2019-2020学年高中数学 第1章《三角函数》三角函数的应用教学案 苏教版必修4.doc
2019-2020年高考数学专题三:三角函数教案苏教版

32
2
y
sin(3x )
;
2
62
[ 思路分析 ] 略
[ 小结 ] 正弦曲线问题是三角函数性质、 图象问题中的重点内容, 必须熟练掌握。
上述问题的解答可以根据正弦曲线的“五点画法”在草稿纸上作出函数的草图
来验证答案或得到答案。
cos x sin x sin x cos x sin 2x
∴当时,
分析:在已知条件下, ( 1)、( 2)两处不能同时取等号。 y a2 (1 tan2 x) b 2(1 cot 2 x) a 2 b 2 ( a 2 tan2 x b 2 cot 2 x)
正解: a2 b2 2ab (a b) 2
2019-2020 年高考数学 专题三: 三角函数教案 苏教版
【考点分析】
1、掌握三角函数概念,其中以三角函数的定义学习为重点。 (理科:兼顾反三
角)
2、提高三角函数的恒等变形的能力, 关键是熟悉诱导公式、 同角关系、 和差角
公式及倍角公式等,掌握常见的变形方法。
3、解决三角函数中的求值问题,关键是把握未知与已知之间的联系。
2x 2k
(k Z)
即 分析:忽略了满足不等式的在第一象限,上述解法引进了。
正解:即,由得
3
2k
x
2k
(k Z)
4
4
4
∴ 2k x 2k
四、 忽视角的范围,盲目地套用正弦、余弦的有界性
例 4. 设、为锐角,且 +,讨论函数的最值。
(k Z) 2
错解 y 1 1 (cos 2 cos 2 ) 1 cos(
[ 思路分析 ] ∵ sin( 2 ) sin( 2 ) sin( 2 ) cos( 2 )
高中数学 第一章 三角函数 1.3.4 三角函数的应用学案 苏教版必修4

1.3.4 三角函数的应用[学习目标] 1.会用三角函数解决一些简单的实际问题.2.体会三角函数是描述周期变化现象的重要函数模型.[知识链接]1.数学模型是什么?什么是数学模型的方法?答 简单地说,数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的方法是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法. 2.上述的数学模型建立的一般程序是什么? 答 解决问题的一般程序是:(1)审题:逐字逐句的阅读题意,审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择适当函数模型; (3)求解:对所建立的数学模型进行分析研究得到数学结论; (4)还原:把数学结论还原为实际问题的解答. [预习导引]1.三角函数的周期性y =A sin(ωx +φ) (ω≠0)的周期是T =2π|ω|; y =A cos(ωx +φ) (ω≠0)的周期是T =2π|ω|; y =A tan(ωx +φ) (ω≠0)的周期是T =π|ω|. 2.函数y =A sin(ωx +φ)+k (A >0,ω>0)的性质 (1)y max =A +k ,y min =-A +k . (2)A =y max -y min2,k =y max +y min2.(3)ω可由ω=2πT确定,其中周期T 可观察图象获得.(4)由ωx 1+φ=0,ωx 2+φ=π2,ωx 3+φ=π,ωx 4+φ=32π,ωx 5+φ=2π中的一个确定φ的值. 3.三角函数模型的应用三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.要点一 三角函数图象的应用例1 作出函数y =|cos x |,x ∈R 的图象,判断它的奇偶性并写出其周期和单调区间. 解 y =|cos x |=⎩⎪⎨⎪⎧cos x ,x ∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k πk ∈Z ,-cos x ,x ∈⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k πk ∈Z .作出函数y =cos x 的图象后,将x 轴下方部分沿x 轴翻折到x 轴上方,如图:由图可知,y =|cos x |是偶函数,T =π,单调递增区间为⎣⎢⎡⎦⎥⎤-π2+k π,k π(k ∈Z ),单调递减区间为⎣⎢⎡⎦⎥⎤k π,π2+k π(k ∈Z ).规律方法 翻折法作函数图象(1)要得到y =|f (x )|的图象,只需将y =f (x )的图象在x 轴下方的部分沿x 轴翻折到上方,即“下翻上”.(2)要得到y =f (|x |)的图象,只需将y =f (x )的图象在y 轴右边的部分沿y 轴翻折到左边,即“右翻左”,同时保留右边的部分.跟踪演练1 函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.解 (1)f (x )的最小正周期为π,x 0=7π6,y 0=3.(2)因为x ∈⎣⎢⎡⎦⎥⎤-π2,-π12,所以2x +π6∈⎣⎢⎡⎦⎥⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.要点二 应用函数模型解题例2 已知电流I 与时间t 的关系为I =A sin(ωt +φ).(1)如图所示的是I =A sin(ωt +φ)(ω>0,|φ|<π2)在一个周期内的图象,根据图中数据求I =A sin(ωt +φ)的解析式;(2)如果t 在任意一段1150秒的时间内,电流I =A sin(ωt +φ)都能取得最大值和最小值,那么ω的最小正整数值是多少? 解 (1)由图知A =300,设t 1=-1900,t 2=1180, 则周期T =2(t 2-t 1)=2⎝ ⎛⎭⎪⎫1180+1900=175. ∴ω=2πT=150π.又当t =1180时,I =0,即sin ⎝ ⎛⎭⎪⎫150π·1180+φ=0, 而|φ|<π2,∴φ=π6.故所求的解析式为I =300sin ⎝ ⎛⎭⎪⎫150πt +π6.(2)依题意,周期T ≤1150,即2πω≤1150(ω>0),∴ω≥300π>942,又ω∈N *, 故所求最小正整数ω=943.规律方法 例题中的函数模型已经给出,观察图象和利用待定系数法可以求出解析式中的未知参数,从而确定函数解析式.此类问题解题关键是将图形语言转化为符号语言,其中,读图、识图、用图是数形结合的有效途径.跟踪演练2 弹簧挂着的小球做上下振动,它在时间t (s)内离开平衡位置(静止时的位置)的距离h (cm)由下面的函数关系式表示:h =3sin ⎝⎛⎭⎪⎫2t +π4.(1)求小球开始振动的位置;(2)求小球第一次上升到最高点和下降到最低点时的位置; (3)经过多长时间小球往返振动一次? (4)每秒内小球能往返振动多少次? 解 (1)令t =0,得h =3sin π4=322,所以开始振动的位置为⎝⎛⎭⎪⎫0,322.(2)由题意知,当h =3时,t =π8,即最高点为⎝ ⎛⎭⎪⎫π8,3;当h =-3时,t =5π8,即最低点为⎝ ⎛⎭⎪⎫5π8,-3.(3)T =2π2=π≈3.14,即每经过约3.14秒小球往返振动一次.(4)f =1T≈0.318,即每秒内小球往返振动约0.318次.要点三 构建函数模型解题例 3 某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度y (米)随着时间t (0≤t ≤24,单位:小时)而周期性变化,每天各时刻t 的浪高数据的平均值如下表:t (时) 0 3 6 9 12 15 18 21 24 y (米)1.01.41.00.61.01.40.90.51.0(1)(2)观察图,从y =at +b ,y =A sin(ωt +φ)+b ,y =A cos(ωt +φ)中选择一个合适的函数模型,并求出该拟合模型的解析式;(3)如果确定在一天内的7时至19时之间,当浪高不低于0.8米时才进行训练,试安排恰当的训练时间.解 (1)描出所给点如图所示:(2)由(1)知选择y =A sin(ωt +φ)+b 较合适. 令A >0,ω>0,|φ|<π.由图知,A =0.4,b =1,T =12,所以ω=2πT =π6.把t =0,y =1代入y =0.4sin(π6t +φ)+1,得φ=0.故所求拟合模型的解析式为y =0.4sin π6t +1(0≤t ≤24).(3)由y =0.4sin π6t +1≥0.8,得sin π6t ≥-12,则-π6+2k π≤πt 6≤7π6+2k π(k ∈Z ),即12k -1≤t ≤12k +7(k ∈Z ), 注意到t ∈[0,24],所以0≤t ≤7,或11≤t ≤19,或23≤t ≤24.再结合题意可知,应安排在11时到19时训练较恰当.规律方法 数据拟合问题实质上是根据题目提供的数据画出简图,求相关三角函数的解析式进而研究实际问题.在求解具体问题时需弄清A ,ω,φ的具体含义,只有把握了这三个参数的含义,才可以实现符号语言(解析式)与图形语言(函数图象)之间的相互转化. 处理曲线拟合与预测问题时,通常需要以下几个步骤: 1.根据原始数据给出散点图.2.通过考察散点图,画出与其“最贴近”的直线或曲线,即拟合直线或拟合曲线. 3.根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.4.利用函数关系式,根据条件对所给问题进行预测和控制,以便为决策和管理提供依据. 跟踪演练3 某港口水深y (米)是时间t (0≤t ≤24,单位:小时)的函数,下面是水深数据:t (小时) 0 3 6 9 12 15 18 21 24 y (米)10.013.09.97.010.013.010.17.010.0+B 的图象.(1)试根据数据表和曲线,求出y =A sin ωt +B 的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)解 (1)从拟合的曲线可知,函数y =A sin ωt +B 的一个周期为12小时,因此ω=2πT =π6.又y min =7,y max =13,∴A =12(y max -y min )=3,B =12(y max +y min )=10.∴函数的解析式为y =3sin π6t +10 (0≤t ≤24).(2)由题意,得水深y ≥4.5+7, 即y =3sin π6t +10≥11.5,t ∈[0,24],∴sin π6t ≥12,π6t ∈⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6,k =0,1,∴t ∈[1,5]或t ∈[13,17],所以,该船在1∶00至5∶00或13∶00至17∶00能安全进港. 若欲于当天安全离港,它在港内停留的时间最多不能超过16小时.1.方程|x |=cos x 在(-∞,+∞)内有________个根. 答案 22.如图所示,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是________.答案 ③解析 d =f (l )=2sin l2.3.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f (x )=A sin (ωx +φ)+B (A >0,ω>0,|φ|<π2)的模型波动(x 为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f (x )的解析式为__________________.答案 f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+7解析 由条件可知⎩⎪⎨⎪⎧A +B =9,-A +B =5,∴B =7,A =2.