2016年浙江省舟山中学高考数学仿真试卷(理科)(解析版)

合集下载

浙江省高中高考数学试卷习题理科与解析.doc

浙江省高中高考数学试卷习题理科与解析.doc

)))))2016 年浙江省高考数学试卷(理科)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一个是符合题目要求的.2) 1.( 5 分)(2016?浙江)已知集合 P={x ∈R|1≤x ≤3} ,Q={x ∈R|x ≥4} ,则 P ∪( ? R Q )=( A . [2, 3] B .(﹣ 2, 3] C . [1, 2) D .(﹣ ∞,﹣ 2]∪ [1, +∞) 2.( 5 分)( 2016?浙江)已知互相垂直的平面 α,β交于直线 l ,若直线 m ,n 满足 m ∥ α,n ⊥ β, 则( ) A . m ∥ l B . m ∥ n C . n ⊥ l D . m ⊥ n3.( 5 分)( 2016?浙江)在平面上,过点 P 作直线 l 的垂线所得的垂足称为点 P 在直线 l 上的投影,由区域 中的点在直线 x+y ﹣ 2=0 上的投影构成的线段记为 AB ,则|AB|= ( ) A . 2B . 4C . 3D . 64.( 5 分)( 2016?浙江)命题 “? x ∈R , ?n ∈N * ,使得 n ≥x 2”的否定形式是()A . ? x ∈R , ?n ∈N * ,使得 n < x 2B . ?x ∈R ,? n ∈N * ,使得 n < x 2C . ?x ∈R , ?n ∈N * ,使得 n < x 2D .? x ∈R , ?n ∈N * ,使得 n < x 25.( 5 分)( 2016?浙江)设函数 2)f ( x ) =sin x+bsinx+c ,则 f (x )的最小正周期( A .与 b 有关,且与 c 有关 B .与 b 有关,但与 c 无关 C .与 b 无关,且与c 无关 D .与 b 无关,但与 c 有关6.( 5 分)( 2016?浙江)如图,点列 {A n } 、{B n } 分别在某锐角的两边上, 且 |A n A n+1|=|A n+1A n+2|,A n ≠A n+1,n ∈N * ,|B n B n+1|=|B n+1B n+2|,B n ≠B n+1,n ∈N *(, P ≠Q 表示点 P 与 Q 不重合)若 d n =|A n B n |,S n 为 △ A n B n B n+1 的面积,则()A . {S n } 是等差数列2B . {S n } 是等差数列C . {d n } 是等差数列2D .{d n } 是等差数列7.( 5 分)( 2016?浙江)已知椭圆 C 1: 22+y =1( m > 1)与双曲线 C 2:﹣ y =1(n > 0)的焦点重合, e 1, e 2 分别为 C 1,C 2 的离心率,则()A . m > n 且 e 1e 2> 1B . m >n 且 e 1e 2< 1C . m < n 且 e 1e 2> 1D .m <n 且 e 1e 2< 1 8.( 5 分)( 2016?浙江)已知实数 a , b ,c .( ) A .若 2 22 2 2< 100|a +b+c|+|a+b +c|≤1,则 a +b +cB .若 222 2 2|a +b+c|+|a +b ﹣ c|≤1,则 a +b +c< 100 C .若2 222 2|a+b+c |+|a+b ﹣ c |≤1,则 a +b +c < 1002 2 2 2 2D.若 |a +b+c|+|a+b ﹣ c|≤1,则 a +b +c < 100二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分.9.( 4 分)( 2016?浙江)若抛物线2y =4x 上的点 M 到焦点的距离为 10,则 M 到 y 轴的距离是.2,10.( 6 分)( 2016?浙江)已知 2cos x+sin2x=Asin (ωx+ φ)+b( A >0),则 A=b= .11.( 6 分)( 2016?浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm 2,体积是cm3.12.( 6 分)( 2016?浙江)已知abb a,则 a= ,a> b> 1,若 log b+log a= , a =bb= .13.( 6 分)( 2016?浙江)设数列{a n} 的前 n 项和为 S n,若 S2 =4, a n+1=2S n+1, n∈N *,则a1= , S5= .14.( 4 分)( 2016?浙江)如图,在△ ABC 中, AB=BC=2 ,∠ ABC=120 °.若平面 ABC 外的点 P 和线段 AC 上的点 D,满足 PD=DA ,PB=BA ,则四面体 PBCD 的体积的最大值是.15.( 4 分)( 2016?浙江)已知向量,,| |=1,||=2,若对任意单位向量,均有| ? |+| ? |≤,则?的最大值是.三、解答题:本大题共 5 小题,共74 分.解答应写出文字说明,证明过程或演算步骤.16.( 14 分)( 2016?浙江)在△ ABC 中,内角 A ,B,C 所对的边分别为a,b,c,已知 b+c=2acosB .(Ⅰ)证明: A=2B(Ⅱ)若△ABC 的面积 S=,求角A的大小.17.( 15 分)( 2016?浙江)如图,在三棱台 ABC ﹣ DEF 中,已知平面 BCFE ⊥平面 ABC , ∠ A CB=90 °,BE=EF=FC=1 , BC=2 , AC=3 , (Ⅰ)求证: EF ⊥平面 ACFD ;(Ⅱ)求二面角 B ﹣ AD ﹣F 的余弦值.18.(15 分)( 2016?浙江)已知a ≥3,函数 F (x ) =min{2|x ﹣ 1|,x 2﹣ 2ax+4a ﹣ 2} ,其中 min( p , q ) =2(Ⅰ)求使得等式F ( x ) =x ﹣ 2ax+4a ﹣ 2 成立的 x 的取值范围(ii )求 F ( x )在 [0,6] 上的最大值 M ( a )19.( 15 分)( 2016?浙江)如图,设椭圆 C : 2( a > 1) +y =1 (Ⅰ)求直线 y=kx+1 被椭圆截得到的弦长(用a ,k 表示)(Ⅱ)若任意以点 A ( 0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20.( 15 分)( 2016?浙江)设数列满足|a n﹣|≤1, n∈N*.(Ⅰ)求证: |a n|≥2n﹣1( |a1|﹣ 2)( n∈N*)(Ⅱ)若 |a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.2016 年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.( 5 分)【考点】并集及其运算.【分析】运用二次不等式的解法,求得集合 Q,求得 Q 的补集,再由两集合的并集运算,即可得到所求.2【解答】解: Q={x ∈R|x ≥4}={x ∈R|x≥2 或 x≤﹣ 2} ,则P∪( ?R Q) =(﹣ 2, 3].故选: B.【点评】本题考查集合的运算,主要是并集和补集的运算,考查不等式的解法,属于基础题.2.( 5 分)【考点】直线与平面垂直的判定.【分析】由已知条件推导出l? β,再由 n⊥ β,推导出n⊥ l.【解答】解:∵互相垂直的平面α,β交于直线l ,直线 m, n 满足 m∥ α,∴m∥ β或 m? β或 m⊥β, l? β,∵n⊥ β,∴n⊥ l.故选: C.【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.3.( 5 分)【考点】简单线性规划的应用.【分析】作出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线x+y ﹣ 2=0 上的投影构成线段R′Q′,即 SAB ,而R′Q′=RQ ,由得,即Q(﹣1,1),由得,即R(2,﹣2),则|AB|=|QR|===3,故选: C)))))【点评】 本题主要考查线性规划的应用, 作出不等式组对应的平面区域, 利用投影的定义以及数形结合是解决本题的关键. 4.( 5 分)【考点】 命题的否定.【分析】 直接利用全称命题的否定是特称命题写出结果即可. 【解答】 解:因为全称命题的否定是特称命题,所以,命题“?x ∈R , ?n ∈N * ,使得 n ≥x 2”的否定形式是: ?x ∈R ,? n ∈N * ,使得 n < x 2. 故选: D . 【点评】 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.5.( 5 分)【考点】 三角函数的周期性及其求法.【分析】 根据三角函数的图象和性质即可判断.2 ∴c 是图象的纵坐标增加了c ,横坐标不变,故周期与c 无关,当 b=0 时, f ( x ) =sin 2x+bsinx+c= ﹣ cos2x+ +c 的最小正周期为 T==π,当 b ≠0 时, f ( x ) =﹣ cos2x+bsinx+ +c ,∵ y =cos2x 的最小正周期为 π, y=bsinx 的最小正周期为 2π,∴f (x )的最小正周期为 2π,故 f (x )的最小正周期与 b 有关,故选: B【点评】 本题考查了三额角函数的最小正周期, 关键掌握三角函数的图象和性质,属于中档题.6.( 5 分)【考点】 数列与函数的综合.【分析】 设锐角的顶点为 O ,再设 |OA 1|=a , |OB 1|=b , |A n A n+1|=|A n+1A n+2|=b ,|B n B n+1|=|B n+1B n+2|=d ,由于 a ,b 不确定,判断 C ,D 不正确,设 △ A n B n B n+1 的底边 B n B n+1上的高为 h n ,运用三角形相似知识, h n +h n+2=2h n+1,由 S n = d?h n ,可得 S n +S n+2=2S n+1,进而得到数列 {S n } 为等差数列.【解答】 解:设锐角的顶点为|A n A n+1|=|A n+1A n+2|=b , |B n B n+1|=|B n+1B n+2|=d ,O , |OA 1 |=a , |OB 1|=b ,由于 a , b 不确定,则 {d n } 不一定是等差数列,2{d n } 不一定是等差数列,设△ A n B n B n+1 的底边 B n B n+1 上的高为 h n ,由三角形的相似可得= = ,= = ,两式相加可得, = =2,即有 h n +h n+2=2h n+1,由 S n = d?h n ,可得 S n +S n+2=2S n+1,即为 S n+2﹣S n+1=S n+1﹣ S n , 则数列 {S n } 为等差数列. 故选: A .【点评】 本题考查等差数列的判断, 注意运用三角形的相似和等差数列的性质, 考查化简整理的推理能力,属于中档题.7.( 5 分)【考点】 椭圆的简单性质;双曲线的简单性质.22222【分析】 根据椭圆和双曲线有相同的焦点,得到c =m ﹣ 1=n +1,即 m ﹣ n =2,进行判断, 能得 m > n ,求出两个离心率,先平方进行化简进行判断即可.【解答】 解:∵椭圆 C 1:2(m >1)与双曲线 C 2:2+y =1 ﹣ y =1( n >0)的焦点重合,2 2 2∴满足 c =m ﹣ 1=n +1 ,2 ﹣n 2 2 > n2即 m =2> 0,∴ m ,则 m > n ,排除 C , D2 22 2 2 2则 c =m ﹣ 1< m , c =n +1> n , 则 c < m . c > n , e 1= , e 2= ,则 e 1 ?e 2= ? =,则( e1?e2)2=()2?()2====1+=1+= 1+ > 1,∴e1 2> 1,e故选: A .【点评】本题主要考查圆锥曲线离心率的大小关系的判断,根据条件结合双曲线和椭圆离心率以及不等式的性质进行转化是解决本题的关键.考查学生的转化能力.8.( 5 分)【考点】命题的真假判断与应用.【分析】本题可根据选项特点对a, b, c 设定特定值,采用排除法解答.【解答】解: A .设 a=b=10, c=﹣2 2 2 2 2110,则 |a +b+c|+|a+b +c|=0 ≤1, a +b +c > 100;B.设 a=10, b=﹣ 100, c=0,则2 2 2 2 2>100;|a +b+c|+|a +b﹣ c|=0≤1, a +b +c2 2 2 2 2;C.设 a=100, b=﹣100, c=0,则 |a+b+c |+|a+b﹣ c |=0≤1, a +b +c > 100故选: D.【点评】本题主要考查命题的真假判断,由于正面证明比较复杂,故利用特殊值法进行排除是解决本题的关键.二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分.9.