹣a )•(﹣a )4C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2) 2.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .143.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒ 4.如图,∠1=50°,如果AB ∥DE ,那么∠D=( )A .40°B .50°C .130°D .140° 5.下列计算正确的是( ) A .a +a 2=2a 2B .a 5•a 2=a 10C .(﹣2a 4)4=16a 8D .(a ﹣1)2=a ﹣2 6.下列各式中,计算结果为x 2﹣1的是( )A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+ 7.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 8.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=- 9.下列各式中,能用平方差公式计算的是( ) A .(p +q )(p +q )B .(p ﹣q )(p ﹣q )C .(p +q )(p ﹣q )D .(p +q )(﹣p ﹣q ) 10.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 11.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .012..已知2x a y =⎧⎨=-⎩是关于x ,y 的方程3x ﹣ay =5的一个解,则a 的值为( ) A .1 B .2 C .3 D .4二、填空题13.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.14.一个五边形所有内角都相等,它的每一个内角等于_______.15.若x +3y -4=0,则2x •8y =_________.16.一种微粒的半径是0.00004米,这个数据用科学记数法表示为____.17.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.18.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( )A .6B .7C .8D .9 19.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.20.科学家发现2019nCoV -冠状肺炎病毒颗粒平均直径约为0.00000012m ,数据0.00000012用科学记数法表示_______.21.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.22.下列各数中: 3.14-,327-,π,2,17-,是无理数的有______个. 23.一个容量为40的样本的最大值为35,最小值为15,若取组距为4,则应该分的组数是为_______.24.若a m =2,a n =3,则a m +n 的值是_____.三、解答题25.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2.26.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高.(1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).27.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-.28.已知△ABC中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.(1)如图1,连接CE ,①若CE ∥AB ,求∠BEC 的度数;②若CE 平分∠ACD ,求∠BEC 的度数.(2)若直线CE 垂直于△ABC 的一边,请直接写出∠BEC 的度数.29.观察下列等式,并回答有关问题:3322112234+=⨯⨯; 333221123344++=⨯⨯; 33332211234454+++=⨯⨯; … (1)若n 为正整数,猜想3333123n +++⋅⋅⋅+= ;(2)利用上题的结论比较3333(),()()f x x g x x ==与25055的大小. 30.解二元一次方程组:(1) 523150x y x y =+⎧⎨+-=⎩ (2) 3()4()427x y x y x y +--=⎧⎨+=⎩ 31.若关于x,y 的二元一次方程组 38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩有相同的解. (1)求这个相同的解;(2)求m n -的值.32.将下列各式因式分解(1)xy 2-4xy(2)x 4-8x 2y 2+16y 433.因式分解:(1)m 2﹣16;(2)x 2(2a ﹣b )﹣y 2(2a ﹣b );(3)y 2﹣6y +9;(4)x 4﹣8x 2y 2+16y 4.34.(1)填一填21-20=2( )22-21=2( )23-22=2( )⋯(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)计算20+21+22+⋯+22019.35.已知a6=2b=84,且a<0,求|a﹣b|的值.36.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.…… ……(1)请直接写出(a+b)4=__________;(2)利用上面的规律计算:①24+4×23+6×22+4×2+1=__________;②36-6×35+15×34-20×33+15×32-6×3+1=________.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】A、(﹣a)2(﹣a)3=(﹣a)5,故A错误;B、(﹣a)(﹣a)4=(﹣a)5,故B错误;C、(﹣a2)a3=﹣a5,故C错误;D、(﹣a3)(﹣a2)=a5,故D正确;故选:D.【点睛】本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.2.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.3.C解析:C【分析】设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−24°,再由第2次折叠得到∠C′FB=∠BFC=x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=112°,所以∠AEF=112°.【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−24°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−24°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x−24°=180°,解得x=68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.4.C解析:C【解析】试题分析:∵∠1与∠2为对顶角,∴∠1=∠2=50°,∵AB∥DE,∴∠2+∠D=180°,则∠D=130°,故选C.考点:平行线的性质.5.D解析:D【分析】根据负整数指数幂、合并同类项、幂的乘方与积的乘方、同底数幂的乘法等知识点进行作答.【详解】解:A、a+a2不是同类项不能合并,故本选项错误;B、根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,∴a5•a2=a7,故本选项错误;C、根据幂的乘方法则:底数不变,指数相乘,(﹣2a4)4=16a16,故本选项错误;D、(a﹣1)2=a﹣2,根据幂的乘方法则,故本选项正确;故选:D.【点睛】本题考查了合并同类项,同底数的幂的乘法,负整数指数幂,积的乘方等多个运算性质,需同学们熟练掌握.6.C解析:C【分析】运用多项式乘法法则对各个算式进行计算,再确定答案.【详解】解:A.原式=x2﹣2x+1,B.原式=﹣(x﹣1)2=﹣x2+2x﹣1;C.(x+1)(x﹣1)=x2﹣1;D.原式=x2+2x﹣x﹣2=x2+x﹣2;∴计算结果为x2﹣1的是C.故选:C.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.7.B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.8.A解析:A【分析】根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案.【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙. 所以()()a b a b +-22=a b -故选A .【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.9.C解析:C【分析】利用完全平方公式和平方差公式对各选项进行判断.【详解】(p +q )(p +q )=(p +q )2=p 2+2pq +q 2;(p ﹣q )(p ﹣q )=(p ﹣q )2=p 2﹣2pq +q 2;(p +q )(p ﹣q )=p 2﹣q 2;(p +q )(﹣p ﹣q )=﹣(p +q )2=﹣p 2﹣2pq ﹣q 2.故选:C .【点睛】本题考查了完全平方公式和平方差公式,熟练掌握公式的结构及其运用是解答的关键.10.D解析:D【分析】通过幂的运算公式进行计算即可得到结果.【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误; C .()23326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;故选:D .【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.11.D解析:D【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可.【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0.故选:D .【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键. 12.A解析:A【解析】【分析】将x 和y 的值代入方程计算即可.【详解】将2x a y =⎧⎨=-⎩代入方程得:3(2)5a a -⋅-= 解得:1a =故选:A.