又T =2(7-3)=8,∴ω=π4, 令3×π4+φ=π2,∴φ=-π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+7.4.如图所示,一个摩天轮半径为10 m ,轮子的底部在地面上2 m 处,如果此摩天轮按逆时针转动,每30 s 转一圈,且当摩天轮上某人经过点P 处(点P 与摩天轮中心高度相同)时开始计时.(1)求此人相对于地面的高度关于时间的关系式;(2)在摩天轮转动的一圈内,约有多长时间此人相对于地面的高度不小于17 m.解 (1)设在t s 时,摩天轮上某人在高h m 处.这时此人所转过的角为2π30 t =π15t ,故在t s 时,此人相对于地面的高度为h =10sin π15t +12(t ≥0).(2)由10sin π15t +12≥17,得sin π15t ≥12,则52≤t ≤252.故此人有10 s 相对于地面的高度不小于17 m.1.三角函数模型是研究周期现象最重要的数学模型.三角函数模型在研究物理、生物、自然界中的周期现象(运动)有着广泛的应用. 2.三角函数模型构建的步骤(1)收集数据,观察数据,发现是否具有周期性的重复现象. (2)制作散点图,选择函数模型进行拟合. (3)利用三角函数模型解决实际问题.(4)根据问题的实际意义,对答案的合理性进行检验.一、基础达标1.动点A (x ,y )在圆x 2+y 2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t =0时,点A 的坐标是(12,32),则当0≤t ≤12时,动点A 的纵坐标y 关于t (单位:秒)的函数的单调递增区间是________. 答案 [0,1]和[7,12]解析 ∵T =12,∴ω=2π12=π6,从而设y 关于t 的函数为y =sin(π6t +φ).又∵t =0时,y =32,∴可取φ=π3,∴y =sin(π6t +π3), ∴当2k π-π2≤π6t +π3≤2k π+π2(k ∈Z ),即12k -5≤t ≤12k +1(k ∈Z )时,函数递增.∵0≤t ≤12,∴函数的单调递增区间为[0,1]和[7,12].2.一物体相对于某一固定位置的位移y (cm)和时间t (s)之间的一组对应值如下表所示:t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 y-4.0-2.80.02.84.02.80.0-2.8-4.0答案 y =-4.0cos 52πt解析 设y =A sin(ωx +φ),则A =4.0,ω=2πT =2π0.8=5π2,又t =0时,y =-4.0,∴-4.0=4.0sin φ,∴可取φ=-π2,∴y =4.0sin ⎝ ⎛⎭⎪⎫52πt -π2,即y =-4.0cos 52πt .3.下图显示相对于平均海平面的某海弯的水面高度h (米)在某天24小时的变化情况,则水面高度h 关于从夜间零时开始的小时数t 的函数关系式为________.答案 h =6sin ⎝ ⎛⎭⎪⎫π6t +π⎝⎛⎭⎪⎫或h =-6sin π6t4.设y =f (t )是某港口水的深度y (米)关于时间t (时)的函数,其中0≤t ≤24.下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:t 0 3 6 9 12 15 18 21 24 y1215.112.19.111.914.911.98.912.1下面的函数中,最能近似表示表中数据间对应关系的函数是________. ①y =12+3sin π6t ,t ∈[0,24];②y =12+3sin ⎝ ⎛⎭⎪⎫π6t +π,t ∈[0,24]; ③y =12+3sin π12t ,t ∈[0,24];④y =12+3sin ⎝ ⎛⎭⎪⎫π12t +π2,t ∈[0,24].答案 ①解析 在给定的四个选项①②③④中我们不妨代入t =0及t =3,容易看出最能近似表示表中数据间对应关系的函数是①.5.函数y =2sin ⎝ ⎛⎭⎪⎫m 3x +π3的最小正周期在⎝ ⎛⎭⎪⎫23,34内,则正整数m 的值是________. 答案 26,27,28解析 ∵T =6πm ,又∵23<6πm <34,∴8π<m <9π,且m ∈Z ,∴m =26,27,28.6.函数y =f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b ]上的面积.已知函数y =sin nx 在[0,πn ]上的面积的2n(n ∈N *),则(1)函数y =sin 3x 在[0,2π3]上的面积为________;(2)函数y =sin(3x -π)+1在[π3,4π3]上的面积为________.答案 (1)43 (2)π+23解析 (1)取n =3,由已知,函数y =sin 3x 在[0,π3]上的面积为23.∵函数y =sin 3x 的周期为2π3,∴函数y =sin 3x 在(π3,2π3)上的面积也是23,∴函数y =sin 3x 在[0,2π3]上的面积为43.(2)y =sin(3x -π)+1=-sin 3x +1,作这个函数在区间[π3,4π3]上的图象如图所示:由(1)知S 1=S 2=S 3=23,直线x =π3,x =4π3,y =1及x 轴所围成的矩形面积为π.将S 2割下补在S 3处,则图中阴影部分的面积为π+23,∴函数y =sin(3x -π)+1在[π3,4π3]上的面积为π+23.7.如图所示,某地夏天从8~14时的用电量变化曲线近似满足函数y =A sin(ωx +φ)+b . (1)求这一天的最大用电量及最小用电量; (2)写出这段曲线的函数解析式.解 (1)最大用电量为50万kW·h,最小用电量为30万kW·h.(2)观察图象可知从8~14时的图象是y =A sin(ωx +φ)+b 的半个周期的图象, ∴A =12×(50-30)=10,b =12×(50+30)=40.∵12×2πω=14-8,∴ω=π6.∴y =10sin ⎝ ⎛⎭⎪⎫π6x +φ+40. 将x =8,y =30代入上式,解得φ=π6.∴所求解析式为y =10sin ⎝ ⎛⎭⎪⎫π6x +π6+40,x ∈[8,14].二、能力提升8.已知A 1,A 2,…A n 为凸多边形的内角,且lgsin A 1+lgsin A 2+……+lgsin A n =0,则这个多边形是________. 答案 矩形解析 由题意,得sin A 1·sin A 2·…·sin A n =1, ∴sin A 1=sin A 2=…=sin A n =1, ∴A 1=A 2=…=A n =90°.根据多边形的内角和得n ×90°=(n -2)×180°,解得n =4.9.已知某种交流电电流I (A)随时间t (秒)的变化规律可以用函数I =52sin ⎝ ⎛⎭⎪⎫100πt -π2表示,t ∈[0,+∞),则这种交流电电流在0.5秒内往复运行________次. 答案 25解析 周期T =2π100π=150(秒),从而频率为每秒50次,0.5秒往复运行25次.10.电流强度I (安培)随时间t (秒)变化的函数I =A sin(ωt +φ)的图象如图所示,则t =7120秒时的电流强度为______.答案 0解析 根据图象得A =10,由⎩⎪⎨⎪⎧1300ω+φ=π2,4300ω+φ=32π,∴⎩⎪⎨⎪⎧ω=100π,φ=π6,∴I =10sin ⎝⎛⎭⎪⎫100πt +π6.当t =7120秒时,I =10sin 6π=0.11.某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t =0时,点A 与钟面上标12的点B 重合,将A 、B 两点的距离d (cm)表示成t (s)的函数,则d =__________,其中t ∈[0,60]. 答案 10sin πt60解析 将解析式可写为d =A sin(ωt +φ)的形式,由题意易知A =10,当t =0时,d =0,得φ=0;当t =30时,d =10,可得ω=π60,所以d =10sin πt60.12.如图,一个水轮的半径为4 m ,水轮圆心O 距离水面2 m ,已知水轮每分钟转动5圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计算时间. (1)将点P 距离水面的高度z (m)表示为时间t (s)的函数; (2)点P 第一次到达最高点大约需要多少时间?解 (1)如图所示建立直角坐标系,设角φ⎝ ⎛⎭⎪⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角.OP 每秒钟内所转过的角为5×2π60=π6. 则OP 在时间t (s)内所转过的角为π6t .由题意可知水轮逆时针转动, 得z =4sin ⎝⎛⎭⎪⎫π6t +φ+2.当t =0时,z =0,得sin φ=-12,即φ=-π6.故所求的函数关系式为z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2.(2)令z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2=6,得sin ⎝⎛⎭⎪⎫π6t -π6=1,令π6t -π6=π2,得t =4, 故点P 第一次到达最高点大约需要4 s. 三、探究与创新13.已知某海滨浴场海浪的高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作:y =f (t ),下表是某日各时的浪高数据:(1)根据以上数据,求函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式; (2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动? 解 (1)由表中数据知周期T =12,∴ω=2πT =2π12=π6,由t =0,y =1.5,得A +b =1.5. 由t =3,y =1.0,得b =1.0. ∴A =0.5,b =1,∴y =12cos π6t +1.(2)由题知,当y >1时才可对冲浪者开放 ∴12cos π6t +1>1, ∴cos π6t >0,∴2k π-π2<π6t <2k π+π2,k ∈Z即12k -3<t <12k +3,k ∈Z .①∵0≤t ≤24,故可令①中k 分别为0,1,2, 得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8:00至晚上20:00之间,有6个小时时间可供冲浪者运动,即上午9:00至下午3:00.。
2019_2020学年高中数学第1章三角函数1.3.4三角函数的应用讲义苏教版必修4