( 4 分)【考点】抛物线的简单性质.【分析】根据抛物线的性质得出M 到准线 x= ﹣ 1 的距离为10,故到 y 轴的距离为9.【解答】解:抛物线的准线为x=﹣ 1,∵点 M 到焦点的距离为10,∴点 M 到准线 x= ﹣ 1 的距离为10,∴点 M 到 y 轴的距离为9.故答案为: 9.【点评】本题考查了抛物线的性质,属于基础题.10.( 6 分)【考点】两角和与差的正弦函数.【分析】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案.2=1+(cos2x+sin2x) +1=sin( 2x+)+1,∴A=,b=1,故答案为:; 1.【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键.11.(6 分)【考点】由三视图求面积、体积.【分析】由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,代入体积公式和面积公式计算即可.【解答】解:由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,则其表面积为22×( 24﹣ 6) =72cm 2 ,其体积为 4×2 3=32 ,故答案为: 72, 32【点评】本题考查了由三视图求几何体的体积和表面积,解题的关键是判断几何体的形状及相关数据所对应的几何量,考查空间想象能力.12.( 6 分)【考点】对数的运算性质.【分析】设 t=log b a 并由条件求出 t 的范围,代入log a b+log b a= 化简后求出 t 的值,得到 ab a化简后列出方程,求出a、 b 的值.与 b 的关系式代入 a =b【解答】解:设 t=log b a,由 a>b> 1 知 t> 1,代入 log a b+log b a= 得,即2t 2﹣5t+2=0 ,解得 t=2 或 t= (舍去),所以 log b a=2,即 a=b 2,b a 2b a 2,因为 a =b ,所以 b =b ,则 a=2b=b解得 b=2 ,a=4,故答案为: 4; 2.【点评】本题考查对数的运算性质,以及换元法在解方程中的应用,属于基础题.13.( 6 分)【考点】数列的概念及简单表示法.【分析】运用 n=1 时,a1=S1,代入条件,结合 S2=4,解方程可得首项;再由 n> 1 时,a n+1=S n+1﹣S n,结合条件,计算即可得到所求和.【解答】解:由 n=1 时, a1=S1,可得 a2=2S1+1=2a1+1,又S2=4,即 a1+a2=4,即有 3a1+1=4 ,解得 a1=1;由a n+1=S n+1﹣ S n,可得S n+1=3S n+1,由S2=4,可得 S3=3×4+1=13 ,S4=3 ×13+1=40 ,S5=3 ×40+1=121 .故答案为: 1, 121.【点评】本题考查数列的通项和前 n 项和的关系: n=1 时, a1=S1, n>1 时, a n=S n﹣ S n﹣1,考查运算能力,属于中档题.14.( 4 分)【考点】棱柱、棱锥、棱台的体积.【分析】由题意,△ABD ≌△ PBD ,可以理解为△ PBD 是由△ ABD 绕着 BD 旋转得到的,对于每段固定的 AD ,底面积 BCD 为定值,要使得体积最大,△ PBD 必定垂直于平面 ABC ,此时高最大,体积也最大.【解答】解:如图, M 是 AC 的中点.①当 AD=t < AM=时,如图,此时高为P 到 BD 的距离,也就是 A 到 BD 的距离,即图中AE ,DM=﹣ t,由△ ADE ∽△ BDM ,可得,∴ h=,V==,t∈(0,)②当 AD=t > AM=时,如图,此时高为P 到 BD 的距离,也就是 A 到 BD 的距离,即图中AH ,DM=t ﹣,由等面积,可得,∴,∴h=,∴V==,t∈(,2)综上所述, V=,t∈(0,2)令 m=∈[1,2),则V=,∴ m=1时,V max=.故答案为:.【点评】本题考查体积最大值的计算,考查学生转化问题的能力,考查分类讨论的数学思想,对思维能力和解题技巧有一定要求,难度大.15.( 4 分)【考点】平面向量数量积的运算.【分析】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论.【解答】解:∵ |(+)?|=| ? + ? |≤| ? |+| ? |≤,∴|(+)?|≤| + |≤,2 2平方得: | | +| | +2 ?≤6,2 2即1 +2 +2 ? ≤6,则?≤ ,故?的最大值是,故答案为:.【点评】本题主要考查平面向量数量积的应用,根据绝对值不等式的性质以及向量三角形不等式的关系是解决本题的关键.综合性较强,有一定的难度.三、解答题:本大题共 5 小题,共74 分.解答应写出文字说明,证明过程或演算步骤.16.( 14 分)【考点】余弦定理;正弦定理.【分析】(Ⅰ)利用正弦定理,结合和角的正弦公式,即可证明A=2B(Ⅱ)若△ABC 的面积 S=,则bcsinA=,结合正弦定理、二倍角公式,即可求角 A 的大小.【解答】(Ⅰ)证明:∵b+c=2acosB ,∴s inB+sinC=2sinAcosB ,∴s inB+sin (A+B ) =2sinAcosB∴s inB+sinAcosB+cosAsinB=2sinAcosB∴s inB=2=sinAcosB ﹣ cosAsinB=sin ( A ﹣ B)∵A ,B 是三角形中的角,∴B=A ﹣ B,∴A=2B ;(Ⅱ)解:∵△ABC 的面积 S=,∴bcsinA=,∴2bcsinA=a 2,∴2sinBsinC=sinA=sin2B ,∴s inC=cosB ,∴B+C=90 °,或 C=B+90 °,∴A=90 °或 A=45 °.【点评】本题考查了正弦定理,解三角形,考查三角形面积的计算,考查二倍角公式的运用,属于中档题.17.( 15 分)【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】( I )先证明 BF⊥ AC ,再证明BF⊥CK ,进而得到BF⊥平面 ACFD .(II )方法一:先找二面角 B ﹣AD ﹣ F 的平面角,再在Rt△BQF 中计算,即可得出;方法二:通过建立空间直角坐标系,分别计算平面ACK 与平面 ABK 的法向量,进而可得二面角 B﹣ AD ﹣ F 的平面角的余弦值.【解答】( I )证明:延长AD ,BE ,CF 相交于点K ,如图所示,∵平面BCFE ⊥平面 ABC ,∠ACB=90 °,∴AC ⊥平面 BCK ,∴ BF ⊥ AC .又EF∥BC ,BE=EF=FC=1 ,BC=2 ,∴△ BCK 为等边三角形,且 F 为 CK 的中点,则 BF⊥CK ,∴BF ⊥平面 ACFD .(II )方法一:过点 F 作 FQ⊥ AK ,连接 BQ,∵ BF⊥平面 ACFD .∴ BF⊥ AK ,则 AK ⊥平面BQF ,∴BQ ⊥ AK .∴∠ BQF 是二面角 B﹣ AD ﹣F 的平面角.在 Rt△ ACK 中, AC=3 , CK=2 ,可得 FQ=.在 Rt△ BQF 中, BF=,FQ=.可得:cos∠ BQF=.∴二面角 B ﹣ AD ﹣F 的平面角的余弦值为.方法二:如图,延长AD , BE, CF 相交于点K ,则△BCK 为等边三角形,取 BC 的中点,则KO ⊥ BC ,又平面BCFE ⊥平面 ABC ,∴ KO ⊥平面 BAC ,以点 O 为原点,分别以OB ,OK 的方向为x, z 的正方向,建立空间直角坐标系O﹣xyz.可得: B( 1,0,0),C(﹣ 1,0,0),K( 0,0,),A(﹣1,﹣3,0),,.=( 0, 3, 0),=,(2,3,0).设平面 ACK 的法向量为=( x1,y1,z1),平面 ABK 的法向量为=( x2,y2,z2),由,可得,取=.由,可得,取=.∴= = .∴二面角 B ﹣ AD ﹣F 的余弦值为.【点评】 本题考查了空间位置关系、法向量的应用、空间角,考查了空间想象能力、推理能力与计算能力,属于中档题.18.( 15 分)【考点】 函数最值的应用;函数的最值及其几何意义.【分析】(Ⅰ)由 a ≥3,讨论 x ≤1 时, x > 1,去掉绝对值,化简 x 2﹣ 2ax+4a ﹣ 2﹣ 2|x ﹣ 1|,判断符号,即可得到 F ( x ) =x 2﹣ 2ax+4a ﹣ 2 成立的 x 的取值范围;(Ⅱ)( i )设 f ( x ) =2|x ﹣ 1|, g ( x ) =x 2﹣ 2ax+4a ﹣ 2,求得 f ( x )和 g ( x )的最小值,再由新定义,可得 F ( x )的最小值;(ii )分别对当 0≤x ≤2 时,当 2< x ≤6 时,讨论 F ( x )的最大值,即可得到 F ( x )在 [0, 6]上的最大值 M ( a ).【解答】 解:(Ⅰ)由 a ≥3,故 x ≤1 时, x 2﹣2ax+4a ﹣ 2﹣ 2|x ﹣ 1|=x 2 +2( a ﹣ 1)(2﹣ x )> 0;当 x > 1 时, x 2﹣ 2ax+4a ﹣ 2﹣ 2|x ﹣ 1|=x 2﹣( 2+2a ) x+4a= ( x ﹣ 2)( x ﹣ 2a ),2则等式 F ( x ) =x ﹣ 2ax+4a ﹣ 2 成立的 x 的取值范围是( 2, 2a );2则 f (x ) min =f ( 1) =0, g (x ) min =g ( a ) =﹣ a +4a ﹣ 2.2由 F ( x )的定义可得 m ( a ) =min{f ( 1),g ( a ) } ,即 m ( a ) =;(ii )当 0≤x ≤2 时, F ( x ) ≤f (x ) ≤max{f ( 0), f ( 2) }=2=F ( 2);当2< x≤6 时, F( x)≤g( x)≤max{g ( 2), g( 6) } =max{2 , 34﹣8a}=max{F ( 2), F( 6) } .则 M ( a) =.【点评】本题考查新定义的理解和运用,考查分类讨论的思想方法,以及二次函数的最值的求法,不等式的性质,考查化简整理的运算能力,属于中档题.19.( 15 分)【考点】椭圆的简单性质;圆与圆锥曲线的综合.【分析】(Ⅰ)联立直线y=kx+1 与椭圆方程,利用弦长公式求解即可.(Ⅱ)写出圆的方程,假设圆 A 与椭圆由 4 个公共点,再利用对称性有解已知条件可得任意一 A ( 0, 1)为圆心的圆与椭圆至多有 3 个公共点, a 的取值范围,进而可得椭圆的离心率的取值范围.【解答】解:(Ⅰ)由题意可得:,可得:(1+a 2 2 2 2,k ) x +2ka x=0得 x1=0 或 x2=,直线 y=kx+1 被椭圆截得到的弦长为:=.(Ⅱ)假设圆 A 与椭圆由 4 个公共点,由对称性可设y 轴左侧的椭圆上有两个不同的点P,Q,满足 |AP|=|AQ| ,记直线 AP, AQ 的斜率分别为:k1,k2;且 k1,k2> 0, k1≠k2,由( 1)可知|AP|=, |AQ|=,故:=2 2 2 2 2 2 ,所以,( k1 ﹣k2) [1+k 1 +k2 +a(2﹣a)2 2k1 k2 ] =0,由 k1≠k2,2 2 2 2 2 2k1,k2> 0,可得: 1+k 1 +k 2 +a ( 2﹣ a )k1 k2 =0,因此a 2( a2﹣ 2)①,因为①式关于 k1, k2;的方程有解的充要条件是: 1+a 2( a2﹣ 2)> 1,所以 a>.因此,任意点 A (0, 1)为圆心的圆与椭圆至多有三个公共点的充要条件为:1< a<2,e= =得,所求离心率的取值范围是:.【点 】 本 考 直 与 的位置关系的 合 用,与 的位置关系的 合 用, 考分析 解决 的能力,考 化思想以及 算能力.20.( 15 分)【考点】 数列与不等式的 合.【分析】( I )使用三角不等式得出|a n ||a n+1|≤1, 形得≤,使用累加法可求得< 1,即 成立;(II )利用( I )的 得出< m n,利用 m , 而得出 |a n |<2+( ) ?2的任意性可 |a n |≤2.【解答】 解:( I )∵ |a n|≤1,∴ |a n ||a n+1|≤1,∴≤, n ∈N *,∴=( ) +( )+⋯+( )≤ ++ +⋯+ = =1 < 1.∴ |a n |≥2n ﹣ 1( |a 1| 2)( n ∈N *).(II )任取 n ∈N *,由( I )知, 于任意m > n ,=() +() +⋯+()≤+ +⋯+ = < .∴|a n |<( + n ≤[m ]?2 n ( )m n. ①) ?2 + ?( )=2+ ?2 由 m 的任意性可知 |a n |≤2.否 ,存在 n 0∈N *,使得 |a|> 2,取正整数m0> log且m0>n0,则2?()<2?()=|a|﹣ 2,与①式矛盾.综上,对于任意n∈N *,都有 |a n|≤2.【点评】本题考查了不等式的应用与证明,等比数列的求和公式,放缩法证明不等式,难度较大.。