【点睛】本题考查了已知二元一次方程的解求方程中未知数的值,理解题意是解题关键.二、填空题13.95°.【分析】延长DE 交AB 于F ,根据两直线平行,同旁内角互补求出∠B ,再根据两直线平行,同位角相等求出∠AFE ,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE 交AB 于F ,根据两直线平行,同旁内角互补求出∠B ,再根据两直线平行,同位角相等求出∠AFE ,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE 交AB 于F ,∵AB ∥CD ,∴∠B =180°﹣∠C =180°﹣105°=75°,∵BC ∥DE ,∴∠AFE =∠B =75°,在△AEF 中,∠AED =∠A +∠AFE =20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.14.【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【详解】每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°−72°解析:108【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【详解】每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°−72°=108°.故答案为:108°.【点睛】本题主要考查了多边形的外角和定理.注意多边形的外角和不随边数的变化而变化,是一个固定值360°.15.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.16.4×10-5【解析】试题分析:科学计数法是指a×10n,且1≤|a|<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法解析:【解析】试题分析:科学计数法是指a×,且1≤<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法17.【分析】已知是方程组的解,将代入到方程组中可求得a,b的值,即可得到关于x,y 的方程组,利用加减消元法解方程即可.【详解】∵是方程组的解∴∴a=5,b=1将a=5,b=1代入得①×解析:91 xy=⎧⎨=⎩【分析】已知71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解,将71xy=⎧⎨=⎩代入到方程组316215x ayx by-=⎧⎨+=⎩中可求得a,b的值,即可得到关于x,y的方程组()32162(2)15x y ayx y by⎧--=⎨-+=⎩,利用加减消元法解方程即可.【详解】∵71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解∴2116 1415ab-=⎧⎨+=⎩∴a=5,b=1将a=5,b=1代入()3216 2(2)15x y ayx y by⎧--=⎨-+=⎩得31116 2315x yx y-=⎧⎨-=⎩①②①×2,得6x-22y=32③②×3,得6x-9y=45④④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为91 xy=⎧⎨=⎩故答案为:91 xy=⎧⎨=⎩【点睛】本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等.18.B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,解析:B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.19.【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:故答案为【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 解析:1.3- 【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭ ()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 1.3=- 故答案为1.3-【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键.20.【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是解析:71.210-⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:0.00000012=71.210-⨯故答案为:71.210-⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.21.15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM 的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t <18时,如图,∠QBQ '=t °,∠M 'AM"=5t °,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=5t-45°,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=5t-45°,解得t=15;②当18<t <27时,如图∠QBQ '=t °,∠NAM"=5t °-90°,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=45°-(5t °-90°)=135°-5t °,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=135°-5t ,解得t=22.5;综上所述,射线AM 再转动15秒或22.5秒时,射线AM 射线BQ 互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.22.【分析】根据无理数的定义判断即可.【详解】解:在,,,,五个数中,无理数有,,两个.故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.解析:2【分析】根据无理数的定义判断即可.【详解】解:在 3.14-327-,π2,17-五个数中,无理数有π2,两个. 故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 23.5【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为35,最小值为15,它们的差是,已知组距为4,那么由于,故可以分成5组.故答案为:解析:5【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为35,最小值为15,它们的差是351520-=,已知组距为4,那么由于2054=,故可以分成5组.故答案为:5.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.24.6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:am+n=am•an=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,解析:6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:a m+n=a m•a n=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,掌握a m+n=a m•a n是解题的关键;三、解答题25.73x+;-11【分析】根据整式的运算法则即可求出答案.【详解】解:22222511xx x x x 222445521x x x x x73x 当2x =-时,原式14311. 【点睛】本题考查整式化简求值,熟练运用运算法则是解题的关键.26.(1)20°;(2)1122n m - 【分析】(1)根据∠DAE =∠EAC ﹣∠DAC ,求出∠EAC ,∠DAC 即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B =35°,∠C =75°,∴∠BAC =180°﹣35°﹣75°=70°,∵AE 平分∠BAC ,∴∠CAE =12∠CAB =35°, ∵AD ⊥BC ,∴∠ADC =90°,∴∠DAC =90°﹣75°=15°,∴∠DAE =∠EAC ﹣∠DAC =35°﹣15°=20°.(2)∵∠B =m °,∠C =n °,∴∠BAC =180°﹣m °﹣n °,∵AE 平分∠BAC ,∴∠CAE =12∠CAB =90°﹣(12m )°﹣(12n )°, ∵AD ⊥BC ,∴∠ADC =90°,∴∠DAC =90°﹣n °,∴∠DAE =∠EAC ﹣∠DAC =(12n ﹣12m )°, 故答案为:(12n ﹣12m ). 【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.27.2243x xy y -++,19【分析】根据整式的乘法运算法则,将多项式乘积展开,再合并同类项,即可化简,再代入x ,y即可求值.【详解】解:原式2222222=44424243x x xy y xy x y xy x xy y -+---++=-++, 将1x =-,2y =-代入,则原代数式的值为: 2243=x xy y -++()()()()22141232=1812=19--+⋅-⋅-+⋅--++.【点睛】本题考查整式的乘法,难度一般,是中考的常考点,熟练掌握多项式与多项式相乘的法则,即可顺利解题.28.(1)①40°;②30°;(2)50°,130°,10°【解析】试题分析:(1)①根据三角形的内角和得到∠ABC =80°,由角平分线的定义得到∠ABE =12∠ABC =40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD =180°-∠ACB =140°,根据角平分线的定义得到∠CBE=12∠ABC =40°,∠ECD =12∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①如图1,当CE ⊥BC 时,②如图2,当CE ⊥AB 于F 时,③如图3,当CE ⊥AC 时,根据垂直的定义和三角形的内角和即可得到结论.