1.3.4 三角函数的应用三角函数模型的应用 (1)三角函数模型的应用①根据实际问题的图象求出函数解析式.②将实际问题抽象为与三角函数有关的简单函数模型. ③利用收集的数据,进行函数拟合,从而得到函数模型. (2)解答三角函数应用题的一般步骤思考:在函数y =A sin(ωx +φ)+b (A >0,ω>0)中,A ,b 与函数的最值有何关系? 提示:A ,b 与函数的最大值y max ,最小值y min 关系如下: (1)y max =A +b ,y min =-A +b ; (2)A =y max -y min2,b =y max +y min2.1.思考辨析(1)函数y =sin x 在⎝⎛⎭⎪⎫0,π2内是增函数.( )(2)函数y =3sin x -1的最大值为3.( )(3)直线x =π是函数y =sin x 的一条对称轴.( ) (4)函数y =sin [π(x -1)]的周期为2.( ) [答案] (1)√ (2)× (3)× (4)√ 2.求下列函数的周期:(1)y =A sin(ωx +φ)(ω≠0)的周期是T =________; (2)y =A cos(ωx +φ)(ω≠0)的周期是T =________; (3)y =A tan(ωx +φ)(ω≠0)的周期是T =________; [答案] (1)2π|ω| (2)2π|ω| (3)π|ω|3.某人的血压满足函数关系式f (t )=24sin 160πt +110,其中f (t )为血压,t 为时间,则此人每分钟心跳的次数为________.80 [∵T =2π160π=180,∴f =1T=80.]三角函数在物理学中的应用【例1】 已知电流I =A sin(ωt +φ)A >0,ω>0,|φ|<π2在一个周期内的图象如图.(1)根据图中数据求I =A sin(ωt +φ)的解析式;(2)如果t 在任意一段1150秒的时间内,电流I =A sin(ωt +φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?思路点拨:可先由图象确定电流I 的解析式,再由函数的性质确定ω的值. [解] (1)由图知,A =300.T2=1180-⎝ ⎛⎭⎪⎫-1900=1150, ∴T =175,∴ω=2πT=150π.I =300sin(150πt +φ).由⎝ ⎛⎭⎪⎫-1900,0为第一个关键点, ∴150π·⎝ ⎛⎭⎪⎫-1900+φ=0,∴φ=π6, ∴所求解析式为I =300sin ⎝⎛⎭⎪⎫150πt +π6,t ∈[0,+∞).(2)由题意T ≤1150,即2πω≤1150,∴ω≥300π≈942.5,∴所求ω的最小正整数值是943.1.三角函数模型在物理中的应用主要体现在简谐运动、电流强度、单摆、弹簧振子等随时间变化的问题,解决这类问题必须要清楚振幅、频率、周期、初相、相位的实际意义和表示方法.2.将图形语言转化成符号语言,根据图形信息利用待定系数法,求函数模型y =A sin(ωx +φ)中的未知参数后,再由解析式及性质解决具体问题.1.已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移s (cm)随时间t (s)的变化规律为s =4sin ⎝ ⎛⎭⎪⎫2t +π3,t ∈[0,+∞).用“五点法”作出这个函数的简图,并回答下列问题:(1)小球在开始振动(t =0)时的位移是多少?(2)小球上升到最高点和下降到最低点时的位移分别是多少? (3)经过多长时间小球往复振动一次? [解] 列表如下,(1)将t =0代入s =4sin ⎝ ⎛⎭⎪⎫2t +π3,得s =4sin π3=23,所以小球开始振动时的位移是2 3 cm.(2)小球上升到最高点和下降到最低点时的位移分别是4 cm 和-4 cm. (3)因为振动的周期是π,所以小球往复振动一次所用的时间是π s.三角函数在实际生活中的应用【例2】 如图所示,游乐场中的摩天轮匀速转动,每转动一圈需要12分钟,其中心O 距离地面40.5米,半径为40米,如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请回答下列问题:(1)求出你与地面的距离y (米)与时间t (分钟)的函数关系式; (2)当你第4次距离地面60.5米时,用了多长时间? 思路点拨:审清题意→建立函数模型→解答函数模型 →得出结论[解] (1)可以用余弦函数来表示该函数的关系式,由已知,可设y =40.5-40cos ωt ,t ≥0,由周期为12分钟可知,当t =6时,摩天轮第1次到达最高点,即此函数第1次取得最大值,所以6ω=π,即ω=π6.所以y =40.5-40cos π6t (t ≥0).(2)设转第1圈时,第t 0分钟时距地面60.5米,由60.5=40.5-40cos π6t 0,得cos π6t 0=-12,所以π6t 0=2π3或π6t 0=4π3,解得t 0=8或4.所以t =8分钟时,第2次距地面60.5米,故第4次距离地面60.5米时,用了12+8=20(分钟).三角函数在实际生活中的应用问题一般分两种类型(1)已知函数模型,利用题目中提供的数据和有关性质解决问题,其关键是求出函数解析式中的参数,将实际问题转化为三角方程或三角不等式,然后解方程或不等式,可使问题得以解决.(2)把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是建模.2.已知某游乐园内摩天轮的中心O 点距地面的高度为50 m ,摩天轮做匀速转动,摩天轮上的一点P 自最低点A 点起,经过t min 后,点P 的高度h =40·sin ⎝ ⎛⎭⎪⎫π6t -π2+50(单位:m),那么在摩天轮转动一圈的过程中,点P 的高度在距地面70 m 以上的时间将持续________分钟.4 [依题意,即40sin ⎝ ⎛⎭⎪⎫π6t -π2+50≥70,即cos π6t ≤-12,从而在一个周期内持续的时间为2π3≤π6t ≤4π3,4≤t ≤8,即持续时间为4分钟.]三角函数的数据拟合问题[探究问题]1.在利用已收集到的数据解决实际问题时,我们首先要对数据如何处理? 提示:先画样本数据散点图,通过分析其变化趋势确定合适的函数模型. 2.当散点图具有什么特征时,可以用正(余)弦函数模型来解决实际问题.提示:当散点图具有波浪形的特征时,便可考虑应用正(余)弦函数模型来解决实际问题. 【例3】 某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度y (米)随着时间t (0≤t ≤24,单位:小时)而周期性变化,每天各时刻t 的浪高数据的平均值如下表:(2)观察图,从y =at +b ,y =A sin(ωt +φ)+b ,y =A cos(ωt +φ)中选择一个合适的函数模型,并求出该拟合模型的解析式;(3)如果确定在一天内的7时至19时之间,当浪高不低于0.8米时才进行训练,试安排恰当的训练时间.思路点拨:画散点图―→选择函数模型―→解决实际问题 [解] (1)描出所给点如图所示:(2)由(1)知选择y =A sin(ωt +φ)+b 较合适. 令A >0,ω>0,|φ|<π. 由图知,A =0.4,b =1,T =12, 所以ω=2πT =π6.把t =0,y =1代入y =0.4sin ⎝ ⎛⎭⎪⎫π6t +φ+1,得φ=0. 故所求拟合模型的解析式为y =0.4sin π6t +1(0≤t ≤24).(3)由y =0.4sin π6t +1≥0.8,则sin π6t ≥-12,则-π6+2k π≤πt 6≤7π6+2k π(k ∈Z ),即12k -1≤t ≤12k +7(k ∈Z ),注意到t ∈[0,24],所以0≤t ≤7,或11≤t ≤19,或23≤t ≤24. 再结合题意可知,应安排在11时到19时训练较恰当.用三角函数解决实际问题的关键在于如何把实际问题三角函数模型化,而散点图起了关键的作用.解决这类题目的步骤如下:(1)搜集实际问题的数据,作出“散点图”;(2)观察散点图,用三角函数模型拟合散点图,得到函数模型; (3)通过图象或解析式研究函数的性质; (4)用得到的性质解决提出的实际问题.3.某港口的水深y (m)是时间t (0≤t ≤24,单位:h)的函数,下面是水深数据:t +b 的图象.(1)试根据以上数据,求出y =A sin ωt +b 的表达式;(2)一般情况下,船舶航行时,船底离海底的距离不少于4.5 m 时是安全的,如果某船的吃水深度(船底与水面的距离)为7 m ,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,则在港内停留的时间最多不能超过多长时间?(忽略进出港所用的时间)[解] (1)由拟合曲线可知,函数y =A sin ωt +b 在一个周期内由最大变到最小需9-3=6(h),此为半个周期,∴函数的最小正周期为12 h ,因此,2πω=12,ω=π6.又∵当t =0时,y =10; 当t =3时,取最大值13. ∴b =10,A =13-10=3.∴所求函数表达式为y =3sin π6t +10.(2)由于船的吃水深度为7 m ,船底与海底的距离不少于4.5 m ,故船舶在航行时水深y 应大于等于7+4.5=11.5(m).由拟合曲线可知,一天24 h ,水深y 变化两个周期. 令y =3sin π6t +10≥11.5,可得sin π6t ≥12.∴2k π+π6≤π6t ≤2k π+5π6(k ∈Z ),∴12k +1≤t ≤12k +5(k ∈Z ). 取k =0,则1≤t ≤5; 取k =1,则13≤t ≤17;取k =2时,则25≤t ≤29(不合题意).从而可知,该船在1点到5点或者13点到17点两个时间段可安全进港;船舶要在一天之内在港口停留时间最长,就应从凌晨1点进港,而下午的17点前离港,在港内停留的时间最长为16小时.教师独具1.本节课的重点是三角函数在实际问题中的应用,难点是三角函数在实际问题中的应用以及建立三角函数模型解决实际问题.2.本节课要牢记解三角函数应用问题的基本步骤 (1)审清题意读懂题目中的“文字”、“图象”、“符号”等语言,理解所反映的实际问题的背景,提炼出相应的数学问题.(2)建立函数模型整理数据,引入变量,找出变化规律,运用已掌握的三角函数知识、物理知识及其他相关知识建立关系式,即建立三角函数模型.(3)解答函数模型利用所学的三角函数知识解答得到的三角函数模型,求得结果. (4)得出结论将所得结果翻译成实际问题的答案.3.本节课要重点掌握三角函数模型的三类简单应用 (1)三角函数在物理中的应用. (2)三角函数在实际问题中的应用. (3)建立三角函数模型解决实际问题.1.如图为某简谐运动的图象,这个简谐运动往返一次需要的时间是( )A .0.2 sB .0.4 sC .0.8 sD .1.2 sC [由图象知周期T =0.8-0=0.8,则这个简谐运动需要0.8 s 往返一次.] 2.某地一天内的温度变化曲线满足y =3sin(0.2x +25)+15,则在一天内,该地的最大温差是________.6 [因为函数y =3sin(0.2x +25)+15的振幅为A =3,可以判断该地的最大温差是2A =6.]3.电流I 随时间t 变化的关系式是I =A sin ωt ,t ∈[0,+∞),若ω=10π rad/s ,A =5,则电流I 变化的周期是________,当t =160s 时,电流I =________.15 52 [由已知得I =5sin 10πt ,∴T =2π10π=15. 当t =160 s 时,I =5sin 10π·160=5sin π6=52.]4.一根细线的一端固定,另一端悬挂一个小球,当小球来回摆动时,离开平衡位置的位移S (单位:cm)与时间t (单位:s)的函数关系是S =6sin ⎝⎛⎭⎪⎫2πt +π6.(1)画出它的图象; (2)回答以下问题:①小球开始摆动(即t =0)时,离开平衡位置多少? ②小球摆动时,离开平衡位置的最大距离是多少?③小球来回摆动一次需要多少时间? [解] (1)周期T =2π2π=1(s).列表:(2)①小球开始摆动(即t =0),离开平衡位置为3 cm. ②小球摆动时离开平衡位置的最大距离是6 cm. ③小球来回摆动一次需要1 s(即周期).。
2019-2020年高中数学《三角函数的应用》教案1苏教版必修4

2019-2020年高中数学《三角函数的应用》教案1苏教版必修4【三维目标】:一、知识与技能1. 会由函数的图像讨论其性质;能解决一些综合性的问题。
2.会根据函数图象写出解析式;能根据已知条件写出中的待定系数.3.培养学生用已有的知识解决实际问题的能力二、过程与方法1. 通过具体例题和学生练习,使学生能根据函数图象写出解析式;能根据已知条件写出中的待定系数.2.并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
三、情感、态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