浙江省舟山中学2016年高考数学5月仿真模拟试题 文

浙江省舟山中学2016年高考数学5月仿真模拟试题 文

参考公式:台体的体积公式V=其中S1,S2分别表示台体的上、下底面积,h表示台体的高锥体的体积公式其中S表示锥体的底面积,h表示锥体的高球的表面积公式S=4πR2球的体积公式其中R表示球的半径某某中学2016届文科数学仿真卷本试卷分选择题和非选择题两部分,满分150分,考试时间120分钟.柱体的体积公式其中S表示柱体的底面积,h 表示柱体的高选择题部分(共40分)一.选择题:(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知,则()A.B.C .D.2.若,则()A .B.C.D.2.已知则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设等差数列的前项和为,且满足,对任意正整数,都有,则的值为( )A.1006B.1007C.1008D.10095.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.6.已知实数变量满足且目标函数的最大值为4,则实数的值为( )A. B. C.2 D.17.设分别是双曲线的左、右焦点,是的右支上的点,射线平分,过原点作的平行线交于点,若,则的离心率为()A. B.3 C. D.8.定义在上的函数对任意都有,且函数的图象关于(1,0)成中心对称,若满足不等式,则当时,的取值X围是()A.B.C.D.非选择题部分(共110分)二、填空题:(本大题共7小题,第9至12题,每小题6分,第13至15题每小题4分,共36分)9.已知,则;不等式的解集为.10.在平面直角坐标系内,点,则三角形ABC面积为;三角形外接圆标准方程为.11.设函数是定义在上的偶函数,当时,,若,则;的解集为.12.函数取到最小值时值为;其图象与一条平行于轴的直线有三个交点,则实数取值X围为.13.已知过点的直线被圆:截得弦长为,若直线唯一,则该直线的方程为.14..已知,,,,则的最大值为 . 15.如图,某商业中心有通往正东方向和北偏东方向的两条街道,某公园位于商业中心北偏东角,且与商业中心的距离为公里处,现要经过公园修一条直路分别与两条街道交汇于两处,当商业中心到两处的距离之和最小时,的距离为公里.三、解答题:(本大题共5小题,共74分。

浙江舟山中学2016年高考数学5月仿真试卷理科附答案

浙江舟山中学2016年高考数学5月仿真试卷理科附答案

浙江舟山中学2016年高考数学5月仿真试卷(理科附答案)2016年5月舟山中学高考模拟仿真试卷理科数学本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色的字迹的签字笔或钢笔填写在答题纸上。

2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷上无效。

参考公式:球的表面积公式S=4πR2球的体积公式V=πR3其中R表示球的半径锥体的体积公式V=Sh其中S表示锥体的底面积,h表示锥体的高柱体的体积公式V=Sh其中S表示柱体的底面积,h表示柱体的高台体的体积公式其中S1,S2分别表示台体的上、下底面积,h表示台体的高台体的表面积公式(Ⅰ)选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.集合,,则....2.若函数是偶函数,则在上的递增区间是....3.已知是两条互相垂直的异面直线,下列说法中不正确的是.存在平面,使得且.存在平面,使得且.若点分别在直线上,且满足,则一定有.过空间某点不一定存在与直线都平行的平面4.设、是双曲线的左、右焦点,为双曲线左支上任意一点,若,,则双曲线离心率等于....5.设正项等比数列满足,若存在正整数,使得,则的最小值是....6.已知满足,若的最大值为,最小值为,则实数的取值范围是....7.设双曲线的右焦点为,过点与轴垂直的直线交两渐近线于,两点,与双曲线的其中一个交点为,设坐标原点为,若,且,则该双曲线的渐近线为()A.B.C.D.8.若函数有两个零点,且,那么A.只有一个小于1B.都小于1C.都大于1D.至少有一个小于1(Ⅱ)非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.若点落在圆:(为圆心)的外部,则▲,实数的取值范围是▲.10.设为单位向量,且的夹角为,若,,则等于▲,向量a在b方向上的投影为▲.11.一个棱锥的三视图如图所示,则该棱锥的所有棱长之和等于▲,棱锥的体积等于▲.12.已知数列为首项为的等差数列,数列是公比为的等比数列,则▲,实数的取值范围是▲.13.抛物线的准线交轴于点,过作直线交抛物线于两点,点在抛物线的对称轴上,若,则的取值范围是▲.14.如图,矩形中,,为边的中点,将沿直线翻折成,若为线段的中点,则在翻折过程中,下面四个选项中正确的是▲.(填写所有的正确选项)(1)是定值;(2)点在某个球面上运动;(3)存在某个位置,使;(4)恒有平面;15.中,,上的高,,则▲.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)在△中,角所对的边分别为,满足,,.(Ⅰ)求,的值;(Ⅱ)若,如图,为边中点,是边上动点,求的最小值.17.如图,已知长方形中,,为的中点.将沿折起,使得平面平面.(Ⅰ)求证:;(Ⅱ)若,当二面角大小为时,求的值.18.(本题满分15分)已知数列的前项和记为,且满足.(1)求的值,并证明:数列是等比数列;(2)证明:.19.(本题满分15分)已知中心在原点的椭圆左,右焦点分别为,,且椭圆过点.(1)求椭圆的方程;(2)过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.20.(本题满分15分)已知函数,当时,恒成立.(Ⅰ)若,,求实数的取值范围;(Ⅱ)若,当时,求的最大值.2016年仿真理科数学参考答案一、选择题:本大题共8小题,每小题5分,共40分. DBCBACBD二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.10.,11.12.,13.14本题为改编题,考查了动态的立体几何问题中线面的平行与垂直关系。

(完整)2016年高考浙江理科数学试题及答案(word解析版),推荐文档

(完整)2016年高考浙江理科数学试题及答案(word解析版),推荐文档
三、解答题:本大题共5题,共74分.解答应写出文字说明,演算步骤或证明过程.
(16)【2016年浙江,理16,14分】在 中,内角 , , 所对的边分别为 , , ,已知 .
(1)证明: ;
(2)若 的面积 ,求角 的大小.
解:(1)由正弦定理得 , ,
于是 .又 ,故 ,所以 或 ,
因此 (舍去)或 ,所以, .
【点评】本题考查了抛物线的性质,属于基础题.
(10)【2016年浙江,理10,6分】已知 ,则 , .
【答案】 ;1
【解析】∵ , , .
【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键.
(11)【2016年浙江,理11,6分】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.
【解析】作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线
上的投影构成线段 ,即 ,而 ,由 得 ,
即 ,由 得 ,即 ,
则 ,故选C.
【点评】本题主要考查线性规划的应用,作出不等式组对应的平面区域,利用投影的定义以及数形结合是解决本题的关键.
(4)【2016年浙江,理4,5分】命题“ , ,使得 ”的否定形式是()
∵ ,∴ ,故选C.
【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
(3)【2016年浙江,理3,5分】在平面上,过点 作直线 的垂线所得的垂足称为点 在直线 上的投影.由区域 中的点在直线 上的投影构成的线段记为 ,则 ()
(A) (B)4(C) (D)6
【答案】C
平面 的法向量为 .由 ,得 ,取 ;
由 ,得 ,取 .于是, .

高考专题5月舟山中学高考模拟仿真试卷.docx

高考专题5月舟山中学高考模拟仿真试卷.docx

高中数学学习材料马鸣风萧萧*整理制作2016年5月舟山中学高考模拟仿真试卷理 科 数 学本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

注意事项: 1.答题前,考生务必将自己的姓名、准考证号用黑色的字迹的签字笔或钢笔填写在答题纸上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷上无效。

参考公式:球的表面积公式S =4πR 2球的体积公式 V =43πR 3 其中R 表示球的半径 锥体的体积公式 V =13Sh 其中S 表示锥体的底面积, h 表示锥体的高柱体的体积公式 V=Sh其中S 表示柱体的底面积, h 表示柱体的高 台体的体积公式()112213V h S S S S =++其中S 1, S 2分别表示台体的上、下底面积, h 表示台体的高 台体的表面积公式22)(R r l R r S πππ+++=(Ⅰ) 选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.集合{0,2,3}A =,0{|3}xB x y x ==- ,则A B ⋂=A .{0}B . {8,26}C .{8}D .{2,3} 2.若函数()3sin(2)(0)f x x θθπ=+<<是偶函数,则)(x f 在[]π,0上的递增区间是A .[0,]2πB .[,]2ππC .[,]42ππD .3[,]4ππ3.已知,a b 是两条互相垂直的异面直线,下列说法中不正确...的是 A .存在平面α,使得a α⊂且b α⊥B .存在平面β,使得b β⊂且//a βC .若点,A B 分别在直线,a b 上,且满足AB b ⊥,则一定有AB a ⊥D .过空间某点不一定存在与直线,a b 都平行的平面4.设1F 、2F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线左支上任意一点,若21||22||PF a PF =⋅,1260F PF ∠=,则双曲线离心率等于A .2B .3C .23+D .32-5.设正项等比数列{}n a 满足7652a a a =+,若存在正整数,m n ,使得14m n a a a =,则14m n+的最小值是A .32B .53C .256D .2536.已知,x y 满足6003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,若z a x y =+的最大值为39a +,最小值为33a -,则实数a 的取值范围是A .[0,1]B .[1,0]-C .[1,1]-D .(,1][1,)-∞-⋃+∞7. 设双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,过点F 与x 轴垂直的直线l 交两渐近线于A ,B 两点,与双曲线的其中一个交点为P ,设坐标原点为O ,若O P m O A n O B =+(,)mn R ∈,且29mn =,则该双曲线的渐近线为 ( ) A .34y x =± B .24y x =± C .12y x =±D .13y x =±8.若函数2()f x x ax b =++有两个零点21,x x ,且1235x x <<<,那么(3),(5)f f A .只有一个小于1 B .都小于1 C .都大于1 D .至少有一个小于1(Ⅱ) 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.若点(0,1)A 落在圆C :22240x y x y k ++-+=(C 为圆心)的外部,则||AC = ▲ ,实数k 的取值范围是 ▲ .10. 设12,e e 为单位向量, 且12,e e 的夹角为60, 若123a e e =+,12b e =,则||a b +等于 ▲ , 向量a 在b 方向上的投影为 ▲ .11.一个棱锥的三视图如图所示,则该棱锥的所有 棱长之和等于 ▲ ,棱锥的体积等于 ▲ .12.已知数列{}n a 为首项为a 的等差数列,数列2{2}n na +是公比为q 的等比数列,则q = ▲ ,实数a 的取值范围是 ▲ .俯视图侧视图正视图11111第11题图13.抛物线28x y =-的准线交y 轴于点A ,过A 作直线交抛物线于,M N 两点,点B 在抛物线的对 称轴上,若(2)BM MN MN +⊥,则||OB 的取值 范围是 ▲ .14. 如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1AC 的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是 ▲ . (填写所有的正确选项)(1)||BM 是定值 ; (2)点M 在某个球面上运动;(3)存在某个位置,使1DE A C ⊥ ;(4)恒有//MB 平面1A DE ;15. ABC ∆中,52,5==AC AB ,BC 上的高4=AH ,AC y AB x AH +=,则xy= ▲ .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.(本题满分14分)在△ABC 中,角,,A B C 所对的边分别为,,a b c ,满足sin sin sin sin A C a b A B c --=+,7b =,21cos 28C =. (Ⅰ)求B ,a 的值;(Ⅱ)若6A π>,如图,D 为边BC 中点,P 是边AB 上动点,求CP PD +的最小值.17. 如图,已知长方形ABCD 中,1,2==AD AB ,M 为DC 的中点. 将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM . (Ⅰ)求证:BM AD ⊥;(Ⅱ)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.A B C DP第16题图 DABCA 1EMH18. (本题满分15分)已知数列}{n a 的前n 项和记为n S ,且满足)(2*N n n a S n n ∈-=.(1)求21,a a 的值,并证明:数列}1{+n a 是等比数列; (2)证明:231213221na a a a a a n n n <+⋅⋅⋅++<-+.19. (本题满分15分)已知中心在原点O 的椭圆左,右焦点分别为21,F F ,)0,1(2F ,且椭圆过点3(1,)2. (1)求椭圆的方程;(2)过2F 的直线l 与椭圆交于不同的两点B A ,,则AB F 1∆的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.20. (本题满分15分)已知函数c bx ax x f ++=2)(,当1≤x 时,1)(≤x f 恒成立. (Ⅰ)若1=a ,c b =,求实数b 的取值范围;(Ⅱ)若a bx cx x g +-=2)(,当1≤x 时,求)(x g 的最大值.xyF 1F 2OAB2016年仿真理 科 数 学参考答案一、选择题:本大题共8小题,每小题5分,共40分.D B C B A C B D二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.2,(3,5) 10. 33,5.211. 2443,3+ 12. 1,2q = ,1a ≠- 13.(6,)+∞14. )4(),2(. 本题为改编题,考查了动态的立体几何问题中线面的平行与垂直关系。