试题解析:(1)①∵∠A =60°,∠ACB =40°,∴∠ABC =80°,∵BM 平分∠ABC ,∴∠ABE =12∠ABC =40°, ∵CE ∥AB ,∴∠BEC =∠ABE =40°;②∵∠A =60°,∠ACB =40°,∴∠ABC =80°,∠ACD =180°-∠ACB =140°,∵BM 平分∠ABC ,CE 平分∠ACD ,∴∠CBE =12∠ABC =40°,∠ECD =12∠ACD =70°, ∴∠BEC=∠ECD-∠CBE =30°;(2)①如图1,当CE ⊥BC 时,∵∠CBE =40°,∴∠BEC =50°;②如图2,当CE ⊥AB 于F 时,∵∠ABE =40°,∴∠BEC =90°+40°=130°,③如图3,当CE ⊥AC 时,∵∠CBE =40°,∠ACB =40°,∴∠BEC =180°-40°-40°-90°=10°.【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.29.(1)221(1)4n n + (2)< 【分析】(1)根据所给的数据,找出变化规律,即是14乘以最后一个数的平方,再乘以最后一个数加1的平方,即可得出答案;(2)根据(1)所得出的规律,算出结果,再与50552进行比较,即可得出答案.【详解】解:(1)根据所给的数据可得:13+23+33+…+n 3=14n 2(n+1)2. 故答案为:14n 2(n+1)2. (2)13+23+33+ (1003)2211001014⨯⨯ =21(100101)2⨯⨯=25050<25055 所以13+23+33+…+1003=<25055.【点睛】此题考查规律型:数字的变化类,通过观察、分析、总结得出题中的变化规律是解题的关键.30.(1) 61x y =⎧⎨=⎩;(2) 31x y =⎧⎨=⎩【分析】(1)用代入法解得即可;(2)将方程组去括号整理后,用加减法解答即可;【详解】解:(1) 523150x y x y =+⎧⎨+-=⎩①② 把方程①代入方程()253150y y ++-=解得1y =把1y =代入到①,得156x =+=所以方程组的解为:61x y =⎧⎨=⎩(2) 原方程组化简,得7427x y x y -+=⎧⎨+=⎩①② ①×2+②,得1515y =解得y=1把y=1代入到②,得217x +=解得x=3所以方程组的解为:31x y =⎧⎨=⎩【点睛】本题考查了解二元一次方程组,解题的关键是熟记代入法和加减法解方程组的步骤,并根据方程选择合适方法解题.31.(1)这个相同的解为21x y =⎧⎨=⎩;(2)1 【分析】(1)根据两个方程组有相同解可得方程组31x y x y +=⎧⎨-=⎩,解此方程组即可得出答案; (2)将(1)求解出的x 和y 的值代入其余两个式子,解出m 和n 的值,再代入m-n 中即可得出答案.【详解】解:(1)∵关于x,y 的二元一次方程组38x y mx ny +=⎧⎨+=⎩与14x y mx ny -=⎧⎨-=⎩有相同的解,∴31x y x y +=⎧⎨-=⎩解得21x y =⎧⎨=⎩∴这个相同的解为21x y =⎧⎨=⎩(2)∵关于x,y 的二元一次方程组38x y mx ny +=⎧⎨+=⎩与14x y mx ny -=⎧⎨-=⎩相同的解为21x y =⎧⎨=⎩, ∴2824m n m n +=⎧⎨-=⎩解得32m n =⎧⎨=⎩∴m-n=3-2=1【点睛】本题考查的是二元一次方程组的同解问题:将两组方程组中只含有x 和y 的方程组合到一起,求解即可.32.(1)()4xy y -;(2)()()2222x y x y -+.【分析】(1)提出公因式xy 即可得出答案;(2)先利用完全平方公式,然后再利用平方差公式分解即可.【详解】解:(1)()244xy xy xy y -=-; (2)()()()()()22222242246=2842221x y x y x y x y x y x y x y ⎡⎤-=-=-++⎣-+⎦. 【点睛】 本题主要考查因式分解,因式分解的步骤:一提,二套,三分组,四检查,分解要彻底;熟练掌握提公因式法、公式法的应用是解题的关键.33.(1)(m +4)(m ﹣4);(2)(2a ﹣b )(x +y )(x ﹣y );(3)(y ﹣3)2;(4)(x +2y )2(x ﹣2y )2【分析】(1)原式利用平方差公式因式分解即可;(2)原式提取公因式,再利用平方差公式因式分解即可;(3)原式利用完全平方公式因式分解即可;(4)原式利用完全平方公式,以及平方差公式因式分解即可.【详解】解:(1)原式=(m +4)(m ﹣4);(2)原式=(2a ﹣b )(x 2﹣y 2)=(2a ﹣b )(x +y )(x ﹣y );(3)原式=(y ﹣3)2;(4)原式=(x 2﹣4y 2)2=(x +2y )2(x ﹣2y )2.【点睛】此题考查的是因式分解,掌握利用提公因式法和公式法因式分解是解决此题的关键.34.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.35.16【分析】根据幂的乘方运算法则确定a 、b 的值,再根据绝对值的定义计算即可.【详解】解:∵(±4)6=2b =84=212,a <0,∴a =﹣4,b =12,∴|a ﹣b|=|﹣4﹣12|=16.【点睛】本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.36.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64【分析】(1)根据杨辉三角的数表规律解答即可;(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可;②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;故答案为:++++432234a 4a b 6a b 4ab b ;(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;故答案为:81;②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;故答案为:64.【点睛】本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.。

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)

苏科七年级苏科初一下册第二学期月考数学试卷(含答案)一、选择题1.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D . 2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )3.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y 4.下列计算正确的是( ) A .a 4÷a 3=aB .a 4+a 3=a 7C .(-a 3)2=-a 6D .a 4⋅a 3=a 12 5.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1).B .(﹣1,1)C .(1,1)D .(1,﹣1) 6.计算a 10÷a 2(a≠0)的结果是( ) A .5aB .5a -C .8aD .8a - 7.下列运算正确的是( ) A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 8.下列说法中,正确的个数有( )①同位角相等 ②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,④两个角的两边分别平行,则这两个角相等A .1个B .2个C .3 个D .4个 9.一个多边形的每个内角都等于140°,则这个多边形的边数是( )A .7B .8C .9D .10 10.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150° 11.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( )A .4B .5C .6D .8 12.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1-二、填空题13.已知5m a =,3n a =,则2m n a -的值是_________.14.一种微粒的半径是0.00004米,这个数据用科学记数法表示为____.15.a m =2,b m =3,则(ab )m =______.16.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x 的值为_____.17.已知23x y +=,用含x 的代数式表示y =________.18.计算:2m·3m=______. 19.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.20.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.21.一艘船从A 港驶向B 港的航向是北偏东25°,则该船返回时的航向应该是_______.22.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.三、解答题23.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆.(1)补全'''A B C ∆,利用网格点和直尺画图;(2)图中AC 与''A C 的位置关系是: ;(3)画出ABC ∆中AB 边上的中线CE ;(4)平移过程中,线段AC 扫过的面积是: .24.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点C 变换为点D ,点A 、B 的对应点分别是点E 、F . (1)在图中请画出△ABC 平移后得到的△EFD ;(2)在图中画出△ABC 的AB 边上的高CH ;(3)△ABC 的面积为_______.25.已知关于x 、y 的二元一次方程组21322x y x y k +=⎧⎪⎨-=-⎪⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若()2421y x +=,求k 的值; (3)若14k ≤,设364m x y =+,且m 为正整数,求m 的值. 26.阅读下列各式:(a•b )2=a 2b 2,(a•b )3=a 3b 3,(a•b )4=a 4b 4…回答下列三个问题:(1)验证:(2×12)100= ,2100×(12)100= ; (2)通过上述验证,归纳得出:(a•b )n = ; (abc )n = .(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.27.解方程组:(1)2531y x x y =-⎧⎨+=-⎩; (2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩. 