【教学重点与难点】:重点:待定系数法求三角函数解析式;难点:根据函数图象写解析式;根据已知条件写出中的待定系数.【学法与教学用具】:1. 学法:2. 教学用具:多媒体、实物投影仪.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题复习:1.由函数的图象到的图象的变换方法:方法一:先移相位,再作周期变换,再作振幅变换;方法二:先作周期变换,再作相位变换,再作振幅变换。
2.如何用五点法作的图象?3.对函数图象的影响作用二、研探新知函数[(,),0),sin(+∞∈+=x x A y ϕω其中的物理意义:函数表示一个振动量时::这个量振动时离开平衡位置的最大距离,称为“振幅”:往复振动一次所需的时间,称为“周期”:单位时间内往返振动的次数,称为“频率”:称为相位:x = 0时的相位,称为“初相”三、质疑答辩,排难解惑,发展思维1.根据函数图象求解析式例1 已知函数(,)一个周期内的函数图象,如下图 所示,求函数的一个解析式。
解:由图知:函数最大值为,最小值为,又∵,∴,由图知,∴,∴,又∵, ∴图象上最高点为,∴,即,可取,所以,函数的一个解析式为.2.由已知条件求解析式例2 已知函数(,,)的最小值是, 图象上相邻两个最高点与最低点的横坐标相差,且图象经过点,求这个函数的解析式。
高中数学 第1章(三角函数)函数y=sin(wx+f)的图象(2)教学案 苏教版必修4 教学案

某某省射阳县盘湾中学高中数学 第1章《三角函数》函数y=sin(wx+f)的图象(2)教学案 苏教版必修4教学目标:会用“五点法”画出函数y= Asin(x ωϕ+)的简图,能由正弦曲线通过平移、伸缩变换得到y= Asin(x ωϕ+)的图象,并在这个过程中认识到函数y=sinx 与y= Asin(x ωϕ+)的联系。
能根据图象确定函数解析式。
教学重点:函数y= Asin(x ωϕ+)的图象教学难点:函数y= Asin(x ωϕ+)的图象与正弦曲线的关系教学过程:一、问题情境:问题:函数y=3sin(2x 3π-)的振幅、周期、初相分别为多少?其图象可由正弦曲线如何变换得到?二、学生活动:探究:分别可以通过怎样的变换使得A 、ω、ϕ发生变化?方法:y=sinx 的图象-----------------------------→y=sin(x 3π-)的图象 -----------------------------------------→y=sin(2x 3π-)的图象 ----------------------------------------→y=3sin(2x 3π-)的图象 思考:你还有其它变换方法吗?三、知识建构:函数y= Asin(x ωϕ+)的图象可由正弦曲线变换得到:四、知识运用:例1、不用计算机和图形计算器,画出函数y=3sin(2x 3π-)的简图小结:例2、某地一天从6时至14时的温度变化曲线近似地满足y= Asin(x ωϕ+)+b ,(1)求这段时间的最大温差(2)写出这段曲线的函数解析式。
小结:练习: 书P40 4、5、6、7五、回顾反思:知识: 思想方法:六、作业布置:书P45 8(1)、9。
2019-2020年高中数学第一章第14课时三角函数的应用教学案苏教版必修4

2019-2020年高中数学第一章第14课时三角函数的应用教学案苏教版必修4教学目标:1.能应用三角函数的图象与性质解决有关实际问题;2.体会三角函数是描述周期现象的重要数学模型.教学重点:三角函数的应用教学过程:Ⅰ.问题情境Ⅱ.建构数学Ⅲ.数学应用例1:在下图中点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3cm,周期为3s,且物体向右运动到距平衡位置最远处开始计时.(1)求物体对平衡位置的位移(cm)和时间(s)之间的函数关系式;(2)求物体在s时的位置.练习:在下图中点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为4cm,周期为4s,且物体向右运动到平衡位置处开始计时.(1)求物体对平衡位置的位移(cm)和时间(s)之间的函数关系式;(2)求物体在s时的位置.例2:一半径为4m的水轮,水轮圆心O距离水面2m,已知水轮每分钟转动4圈,如果水轮上点P从水中浮现时开始计时.(1)将点P距离水面的高度z(m)表示为时间t(s)的函数;(2)点P第一次到达最高点大约要多长时间?练习:一半径为4m的水轮,水轮圆心O距离水面m,已知水轮每分钟转动6圈,如果水轮上点P从水中浮现时开始计时.(1)将点P距离水面的高度z(m)表示为时间t(s)的函数;(2)点P第一次到达最高点大约要多长时间?Ⅳ.课时小结Ⅴ.课堂检测Ⅵ.课后作业书本P45 9,102019-2020年高中数学第一章第14课时空间几何体的体积教学案苏教版必修2教学目标:1. 通过对柱、锥、台体及球的研究,了解柱、锥、台及球的体积的求法,能运用公式求解;2. 培养学生空间想象能力和思维能力;3. 通过学习,使学生感受到几何体体积的求解过程,对自己空间思维能力影响。
从而增强学习的积极性.教学重点:柱、锥、台及球的体积教学过程:Ⅰ.问题情境在过去的学习中,我们已经接触过一些几何体的体积的求法及公式,哪些几何体可以求出体积?Ⅱ.建构数学1、柱、锥、台的体积公式2、球的体积及表面积公式Ⅲ.数学应用例1.有一堆相同规格的六角螺帽毛坯,共1000,毛坯底面正六边形边长为12,高是10,内孔直径是10那么这堆毛坯约多少个?练习.棱台的两个底面面积分别是245和80,截得这个棱台的棱锥的高为35,求这个棱台的体积.例2.一种奖杯由正四棱台、长方体及球(至下而上)组成,其中正四棱台上下底面边长分别为14和10,高为5,长方体的长、宽、高分别为6、8、20,球的直径为6,该奖杯的体积为多少.练习.两个平行于圆锥底面的平面将圆锥的高分成相等的三段,求圆锥被分成的三部分的体积之比.Ⅳ. 课时小结Ⅴ. 课堂检测Ⅵ.课后作业书本P57 2,4,5,6。
2019-2020年高中数学 1.3.4《三角函数的应用》教案 苏教版必修4

2019-2020年高中数学 1.3.4《三角函数的应用》教案苏教版必修4一、教学目标:1.掌握用待定系数法求三角函数解析式的方法;2.培养学生用已有的知识解决实际问题的能力;3.能用计算机处理有关的近似计算问题.二、重点难点:重点是待定系数法求三角函数解析式;难点是选择合理数学模型解决实际问题.三、教学过程:【创设情境】三角函数能够模拟许多周期现象,因此在解决实际问题中有着广泛的应用.【自主学习探索研究】1.学生自学完成P42例1点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3cm,周期为3s,且物体向右运动到距平衡位置最远处时开始计时.(1)求物体对平衡位置的位移x(cm)和时间t(s)之间的函数关系;(2)求该物体在t=5s时的位置.(教师进行适当的评析.并回答下列问题:据物理常识,应选择怎样的函数式模拟物体的运动;怎样求和初相位θ;第二问中的“t=5s时的位置”与函数式有何关系?)2.讲解p43例2(题目加已改变)2.讲析P44例3海水受日月的引力,在一定的时候发生涨落的现象叫潮汐,一般的早潮叫潮,晚潮叫汐.在通常的情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮是返回海洋.下面给出了某港口在某季节每天几个时刻的水深.(1)选用一个三角函数来近似描述这个港口的水深与时间的函数关系,并给出在整点时的近似数值.(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与海底的距离),该船何时能进入港口?在港口能呆多久?(3)若船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?问题:(1)选择怎样的数学模型反映该实际问题?(2)图表中的最大值与三角函数的哪个量有关?(3)函数的周期为多少?(4)“吃水深度”对应函数中的哪个字母?3.学生完成课本P45的练习1,3并评析.【提炼总结】从以上问题可以发现三角函数知识在解决实际问题中有着十分广泛的应用,而待定系数法是三角函数中确定函数解析式最重要的方法.三角函数知识作为数学工具之一,在以后的学习中将经常有所涉及.学数学是为了用数学,通过学习我们逐步提高自己分析问题解决问题的能力.四、布置作业:P46 习题1.3第14、15题2019-2020年高中数学 1.3.4三角函数的应用练习(含解析)苏教版必修4情景:如图,某大风车的半径为2 m,每12 s旋转一周,它的最低点O离地面0.5 m,风车圆周上一点A从最低点O开始,运动t(s)后与地面的距离为h(m).思考:你能求出函数h=f(t)的关系式吗?你能画出它的图象吗?1.已知函数类型求解析式的方法是________.答案:待定系数法2.在y=A sin(ωx+φ)的解析式确定中最关键是确定________,可通过________来确定.答案:ω周期3.三角函数平移变换改变图象的________,伸缩变换改变图象的________.答案:位置形状4.函数y =f (x )与y =f (|x |)图象关系是___________________________________________________________ __________________________________________________________.答案:y =f (x )在y 轴右侧的图象关于y 轴对称的图象,连同y =f (x )在y 轴右侧的图象在一起,即是y =f (|x |)的图象(也包括与y 轴的交点)5.函数y =f (x )与y =|f (x )|图象关系是___________________________________________________________ __________________________________________________________.答案:y =f (x )在x 轴下方的图象关于x 轴对称的图象,连同y =f (x )在x 轴上方的图象在一起,即是y =|f (x )|的图象(包括图象与x 轴交点)6.三角函数可以作为描述现实世界中________现象的一种数学模型. 答案:周期7.y =|sin x |是以________为周期的波浪型曲线. 答案:π8.在三角函数f (x )=A sin(ωx +φ)+b ,(A >0,ω>0)中,f (x )的最大值为M ,最小值为m ,则A =________,b =________,周期T =________,φ的值要利用________求得.答案:M -m 2M +m 2 2πω代点法9.用数学知识研究生活中的数学问题,应首先采集________,然后根据数据作出________,通过计算归纳函数关系式,再去研究它的性质,解决实际问题时最容易忽视的是__________________________________________________________.答案:数据 分析 实际问题中自变量的取值范围10.解三角函数的应用问题的基本步骤是________________________________________________________、 ______________、______________.答案:阅读理解,审清题意 收集整理数据,建立数学模型依据模型解答,求出结果 将所得结果转化成实际问题三角函数模型的应用三角函数的应用主要是其性质的应用,特别是三角函数周期性的应用,一些物理现象如单摆、匀速圆周运动等均用到三角函数的知识.建模的一般步骤数学应用题一般文字叙述较长,反映的事件背景新颖,知识涉及面广,这就要求有较强的阅读理解能力、捕捉信息的能力、归纳抽象的能力.