(完整word版)2016年浙江省高考数学试卷(理科)及解析.doc

(完整word版)2016年浙江省高考数学试卷(理科)及解析.doc

2016 年浙江省高考数学试卷(理科)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一个是符合题目要求的.2R )1.( 5 分)(2016?浙江)已知集合 P={x ∈R|1≤x ≤3} ,Q={x ∈R|x ≥4} ,则 P ∪(? Q )=(A . [2, 3]B .(﹣ 2, 3]C . [1, 2)D .(﹣ ∞,﹣ 2]∪ [1, +∞)2.( 5 分)( 2016?浙江)已知互相垂直的平面 α,β交于直线 l ,若直线 m ,n 满足 m ∥ α,n ⊥ β,则( ) A . m ∥ l B . m ∥ n C . n ⊥ l D . m ⊥ n3.( 5 分)( 2016?浙江)在平面上,过点 P 作直线 l 的垂线所得的垂足称为点 P 在直线 l 上的投影,由区域 中的点在直线 x+y ﹣ 2=0 上的投影构成的线段记为 AB ,则|AB|= ( )A . 2B . 4C . 3D . 64.( 5 分)( 2016?浙江)命题 “? x ∈R , ?n ∈N * ,使得 n ≥x 2”的否定形式是( )A . ? x ∈R , ?n ∈N * ,使得 n < x 2B . ?x ∈R ,? n ∈N * ,使得 n < x 2C . ?x ∈R , ?n ∈N * ,使得 n < x 2D .? x ∈R , ?n ∈N * ,使得 n < x 25.( 5 分)( 2016?浙江)设函数f ( x ) =sin 2x+bsinx+c ,则 f (x )的最小正周期( )A .与 b 有关,且与 c 有关B .与 b 有关,但与 c 无关C .与 b 无关,且与 c 无关D .与 b 无关,但与 c 有关6.( 5 分)( 2016?浙江)如图,点列 {A n } 、{B n } 分别在某锐角的两边上, 且 |A n A n+1|=|A n+1A n+2|,*,|B *,( P ≠Q 表示点 P 与 Q 不重合)若 d A n ≠A n+1,n ∈Nn B n+1|=|B n+1B n+2|,B n ≠B n+1,n ∈Nn =|A n B n |,S 为 △ A B B的面积,则()n n n n+1A . {S n } 是等差数列 2 } 是等差数列B . {S nC . {d n } 是等差数列2} 是等差数列D .{d n7.( 5 分)( 2016?浙江)已知椭圆C 1: +y 2=1( m > 1)与双曲线 C 2: ﹣ y 2=1(n > 0)的焦点重合, e 1, e 2 分别为 C 1,C 2 的离心率,则()D .m <n 且 e e < 1A . m > n 且 e e > 1B . m >n 且 e e < 1C . m < n 且 e e > 11 21 21 21 28.( 5 分)( 2016?浙江)已知实数 a , b ,c .()A .若 |a 2 +b+c|+|a+b 2+c|≤1,则 a 2+b 2+c 2< 100B .若 |a 2+b+c|+|a 2 +b ﹣ c|≤1,则 a 2+b 2+c 2< 100C .若 |a+b+c 2|+|a+b ﹣ c 2|≤1,则 a 2+b 2+c 2< 1002 2 2 2 2D .若 |a +b+c|+|a+b ﹣ c|≤1,则 a +b +c < 100二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题4 分,共 36 分.9.( 4 分)( 2016?浙江)若抛物线 2y =4x 上的点 M 到焦点的距离为 10,则 M 到 y 轴的距离 是 .10.( 6 分)( 2016?浙江)已知 2cos 2x+sin2x=Asin ( ωx+ φ)+b ( A >0),则 A=,b= .11.( 6 分)( 2016?浙江)某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是cm 2,体积是 cm 3.12.( 6 分)( 2016?浙江)已知 a > b > 1,若 log a b+log b a= , a b =b a,则 a= ,b=.13.( 6 分)( 2016?浙江)设数列{a n } 的前 n 项和为 S n ,若 S 2 =4, a n+1=2S n +1, n ∈N *,则 a 1= , S 5= .14.( 4 分)( 2016?浙江)如图,在 △ ABC 中, AB=BC=2 ,∠ABC=120 °.若平面 ABC 外的点 P 和线段 AC 上的点 D ,满足 PD=DA ,PB=BA ,则四面体 PBCD 的体积的最大值是.15.( 4 分)( 2016?浙江)已知向量 , , | |=1, | |=2,若对任意单位向量 ,均有| ? |+| ? |≤ ,则 ? 的最大值是.三、解答题:本大题共 5 小题,共 74 分.解答应写出文字说明,证明过程或演算步骤.16.( 14 分)( 2016?浙江)在 △ ABC 中,内角 A ,B ,C 所对的边分别为a ,b ,c ,已知 b+c=2acosB .(Ⅰ )证明: A=2B(Ⅱ )若 △ABC 的面积 S=,求角 A 的大小.17.( 15 分)( 2016?浙江)如图,在三棱台 ABC ﹣ DEF 中,已知平面 BCFE ⊥平面 ABC ,∠ A CB=90 °,BE=EF=FC=1 , BC=2 , AC=3 , (Ⅰ )求证: EF ⊥ 平面 ACFD ;(Ⅱ )求二面角 B ﹣ AD ﹣F 的余弦值.18.(15 分)( 2016?浙江)已知a ≥3,函数 F (x ) =min{2|x ﹣ 1|,x 2﹣ 2ax+4a ﹣ 2} ,其中 min( p , q ) =(Ⅰ )求使得等式 F ( x ) =x 2﹣ 2ax+4a ﹣ 2 成立的 x 的取值范围 (Ⅱ )( i )求 F ( x )的最小值 m ( a )(ii )求 F ( x )在 [0,6] 上的最大值 M ( a )19.( 15 分)( 2016?浙江)如图,设椭圆 C :+y 2=1( a > 1)(Ⅰ )求直线 y=kx+1 被椭圆截得到的弦长(用 a ,k 表示)(Ⅱ )若任意以点 A ( 0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20.( 15 分)( 2016?浙江)设数列满足n﹣* .|a |≤1, n∈N(Ⅰ )求证: |a n n﹣1( |a1|﹣ 2)( n∈N* )|≥2(Ⅱ )若 |a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.2016 年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.( 5 分)【考点】 并集及其运算.【分析】 运用二次不等式的解法,求得集合 Q ,求得 Q 的补集,再由两集合的并集运算,即可得到所求.【解答】 解: Q={x ∈R|x 2≥4}={x ∈R|x ≥2 或 x ≤﹣ 2} , 即有 ?R Q={x ∈R|﹣ 2< x < 2} ,则 P ∪ ( ?R Q ) =(﹣ 2, 3]. 故选: B .【点评】 本题考查集合的运算, 主要是并集和补集的运算, 考查不等式的解法, 属于基础题.2.( 5 分)【考点】 直线与平面垂直的判定.【分析】 由已知条件推导出 l? β,再由 n ⊥ β,推导出 n ⊥ l .【解答】 解: ∵ 互相垂直的平面 α, β交于直线 l ,直线 m , n 满足 m ∥ α,∴m ∥ β或 m? β或 m ⊥β, l? β, ∵n ⊥ β, ∴n ⊥ l . 故选: C .【点评】 本题考查两直线关系的判断,是基础题, 解题时要认真审题, 注意空间思维能力的培养. 3.( 5 分)【考点】 简单线性规划的应用.【分析】 作出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可. 【解答】 解:作出不等式组对应的平面区域如图: (阴影部分),区域内的点在直线 x+y ﹣ 2=0 上的投影构成线段 R ′Q ′,即 SAB ,而 R ′Q ′=RQ ,由得,即 Q (﹣ 1, 1),由得,即 R ( 2,﹣ 2),则|AB|=|QR|== =3 ,故选: C【点评】 本题主要考查线性规划的应用, 作出不等式组对应的平面区域, 利用投影的定义以及数形结合是解决本题的关键.4.( 5 分)【考点】 命题的否定.【分析】 直接利用全称命题的否定是特称命题写出结果即可.【解答】 解:因为全称命题的否定是特称命题,所以,命题 “?x ∈R , ?n ∈N * ,使得 n ≥x 2”的否定形式是: ?x ∈R ,? n ∈N * ,使得 n < x 2. 故选: D .【点评】 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题. 5.( 5 分)【考点】 三角函数的周期性及其求法.【分析】 根据三角函数的图象和性质即可判断.2∴c 是图象的纵坐标增加了c ,横坐标不变,故周期与 c 无关,当 b=0 时, f ( x ) =sin 2x+bsinx+c= ﹣ cos2x+ +c 的最小正周期为 T==π,当 b ≠0 时, f ( x ) =﹣ cos2x+bsinx+ +c ,∵ y =cos2x 的最小正周期为 π, y=bsinx 的最小正周期为 2π, ∴f (x )的最小正周期为 2π,故 f (x )的最小正周期与 b 有关,故选: B【点评】 本题考查了三额角函数的最小正周期, 关键掌握三角函数的图象和性质, 属于中档题.6.( 5 分) 【考点】 数列与函数的综合.【分析】 设锐角的顶点为 O ,再设 |OA 1|=a , |OB 1|=b , |A n A n+1|=|A n+1A n+2|=b ,|B n B n+1|=|B n+1B n+2|=d ,由于 a ,b 不确定,判断 C ,D 不正确,设 △ A n B n B n+1 的底边 B n B n+1 上的高为 h n n n+2 n+1 n n n n+2 n+1,运用三角形相似知识, h +h =2h ,由 S = d?h ,可得 S +S =2S ,进 而得到数列 {S n } 为等差数列.【解答】 解:设锐角的顶点为 O , |OA 1 |=a , |OB 1|=b ,|A A |=|A A n+2 |=b , |B B n+1 |=|B B |=d ,n n+1 n+1 n n+1 n+2由于 a , b 不确定,则 {d n } 不一定是等差数列,{d n 2} 不一定是等差数列, 设△ A n B n B n+1 的底边 B n B n+1 上的高为 h n ,由三角形的相似可得= = ,= = ,两式相加可得, = =2,即有 h n +h n+2=2h n+1,由 S n = d?h n ,可得 S n +S n+2=2S n+1,即为 S n+2﹣S n+1=S n+1﹣ S n , 则数列 {S n } 为等差数列. 故选: A .【点评】 本题考查等差数列的判断, 注意运用三角形的相似和等差数列的性质, 考查化简整理的推理能力,属于中档题.7.( 5 分)【考点】 椭圆的简单性质;双曲线的简单性质.【分析】 根据椭圆和双曲线有相同的焦点,得到c 2=m 2﹣ 1=n 2+1,即 m 2﹣ n 2=2,进行判断,能得 m > n ,求出两个离心率,先平方进行化简进行判断即可.【解答】 解: ∵ 椭圆 C 1:+y 2=1 (m >1)与双曲线 C 2: ﹣ y 2=1( n >0)的焦点重合,∴满足 c 2=m 2﹣ 1=n 2+1 ,即 m 2﹣n 2=2> 0,∴ m 2> n 2,则 m > n ,排除 C , D则 c 2=m 2﹣ 1< m 2, c 2=n 2+1> n 2,则 c < m . c > n ,e 1= , e 2= , 则 e 1?e 2= ? =,则( e 1?e 2) 2=( )2?( )2= = = =1+ =1+ =1+ > 1,∴ e 1e 2> 1,故选: A .【点评】 本题主要考查圆锥曲线离心率的大小关系的判断, 根据条件结合双曲线和椭圆离心率以及不等式的性质进行转化是解决本题的关键.考查学生的转化能力.8.( 5 分)【考点】 命题的真假判断与应用. 【分析】 本题可根据选项特点对a ,b ,c 设定特定值,采用排除法解答.【解答】 解: A .设 a=b=10, c=﹣ 110,则 |a 2+b+c|+|a+b 2+c|=0 ≤1, a 2+b 2+c 2>100;B .设 a=10, b=﹣ 100, c=0,则 |a 2+b+c|+|a 2+b ﹣ c|=0≤1, a 2+b 2+c 2>100;C .设 a=100, b=﹣100, c=0,则 |a+b+c 2|+|a+b ﹣ c 2|=0≤1, a 2+b 2 +c 2>100;故选: D .【点评】 本题主要考查命题的真假判断, 由于正面证明比较复杂, 故利用特殊值法进行排除是解决本题的关键.二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分.9.