28.利用多项式乘法法则计算:(1)()()22+-+a b a ab b = ;()()22a b a ab b -++ = .在多项式的乘法公式中,除了平方差公式,完全平方公式之外,如果把上面计算结果作为结论逆运用,则成为因式分解中的立方和与立方差公式.已知2,1a b ab -==,利用自己所学的数学知识,以及立方和与立方差公式,解决下列问题:(2)22a b += ;(直接写出答案)(3)33a b -= ;(直接写出答案)(4)66a b += ;(写出解题过程)29.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法: 15162401 6 8080 02221322222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262 (2)62 0x x x x x x x x +++++-++☆☆☆ 得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.30.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示);②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.2.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A、没有完全分解,还可以利用平方差公式进行;B、正确;C、不是因式分解;D、无法进行因式分解.考点:因式分解3.D解析:D【解析】【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x3y2-3x2y3=3x2y2(2x-y),因此6x3y2-3x2y3的公因式是3x2y2.故选:D.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的. 4.A解析:A【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【详解】A 、a 4÷a 3=a ,故本选项正确;B 、a 4和a 3不能合并,故本选项错误;C 、 (-a 3)2=a 6,故本选项错误;D 、a 4⋅a 3=a 7,故本选项错误.故选:A .【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.C解析:C【分析】直接利用角平分线上点的坐标特点得出2x ﹣3=3﹣x ,进而得出答案.【详解】解:∵点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,∴2x ﹣3=3﹣x ,解得:x =2,故2x ﹣3=1,3﹣x =1,则M 点的坐标为:(1,1).故选:C .【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.6.C解析:C【解析】【分析】根据同底数幂的除法法则即可得.【详解】1021028(0)a a a a a -÷==≠故选:C.【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.7.D解析:D【分析】通过幂的运算公式进行计算即可得到结果.【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误; C .()23326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;故选:D .【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.8.A解析:A【分析】根据同位角的定义、三角形垂心的定义及多边形内角和公式、平行线的性质逐一判断可得.【详解】解:①只有两平行直线被第三条直线所截时,同位角才相等,故此结论错误;②只有锐角三角形的三条高在三角形的内部,故此结论错误;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,此结论正确; ④两个角的两边分别平行,则这两个角可能相等,也可能互补,故此结论错误. 故选A .【点睛】本题主要考查同位角、三角形垂心及多边形内角和、平行线的性质,熟练掌握基本定义和性质是解题的关键.9.D解析:D【分析】一个外角的度数是:180°-140°=40°,则多边形的边数为:360°÷40°=9;故选C .【详解】10.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.11.C解析:C【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【详解】解:设外角为x ,则相邻的内角为2x ,由题意得,2180x x +=︒,解得,60x =︒,多边形的边数为:360606÷︒=,故选:C .【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.12.B解析:B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解:∵P 在第二象限,且点P 到x 轴、y 轴的距离分别是1,3,∴点P 的横坐标为-3,纵坐标为1,∴P 点的坐标为(-3,1).故选:B .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.二、填空题13.【分析】根据同底数幂的乘除法计算法则进行计算即可.【详解】解:,∵,∴,∴,故答案为:.【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减. 解析:253 【分析】根据同底数幂的乘除法计算法则进行计算即可.【详解】解:22m n m n a a a -=÷,∵5m a =,∴22525m a ==,∴22252533m n m n a a a -=÷=÷=, 故答案为:253. 【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减. 14.4×10-5【解析】试题分析:科学计数法是指a×10n,且1≤|a|<10,小数点向右移动几位,则n 的相反数就是几.考点:科学计数法解析:【解析】试题分析:科学计数法是指a×,且1≤<10,小数点向右移动几位,则n 的相反数就是几.考点:科学计数法 15.6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为am=2,bm=3,所以(ab)m=am•bm=2×3=6,故答案为:6.【点睛】此题考查积解析:6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为a m=2,b m=3,所以(ab)m=a m•b m=2×3=6,故答案为:6.【点睛】此题考查积的乘方,关键是根据积的乘方运算法则将未知转化为已知.16.﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x=﹣1,此时x+2016=2015,则(2x+3)x+2016=12解析:﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x=﹣1,此时x+2016=2015,则(2x+3)x+2016=12015=1,所以x=﹣1.②当2x+3=﹣1时,解得:x=﹣2,此时x+2016=2014,则(2x+3)x+2016=(﹣1)2014=1,所以x=﹣2.③当x+2016=0时,x=﹣2016,此时2x+3=﹣4029,则(2x+3)x+2016=(﹣4029)0=1,所以x=﹣2016.综上所述,当x=﹣1,或x=﹣2,或x=﹣2016时,代数式(2x+3)x+2016的值为1.故答案为:﹣1或﹣2或﹣2016.本题考查的是乘方运算,特别是乘方的结果为1的情况,分类讨论的思想是解题的关键.17.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x .解析:y=3-2x【解析】23x y +=移项得:y=3-2x.故答案是:y=3-2x .18.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m 2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键. 19.7【分析】设甲队胜了x 场,则平了(10-x )场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x 的最小整数解.【详解】设甲队胜了x 场,则平了(10-x解析:7设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,由题意得,3x+(10-x)≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.20.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.21.南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西,故答案为:南偏西.【点睛】解答此类题需要从运动的角度解析:南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西25︒,故答案为:南偏西25︒.【点睛】解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.22.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab=7,∴ab=1.故答案为1.本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.三、解答题23.(1)图见详解;(2)平行且相等;(3)图见详解;(4)28.【分析】(1)根据图形平移的性质画出△A B C'''即可;(2)根据平移的性质可得出AC与A C''的关系;(3)先取AB的中点E,再连接CE即可;(4)线段AC扫过的面积为平行四边形AA C C''的面积,根据平行四边形的底为4,高为7,可得线段AC扫过的面积.【详解】解:(1)如图所示,△A B C'''即为所求;(2)由平移的性质可得,AC与A C''的关系是平行且相等;故答案为:平行且相等;(3)如图所示,线段CE即为所求;(4)如图所示,连接AA',CC',则线段AC扫过的面积为平行四边形AA C C''的面积,由图可得,线段AC扫过的面积4728=⨯=.故答案为:28.【点睛】本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.24.(1)见详解;(2)见详解;(3)152.