解决此类函数应用题的基本步骤是:第一步,阅读理解,审清题意,读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景,在此基础上,分析出已知什么,求什么,从中提炼出相应的数学问题.第二步,根据所给模型,列出函数关系式.根据已知条件和数量关系,建立函数关系式,在此基础上将实际问题转化为一个函数问题.第三步,利用数学的方法将得到的常规函数问题(即数学模型)予以解答,求得结果.第四步,再将所得结论转译成原有问题的解答.基础巩固1.如果音叉发出的声波可用f(x)=0.002sin 520πt描述,那么音叉声波的频率是________.答案:2602.已知函数y =2sin ωx (ω>0)的图象与直线y +2=0的相邻两个公共点之间的距离为2π3,则ω的值为________. 答案:33.y =|sin 2x |的最小正周期是________. 答案:π24.下图是函数y =2sin(ωx +φ)⎝⎛⎭⎪⎫|φ|<π2的图象,则ω=________,φ=________.答案:2 π65.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P (x ,y ).若初始位置为P 0⎝⎛⎭⎪⎫32,12,当秒针从P 0(注此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系式为________.答案:y =sin ⎝ ⎛⎭⎪⎫-π30t +π66.若函数f (x )=A sin(ωx +φ)(A >0,ω>0)的初相为π4,且f (x )的图象过点P ⎝ ⎛⎭⎪⎫π3,A ,则函数f (x )的最小正周期的最大值为________.答案:8π37.(xx·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 解析:(1)因为f (t )=10-2⎝⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1.于是f (t )在[0,24)上的最大值为12,最小值为8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时实验室需要降温. 由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝⎛⎭⎪⎫π12t +π3<-12. 又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.能力升级8.关于x 的方程sin ωx =cos ωx 在区间⎣⎢⎡⎦⎥⎤b ,b +πω上解的个数判断正确的是( )A .只有一个解B .至少有一个解C .至少有两个解D .不一定有解解析:本题考查y =A sin(ωx +φ)与y =A cos(ωx +φ)的图象.由于y =sin ωx 与y =cos ωx 的周期是2πω,而区间⎣⎢⎡⎦⎥⎤b ,b +πω是半个周期的长度.y =sin ωx 与y =cos ωx在半个周期内至少有一个交点,最多有两个交点.∴sin ωx =cos ωx 在⎣⎢⎡⎦⎥⎤b ,πω+b 内至少有一个解.答案:B9.方程sin x =k 在⎣⎢⎡⎦⎥⎤π6,π上有两个不同解,则实数k 的取值范围是________.解析:作出y =sin x 和y =k 在⎣⎢⎡⎦⎥⎤π6,π上的图象,若两图象有两个交点,数形结合知12≤k <1.答案:⎣⎢⎡⎭⎪⎫12,110.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________.解析:y =f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π].在同一平面直角坐标系内画y =f (x )与y =k 的图象,如图.由图可知,当y =f (x )与y =k 的图象有且仅有两个不同交点时,k 的取值范围为1<k <3.答案:(1,3)11.试结合图象判断方程sin x =lg x 的实根的个数.解析:在同一平面直角坐标系中作出函数y =sin x 与函数y =lg x 的图象,如图所示,要求方程sin x =lg x 的实根个数,只需求函数y =sin x 与函数y =lg x 的图象的交点个数.由于函数y =lg x 的定义域为(0,+∞),且x >10时有y >1,所以交点只可能在区间(0,10)内.从图象可以看出,这时它们有3个交点,即方程sin x =lg x 有3个实根.12.函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()解析:∵y =xsin x 是偶函数,∴A 可排除;∵当x =2时,y =2sin 2>2,∴D 可排除;又∵当x =π6时,y =π6sinπ6=π3>1,∴B 可排除.故选C.答案:C13.如下图所示,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动,求点P 的纵坐标y 关于时间t 的函数关系,并求点的运动周期和频率.答案:y =r sin(ωt +φ)(t ≥0),T =2πω,f =ω2π14.下图为一个观览车示意图,该观览车半径为4.8 m ,圆上最低点与地面距离为0.8 m ,60 s 转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ度角到OB ,设B 点与地面距离为h .(1)求h 与θ间关系的函数解析式;(2)设从OA 开始转动,经过t 秒到达OB ,求h 与t 间的函数解析式.解析:(1)如图,过点O 作地面的平行线ON ,过点B 作ON 的垂线BM 交ON 于点M .当θ>π2时,∠BOM =θ-π2.h =|OA |+0.8+|BM |=5.6+4.8sin ⎝⎛⎭⎪⎫θ-π2.当0≤θ≤π2时,上述关系式也适合. ∴h =5.6+4.8sin ⎝⎛⎭⎪⎫θ-π2. (2)点A 在⊙O 上逆时针运动的角速度是π30rad/s. ∴t 秒转过的弧度数为π30t . ∴h =4.8sin ⎝ ⎛⎭⎪⎫π30t -π2+5.6,t ∈[0,+∞).15.据市场调查,某种商品一年内每件出厂价在6千元的基础上,按月呈f (x )=A sin(ωx +φ)+B 的模型波动(x 为月份),已知3月份达到最高价为8千元,7月份达到最低价为4千元,该商品每件的售价为g (x )(x 为月份),且满足g (x )=f (x -2)+2.(1)分别写出该商品每件的出厂价函数f (x ),售价函数g (x )的解析式;(2)问哪几个月能盈利?解析:(1)f (x )=A sin(ωx +φ)+B ,由题意,可得A =2,B =6,ω=π4,φ=-π4, ∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+6,1≤x ≤12且x ∈N *, g (x )=2sin ⎝ ⎛⎭⎪⎫π4x -34π+8,1≤x ≤12且x ∈N *. (2)由g (x )>f (x ),得sin π4x <22. 2k π+34π<π4x <2k π+94π,k ∈Z , ∴8k +3<x <8k +9,k ∈Z.∵1≤x ≤12,k ∈Z ,∴当k =0时,3<x <9.∴x =4,5,6,7,8.当k =1时,11<x <17,∴x =12.∴x =4,5,6,7,8,12,故4,5,6,7,8,12月份能盈利.16.以一年为一个周期调查某商品出厂价格及该商品在商店的销售价格时发现:该商品的出厂价格是在6元基础上按月份随正弦曲线波动的,已知3月份出厂价格最高为8元,7月份出厂价格最低为4元;而该商品在商店的销售价格是在8元基础上按月份随正弦曲线波动的,并已知5月份销售价格最高为10元,9月份销售价最低为6元.假设某商店每月购进这种商品m 件且当月能售完,请估计哪个月盈利最大,并说明理由.解析:设x 为月份,则由条件可得出厂价格函数为y 1=2sin ⎝ ⎛⎭⎪⎫π4x -π4+6,x ∈[1,12]且x ∈N *, 销售价格函数为y 2=2sin ⎝⎛⎭⎪⎫π4x -3π4+8, 则利润函数 y =m (y 2-y 1)=m ⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫π4x -3π4+8-2sin ⎝ ⎛⎭⎪⎫π4x -π4-6 =m ⎝⎛⎭⎪⎫2-22sin π4x , 所以,当x =6时,y =(2+22)m ,即6月份盈利最大.。
2019-2020学年高中数学第1章三角函数1.1.1任意角教案苏教版必修

课外作业
教 学 小 结
1、角是如何定义的?
2、角是如何分类的,其标准是什么?
3、象限角是如何定义的?
【建构数学】
1、角的定义
2、角的分类
3、象限角的定义
回忆:初中学过哪些角?
合作探究:
-3000,1500,-600,600,2100,3000,4200角分别是第几象限角?
其中哪些角的终边相同?
教学过程设计
教
学
二次备课
4、终边相同的角的表示:
所有与角 终边相同的角,连同角 在内,可构成一个集合
,
即任一与角 终边相同的角,都可以表示成角 与整数个周角的和.
注意: (1) ;(2) 是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差 的整数倍.
【数学运用】
例1、在00到3600范围内,找出与下列各角终边相同的角,并判定它是第几象限角.
2019-2020学年高中数学第1章三角函数1.1.1任意角教案苏教版必修
角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与 角终边相同的角(包括 角)的表示方法;
教学重难点
重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.
(1)6500(2)-1500(3)
例2、已知 与2400角的终边相同,判断 是第几象限角?
变式: 呢?
例3、讨论四个象限角的范围:
小结:
能否写出与600终边相同的角的集合?
练习.写出终边直线在 上的角的集合 =
思考:(1)写出终边在x轴正半轴上、负半轴上的角的集合. 写出终边在x轴上的角的集合.
2019-2020学年度高中数学苏教版必修4教案:第一章 三角函数 第10课时 1

——教学资料参考参考范本——2019-2020学年度高中数学苏教版必修4教案:第一章三角函数第10课时 1______年______月______日____________________部门【教学目标】 一、知识与技能:1.会用五点法画正弦、余弦函数的图象;2.记住正弦、余弦函数的特征;3.弄清正弦、余弦函数的图象之间的关系 二、过程与方法通过作图来认识三角函数性质,充分发挥图象在认识和研究函数性质中的作用,渗透“数形结合”思想。
三、情感态度价值观:通过正余弦函数图象的理解,使学生从感性到理性的进步,体会从图形概括抽象,使学生理解动与静的辨证关系 教学重点难点:几何法作正弦曲线 【教学过程】一、新课讲解1.利用单位圆中正弦线作正弦函数图象 作法:(几何作法)(1)在直角坐标系的轴上任取一点,以为圆心作单位圆,从⊙与轴的交点起,把⊙分成等份,过⊙上各点作轴的垂线,可得对应于等角的正弦线;x 1O 1O 1O x A 1O 121O x 0,,,,,2632ππππ(2)把轴上这一段分成等份,把角的正弦线向右平行移动,使正弦线的起点与轴上的点重合;x 0~2π12x x x(3)用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数,的图象。
sin y x =[0,2]x π∈因为终边相同的角的函数值相同,所以,函数,()且的图象与函数,的图象的形状完全相同,只是位置不同,于是只要将函数,的图象向左、右平移,就可得到函数,的图象。