( 4 分)【考点】 抛物线的简单性质. 【分析】 根据抛物线的性质得出 M 到准线 x= ﹣ 1 的距离为 10,故到 y 轴的距离为 9.【解答】 解:抛物线的准线为 x=﹣ 1,∵点 M 到焦点的距离为 10, ∴点 M 到准线 x= ﹣ 1 的距离为 10,∴点 M 到 y 轴的距离为 9.故答案为: 9.【点评】 本题考查了抛物线的性质,属于基础题. 10.( 6 分)【考点】 两角和与差的正弦函数.【分析】 根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案.2=1+ ( cos2x+ sin2x ) +1=sin ( 2x+ ) +1,∴ A =, b=1 , 故答案为:; 1.【点评】 本题考查了二倍角的余弦公式、 两角和的正弦函数的应用, 熟练掌握公式是解题的关键.11.(6 分)【考点】 由三视图求面积、体积.【分析】 由三视图可得,原几何体为由四个棱长为 2cm 的小正方体所构成的,代入体积公式和面积公式计算即可.【解答】 解:由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,则其表面积为 22×( 24﹣ 6) =72cm 2,其体积为 4×23=32 , 故答案为: 72, 32【点评】 本题考查了由三视图求几何体的体积和表面积, 解题的关键是判断几何体的形状及相关数据所对应的几何量,考查空间想象能力. 12.( 6 分) 【考点】 对数的运算性质.【分析】 设 t=log b a 并由条件求出 t 的范围,代入log a b+log ba= 化简后求出 t 的值,得到 ab a化简后列出方程,求出 a 、 b 的值. 与 b 的关系式代入 a =b 【解答】 解:设 t=log b a ,由 a >b > 1 知 t > 1, 代入 log a b+log b a= 得,即 2t 2﹣5t+2=0 ,解得 t=2 或 t= (舍去),所以 log b a=2,即 a=b 2,ba2b a2, 因为 a =b ,所以 b =b ,则 a=2b=b 解得 b=2 ,a=4, 故答案为: 4; 2.【点评】 本题考查对数的运算性质,以及换元法在解方程中的应用,属于基础题.13.( 6 分)【考点】 数列的概念及简单表示法.【分析】运用 n=1 时,a 1=S 1,代入条件, 结合 S 2=4,解方程可得首项; 再由 n > 1 时,a n+1=S n+1﹣S n ,结合条件,计算即可得到所求和.【解答】 解:由 n=1 时, a 1=S 1,可得 a 2=2S 1+1=2a 1+1,又 S 2=4,即 a 1+a 2=4, 即有 3a 1+1=4 ,解得 a 1=1;由 a n+1=S n+1﹣ S n ,可得 S n+1=3S n +1,由 S 2=4,可得 S 3=3×4+1=13 , S 4=3 ×13+1=40 , S 5=3 ×40+1=121 . 故答案为: 1, 121.【点评】本题考查数列的通项和前 n 项和的关系: n=1 时, a1=S1, n>1 时, a n=S n﹣ S n﹣1,考查运算能力,属于中档题.14.( 4 分)【考点】棱柱、棱锥、棱台的体积.【分析】由题意,△ABD ≌△ PBD ,可以理解为△ PBD 是由△ ABD 绕着 BD 旋转得到的,对于每段固定的 AD ,底面积 BCD 为定值,要使得体积最大,△ PBD 必定垂直于平面 ABC ,此时高最大,体积也最大.【解答】解:如图, M 是 AC 的中点.①当 AD=t < AM=时,如图,此时高为P 到 BD 的距离,也就是 A 到 BD 的距离,即图中AE ,DM=﹣ t,由△ ADE ∽ △ BDM ,可得,∴h=,V==,t∈(0,)②当 AD=t > AM=时,如图,此时高为P 到 BD 的距离,也就是 A 到 BD 的距离,即图中AH ,DM=t ﹣,由等面积,可得,∴,∴h=,∴V==,t∈(,2)综上所述, V=,t∈(0,2)令 m=∈[1,2),则V=,∴ m=1时,V max=.故答案为:.【点评】本题考查体积最大值的计算, 考查学生转化问题的能力, 考查分类讨论的数学思想,对思维能力和解题技巧有一定要求,难度大. 15.( 4 分)【考点】 平面向量数量积的运算.【分析】 根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论.【解答】 解: ∵ |( + ) ? |=| ? + ? |≤| ? |+| ? |≤ ,∴ |( + ) ? |≤| + |≤ ,平方得: | |2+| |2+2 ? ≤6,即12+22+2 ? ≤6,则 ? ≤ ,故 ? 的最大值是 ,故答案为: .【点评】 本题主要考查平面向量数量积的应用, 根据绝对值不等式的性质以及向量三角形不等式的关系是解决本题的关键.综合性较强,有一定的难度.三、解答题:本大题共5 小题,共 74 分.解答应写出文字说明,证明过程或演算步骤.16.( 14 分)【考点】 余弦定理;正弦定理.【分析】(Ⅰ )利用正弦定理,结合和角的正弦公式,即可证明 A=2B(Ⅱ )若 △ABC 的面积 S=,则 bcsinA=,结合正弦定理、二倍角公式,即可求角A的大小.【解答】(Ⅰ )证明: ∵ b+c=2acosB ,∴ s inB+sinC=2sinAcosB , ∴ s inB+sin (A+B ) =2sinAcosB ∴ s inB+sinAcosB+cosAsinB=2sinAcosB∴ s inB=2=sinAcosB ﹣ cosAsinB=sin ( A ﹣ B ) ∵A ,B 是三角形中的角, ∴ B =A ﹣ B ,∴ A =2B ;(Ⅱ )解: ∵ △ ABC 的面积 S=,∴ bcsinA=,∴ 2bcsinA=a 2,∴ 2sinBsinC=sinA=sin2B ,∴ s inC=cosB ,∴B+C=90 °,或 C=B+90 °,∴A=90 °或 A=45 °.【点评】本题考查了正弦定理,解三角形,考查三角形面积的计算,考查二倍角公式的运用,属于中档题.17.( 15 分)【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】( I )先证明 BF⊥ AC ,再证明BF⊥CK ,进而得到BF⊥平面 ACFD .(II )方法一:先找二面角 B ﹣AD ﹣ F 的平面角,再在Rt△BQF 中计算,即可得出;方法二:通过建立空间直角坐标系,分别计算平面ACK 与平面 ABK 的法向量,进而可得二面角 B﹣ AD ﹣ F 的平面角的余弦值.【解答】( I )证明:延长 AD ,BE ,CF 相交于点 K ,如图所示,∵平面 BCFE ⊥平面 ABC ,∠ACB=90 °,∴AC ⊥平面 BCK ,∴BF ⊥ AC .又EF∥BC ,BE=EF=FC=1 ,BC=2 ,∴△ BCK 为等边三角形,且 F 为 CK 的中点,则 BF⊥ CK ,∴B F ⊥平面 ACFD .(I I )方法一:过点 F 作 FQ⊥ AK ,连接 BQ,∵ BF⊥平面 ACFD .∴ BF⊥ AK ,则 AK ⊥平面BQF ,∴BQ ⊥ AK .∴∠ BQF 是二面角 B﹣ AD ﹣F 的平面角.在 Rt△ ACK 中, AC=3 , CK=2 ,可得 FQ=.在 Rt△ BQF 中, BF=,FQ=.可得:cos∠ BQF=.∴二面角 B ﹣ AD ﹣F 的平面角的余弦值为.方法二:如图,延长AD , BE, CF 相交于点K ,则△BCK 为等边三角形,取 BC 的中点,则KO ⊥ BC ,又平面BCFE ⊥平面 ABC ,∴ KO ⊥平面 BAC ,以点 O 为原点,分别以OB ,OK 的方向为x, z 的正方向,建立空间直角坐标系O﹣xyz.可得: B( 1,0,0),C(﹣ 1,0,0),K( 0,0,),A(﹣1,﹣3,0),,.=( 0, 3, 0),=,(2,3,0).设平面 ACK 的法向量为=( x1,y1,z1),平面 ABK 的法向量为=( x2,y2,z2),由,可得,取=.由,可得 ,取 = .∴= = .∴二面角 B ﹣ AD ﹣F 的余弦值为.【点评】 本题考查了空间位置关系、法向量的应用、空间角,考查了空间想象能力、推理能力与计算能力,属于中档题.18.( 15 分)【考点】 函数最值的应用;函数的最值及其几何意义.【分析】( Ⅰ )由 a ≥3,讨论 x ≤1 时, x > 1,去掉绝对值,化简 x 2﹣ 2ax+4a ﹣ 2﹣ 2|x ﹣ 1|,判断符号,即可得到 F ( x ) =x 2﹣ 2ax+4a ﹣ 2 成立的 x 的取值范围;(Ⅱ )( i )设 f ( x ) =2|x ﹣ 1|, g ( x ) =x 2﹣ 2ax+4a ﹣ 2,求得 f ( x )和 g ( x )的最小值,再 由新定义,可得 F ( x )的最小值;(ii )分别对当 0≤x ≤2 时,当 2< x ≤6 时,讨论 F ( x )的最大值,即可得到F ( x )在 [0, 6] 上的最大值 M ( a ).【解答】 解:( Ⅰ )由 a ≥3,故 x ≤1 时,x 2﹣2ax+4a ﹣ 2﹣ 2|x ﹣ 1|=x 2+2( a ﹣ 1)(2﹣ x )> 0;当 x > 1 时, x 2﹣ 2ax+4a ﹣ 2﹣ 2|x ﹣ 1|=x 2﹣( 2+2a ) x+4a= ( x ﹣ 2)( x ﹣ 2a ),2则等式 F ( x ) =x ﹣ 2ax+4a ﹣ 2 成立的 x 的取值范围是( 2, 2a );则 f (x ) min =f ( 1) =0, g (x ) min =g ( a ) =﹣ a 2+4a ﹣ 2.由﹣ a 2+4a ﹣ 2=0,解得 a=2+ (负的舍去),由 F ( x )的定义可得 m ( a ) =min{f ( 1),g ( a ) } ,即 m ( a ) =;( i i )当 0≤x ≤2 时, F ( x ) ≤f (x ) ≤max{f ( 0), f ( 2) }=2=F ( 2);当 2< x ≤6 时, F ( x ) ≤g ( x ) ≤max{g ( 2), g ( 6) }=max{2 , 34﹣8a}=max{F ( 2), F ( 6) } .则 M ( a ) =.【点评】 本题考查新定义的理解和运用, 考查分类讨论的思想方法, 以及二次函数的最值的求法,不等式的性质,考查化简整理的运算能力,属于中档题.19.( 15 分)【考点】 椭圆的简单性质;圆与圆锥曲线的综合.【分析】(Ⅰ )联立直线 y=kx+1 与椭圆方程,利用弦长公式求解即可.(Ⅱ )写出圆的方程,假设圆 A 与椭圆由 4 个公共点,再利用对称性有解已知条件可得任意一 A ( 0, 1)为圆心的圆与椭圆至多有 3 个公共点, a 的取值范围,进而可得椭圆的离心率的取值范围.【解答】 解:( Ⅰ )由题意可得:,可得:(1+a 2k 2) x 2+2ka 2x=0 ,得 x 1=0 或 x 2=,直线 y=kx+1 被椭圆截得到的弦长为:= .(Ⅱ )假设圆 A 与椭圆由 4 个公共点,由对称性可设 y 轴左侧的椭圆上有两个不同的点P ,Q ,满足 |AP|=|AQ| ,记直线 AP , AQ 的斜率分别为: k 1,k 2;且 k 1,k 2 > 0, k 1≠k 2,由( 1)可知|AP|=, |AQ|=,故: =2 2 2 2 2 2,所以,( k 1 ﹣k 2 ) [1+k 1 +k 2 +a ( 2﹣ a )22,由 k 1≠k 2,k 1 k 2] =0 222222k 1,k 2> 0,可得: 1+k1 +k2 +a ( 2﹣ a )k 1 k 2 =0,因此a 2( a 2﹣ 2) ① ,因为 ① 式关于 k 1, k 2;的方程有解的充要条件是:1+a 2( a 2﹣ 2)> 1,所以 a > .因此,任意点 A (0, 1) 心的 与 至多有三个公共点的充要条件 :1< a <2,e= = 得,所求离心率的取 范 是: .【点 】 本 考 直 与 的位置关系的 合 用, 与 的位置关系的 合 用,考分析 解决 的能力,考 化思想以及 算能力.20.( 15 分)【考点】 数列与不等式的 合.【分析】( I )使用三角不等式得出|a n ||a n+1|≤1, 形得≤,使用累加法可求得< 1,即 成立;(II )利用( I )的 得出< , 而得出 |a n |<2+() m 2n,利用 m的任意性可 |a n |≤2.【解答】 解:( I ) ∵ |a nnn+1,|≤1, ∴ |a | |a |≤1∴≤, n ∈N *,∴=( ) +( )+⋯+( )≤ ++ +⋯+ = =1 < 1.∴ |a n |≥2n ﹣ 1( |a 1| 2)( n ∈N * ).(II )任取 n ∈N *,由( I )知, 于任意m > n ,=() +() +⋯+()≤+ +⋯+ = < .∴|a n |<(+) ?2n ≤[+ ?() m ]?2n=2+( ) m ?2n. ①由 m 的任意性可知 |a n |≤2.否则,存在 n 0∈N *,使得 |a|> 2,取正整数 m 0> log且 m 0> n 0,则2 ?( ) < 2 ?( ) =|a |﹣ 2,与 ① 式矛盾.综上,对于任意 n ∈N *,都有 |a n |≤2.【点评】 本题考查了不等式的应用与证明,等比数列的求和公式, 放缩法证明不等式, 难度较大.。