【分析】(1)按要求作图即可;(2)按要求作图即可;(3)根据勾股定理求出AB和CH的长即可得出面积.(1)△EFD 如图所示,;(2)CH 如图所示,;(3)根据勾股定理可得:223+635221+25∴S △ABC =12×AB ×CH=12×355152. 【点睛】 本题考查了平移作图,勾股定理,掌握知识点是解题关键.25.(1)218524k x ky -⎧=⎪⎪⎨-⎪=⎪⎩;(2)52k =或12k =-;(3)1或2. 【分析】(1)根据题意直接利用加减消元法进行计算求解即可;(2)由题意根据01(0)a a =≠和11n =以及2(1)1n -=(n 为整数)得到三个关于k 的方程,求出k 即可;(3)根据题意用含m 的代数式表示出k ,根据14k ≤,确定m 的取值范围,由m 为正整数,求得m 的值即可.【详解】解:(1)21322x y x y k ⎧+=⎪⎪⎨⎪-=-⎪⎩①②, ①+②得:3412x k =+-,解得:218k x -=, ①-②得:3212y k =-+,解得:524k y -=, ∴二元一次方程组的解为:218524k x k y -⎧=⎪⎪⎨-⎪=⎪⎩. (2)∵01(0)a a =≠,2(42)1y x +=,∴20y =,即52204k -⨯=,解得:52k =; ∵11n =,2(42)1y x +=,∴421x +=,即214218k -⨯+=,解得:12k =-; ∵2(1)1n -=(n 为正整数),2(42)1y x +=,∴4212x y +=-,为偶数,即214218k -⨯+=-,解得:52k =-; 当52k =-时,3532115222y k =-+=++=,为奇数,不合题意,故舍去. 综上52k =或12k =-. (3)∵215213643647842k k m x y k --=+=⨯+⨯=+,即172m k =+, ∴2114m k -=, ∵14k ≤, ∴211144m k -=≤,解得94m ≤, ∵m 为正整数,∴m=1或2.【点睛】本题考查解二元一次方程组以及解一元一次不等式,根据题意列出不等式是解题的关键.26.(1)1, 1, (2)a n b n , a n b n c n ,(3)132-.【解析】【分析】(1)先算括号内的乘法,再算乘方;先乘方,再算乘法;(2)根据有理数乘方的定义求出即可;(3)根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【详解】解:(1)(2×12)100=1,2100×(12)100=1;(2)(a•b)n=a n b n,(abc)n=a n b n c n,(3)原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×1 32=(﹣1)2015×1 32=﹣1×1 32=﹣1 32.【点睛】本题主要考查了同底数幂的乘法和积的乘方,掌握运算法则是解答此题的关键.27.(1)21xy=⎧⎨=-⎩;(2)175125xy=⎧⎨=⎩.【分析】(1)利用代入消元法解二元一次方程组即可;(2)方程组整理后,利用加减消元法解二元一次方程组即可.【详解】解:(1)2531y xx y=-⎧⎨+=-⎩①②,把①代入②得:x+6x﹣15=﹣1,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为21 xy=⎧⎨=-⎩;(2)方程组整理得:300 5537500x yx y+=⎧⎨+=⎩①②,①×53﹣②得:48x=8400,解得:x=175,把x=175代入①得:y=125,则方程组的解为175125x y =⎧⎨=⎩. 【点睛】此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键.28.(1)33+a b ,33a b -;(2)6;(3)14;(4)198【分析】(1)根据整式的混合运算法则展开计算即可;(2)利用完全平方公式变形,再代入求值;(3)利用立方差公式和完全平方公式变形,再代入求值;(4)利用立方差公式和完全平方公式变形,再代入求值;【详解】解:(1)()()22+-+a b a ab b=322223a a b ab a b ab b -++-+=33+a b()()22a b a ab b -++=322223a a b ab a b ab b ++---=33a b -,故答案为:33+a b ,33a b -;(2)22a b +=()22a b ab -+=2221+⨯=6;(3)33a b -=()()22a b a ab b -++=()()23a b a b ab ⎡⎤--+⎣⎦ =()22231⨯+⨯=14;(4)66a b +=()()224224a b a a b b +-+=()()22222223a b ab a b a b ⎡⎤⎡⎤-++-⎢⎥⎣⎦⎣⎦=()()2222163+⨯-=198【点睛】本题考查了因式分解-运用公式法,正确的理解已知条件中的公式是解题的关键.29.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.【详解】[初步应用]∵多项式x 2+□x +6能被x +2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2323212222 22 0x x x x x x x x x -++--+----, ∴()()()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.30.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2. 【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD ,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC 、∠MDB ,进行作差,即可求解代数式;②延长BD 交AC 于点E ,则∠NDE=∠MDB ,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC ,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC ,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD 平分∠ABC ,CD 平分∠ACB ,∴∠DBC+∠DCB=12⨯100︒=50︒.∴ ∠BDC=180︒-50︒=130︒.(2)①∵MN//AB ,BD 平分∠ABC ,CD 平分∠ACB ,∴∠ABD=∠BDM=∠MBD ,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-α.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB,∵∠BDC=180︒-12(∠ACB+∠ABC)=180︒-12(180︒-α)=90︒+1α2,∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α,同①,说明MN在旋转过程中∠NDC-∠MDB的度数只与∠A有关系,而∠A始终不变,故:MN在旋转过程中∠NDC-∠MDB的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC,由②知∠BDC=90︒+1α2,∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2.故∠NDC与∠MDB的关系是∠NDC+∠MDB=90︒-1α2.【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.。

新苏科七年级苏科初一下册第二学期月考数学试卷(含答案)

新苏科七年级苏科初一下册第二学期月考数学试卷(含答案)

新苏科七年级苏科初一下册第二学期月考数学试卷(含答案)一、选择题1.12-等于( )A .2-B .12C .1D .12-2.下列运算正确的是( ) A .236a a a ⋅=B .222()ab a b =C .()325a a = D .623a a a ÷=3.现有两根木棒,它们长分别是40cm 和50cm ,若要钉成一个三角形木架,则下列四根木棒应选取( ) A .10cm 的木棒 B .40cm 的木棒 C .90cm 的木棒 D .100cm 的木棒 4.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种B .5种C .6种D .7种5.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--6.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( )A .449x y y x y x -=+⎧⎨-=+⎩B .449x y y x y x -=+⎧⎨-=-⎩C .449x y y x y x -=-⎧⎨-=+⎩D .449x y y x y x -=-⎧⎨-=-⎩7.下列图案中,可以看成是由图案自身的一部分经平移后得到的是( )A .B .C .D .8.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( ) A .ab 2B .a +b 2C .a 2b 3D .a 2+b 39.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC 中AC 边上的高是( )A .CFB .BEC .AD D .CD10.如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A .25︒B .65︒C .90︒D .115︒ 11.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 412.下列说法:2a -没有算术平方根;若一个数的平方根等于它本身,则这个数是0或1;有理数和数轴上的点一一对应;负数没有立方根,其中正确的是( ) A .0个B .1个C .2个D .3个二、填空题13.分解因式:m 2﹣9=_____.14.计算:2202120192020⨯-=__________ 15.已知方程组,则x+y=_____.16.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________.17.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.18.若多项式x 2-kx +25是一个完全平方式,则k 的值是______.19.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm .20.计算:(12)﹣2=_____. 