sin y x=[2,2(1)]x k k ππ∈+k Z ∈0k ≠sin y x =[0,2]x π∈sin y x =[0,2]x π∈sin y x =x R ∈2.余弦函数的图象由于,所以余弦函数,cos cos()sin[()]sin()22y x x x x ππ==-=--=+cos y x =x R∈与函数,是同一个函数;这样,余弦函数的图象可由:sin()2y x π=+x R ∈正弦曲线向左平移个单位得到,即:2π3.五点法作图:找出关键五点:平衡点、最高(低)点sin y x =,;[0,2]x π∈自变量 x 02π π32π 2π函数值y1-1注意:(1)y=cosx, x R 与函数y=sin(x+) xR 的图象相同2π(2)将y=sinx 的图象向左平移即得y=cosx 的图象2π(3)也同样可用五点法作图:y=cosx x [0,2]的五个点关键是:-2π23π4、正弦、余弦函数的定义域函 数 sin y x =cos y x =定义域x R ∈ x R ∈正、余弦函数的值域二、例题分析 例1、 作下列函数的简图(1)y=1+sinx ,x∈[0,2π], (2)y=-cosx ,x∈[0,2π],例2、利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合:例3、求下列函数的定义域:(1); (2); sin y x=1sin 1y x =+ (3)225lg sin y x x =-+例4、求使下列函数取得最大值的自变量的集合,并说出最大值是什么?x函 数 sin y x = cos y x =值 域[1,1]-[1,1]-(1),; (2),.cos 1y x =+x R ∈sin 2y x=x R ∈三、课堂小结:1.正弦、余弦函数的图象的几何作法;2.“五点法”作图3.运用函数图象求解函数定义域. 四、作业:1.用五点法作图:(1)y=1-sinx , x ∈ [0,2π] (2)y=3cosx ,x ∈[0,2π](3)y=2sinx-1,x ∈[0,2π] (4)y=sin|x|,x ∈[-2π,2π] 2.求函数定义域(1) (2) (3) (4) +1sin 1-=x y )3sin 2lg(+=x y xy sin 1-=)3sin 2lg(+=x y 29x -3.求函数最值域并求出此时自变量的集合x (1); (2)(3)32sin y x =+cos 3cos 2x y x +=+sin sin 2xy x =+。
2019-2020年高中数学 第1章《三角函数》教案 苏教版必修4

2019-2020年高中数学 第1章《三角函数》教案 苏教版必修4一、三角函数的基本概念 1.角的概念的推广(1)角的分类:正角(逆转) 负角(顺转) 零角(不转) (2)终边相同角:(3)直角坐标系中的象限角与坐标轴上的角. 2.角的度量(1)角度制与弧度制的概念 (2)换算关系:8157)180(1)(180'≈==ππ弧度弧度(3)弧长公式: 扇形面积公式: 3.任意角的三角函数yxx y x rr x y rr y ======ααααααcot tan sec cos csc sin注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦” 二、同角三角函数的关系式及诱导公式 (一)诱导公式:与的三角函数关系是“立变平不变,符号看象限”。
如:等。
(二)同角三角函数的基本关系式: ①平方关系;αααα2222tan 11cos cos 1tan 1+=⇔=+②商式关系;③倒数关系;1sec cos ;1csc sin ==αααα。
关于公式的深化;;2cos2sinsin 1ααα+=+如:4cos 4sin 4cos 4sin 8sin 1--=+=+;注:1、诱导公式的主要作用是将任意角的三角函数转化为~角的三角函数。
2、主要用途:a) 已知一个角的三角函数值,求此角的其他三角函数值(①要注意题设中角的范围,②用三角函数的定义求解会更方便); b) 化简同角三角函数式; 三、三角函数的性质y=sinxy=cosxy=tanxy=cotx图象定义域 x ∈R x ∈R x ≠k π+(k ∈Z )x ≠k π(k ∈Z )值域 y ∈[-1,1] y ∈[-1,1] y ∈R y ∈R 奇偶性 奇函数偶函数奇函数奇函数单调性 在区间[2k π-,2k π+]上都是增函数 在区间[2k π+, 2k π+]上都是减函数 在区间[2k π-2k π]上都是增函数 在区间[2k π,2k π+π]上都是减函数在每一个开区间(k π-, k π+)内都是增函数在每一个开区间(k π,k π+π)内都是减函数周期 T=2π T=2π T=π T=π 对称轴 无 无 对称 中心基础题型归类1.运用诱导公式化简与求值:要求:掌握,,,,,等诱导公式. 记忆口诀:奇变偶不变,符号看象限. 例1.求值:练1 (1)若cos(π+α)=,<α<2π, 则sin(2π-α)等于 . (2)若,那么的值为 . (3)(π)的值为 .2.运用同角关系化简与求值:要求:掌握同角二式(,),并能灵活运用. 方法:平方法、切弦互化. 例2 (1)化简sin 1sin tan tan sin cos x xx x x x+--; (2)已知, 且, 求的值. 练2 (1)已知,且<α<,则的值为 .(2)已知=3, 计算:(i ); (ii )αααα22cos 4cos sin 3sin +-.3.运用单位圆及三角函数线:要求:掌握三角函数线,利用它解简单的三角方程与三角不等式. 方法:数形结合.例5 (1)已知,则、、的大小顺序为 . (2)函数的定义域为 .练5 (1)若, 则角α的取值集合为____________.(2)在区间(0,2)内,使成立的的取值范围 . 4.弧度制与扇形弧长、面积公式:要求:掌握扇形的弧长与面积计算公式,掌握弧度制. 方法:方程思想.例6 某扇形的面积为1,它的周长为4,那么该扇形圆心角的弧度数为 .练6 (1)终边在直线上的所有角的集合为 ,其中在-2π~2π间的角有 . (2)若α为第三象限角,那么-α,、2α为第几象限的角? 5.三角函数的定义、定义域与值域:要求:掌握三角函数定义(单位圆、终边上点),能求定义域与值域. 方法:定义法、数形结合、整体.例7角α的终边过点P (-8m ,-6cos60°)且cos α=-,则m 的值是 . 练7 (1)函数的定义域为____________.(2)把函数的图像上各点的横坐标变为原来的,再把所得图像向右平移,得到 . 6.三角函数的图象与性质:要求:掌握五点法作图、给图求式,由图象研究性质. 方法:五点法、待定系数法、数形结合、整体.例8 (1)已知函数.求的最小正周期、定义域、单调区间.(2)已知函数. (i )求此函数的周期,用“五点法”作出其在长度为一个周期的闭区间上的简图. (ii )求此函数的最小值及取最小值时相应的值的集合练8 (1)函数sin()(0,0,)y A x A ωϕωϕπ=+>><最高点的坐标是,由最高点运动到相邻的最低点时,函数图象与轴的交点坐标是(4,0),则函数的表达式是 .(2)如图,它表示电流sin()(0,0)I A t A ωϕω=+>>在一个周期内的图象. 则其解析式为 .(3)函数的单调减区间为 .(4)函数的图象和直线y =2所围成的封闭图形的面积为 . (5)画出函数,∈R 的简图. 并有图象研究单调区间、对称轴、对称中心. 7.三角函数的应用(1)某港口水深(米)是时间(0≤≤24,单位:小时)函数,记为,下面是某日水深数据: t (时) 0 3 6 9 12 15 18 21 24 y (米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0 经过长期观察,的曲线可以近似看成y=Asint+b 的图象. (i )根据以上数据求出的近似表达式; (ii )船底离海底5米或者5米以上是安全的,某船的吃水深度为6.5米(船底离水面距离),如果此船在凌晨4点进港,希望在同一天安全出港,那么此船最多在港口停留多少时间?(忽略进出时间).(2)如图,表示电流强度I 与时间的关系式sin()(0,0),I A t A ωϕω=+>>在一个周期内的图象.根据图象得到的一个解析式是 .(3)已知某海滨浴场的海浪高度(米)是时间(0≤t≤24,单位:小时)的函数,经过长期的观察,该函数的图象可以近似地看成. 下表是测得的某日各时的浪高数据:浪高不低于1米时浴场才开放,试安排白天内开放浴场的具体时间段..。
(新课程)高中数学 第1章《三角函数》教案 苏教版必修4

三角函数一、三角函数的基本概念 1.角的概念的推广(1)角的分类:正角(逆转) 负角(顺转) 零角(不转) (2)终边相同角:)(3600Z k k ∈+⋅=αβ (3)直角坐标系中的象限角与坐标轴上的角. 2.角的度量(1)角度制与弧度制的概念 (2)换算关系:8157)180(1)(180'≈==ππ弧度弧度(3)弧长公式:r l ⋅=α 扇形面积公式:22121r lr S α== 3.任意角的三角函数yxx y x rr x y r r y ======ααααααcot tan sec cos csc sin注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦” 二、同角三角函数的关系式及诱导公式 (一)诱导公式:α-απ- απ+ απ-2απ-2απ+2απ-23 απ+23 αsinαcos αtanαπ±⋅2k )(Z k ∈与α的三角函数关系是“立变平不变,符号看象限”。
如:,27cos ⎪⎭⎫ ⎝⎛+απ ()⎪⎭⎫⎝⎛--απαπ25sin ;5tan 等。
(二)同角三角函数的基本关系式: ①平方关系1cos sin 22=+αα;αααα2222tan 11cos cos 1tan 1+=⇔=+②商式关系αααtan cos sin =;αααcot sin cos = yxP(x,y)r22>+=y x r 0y全++++sinα和cscαtanα和cotαcosα和secα③倒数关系1cot tan =αα;1sec cos ;1csc sin ==αααα。
关于公式1cos sin 22=+αα的深化()2cos sin sin 1ααα±=±;αααcos sin sin 1±=±;2cos2sinsin 1ααα+=+如:4cos 4sin 4cos 4sin 8sin 1--=+=+;4cos 4sin 8sin 1-=-注:1、诱导公式的主要作用是将任意角的三角函数转化为 0~ 90角的三角函数。
高中数学 第1章 三角函数 1.3.4 三角函数的应用教学设计 苏教版必修4