2016年高考真题——理科数学(浙江卷)Word版含解析

2016年高考真题——理科数学(浙江卷)Word版含解析

2016年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合P=,Q=,则P=A.[2,3]B.(-2,3]C.[1,2)D.2.已知互相垂直的平面交于直线l,若直线m,n满足,则A. B. C. D.3.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=A. B.4 C. D.64.命题“使得”的否定形式是A.使得B.使得C.使得D.使得5.设函数,则的最小正周期A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.如图,点列分别在某锐角的两边上,且,,,.(表示点P与Q不重合)若,为的面积,则A.是等差数列B.是等差数列C.是等差数列D.是等差数列7.已知椭圆与双曲线的焦点重合,分别为的离心率,则A.且B.且C.且D.且8.已知实数.A.若则B.若则C.若则D.若则二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

9.若抛物线上的点M到焦点的距离为10,则M到y轴的距离是.10.已知,则A=,b=.11.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.12.已知,若,则a=,b=.13.设数列的前n,则=,=.14.如图,在中,AB=BC=2,.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.15.已知向量a,b,|a|=1,|b|=2,若对任意单位向量e,均有|a·e|+|b·e|,则a·b的最大值是.三、解答题:本大题共5小题,共74分。

解答应写出文字说明,证明过程或演算步骤。

16.(本题满分14分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知2cos b c a B += (Ⅰ)证明:2A B =(Ⅱ)若ABC ∆的面积24a S =,求角A 的大小.17.(本题满分15分)如图,在三棱台ABC DEF -中,已知平面BCFE 平面ABC ,90ACB ∠=︒,1BE EF EC ===,2BC =,3AC =,(Ⅰ)求证:ACFD BF ⊥平面 (Ⅱ)求二面角B-AD-C 的余弦值.18. (本题满分15分)设3a ≥,函数2()min{2|1|,242}F x x x ax a =--+-,其中(Ⅰ)求使得等式2()242F x x ax a =-+-成立的x 的取值范围 (Ⅱ)(i )求()F x 的最小值()m a(ii )求()F x 在[0,6]上的最大值()M a19.(本题满分15分)如图,设椭圆C:2221(1)x y a a+=>(Ⅰ)求直线1y kx =+被椭圆截得到的弦长(用a,k 表示) (Ⅱ)若任意以点(0,1)A 为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20、(本题满分15分)设数列满足1||12n n a a +-≤,(Ⅰ)求证:11||2(||2)(*)n n a a n N -≥-∈(Ⅱ)若3||()2n n a ≤,*n N ∈,证明:||2n a ≤,*n N ∈.2016年高考浙江卷数学(理)试题答案及解析一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1. 已知集合{}{}213,4,P x x Q x x=∈≤≤=∈≥R R则()P Q⋃=RA.[2,3] B.( -2,3 ] C.[1,2) D.(,2][1,)-∞-⋃+∞【答案】B【解析】根据补集的运算得{}[](]24(2,2),()(2,2)1,32,3=<=-∴=-=-R RQ x x P Q.故选B.2. 已知互相垂直的平面αβ,交于直线l.若直线m,n满足,m nαβ∥⊥,则A.m∥l B.m∥n C.n⊥l D.m⊥n【答案】C3. 在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域20340xx yx y-≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x+y-2=0上的投影构成的线段记为AB,则│AB│=A.22B.4 C.32D.6【答案】C【解析】如图∆PQR为线性区域,区域内的点在直线20x y+-=上的投影构成了线段''R Q,即AB,而''=R Q PQ,由340-+=⎧⎨+=⎩x yx y得(1,1)-Q,由2=⎧⎨+=⎩xx y得(2,2)-R,22(12)(12)32==--++=AB QR.故选C.4. 命题“*x n ∀∈∃∈,R N ,使得2n x >”的定义形式是A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D . 5. 设函数2()sin sin f x x b x c =++,则()f x 的最小正周期 A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 【答案】B6. 如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N , 1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 若1n n n n n n n d A B S A B B +=,为△的面积,则A .{}n S 是等差数列B .2{}nS 是等差数列 C .{}n d 是等差数列 D .2{}nd 是等差数列 【答案】A【解析】n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即112n n n n S h B B +=,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么11tan n n n h h A A θ+=+⋅,其中θ为两条线的夹角,即为定值,那么1111(tan )2n n n n S h A A B B θ+=+⋅,111111(tan )2n n n n S h A A B B θ+++=+⋅,作差后:1111(tan )2n n n n n n S S A A B B θ+++-=⋅,都为定值,所以1n n S S +-为定值.故选A .7. 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A【解析】由题意知2211-=+m n ,即222=+m n ,2221222221111()(1)(1)-+=⋅=-+m n e e m n m n,代入222=+m n ,得212,()1>>m n e e .故选A . 8. 已知实数a ,b ,cA .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100B .若|a 2+b +c |+|a 2+b –c |≤1,则a 2+b 2+c 2<100C .若|a +b +c 2|+|a +b –c 2|≤1,则a 2+b 2+c 2<100D .若|a 2+b +c |+|a +b 2–c |≤1,则a 2+b 2+c 2<100 【答案】D二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9. 若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 【答案】9【解析】1109M M x x +=⇒=10. 已知2cos 2x +sin 2x =Asin(ωx +φ)+b (A >0),则A =______,b =________. 【答案】2 1【解析】22cos sin 22sin(2)14x x x π+=++,所以2, 1.A b == 11. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 32【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯= 12. 已知a >b >1.若log a b +log b a =52,a b =b a ,则a = ,b = .【答案】4 2【解析】设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=,因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒==13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= . 【答案】1 12114. 如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】12【解析】ABC ∆中,因为2,120AB BC ABC ==∠=, 所以30BAD BCA ∠==.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以3AC =设AD x =,则023t <<23DC x =.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅2234x x =-+.故2234BD x x =-+在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得2222222(234)3cos 2222PD PB BD x x x BPD PD PB x +-+--+∠===⋅⋅⋅,所以30BPD ∠=.EDCBAP过P 作直线BD的垂线,垂足为O .设PO d =则11sin 22PBD S BD d PD PB BPD ∆=⨯=⋅∠, 即2112342sin 3022x x d x -+⨯=⋅, 解得2234d x x =-+.而BCD ∆的面积111sin (23)2sin 30(23)222S CD BC BCD x x =⋅∠=-⋅=-. 设PO 与平面ABC 所成角为θ,则点P 到平面ABC 的距离sin h d θ=.故四面体PBCD 的体积211111sin (23)33332234BcD BcD BcD V S h S d S d x x x θ∆∆∆=⨯=≤⋅=⨯-⋅-+ 21(23)6234x x x x -=-+.设22234(3)1t x x x =-+=-+,因为023x ≤≤,所以12t ≤≤.则2|3|1x t -=-.(2323x <≤2|331x x t ==- 故231x t =-此时,221(31)[23(31)]6t t V t+--+-=21414()66t t t t-=⋅=-. 由(1)可知,函数()V t 在(1,2]单调递减,故141()(1)(1)612V t V <=-=. 综上,四面体PBCD 的体积的最大值为12. 15. 已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有 |a ·e |+|b ·e |≤6 ,则a ·b 的最大值是 . 【答案】12【解析】221|(a b)||a ||b |6|a b |6|a ||b |2a b 6a b 2e e e +⋅≤⋅+⋅≤⇒+≤⇒++⋅≤⇒⋅≤,即最大值为12三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16. (本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cos B. (I )证明:A =2B ;(II )若△ABC 的面积2=4a S ,求角A 的大小.【试题分析】(I )由正弦定理及两角和的正弦公式可得()sin sin B =A-B ,再判断A-B 的取值范围,进而可证2A =B ;(II )先由三角形的面积公式及二倍角公式可得sinC cos =B ,再利用三角形的内角和可得角A 的大小.(II )由24a S =得21sin C 24a ab =,故有1sin sin C sin 2sin cos 2B =B =B B ,因sin 0B ≠,得sinC cos =B .又B ,()C 0,π∈,所以C 2π=±B .当C 2πB +=时,2πA =; 当C 2π-B =时,4πA =.综上,2πA =或4πA =.17. (本题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠,BE =EF =FC =1,BC =2,AC =3.(I)求证:EF ⊥平面ACFD ;(II)求二面角B -AD -F 的平面角的余弦值.【试题分析】(I )先证F C B ⊥A ,再证F C B ⊥K ,进而可证F B ⊥平面CFD A ;(II )方法一:先找二面角D F B-A -的平面角,再在Rt QF ∆B 中计算,即可得二面角D F B-A -的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面C A K 和平面ABK 的法向量,进而可得二面角D F B-A -的平面角的余弦值.(II )方法一:过点F 作FQ ⊥AK ,连结Q B .因为F B ⊥平面C A K ,所以F B ⊥AK ,则AK ⊥平面QF B ,所以Q B ⊥AK . 所以,QF ∠B 是二面角D F B-A -的平面角.在Rt C ∆A K 中,C 3A =,C 2K =,得313FQ =. 在Rt QF ∆B 中,313FQ =,F 3B =,得3cos QF ∠B =. 所以,二面角D F B-A -的平面角的余弦值为34.18. (本小题15分)已知3a ≥,函数F (x )=min{2|x −1|,x 2−2ax +4a −2},其中min{p,q}=,>p p qq p q.≤⎧⎨⎩,,(I)求使得等式F(x)=x2−2ax+4a−2成立的x的取值范围;(II)(i)求F(x)的最小值m(a);(ii)求F(x)在区间[0,6]上的最大值M(a).【试题分析】(I)分别对1x≤和1x>两种情况讨论()F x,进而可得使得等式()2F242x x ax a=-+-成立的x的取值范围;(II)(i)先求函数()21f x x=-,()2242g x x ax a=-+-的最小值,再根据()F x的定义可得()F x的最小值()m a;(ii)分别对02x≤≤和26x≤≤两种情况讨论()F x的最大值,进而可得()F x在区间[]0,6上的最大值()aM.(II)(i)设函数()21f x x=-,()2242g x x ax a=-+-,则()()min10f x f==,()()2min42g x g a a a==-+-,所以,由()F x的定义知()()(){}min1,m a f g a=,即()20,32242,22am aa a a⎧≤≤+⎪=⎨-+->+⎪⎩(ii)当02x≤≤时,()()()(){}()F max0,22F2x f x f f≤≤==,当26x≤≤时,()()()(){}{}()(){}F max2,6max2,348max F2,F6x g x g g a≤≤=-=.所以,()348,342,4a aaa-≤<⎧M=⎨≥⎩.19. (本题满分15分)如图,设椭圆2221xya+=(a>1).(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.【试题解析】(I)设直线1y kx=+被椭圆截得的线段为AP,由22211y kxxya=+⎧⎪⎨+=⎪⎩得()2222120a k x a kx++=,故1x=,222221a kxa k=-+.因此22212222111a kk x ka kAP=+-=++(II)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足QAP=A.记直线AP,QA的斜率分别为1k,2k,且1k,2k>,12k k≠.20.(本题满分15分)设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a -≥-,n *∈N ;(II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .【试题分析】(I )先利用三角形不等式得1112n n a a +-≤,变形为111222n n n n n a a ++-≤,再用累加法可得1122n n a a -<,进而可证()1122n n a a -≥-;(II )由(I )可得11222n m n m n a a --<,进而可得3224mn n a ⎛⎫<+⋅ ⎪⎝⎭,再利用m 的任意性可证2n a ≤.(II )任取n *∈N ,由(I )知,对于任意m n >,1121112122222222n m n n n n m m n m n n n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11111222n n m +-≤++⋅⋅⋅+ 112n -<, 故11222m nn n m a a -⎛⎫<+⋅ ⎪⎝⎭ 11132222m n n m -⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3224mn ⎛⎫=+⋅ ⎪⎝⎭.从而对于任意m n >,均有。