21.已知代数式2x-3y 的值为5,则-4x+6y=______. 22.已知a+b=5,ab=3,求: (1)a 2b+ab 2; (2)a 2+b 2.23.已知m a =2,n a =3,则2m n a -=_______________. 24.若29x kx -+是完全平方式,则k =_____.三、解答题25.计算(1)112(2)3π-⎛⎫---+- ⎪⎝⎭; (2)52482(2)()()x x x x +-÷-. 26.计算:(1)22(2).(3)xy xy(2)23(21)ab a b ab -+-(3)(32)(32)x y x y +- (4)()()a b c a b c ++-+27.已知有理数,x y 满足:1x y -=,且221x y ,求22x xy y ++的值.28.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+29.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元. (1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a 箱,苹果b 箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果. ①若老徐在甲店获利600元,则他在乙店获利多少元? ②若老徐希望获得总利润为1000元,则a b +=? 30.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y的方程组3x y q x y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.31.先化简,再求值:(x ﹣2y )(x +2y )﹣(x ﹣2y )2,其中x =3,y =﹣1.32.若关于x,y 的二元一次方程组 38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩有相同的解.(1)求这个相同的解; (2)求m n -的值.33.将下列各式因式分解 (1)xy 2-4xy(2)x 4-8x 2y 2+16y 434.因式分解:(1)a3﹣a;(2)4ab2﹣4a2b﹣b3;(3)a2(x﹣y)﹣9b2(x﹣y);(4)(y2﹣1)2+6 (1﹣y2)+9.35.(1)填一填21-20=2( )22-21=2( )23-22=2( )⋯(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)计算20+21+22+⋯+22019.36.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意直接根据负指数幂的运算法则进行分析计算即可.【详解】解: 12-=1 2 .故选:B.本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.2.B解析:B 【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确; C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版七年级苏科初一下册第二学期月考数学试卷百度文库一、选择题1.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CD B .AD ∥BC C .∠B =∠D D .∠1=∠2 2.对于算式20203﹣2020,下列说法错误的是( ) A .能被2019整除B .能被2020整除C .能被2021整除D .能被2022整除3.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE4.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )A .①④B .②③C .①③D .①③④ 5.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( )A .4种B .5种C .6种D .7种6.32236x y 3x y 分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y 7.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( ) A .a ﹣b B .a +b C .b ﹣aD .﹣a ﹣b 8.计算23x x 的结果是( )A .5xB .6xC .8xD .23x9.下列说法中,正确的个数有( ) ①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°, ④两个角的两边分别平行,则这两个角相等 A .1个B .2个C .3 个D .4个10.下列各式能用平方差公式计算的是()A .()()22a b b a +-B .()()11x x +--C .()()m n m n ---+D .()()33x y x y --+11.如图所示的四个图形中,∠1和∠2是同位角...的是( )A .②③B .①②③C .①②④D .①④12.下列方程组中,是二元一次方程组的为( )A .1512n mm n ⎧+=⎪⎪⎨⎪+=⎪⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x⎧=⎨=⎩D .00x y =⎧⎨=⎩二、填空题13.新型冠状肺炎病毒(COVID ﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____. 14.若多项式29x mx ++是一个完全平方式,则m =______. 15.已知方程组,则x+y=_____.16.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.17.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为______.18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 20.若2(1)(23)2x x x mx n +-=++,则m n +=________. 21.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.22.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.23.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.24.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.三、解答题25.分解因式 (1)321025a a a ++; (2)(1)(2)6t t ++- .26.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?27.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值; (3)若25,2x y xy +==,求2x y -的值.28.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+12∠A,(请补齐空白处......)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=12(∠ABC+∠ACB)=12(180º-∠A)=90º-12∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+12∠A.(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.29.阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x yx y+=⎧⎨+=⎩时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y=5③.把方程①代入③得:2×3+y=5,∴y=﹣1①得x=4,所以,方程组的解为41 xy=⎧⎨=-⎩.请你解决以下问题:(1)模仿小铭的“整体代换”法解方程组325 9419 x yx y-=⎧⎨-=⎩.(2)已知x,y满足方程组22223212472836x xy yx xy y⎧-+=⎨++=⎩,求x2+4y2﹣xy的值.30.若关于x,y 的二元一次方程组 38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩有相同的解.(1)求这个相同的解; (2)求m n -的值.31.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半. (1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数. 32.计算: (1)21122⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭; (2)m 2•m 4+(﹣m 3)2; (3)(x +y )(2x ﹣3y ); (4)(x +3)2﹣(x +1)(x ﹣1). 33.因式分解: (1)a 3﹣a ; (2)4ab 2﹣4a 2b ﹣b 3; (3)a 2(x ﹣y )﹣9b 2(x ﹣y ); (4)(y 2﹣1)2+6 (1﹣y 2)+9. 34.阅读理解并解答:为了求1+2+22+23+24+…+22009的值. 可令S =1+2+22+23+24+…+22009 则2S =2+22+23+24+…+22009+22010因此2S ﹣S =(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1 所以S =22010﹣1即1+2+22+23+24+…+22009=22010﹣1 请依照此法,求:1+5+52+53+54+…+52020的值. 35.解方程组:41325x y x y +=⎧⎨-=⎩.36.己知关于,x y 的方程组4325x y a x y a-=-⎧⎨+=-⎩,(1)请用a 的代数式表示y ;(2)若,x y 互为相反数,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A【解析】【分析】根据内错角相等,两直线平行即可得出结论.【详解】∵∠1=∠2,∴AB∥DC(内错角相等,两直线平行).故选A.