1.3.4 三角函数的应用整体设计教学分析三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.三角函数模型的简单应用的设置目的,在于加强用三角函数模型刻画周期变化现象的学习.本节通过例题,循序渐进地从四个层次来介绍三角函数模型的应用,本节在素材的选择上注意了广泛性、真实性和新颖性,同时又关注到三角函数性质(特别是周期性)的应用.通过引导学生解决有一定综合性和思考水平的问题,培养他们综合应用数学和其他学科的知识解决问题的能力.培养学生的建模、分析问题、数形结合、抽象概括等能力.由于实际问题常常涉及一些复杂数据,因此要鼓励学生利用计算机或计算器处理数据,包括建立有关数据的散点图,根据散点图进行函数拟合等.三维目标1.能正确分析收集到的数据,选择恰当的三角函数模型刻画数据所蕴含的规律.将实际问题抽象为三角函数有关的简单函数模型.2.通过函数拟合得到具体的函数模型,提高数学建模能力,并在探究中激发学生的学习兴趣,培养锲而不舍的钻研精神,培养学生勇于探索、勤于思考的科学精神.3.通过切身感受数学建模的全过程,体验数学在解决实际问题中的价值和作用,及数学与日常生活和其他学科的联系.认识数学知识在生产、生活实际中所发挥的作用.体会和感受数学思想的内涵及数学本质,逐步提高创新意识和实践能力.重点难点教学重点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立三角函数模型,用三角函数模型解决一些具有周期变化规律的实际问题.教学难点:将某些实际问题抽象为三角函数的模型,并调动相关学科的知识来解决问题,是本节的难点,主要原因是背景陌生,数据处理较复杂,学习起来感到难以切入.课时安排2课时教学过程第1课时导入新课思路1.(问题导入)既然大到宇宙天体的运动,小到质点的运动以及现实世界中具有周期性变化的现象无处不在,那么究竟怎样用三角函数解决这些具有周期性变化的问题?它到底能发挥哪些作用呢?由此展开新课.思路2.(直接导入)我们已经学习了三角函数的概念、图象与性质,特别研究了三角函数的周期性.在现实生活中,如果某种变化着的现象具有周期性,那么是否可以借助三角函数来描述呢?面临一个实际问题,应当如何选择恰当的函数模型来刻画它呢?以下通过几个具体例子,来研究这种三角函数模型的简单应用.推进新课新知探究用三角函数的图象和性质解决一些简单的生活实际问题.活动:师生互动,唤起回忆,充分复习前面学习过的建立数学模型的方法与过程.对课前已经做好复习的学生给予表扬,并鼓励他们类比以前所学知识方法,继续探究新的数学模型.对还没有进入状态的学生,教师要帮助其回忆并快速激起相应的知识方法.在教师的引导下,学生能够较好地回忆起解决实际问题的基本过程是:收集数据→画散点图→选择函数模型→求解函数模型→检验→用函数模型解释实际问题.这点很重要,学生只要有了这个认知基础,本节的简单应用便可迎刃而解.新课标下的教学要求,不是教师给学生解决问题或带领学生解决问题,而是教师引领学生逐步登高,在合作探究中自己解决问题,探求新知.简单地说,数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的方法,是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法.解决问题的一般程序是:(1)审题:逐字逐句地阅读题意,审清楚题目条件、要求、理解数学关系;(2)建模:分析题目变化趋势,选择适当函数模型;(3)求解:对所建立的数学模型进行分析研究得到数学结论;(4)还原:把数学结论还原为实际问题的解答.应用示例思路1例1见课本本节例1.变式训练如图1,某地一天从6~14时的温度变化曲线近似满足函数y =sin(ωx+φ)+b.图1(1)求这一天的最大温差;(2)写出这段曲线的函数解析式.活动:这道题目是2002年全国卷的一道高考题,探究时教师与学生一起讨论.本题是研究温度随时间呈周期性变化的问题.教师可引导学生思考,本题给出模型了吗?给出的模型函数是什么?要解决的问题是什么?怎样解决?然后完全放给学生自己讨论解决. 题目给出了某个时间段的温度变化曲线这个模型.其中第(1)小题实际上就是求函数图象的解析式,然后再求函数的最值差.教师应引导学生观察思考:“求这一天的最大温差”实际指的是“求6时到14时这段时间的最大温差”,可根据前面所学的三角函数图象直接写出而不必再求解析式.让学生体会不同的函数模型在解决具体问题时的不同作用.第(2)小 题只要用待定系数法求出解析式中的未知参数,即可确定其解析式.其中求ω是利用半周期(14-6),通过建立方程得解.解:(1)由图可知,这段时间的最大温差是20 ℃.(2)从图中可以看出,从6~14时的图象是函数y =Asin(ωx+φ)+b 的半个周期的图象,∴A=12(30-10)=10,b =12(30+10)=20. ∵12·2πω=14-6,∴ω=π8.将x =6,y =10代入上式,解得φ=3π4.综上,所求解析式为y =10sin(π8x +3π4)+20,x∈[6,14]. 点评:本题中所给出的一段图象恰好是半个周期的图象,提醒学生注意抓关键.本题所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特别注意自变量的变化范围,这点往往被学生忽略掉.例2见课本本节例2.例3如图2,设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度,φ为该地的纬度值,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.如果在北京地区(纬度数约为北纬40°)的一幢高为h 0的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?图2活动:本例所用地理知识、物理知识较多,综合性比较强,需调动相关学科的知识来帮助理解问题,这是本节的一个难点.在探讨时要让学生充分熟悉实际背景,理解各个量的含义以及它们之间的数量关系.首先由题意要知道太阳高度角的定义:设地球表面某地纬度值为φ,正午太阳高度角为θ,此时太阳直射纬度为δ,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.根据地理知识,能够被太阳直射到的地区为南、北回归线之间的地带,图形如图3,由画图易知太阳高度角θ、楼高h0与此时楼房在地面的投影长h之间有如下关系:h0=htanθ.由地理知识知,在北京地区,太阳直射北回归线时物体的影子最短,直射南回归线时物体的影子最长.因此,为了使新楼一层正午的太阳全年不被遮挡,应当考虑太阳直射南回归线时的情况.解:如图3,A、B、C分别为太阳直射北回归线、赤道、南回归线时楼顶在地面上的投影点.要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情况考虑,此时的太阳直射纬度-23°26′.依题意,两楼的间距应不小于MC.图3根据太阳高度角的定义,有∠C=90°-|40°-(-23°26′)|=26°34′,所以MC=h0tanC=h0tan26°34′≈2.000h0,即在盖楼时,为使后楼不被前楼遮挡,要留出相当于楼高两倍的间距.点评:本例是研究楼高与楼在地面的投影长的关系问题,是将实际问题直接抽象为与三角函数有关的简单函数模型,然后根据所得的函数模型解决问题.要直接根据图2来建立函数模型,学生会有一定困难,而解决这一困难的关键是联系相关知识,画出图3,然后由图形建立函数模型,问题得以求解.这道题的结论有一定的实际应用价值.教学中,教师可以在这道题的基础上再提出一些问题,如下例的变式训练,激发学生进一步探究.知能训练课本本节练习1、2.课堂小结1.本节课我们学习了三个层次的三角函数模型的应用,即根据图象建立解析式,根据解析式作出图象,将实际问题抽象为与三角函数有关的简单函数模型.你能概括出建立三角函数模型解决实际问题的基本步骤吗?2.实际问题的背景往往比较复杂,而且需要综合应用多学科的知识才能解决它.因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题.作业1.图5表示的是电流I 与时间t 的函数关系I =Asin(ωx+φ)(ω>0,|φ|<π2)在一个周期内的图象.图5(1)根据图象写出I =Asin(ωx+φ)的解析式.(2)为了使I =Asin(ωx+φ)中的t 在任意一段1100s 的时间内电流I 能同时取得最大值和最小值,那么正整数ω的最小值为多少?解:(1)由图知A =300,第一个零点为(-1300,0),第二个零点为(1150,0), ∴ω·(-1300)+φ=0,ω·1150+φ=π. 解得ω=100π,φ=π3. ∴I=300sin(100πt+π3). (2)依题意有T≤1100,即2πω≤1100, ∴ω≥200π,故ωmin =629.2.搜集、归纳、分类现实生活中周期变化的情境模型.解:如以下两例:①人体内部的周期性节律变化和个人的习惯性的生理变化,如人体脉搏、呼吸、排泄、体温、睡眠节奏、饥饿程度等;②蜕皮(tuipi)昆虫纲和甲壳纲等节肢动物,以及线形动物等的体表具有坚硬的几丁质层,虽有保护身体的作用,但限制动物的生长、发育.因此,在胚后发育过程中,必须进行1次或数次脱去旧表皮,再长出宽大的新表皮后,才变成成虫,这种现象称为蜕皮;蜕下的“旧表皮”称为“蜕”,只有这样,虫体才能得以继续充分生长、发育.蜕皮现象的发生具有周期性,但蜕皮的准备和蜕皮过程是连续进行的.此外,脊椎动物爬行类的蜕皮现象尤为明显,如蜥蜴和蛇具有双层角质层,其外层在定期蜕皮时脱掉,蛇的外层角质层连同眼球外面透明的皮肤,约每2个月为一个周期可完整地脱落1次,称为蛇蜕.设计感想1.本教案设计指导思想是:充分唤起学生已有的知识方法,调动起相关学科的知识,尽量降低实例背景的相对难度,加大实际问题的鲜明、活跃程度,以引发学生探求问题的兴趣.2.应用三角函数模型解决问题,首先要把实际问题抽象为数学问题,确定它的周期,从而建立起适当的三角函数模型.如果学生选择了不同的函数模型,教师应组织学生进行交流,或让学生根据自己选择的模型进行求解,然后再根据所求结果与实际情况的差异进行评价.3.由于实际问题常常涉及一些复杂数据,因此要鼓励学生利用计算机或计算器处理数据,有条件的要用多媒体进行动态演示,以使学生有更多的时间用于对问题本质的理解.备课资料一、备选习题1.下列函数中,图象的一部分如图6所示的是( )图6A .y =sin(x +π6)B .y =sin(2x -π6) C .y =cos(4x -π3) D .y =cos(2x -π6) 2.已知函数y =Asin(ωx+φ)(A>0,|φ|<π)的一段图象如图7所示,求函数的解析式.图73.已知函数y =Atan(ωx+φ)(其中A>0,ω>0,|φ|<π2)的图象与x 轴相交的两相邻点的坐标为(π6,0)和(5π6,0),且过点(0,-3),求此函数的解析式. 4.单摆从某点开始来回摆动,离开平衡位置的距离s(厘米)和时间t(秒)的函数关系为s =6sin(2πt+π6). (1)单摆开始摆动(t =0)时,离开平衡位置多少厘米? (2)单摆摆动到最右边时,离开平衡位置多少厘米? (3)单摆来回摆动一次需要多少时间? 5.函数f(x)=sinx +2|sinx|,x∈[0,2π]的图象与直线y =kx 有且仅有两个不同的交点,求k 的取值范围.参考答案:1.D2.由图7,得A =2,T 2=3π8-(-π8)=π2,∴T=π.∴ω=2.∴y=2sin(2x +φ).又∵图象经过点(-π8,2),∴2=2sin(-π4+φ).∴φ-π4=2kπ+π2(k∈Z ).∴φ=2kπ+3π4.∴函数解析式为y =2sin(2x +3π4).3.∵T=πω=5π6-π6,∴ω=32.∵32×π6+φ=0,且-3=Atan(32×0+φ),∴A=3,φ=-π4.故y =3tan(32x -π4).4.(1)t =0时,s =3,即离开平衡位置3厘米;(2)振幅为6,所以最右边离平衡位置6厘米;(3)T =1,即来回一次需要1秒钟.5.将原函数化简为f(x)=sinx +2|sinx|=⎩⎪⎨⎪⎧ 3sinx ,x∈[0,π],-sinx ,x∈π,2π],由此可画出图8,图8由数形结合可知,k的取值范围为1<k<3.二、数学与音乐若干世纪以来,音乐和数学一直被联系在一起.在中世纪时期,算术、几何、天文和音乐都包括在教育课程之中.今天的新式计算机正在使这条纽带绵延不断.乐谱的书写是表现数学对音乐的影响的第一个显著的领域.在乐稿上,我们看到速度、节拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符,等等.书写乐谱时确定每小节内的某分音符数,与求公分母的过程相似——不同长度的音符必须与某一节拍所规定的小节相适应.