2016年浙江省高考数学试卷(理科)及答案

2016年浙江省高考数学试卷(理科)及答案

2016年浙江省高考数学试卷(理科)及答案2016年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合 $P=\{x\in R|1\le x\le 3\}$,$Q=\{x\in R|x^2\ge 4\}$,则 $P\cup(\complement_R Q)$ =()A。

$[2,3]$ B。

$(-2,3]$ C。

$[1,2)$ D。

$(-\infty,-2]\cup[1,+\infty)$答案:D2.已知互相垂直的平面 $\alpha$,$\beta$ 交于直线 $l$,若直线 $m$,$n$ 满足 $m\parallel\alpha$,$n\perp\beta$,则()A。

$m\parallel l$ B。

$m\parallel n$ C。

$n\perp l$ D。

$m\perp n$答案:A3.在平面上,过点 $P$ 作直线 $l$ 的垂线所得的垂足称为点 $P$ 在直线 $x+y-2=0$ 上的投影,由区域中的点在直线$x+y-2=0$ 上的投影构成的线段记为 $AB$,则 $|AB|$ =()A。

2 B。

4 C。

3 D。

6答案:A4.命题“$\forall x\in R,\exists n\in N^*,\text{使得}n\ge x^2$”的否定形式是()A。

$\forall x\in R,\exists n\in N^*,\text{使得}n<x^2$ B。

$\forall x\in R,\forall n\in N^*,\text{使得}n<x^2$ C。

$\exists x\in R,\exists n\in N^*,\text{使得}n<x^2$ D。

$\exists x\in R,\foralln\in N^*,\text{使得}n<x^2$答案:A5.设函数 $f(x)=\sin^2 x+b\sin x+c$,则 $f(x)$ 的最小正周期()A。

浙江省舟山市高考数学三模试卷(理科)

浙江省舟山市高考数学三模试卷(理科)

浙江省舟山市高考数学三模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2016高一上·湖南期中) 已知全集U={1,2,3,4},集合A={1,2},B={2},则∁U(A∪B)=()A . {1,3,4}B . {3,4}C . {3}D . {4}2. (2分)已知复数,是z的共轭复数,则等于()A . 16B . 4C . 1D .3. (2分)(2019·长春模拟) 圆的圆心坐标为,直线与圆交于两点,若,则从圆的内部任取一点,该点取自的概率是()A .B .C .D .4. (2分)(2018·浙江模拟) 已知双曲线:,则“ ”是“双曲线的焦点在轴上”的A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5. (2分) (2017高三上·蓟县期末) 已知双曲线的焦点的渐近线的距离为2,且双曲线的一条渐近线与直线x﹣2y+3=0平行,则双曲线的方程为()A .B .C .D .6. (2分) (2019高三上·涪城月考) 已知定义在上的函数与函数的图像有唯一公共点,则实数的值为()A . -1B . 0C . 1D . 27. (2分)(2017·南开模拟) 在如图所示的程序框图中,若输出的值是3,则输入x的取值范围是()A . (4,10]B . (2,+∞)C . (2,4]D . (4,+∞)8. (2分) (2017高三上·漳州期末) 如图是一个几何体的三视图,尺寸如图所示,(单位:cm),则这个几何体的体积是()A . (10π+36)cm3B . (11π+35)cm3C . (12π+36)cm3D . (13π+34)cm39. (2分)已知函数的图像在点处的切线与直线垂直,若数列的前项和为,则的值为()A .B .C .D .10. (2分)(2019·南平模拟) 已知展开式中的系数小于90,则的取值范围为().A .B .C .D .11. (2分) (2018高三上·河北月考) 已知椭圆两个焦点之间的距离为2,单位圆O与的正半轴分别交于M,N点,过点N作圆O的切线交椭圆于P,Q两点,且,设椭圆的离心率为e,则的值为()A .B .C .D .12. (2分) (2017高二下·故城期末) 已知且,若函数在区间上是增函数,则函数的图象是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)(1﹣x)(1+2x)5展开式按x的升幂排列,则第3项的系数为________.14. (1分) (2018高三上·西宁月考) 若满足约束条件,的最小值为,则 ________.15. (1分)把函数的图象向右平移个单位,所得到的图象的函数解析式为________16. (1分)(2017·石景山模拟) 在数列{an}中,a1=1,an•an+1=﹣2(n=1,2,3,…),那么a8等于________.三、解答题 (共7题;共60分)17. (5分) (2016高二上·黑龙江开学考) 在△ABC中,a、b、c为角A、B、C所对的三边,已知b2+c2﹣a2=bc.(Ⅰ)求角A的值;(Ⅱ)若a= ,cosC= ,求c的长.18. (5分)在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4.(1)若PB中点为E.求证:AE∥平面PCD;(2)若∠PAB=60°,求直线BD与平面PCD所成角的正弦值.19. (10分) (2019高三上·柳州月考) 随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率作了调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:(1)假如小明某月的工资、薪金等税前收入为7500元,请你帮小明算一下调整后小明的实际收入比调整前增加了多少?(2)某税务部门在小明所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:先从收入在及的人群中按分层抽样抽取7人,再从中选3人作为新纳税法知识宣讲员,用随机变量表示抽到作为宣讲员的收入在元的人数,求的分布列与数学期望.20. (10分)(2020·厦门模拟) 已知椭圆,过左焦点F且斜率大于0的直线l交E于两点,的中点为的垂直平分线交x轴于点D.(1)若点G纵坐标为,求直线的方程;(2)若,求的面积.21. (15分) (2017高二下·临泉期末) 已知函数f(x)=ax+ ,其中函数f(x)的图象在点(1,f(1))处的切线方程为y=x﹣1.(1)若a= ,求函数f(x)的解析式;(2)若f(x)≥g(x)在[1,+∞)上恒成立,求实数a的取值范围;(3)证明:1+ .22. (5分)(2020·九江模拟) 在平面直角坐标系xOy中,曲线C的参数方程为(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)写出曲线C的普通方程和极坐标方程;(Ⅱ)M,N为曲线C.上两点,若OM⊥ON,求|MN|的最小值.23. (10分)(2020·重庆模拟) 已知不等式对任意成立,记实数m的最小值为 .(1)求;(2)已知实数a , b , c满足:,求C的最大值.参考答案一、选择题: (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:略答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共7题;共60分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:。

浙江省舟山市高考数学三模试卷(理科)

浙江省舟山市高考数学三模试卷(理科)

浙江省舟山市高考数学三模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)(2017·枣庄模拟) 若复数z= (i为虚数单位),则|z+1|=()A . 3B . 2C .D .2. (2分) (2016高二上·黑龙江开学考) 若不等式≥3的解集为()A . [﹣1,0)B . [﹣1,+∞)C . (﹣∞,﹣1]D . (﹣∞,﹣1]∪(0,+∞)3. (2分) (2015高三上·孟津期末) 将函数向右平移个单位,再将所得的函数图象上的各点纵坐标不变,横坐标变为原来的2倍,得到函数y=g(x)的图象,则函数y=g(x)与,,x轴围成的图形面积为()A .B .C .D .4. (2分) (2017高一下·唐山期末) 执行如图所示的程序框图,若输入n=5,则输出的结果为()A .B .C .D .5. (2分) (2019高三上·浙江月考) 已知函数,若,则实数的取值范围是()A .B .C .D .6. (2分)在区间上任意取两个实数a,b,则函数在区间上有且仅有一个零点的概率为()A .B .C .D .7. (2分) (2016高二上·中江期中) 直三棱锥ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1 , A1C1的中点,BC=CA=CC1 ,则BM与AN所成角的余弦值为()A .B .C .D .8. (2分)(2017·山东模拟) 已知双曲线右支上非顶点的一点A关于原点O的对称点为B,F为其右焦点,若AF⊥FB,设∠ABF=θ且,则双曲线离心率的取值范围是()A .B .C .D . (2,+∞)9. (2分)当变量满足约束条件时,的最大值为8,则实数的值是()A . -4B . -3C . -2D . -110. (2分)已知等比数列{an}满足an>0,n=1,2,…,且a5·a2n-5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n-1=()A . n(2n-1)B . (n+1)2C . n2D . (n-1)211. (2分) (2016高二上·河北期中) 已知椭圆的一个焦点为F(0,1),离心率,则该椭圆的标准程为()A .B .C .D .12. (2分)设函数则的单调减区间()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)若命题“存在x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是________14. (1分)已知2Ca2﹣(Ca1﹣1)A32=0,且(b≠0)的展开式中,x13项的系数为﹣12,则实数b=________.15. (1分)向量,满足||=1,|-|=,与的夹角为60°,则||=________16. (1分)下列结论不正确的是________(填序号).①各个面都是三角形的几何体是三棱锥;②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥;③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;④圆锥的顶点与底面圆周上的任意一点的连线都是母线.三、解答题 (共7题;共65分)17. (10分)(2018·恩施模拟) 在中,角所对的边分别为,且.(1)求;(2)若,求的面积.18. (10分) (2017高二下·菏泽开学考) 已知四棱锥P﹣ABCD中底面四边形ABCD是正方形,各侧面都是边长为2的正三角形,M是棱PC的中点.建立空间直角坐标系,利用空间向量方法解答以下问题:(1)求证:PA∥平面BMD;(2)求二面角M﹣BD﹣C的平面角的大小.19. (10分)(2013·湖南理) 某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(2)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.20. (10分) (2020高二上·吴起期末) 已知曲线上任意一点到两个定点和的距离之和为4.(1)求曲线的方程;(2)设过的直线与曲线交于、两点,且(为坐标原点),求直线的方程.21. (10分) (2017高二下·双流期中) 已知函数且函数y=f(x)图象上点(1,f (1))处的切线斜率为0.(1)试用含有a的式子表示b,并讨论f(x)的单调性;(2)对于函数图象上的不同两点A(x1,y1),B(x2,y2)如果在函数图象上存在点M(x0,y0),(x0∈(x1,x2))使得点M处的切线l∥AB,则称AB存在“跟随切线”.特别地,当时,又称AB存在“中值跟随切线”.试问:函数f(x)上是否存在两点A,B使得它存在“中值跟随切线”,若存在,求出A,B的坐标,若不存在,说明理由.22. (5分) (2017高二下·淄川期末) 在直角坐标系中,直线l的参数方程为 t为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)求直线l被曲线C所截得的弦长.23. (10分)设函数f(x)=|x-a| .(1)当 a=2 时,解不等式;(2)若的解集为[0,2] ,,求证:参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、23-1、23-2、。