【点睛】考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.2.D解析:D【详解】解:20203﹣2020=2020×(20202﹣1)=2020×(2020+1)×(2020﹣1)=2020×2021×2019,故能被2020、2021、2019整除,故选:D.3.B解析:B【解析】【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB∥CE.【详解】解:∵∠A=∠ACE,∴AB∥CE(内错角相等,两直线平行).故选:B.【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.4.D解析:D【详解】解:①∵∠1=∠2,∴AB∥CD,故本选项正确;②∵∠3=∠4,∴BC∥AD,故本选项错误;③∵∠A=∠CDE,∴AB∥CD,故本选项正确;④∵∠A+∠ADC=180°,∴AB∥CD,故本选项正确.故选D.解析:B【分析】设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.【详解】解:设1元和5元的纸币分别有x、y张,则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B.【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.6.D解析:D【解析】【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x3y2-3x2y3=3x2y2(2x-y),因此6x3y2-3x2y3的公因式是3x2y2.故选:D.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的. 7.A解析:A【分析】根据多项式与多项式相乘知(x﹣a)(x+b)=x2+(b﹣a)x﹣ab,据此可以求得k的值.【详解】解:∵(x﹣a)(x+b)=x2+(b﹣a)x﹣ab,又∵x2﹣kx﹣ab=(x﹣a)(x+b),∴x2﹣kx﹣ab=x2+(b﹣a)x﹣ab,∴﹣k =b ﹣a , k =a ﹣b , 故选:A . 【点睛】本题主要考查多项式与多项式相乘,熟记计算方法是解题的关键.8.A解析:A 【分析】根据同底数幂相乘,底数不变,指数相加即可求解. 【详解】解:∵23235x x x x +==, 故选A . 【点睛】本题考查同底数幂的运算性质,较容易,熟练掌握同底数幂的运算法则是解题的关键.9.A解析:A 【分析】根据同位角的定义、三角形垂心的定义及多边形内角和公式、平行线的性质逐一判断可得. 【详解】解:①只有两平行直线被第三条直线所截时,同位角才相等,故此结论错误; ②只有锐角三角形的三条高在三角形的内部,故此结论错误;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,此结论正确; ④两个角的两边分别平行,则这两个角可能相等,也可能互补,故此结论错误. 故选A . 【点睛】本题主要考查同位角、三角形垂心及多边形内角和、平行线的性质,熟练掌握基本定义和性质是解题的关键.10.C解析:C 【分析】平方差公式是指:(a+b)(a-b)=22a b -,要能使用平方差公式,则两个单项式的符号必须一个相同,一个互为相反数. 【详解】A. ()()22a b b a +-不能用平方差公式,不符合题意;B. ()()11x x +--不能用平方差公式,不符合题意;C. ()()m n m n ---+=(-m )2-n 2=m 2-n 2;符合题意;D. ()()33x y x y --+不能用平方差公式,不符合题意. 故选C11.C解析:C 【分析】根据同位角的定义逐一判断即得答案. 【详解】解:图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.... 故选:C . 【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.12.D解析:D 【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程. 【详解】A 、属于分式方程,不符合题意;B 、有三个未知数,为三元一次方程组,不符合题意;C 、未知数x 是2次方,为二次方程,不符合题意;D 、符合二元一次方程组的定义,符合题意; 故选:D . 【点睛】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.二、填空题13.2×10﹣7 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:2×10﹣7 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 012=1.2×10﹣7,故答案是:1.2×10﹣7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为解析:-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为-6或6.【点睛】本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.2【解析】由题意得,两个方程左右相加可得,4x+4y=8⇒x+y=2,故答案为2.解析:2【解析】由题意得,两个方程左右相加可得,,故答案为2.16.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.7【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,从而有S四边形AEOH+S四边形CGOF=S四边形DHO解析:7【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,从而有S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,由此即可求得答案.【详解】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,∴S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得:S四边形DHOG=7,故答案为:7.【点睛】本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.18.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 19.-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a-b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】∵a 2-b 2=(a+b)(a-b),a 2﹣b 2=﹣1,a+b=12, ∴a-b=-1÷12=-2, 故答案为-2. 20.【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为、,进而求得 .【详解】解:∵,∴ 、 ,∴.故答案为.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项解析:4-【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为m 、n ,进而求得m n + .【详解】解:∵22(1)(23)23=2x x x x x mx n +-=--++,∴1m =- 、3n =- ,∴()=13=13=4m n +-+----.故答案为4-.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项式与多项式相乘的运算方法即可顺利解题. 21.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a ﹣b =1,∴(a+1)2﹣(b ﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.22.84【分析】设原两位数的个位上的数字为x,则十位上的数字为2x,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x,则十位上的数字为2x,由题意,得解析:84【分析】设原两位数的个位上的数字为x,则十位上的数字为2x,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x,则十位上的数字为2x,由题意,得10×2x+x-(10x+2x)=36,解得:x=4,则十位数字为:2×4=8,则原两位数为84.故答案为:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.23.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000004,4的前面有8个0,所以n =8,所以0.00000004=4×10-8.故答案为:4×10-8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.24.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=±18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.三、解答题25.(1)()25a a +;(2)()()41t t +-. 【分析】(1)首先利用提公因式法,提出a ,再利用公式法,即可分解因式;(2)首先将两个多项式的乘积展开,合并同类项后,再利用十字相乘法即可分解因式.【详解】解:(1)()()23221025=10255a a a a a a a a ++++=+; (2)()()22(1)(2)6=3263441t t t t t t t t ++-++-=+-=+-. 【点睛】本题考查因式分解,难度不大,是中考的常考点,熟练掌握分解因式的方法是顺利解题的关键.26.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==,解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.27.(1)224()()xy x y x y =+--;(2)16xy =;(3)23x y -=±. 【分析】(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为: 224()()xy x y x y =+--;故答案为:224()()xy x y x y =+--;(2)∵2(32)5x y -=, ∴2291245x xy y -+=①,∵2(32)9x y +=,∴2291249x xy y ++=②,∴由②-①,得 24954xy =-=, ∴16xy =; (3)∵25,2x y xy +==, ∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.28.