作曲家创作的音乐是在书写出的乐谱的严密结构中非常美丽而又毫不费力地融为一体的.如果将一件完成了的作品加以分析,可见每一小节都使用不同长度的音符构成规定的拍数.除了数学与乐谱的明显关系外,音乐还与比率、指数曲线、周期函数和计算机科学相联系.毕达哥拉斯学派(公元前585~前400)是最先用比率将音乐与数学联系起来的.他们认识到拨动琴弦所产生的声音与琴弦长度有关,从而发现了和声与整数的关系.他们还发现谐声是由长度成整数比的同样绷紧的弦发出的——事实上被拨弦的每一和谐组合可表示成整数比.按整数比增加弦的长度,能产生整个音阶.例如,从产生音符C的弦开始,C的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C.不管是弦乐器还是由空气柱发声的管乐器,它们的结构都反映出一条指数曲线的形状.19世纪数学家约翰·傅里叶的工作使乐声性质的研究达到顶点.他证明所有乐声——器乐和声乐——都可用数学式来描述,这些数学式是简单的周期正弦函数的和.每一个声音有三个性质,即音高、音量和音质,将它与其他乐声区别开来.傅里叶的发现使声音的这三个性质可以在图形上清楚地表示出来.音高与曲线的频率有关,音量和音质分别与周期函数的振幅和形状有关.如果不了解音乐的数学,在计算机对于音乐创作和乐器设计的应用方面就不可能有进展.数学发现,具体地说即周期函数,在乐器的现代设计和声控计算机的设计方面是必不可少的.许多乐器制造者把他们的产品的周期声音曲线与这些乐器的理想曲线相比较.电子音乐复制的保真度也与周期曲线密切相关.音乐家和数学家将继续在音乐的产生和复制方面发挥着同等重要的作用.(设计者:郑吉星)第2课时导入新课思路1.(作业导入)学生搜集、归纳到的现实生活中的周期现象有:物理情景的①简单和谐运动,②星体的环绕运动;地理情景的①气温变化规律,②月圆与月缺;心理、生理现象的①情绪的波动,②智力变化状况,③体力变化状况;日常生活现象的①涨潮与退潮,②股票变化等等.思路2.(复习导入)回忆上节课三角函数模型的简单应用例子,这节课我们继续探究三角函数模型在日常生活中的一些简单应用.推进新课新知探究三角函数性质在生活中的应用.本章章头引言告诉我们,海水在月球和太阳引力作用下发生周期性涨落现象.回忆上节课的内容,怎样用上节课的方法从数学的角度来定量地解决这个问题呢?教师引导学生复习、回忆、理清思路,查看上节的课下作业.教师指导、适时设问,调动学生的学习气氛.应用示例例1货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与海底的距离),该船何时能进入港口?(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?活动:引导学生观察上述问题表格中的数据,会发现什么规律?比如重复出现的几个数据.并进一步引导学生作出散点图.让学生自己完成散点图,提醒学生仔细、准确地观察散点图,如图9.图9教师引导学生根据散点的位置排列,思考可以用怎样的函数模型来刻画其中的规律.根据散点图中的最高点、最低点和平衡点,学生很容易确定选择三角函数模型.港口的水深与时间的关系可以用形如y=Asin(ωx+φ)+h的函数来刻画.其中x是时间,y是水深,我们可以根据数据确定相应的A,ω,φ,h的值.这时注意引导学生与“五点法”相联系.要求学生独立操作完成,教师指导点拨,并纠正可能出现的错误,直至无误地求出解析式,进而根据所得的函数模型,求出整点时的水深.根据学生所求得的函数模型,指导学生利用计算器进行计算求解.注意引导学生正确理解题意,一天中有两个时间段可以进港.这时点拨学生思考:你所求出的进港时间是否符合时间情况?如果不符合,应怎样修改?让学生养成检验的良好习惯.在本例的(3)中,应保持港口的水深不小于船的安全水深,那么如何刻画船的安全水深呢?引导学生思考,怎样把此问题翻译成函数模型?求货船停止卸货、将船驶向深水域的含义又是什么?教师引导学生将实际问题的意义转化为数学解释,同时提醒学生注意货船的安全水深、港口的水深同时在变,停止卸货的时间应当在安全水深接近于港口水深的时候.进一步引导学生思考:根据问题的实际意义,货船的安全水深正好等于港口的水深时停止卸货行吗?为什么?正确结论是什么?可让学生思考、讨论后再由教师组织学生进行评价.通过讨论或争论,最后得出一致结论:在货船的安全水深正好等于港口的水深时停止卸货将船驶向较深水域是不行的,因为这样不能保证货船有足够的时间发动螺旋桨.解:(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图(图9).根据图象,可以考虑用函数y =Asin(ωx+φ)+h 刻画水深与时间之间的对应关系.从数据和图象可以得出:A =2.5,h =5,T =12,φ=0,由T =2πω=12,得ω=π6. 所以这个港口的水深与时间的关系可用y =2.5sin(π6x)+5近似描述. 由上述关系式易得港口在整点时水深的近似值:(2)货船需要的安全水深为4+1.5=5.5(米),所以当y≥5.5时就可以进港.令2.5sin(π6x)+5≥5.5,得sin π6x≥0.2.画出y =sin(π6x)的图象,由图象可得 0.4≤x≤5.6或12.4≤x≤17.6.故该船在0:24至5:36和12:24至17:36期间可以进港.图10(3)设在时刻x 货船的安全水深为y ,那么y =5.5-0.3(x -2)(x≥2).在同一坐标系内作出这两个函数的图象,可以看到在6~7时之间两个函数图象有一个交点(如图11).图11通过计算也可以得到这个结果.在6时的水深约为5米,此时货船的安全水深约为4.3米;6.5时的水深约为4.2米,此时货船的安全水深约为4.1米;7时的水深约为3.8米,而货船的安全水深约为4米.因此为了安全,货船最好在6.7时之前停止卸货,将船驶向较深的水域.点评:本例是研究港口海水深度随时间呈周期性变化的问题,题目只给出了时间与水深的关系表,要想由此表直接得到函数模型是很困难的.对第(2)问的解答,教师需要强调,建立数学模型解决实际问题,所得的模型是近似的,并且得到的解也是近似的.这就需要根据实际背景对问题的解进行具体的分析.如本例中,一天中有两个时间段可以进港,教师应引导学生根据问题的实际意义,对答案的合理性作出解释. 变式训练 发电厂发出的电是三相交流电,它的三根导线上的电流强度分别是时间t 的函数,I A =Isinωt,I B =Isin(ωt+120°),I C =Isin(ωt+240°),则I A +I B +I C =__________. 答案:0例2已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻的一个最高点和最低点之间的距离为4+π2.(1)求函数f(x)的解析式;(2)若sinx +f(x)=23,求sinxcosx 的值. 解:(1)∵f(x)为偶函数,∴f(-x)=f(x),即sin(-ωx+φ)=sin(ωx+φ).∴φ=π2.∴f(x)=sin(ωx+π2)=cosωx. 相邻两点P(x 0,1),Q(x 0+πω,-1). 由题意,|PQ|=πω2+4=π2+4,解得ω=1. ∴f(x)=cosx.(2)由sinx +f(x)=23,得sinx +cosx =23. 两边平方,得sinxcosx =-518. 例3小明在直角坐标系中,用1 cm 代表一个单位长度作出了一条正弦曲线的图象.若他将纵坐标改用2 cm 代表一个单位长度,横坐标不变,那么他所作的曲线的函数解析式是什么?若他将横坐标改用2 cm 代表一个单位长度,而纵坐标不变,那么他所作的曲线的函数解析式又是什么?解:小明原作的曲线为y =sinx ,x∈R ,由于纵坐标改用了2 cm 代表一个单位长度,与原来1 cm 代表一个单位长度比较,单位长度增加到原来的2倍,所以原来的1 cm 只能代表12个单位长度了.由于横坐标没有改变,曲线形状没有变化,而原曲线图象的解析式变为y =12sinx ,x∈R .同理,若纵坐标保持不变,横坐标改用2 cm 代表一个单位长度,则横坐标被压缩到原来的12,原曲线周期就由2π变为π.故改变横坐标后,原曲线图象的解析式变为y =sin2x ,x∈R .例4求方程lgx =sinx 实根的个数.解:由方程式模型构建图象模型.在同一坐标系内作出函数y =lgx 和y =sinx 的图象,如图12.可知原方程的解的个数为3.图12点评:单解方程是很困难的,而根据方程式模型构建图象模型,利用数形结合来解就容易多了,教师要让学生熟练掌握这一方法.知能训练课本习题1.3 14.课堂小结1.让学生回顾本节课的数学模型都解决了哪些现实生活中的问题,用三角函数模型刻画周期变化规律对国家建设、制定未来计划,以及我们的学习、生活都发挥着什么样的作用.2.三角函数应用题通常涉及生产、生活、军事、天文、地理和物理等实际问题,其解答流程大致是:审读题意→设角建立三角式→进行三角变换→解决实际问题.在解决实际问题时,要学会具体问题具体分析,充分运用数形结合的思想,灵活地运用三角函数的图象和性质解决现实问题.作业课本习题1.3 13.设计感想1.本节是三角函数内容中新增加的一节,目的是加强学生的应用意识,本节教案设计的指导思想,是让学生围绕着采集到的数据展开讨论,在学生思考探究的过程中,学会积极冷静地对待陌生背景,正确处理复杂数据以及准确分析问题中的数量关系,这很符合新课改理念.2.现实生活中的问题是多变的,学生的思维是发散的,观察的视角又是多样的,因此课题教学中,教师要善于挖掘并发现学生思维的闪光点,通过讨论例题这个载体,充分激发学生的潜能,让学生从观察走向发现,从发现走向创造,走向创新.3.学生面对枯燥的数据,潜意识里是讨厌的,因此教师要在有限的课堂时间里,着重解决物理背景下、地理背景下的三角函数的函数模型的选定,不要把时间浪费在一些计算上.备课资料一、备选习题1.图13是周期为2π的三角函数f(x)的图象,那么f(x)可写成( )图13A.sin(1+x) B.sin(-1-x)C.sin(x-1) D.sin(1-x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学第1章《三角函数》三角函数的应用教学案苏
教版必修4
教学目标:会用三角函数的图象及性质解决一些简单的实际问题,体会三角函数是描述周期现象的重要数学模型。
注重渗透化归与转化的数学思想。
教学重点:三角函数模型的建立
教学难点:三角函数模型的建立
教学过程:
一、问题情境:
现实生活中有许多周期运动的现象,你能举一些例子吗?三角函数能够模拟许多周期现象,下面我们就研究三角函数在实际生活问题中的应用
问题:如图,点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3cm,周期为3s,且物体向右运动到距平衡位置最远处时开始计时.
(1)求物体对平衡位置的位移x(cm)和时间t(s)之间的函数关系;
(
2)求物体在t=5s时的位置.
二、学生活动:
合作解决上述问题:
三、知识建构:
应用三角函数模型解决实际问题的一般步骤:
四、知识运用:
例2、一半径为3m的水轮如图所示,水轮圆心O距离水面2m,已知水轮每分钟转动4圈,如果当水轮上点P从水中浮现时(图中点P0)开始计算时间.
(1)将点P距离水面的高度z (m) 表示为时间t(s)的函数;
(2)点P第一次到达最高点大约要多长时间?
例3、(P43案例)海水受日月的引力,在一定的时候发生涨落的现象叫潮汐,一般的早潮叫潮,晚潮叫汐. 在通常情况下,船在涨潮时驶进航道,考近船坞;卸货后落潮时返回海洋. 下面给出了某港口在某季节每天几个时刻的水深.
(1)选用一个三角函数来近似描述这个港口的水深与时间的函数关系,并给出在整点时的水深的近似数值.
练习:书P44 1、2、3、4
五、回顾反思:
知识:思想方法:
六、作业布置:
书P46 10、11。