【探究1】∠2=12∠ACB,90º-12∠A;【探究2】∠BOC=90°﹣12∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=12∠ABC,∠2=12∠ACB,根据三角形的内角和定理可得∠1+∠2=90º-12∠A,再根据三角形的内角和定理即可得出结论;【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=1 2(∠A+∠ACB),∠OCB=12(∠A+∠ABC),然后再根据三角形的内角和定理即可得出结论;【应用】延长AC与BD,设交点为G,如图5,由【探究1】的结论可得∠G的度数,于是可得∠GCD+∠GDC的度数,然后根据角平分线的定义和角的和差可得∠1+∠2的度数,再根据三角形的内角和定理即可求出结果;【拓展】根据角平分线的定义和平角的定义可得∠EAF=90°,然后分三种情况讨论:若∠EAF=4∠E,则∠E=22.5°,根据角平分线的定义和三角形的外角性质可得∠ABO=2∠E,于是可得结果;若∠EAF=4∠F,则∠F=22.5°,由【探究2】的结论可求出∠ABO=135°,然后由三角形的外角性质即可判断此种情况不存在;若∠F=4∠E,则∠E=18°,然后再由第一种情况的结论∠ABO=2∠E即可求出结果,进而可得答案.【详解】解:【探究1】理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠ACB,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=12(∠ABC+∠ACB)=12(180º-∠A)=90º-12∠A,∴∠BOC=180º-(∠1+∠2)=180º-(90º-12∠A)=90º+12∠A;故答案为:∠2=12∠ACB,90º-12∠A;【探究2】∠BOC=90°﹣12∠A;理由如下:如图2,由三角形的外角性质和角平分线的定义,∠OBC =12(∠A +∠ACB ),∠OCB =12(∠A +∠ABC ), 在△BOC 中,∠BOC =180°﹣∠OBC ﹣∠OCB=180°﹣12(∠A +∠ACB )﹣12(∠A +∠ABC ), =180°﹣12(∠A +∠ACB +∠A +∠ABC ), =180°﹣12(180°+∠A ), =90°﹣12∠A ;【应用】延长AC 与BD ,设交点为G ,如图5,由【探究1】的结论可得:∠G=1901352O ︒+∠=︒, ∴∠GCD+∠GDC=45°, ∵CE 、DE 分别是∠ACD 和∠BDC 的角平分线,∴∠1=12∠ACD=()11802GCD ︒-∠,∠2=12∠BDC=()11802GDC ︒-∠, ∴∠1+∠2=()11802GCD ︒-∠+()11802GDC ︒-∠=()136045157.52︒-︒=︒, ∴()1801222.5E ∠=︒-∠+∠=︒;故答案为:22.5°;【拓展】如图4,∵AE 、AF 是∠BAO 和∠OAG 的角平分线,∴∠EAQ+∠FAQ=()111809022BAO GAO ∠+∠=⨯︒=︒, 即∠EAF=90°, 在Rt △AEF 中,若∠EAF=4∠E ,则∠E=22.5°,∵∠EOQ=∠E+∠EAQ ,∠BOQ=2∠EOQ ,∠BAO=2∠EAQ ,∴∠BOQ=2∠E+∠BAO ,又∠BOQ=∠BAO+∠ABO ,∴∠ABO=2∠E=45°;若∠EAF=4∠F ,则∠F=22.5°,则由【探究2】知:19022.52F ABO ∠=︒-∠=︒,∴ ∠ABO=135°, ∵∠ABO <∠BOQ=60°,∴此种情况不存在;若∠F=4∠E ,则∠E=18°,由第一种情况可知:∠ABO=2∠E ,∴∠ABO=36°;综上,∠ABO=45°或36°;故答案为:45°或36°.【点睛】 本题主要考查了角平分线的定义、三角形的内角和定理、平角的定义和三角形的外角性质等知识,具有一定的综合性,熟练掌握上述知识、灵活应用整体思想是解题的关键.29.(1)32x y =⎧⎨=⎩;(2)15 【分析】(1)把9x ﹣4y =19变形为3x +2(3x ﹣2y )=19,再用整体代换的方法解题; (2)将原方程组变形为22223(4)2472(4)36x y xy x y xy ⎧+-=⎨++=⎩①②这样的形式,再利用整体代换的方法解决.【详解】解:(1)解方程组3259419x y x y -=⎧⎨-=⎩①② 把②变形为3x +2(3x ﹣2y )=19,∵3x ﹣2y =5,∴3x+10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为32 xy=⎧⎨=⎩;(2)原方程组变形为22223(4)247 2(4)36x y xyx y xy⎧+-=⎨++=⎩①②①+②×2得,7(x2+4y2)=119,∴x2+4y2=17,把x2+4y2=17代入②得xy=2∴x2+4y2﹣xy=17﹣2=15答:x2+4y2﹣xy的值是15.【点睛】本题考查了二元一次方程组的解法,属延伸拓展题,正确掌握整体代换的求解方法是解题的关键.30.(1)这个相同的解为21xy=⎧⎨=⎩;(2)1【分析】(1)根据两个方程组有相同解可得方程组31x yx y+=⎧⎨-=⎩,解此方程组即可得出答案;(2)将(1)求解出的x和y的值代入其余两个式子,解出m和n的值,再代入m-n中即可得出答案.【详解】解:(1)∵关于x,y的二元一次方程组38x ymx ny+=⎧⎨+=⎩与14x ymx ny-=⎧⎨-=⎩有相同的解,∴31 x yx y+=⎧⎨-=⎩解得21 xy=⎧⎨=⎩∴这个相同的解为21 xy=⎧⎨=⎩(2)∵关于x,y的二元一次方程组38x ymx ny+=⎧⎨+=⎩与14x ymx ny-=⎧⎨-=⎩相同的解为21xy=⎧⎨=⎩,∴28 24 m nm n+=⎧⎨-=⎩解得32 mn=⎧⎨=⎩∴m-n=3-2=1【点睛】本题考查的是二元一次方程组的同解问题:将两组方程组中只含有x和y的方程组合到一起,求解即可.31.(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.【分析】(1)先设内角为x,根据题意可得:外角为12x,根据相邻内角和外角的关系可得:,x+12x=180°,从而解得:x=120°,即外角等于60°,根据外角和等于360°可得这个多边形的边数为:360 60=6,(2)先设内角为x,根据题意可得:外角为12x,根据相邻内角和外角的关系可得:,x+12x=180°,从而解得内角:x=120°,内角和=(6﹣2)×180°=720°.【详解】(1)设内角为x,则外角为12x,由题意得,x+12x =180°,解得:x=120°, 12x=60°,这个多边形的边数为:360 60=6,答:这个多边形是六边形,(2)设内角为x,则外角为12x,由题意得: x+12x =180°,解得:x=120°,答:这个多边形的每一个内角的度数是120度.内角和=(6﹣2)×180°=720°.【点睛】本题主要考查多边形内角和外角,多边形内角和以及多边形的外角和,解决本题的关键是要熟练掌握多边形内角和外角的关系以及多边形内角和.32.(1)18-;(2)2m6;(3)2x2﹣xy﹣3y2;(4)6x+10.【分析】(1)根据同底数幂的乘法法则进行计算;(2)先根据同底数幂的乘法法则和幂的乘方法则进行计算,再根据合并同类项法则进行计算;(3)根据多项式乘以多项式法则进行计算,再合并同类项;(4)先根据完全平方公式,平方差公式进行计算,再合并同类项.【详解】解:(1)2 1122⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭=312⎛⎫-⎪⎝⎭18=-;(2)m2•m4+(﹣m3)2=m6+m6=2m6;(3)(x+y)(2x﹣3y)=2x2﹣3xy+2xy﹣3y2=2x2﹣xy﹣3y2;(4)(x+3)2﹣(x+1)(x﹣1)=x2+6x+9﹣x2+1=6x+10.【点睛】此题考查的是幂的运算性质和整式的运算,掌握同底数幂的乘法法则、幂的乘方法则、多项式乘以多项式法则、完全平方公式和平方差公式是解决此题的关键.33.(1)a(a+1)(a﹣1);(2)﹣b(2a﹣b)2;(3)(x﹣y)(a+3b)(a﹣3b);(4)(y+2)2(y﹣2)2【分析】(1)直接提取公因式a,进而利用平方差公式分解因式得出答案;(2)直接提取公因式﹣b,进而利用完全平方公式分解因式即可;(3)直接提取公因式(x﹣y),进而利用平方差公式分解因式得出答案;(4)直接利用完全平方公式分解因式,再利用平方差公式分解因式即可.【详解】解:(1)a3﹣a=a(a2﹣1)=a(a+1)(a﹣1);(2)4ab2﹣4a2b﹣b3=﹣b(﹣4ab+4a2+b2)=﹣b(2a﹣b)2;(3)a 2(x ﹣y )﹣9b 2(x ﹣y )=(x ﹣y )(a 2﹣9b 2)=(x ﹣y )(a+3b )(a ﹣3b );(4)(y 2﹣1)2+6(1﹣y 2)+9=(y 2﹣1)2﹣6 (y 2﹣1)+9=(y 2﹣1﹣3)2=(y+2)2(y ﹣2)2.【点睛】此题主要考查因式分解的几种方法:提公因式法,公式法等,能熟练运用是解题关键.34.2021514- 【分析】根据题目信息,设S =1+5+52+53+…+52020,求出5S ,然后相减计算即可得解.【详解】解:设S =1+5+52+53+ (52020)则5S =5+52+53+54 (52021)两式相减得:5S ﹣S =4S =52021﹣1, 则202151.4S -= ∴1+5+52+53+54+…+52020的值为2021514-. 【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键. 35.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①②由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-,故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.36.(1)31y a =-+;(2)12a =-. 【分析】(1)通过消元的方法,消去x ,即可用a 的代数式表示y ;(2)令y x =-,再将x 、x -代入方程组,即可求解.【详解】解:(1)由43x y a -=-得:43x a y =-+,将其代入25x y a +=-得:4325a y y a -++=-,整理得:393y a =-+,即31y a =-+.故答案为31y a =-+.(2)若x 、y 互为相反数,则y x =- 再将x 、y 代入方程组:4325x x a x x a +=-⎧⎨-=-⎩, 解得12a =-. 故答案为12a =-. 【点睛】 本题考查次二元一次方程组的运用,难度一般,熟练掌握消元法是顺利解题的关键.。

相关文档
最新文档