浙江省舟山中学2016届高三数学仿真试卷(理科) 含解析

浙江省舟山中学2016届高三数学仿真试卷(理科) 含解析

2016年浙江省舟山中学高考数学仿真试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.集合A={0,2,3},B={x|y=3x﹣x0},则A∩B=()A.{0}B.{8,26}C.{8}D.{2,3}2.若函数f(x)=3sin(2x+θ)(0<θ<π)是偶函数,则f(x)在[0,π]上的递增区间是()A.[0,]B.[,π]C.[,]D.[,π]3.已知a,b是两条互相垂直的异面直线,下列说法中不正确的是()A.存在平面α,使得a⊂α且b⊥αB.存在平面β,使得b⊂β且a∥βC.若点A,B分别在直线a,b上,且满足AB⊥b,则一定有AB⊥aD.过空间某点不一定存在与直线a,b都平行的平面4.设F1、F2是双曲线﹣=1(a>0,b>0)的左、右焦点,P为双曲线左支上任意一点,若|PF2|=2|PF1|,∠F1PF2=60°,则双曲线离心率等于()A.B.C. +D.﹣5.已知各项均为正数的等比数列{a n}满足a7=a6+2a5,若存在两项a m,a n使得的最小值为()A.B.C.D.6.已知x,y满足的最大值为3a+9,最小值为3a﹣3.则a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,0]D.(﹣∞,﹣1]∪[1,+∞)7.设双曲线=1(a>0,b>0)的右焦点为F,过点F与x轴垂直的直线l交两渐近线于A,B两点,与双曲线的其中一个交点为P,设坐标原点为O,若(m,n ∈R),且mn=,则该双曲线的渐近线为()A.B.C. D.8.若函数f(x)=x2+ax+b有两个零点x1,x2,且3<x1<x2<5,那么f(3),f(5)() A.只有一个小于1 B.都小于1C.都大于1 D.至少有一个小于1二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.若点A(0,1)落在圆C:x2+y2+2x﹣4y+k=0(C为圆心)的外部,则|AC|=,实数k的取值范围是.10.设,为单位向量,且,的夹角为60°,若=+3,=2,则|+|等于,向量在方向上的投影为.11.一个棱锥的三视图如图所示,则该棱锥的所有棱长之和等于,棱锥的体积等于.12.已知数列{a n}为首项为a的等差数列,数列{+2n}是公比为q的等比数列,则q=,实数a的取值范围是.13.抛物线x2=﹣8y的准线交y轴于点A,过A作直线交抛物线于M,N两点,点B在抛物线的对称轴上,若(2+)⊥,则||的取值范围是.14.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下列命题正确的是.(写出所有正确的命题的编号)①线段BM的长是定值;②点M在某个球面上运动;③存在某个位置,使DE⊥A1C;④存在某个位置,使MB∥平面A1DE.15.△ABC中,AB=5,AC=2,BC上的高AH=4,=x+y,则=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.在△ABC中,角A,B,C所对的边分别为a,b,c,满足=,b=,cos2C=.(Ⅰ)求B,a的值;(Ⅱ)若A>,如图,D为边BC中点,P是边AB上动点,求|CP|+|PD|的最小值.17.如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(Ⅰ)求证:AD⊥BM;(Ⅱ)若=λ(0<λ<1),当二面角E﹣AM﹣D大小为时,求λ的值.18.已知数列{a n}的前n项和记为S n,且满足S n=2a n﹣n(n∈N*).(1)求a1,a2的值,并证明:数列{a n+1}是等比数列;(2)证明:.19.已知中心在原点O的椭圆左,右焦点分别为F1,F2,F2(1,0),且椭圆过点(1,)(1)求椭圆的方程;(2)过F2的直线l与椭圆交于不同的两点A,B,则△F1AB的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.20.已知函数f(x)=ax2+bx+c,当|x|≤1时,|f(x)|≤1恒成立.(Ⅰ)若a=1,b=c,求实数b的取值范围;(Ⅱ)若g(x)=|cx2﹣bx+a|,当|x|≤1时,求g(x)的最大值.2016年浙江省舟山中学高考数学仿真试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的。

高考数学总复习 模拟试卷(一)理-人教版高三全册数学试题

高考数学总复习 模拟试卷(一)理-人教版高三全册数学试题

2016年高考数学(理科)模拟试卷(一)(本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题 满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =( ) A .[0,1] B .(0,1) C .(0,1] D .[0,1) 2.复数(3+2i)i =( )A .-2-3iB .-2+3iC .2-3iD .2+3i 3.命题“∀x ∈R ,|x |+x 2≥0”的否定是( ) A .“∀x ∈R ,|x |+x 2<0” B .“∀x ∈R ,|x |+x 2≤0” C .“∃x 0∈R ,|x 0|+x 20<0” D .“∃x 0∈R ,|x 0|+x 20≥0”4.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是( ) A .f (x )=-x |x | B .f (x )=x +1xC .f (x )=tan xD .f (x )=ln x x5.设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n =( )A .4B .5C .6D .76.曲线y =x 3-2x +4在点(1,3)处切线的倾斜角为( ) A.π6 B.π3 C.π4 D.π27.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a =( )A.12B.45C .2D .9 8.某几何体的三视图如图M1­1,则它的体积为( )图M1­1A .72πB .48π C.30π D .24π9.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π,则该函数的图象是( ) A .关于直线x =π8对称 B .关于点⎝ ⎛⎭⎪⎫π4,0对称C .关于直线x =π4对称D .关于点⎝ ⎛⎭⎪⎫π8,0对称 10.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .211.在同一个平面直角坐标系中画出函数y =a x,y =sin ax 的部分图象,其中a >0,且a ≠1,则下列所给图象中可能正确的是( )A BC D12.已知定义在区间⎣⎢⎡⎦⎥⎤0,3π2上的函数y =f (x )的图象关于直线x =3π4对称,当x ≥3π4时,f (x )=cos x .若关于x 的方程f (x )=a 有解,记所有解的和为S ,则S 不可能为( )A.54πB.32πC.94π D.3π 第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须做答.第22~24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.14.二项式(x +y )5的展开式中,含x 2y 3的项的系数是________.(用数字作答) 15.如图M1­2,在平行四边形ABCD 中,AP ⊥BD ,垂足为点P ,AP =3,则AP →·AC →=________.图M1­216.阅读如图M1­3所示的程序框图,运行相应的程序,输出S 的值为________.图M1­3三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,c =2,cos C =34.(1)求sin A 的值; (2)求△ABC 的面积.18.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.19.(本小题满分12分)如图M1­4,在四棱锥P ­ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D ­AE ­C 为60°,AP =1,AD =3,求三棱锥E ­ACD 的体积.图M1­420.(本小题满分12分)已知函数f (x )=a ln x -ax -3(a ∈R ). (1)当a =1时,求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,问:m 在什么X 围取值时,对于任意的t ∈[1,2],函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤m2+f ′x 在区间(t,3)上总存在极值?(3)求证:ln22×ln33×ln44×…×ln n n <1n(n ≥2,n ∈N *).21.(本小题满分12分)已知直线l :y =kx +2(k 为常数)过椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点B 和左焦点F ,直线l 被圆O :x 2+y 2=4截得的弦AB 的中点为M .(1)若|AB |=4 55,某某数k 的值;(2)如图M1­5,顶点为O ,对称轴为y 轴的抛物线E 过线段BF 的中点T ,且与椭圆C 在第一象限的交点为S ,抛物线E 在点S 处的切线m 被圆O 截得的弦PQ 的中点为N ,问:是否存在实数k ,使得O ,M ,N 三点共线?若存在,请求出k 的值;若不存在,请说明理由.图M1­5 图M1­6请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目上.如果多做,则按所做的第一个题目计分,做答量请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10)选修4­1:几何证明选讲如图M1­6,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上—点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径; (2)若AC =BD ,求证:AB =ED .23.(本小题满分10)选修4­4:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.24.(本小题满分10)选修4­5:不等式选讲 若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值.(2)是否存在a ,b ,使得2a +3b =6?并说明理由.2016年高考数学(理科)模拟试卷(一)1.D 解析:由M ={x |x ≥0,x ∈R }=[0,+∞),N ={x |x 2<1,x ∈R }=(-1,1),得M ∩N =[0,1).2.B 解析:(3+2i)i =3i +2i·i=-2+3i.故选B.3.C 解析:对于命题的否定,要将命题中的“∀”变为“∃”,且否定结论,则命题“∀x ∈R ,|x |+x 2≥0”的否定是“∃x 0∈R ,|x 0|+x 20<0”.故选C.4.A5.A 解析:∵{a n }是等差数列,且a 1+a 2+a 3=15,∴a 2=5.又∵a 1a 2a 3=105,∴a 1a 3=21.由⎩⎪⎨⎪⎧a 1a 3=21,a 1+a 3=10及{a n }递减可求得a 1=7,d =-2.∴a n=9-2n .由a n ≥0,得n ≤4.故选A.6.C 解析:f ′(x )=3x 2-2,f ′(1)=1,所以切线的斜率是1,倾斜角为π4.7.C 解析:∵f (0)=20+1=2,f [f (0)]=f (2)=4a ,∴22+2a =4a .∴a =2. 8.C 解析:几何体是由半球与圆锥叠加而成,它的体积为V =12×43π×33+13×π×32×52-32=30π.9.A 解析:依题意,得T =2πω=π,ω=2,故f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,所以f ⎝ ⎛⎭⎪⎫π8=sin ⎝⎛⎭⎪⎫2×π8+π4=sin π2=1≠0,f ⎝ ⎛⎭⎪⎫π4=sin ⎝⎛⎭⎪⎫2×π4+π4=sin 3π4=22≠0,因此该函数的图象关于直线x =π8对称,不关于点⎝⎛⎭⎪⎫π4,0和点⎝ ⎛⎭⎪⎫π8,0对称,也不关于直线x =π4对称.故选A.10.A 解析:如图D129,将点(5,3)代入z =y -2x ,得最小值为-7.图D12911.D 解析:正弦函数y =sin ax 的最小正周期为T =2πa.对于A ,T >2π,故a <1,而y =a x的图象是增函数,故A 错误; 对于B ,T <2π,故a >1,而函数y =a x是减函数,故B 错误; 对于C ,T =2π,故a =1,∴y =a x=1,故C 错误; 对于D ,T >2π,故a <1,∴y =a x是减函数.故选D.12.A 解析:作函数y =f (x )的草图(如图D130),对称轴为x =3π4,当直线y =a 与函数有两个交点(即方程有两个根)时,x 1+x 2=2×3π4=3π2;当直线y =a 与函数有三个交点(即方程有三个根)时,x 1+x 2+x 3=2×3π4+3π4=9π4;当直线y =a 与函数有四个交点(即方程有四个根)时,x 1+x 2+x 3+x 4=4×3π4=3π.故选A.图D13013.12 解析:从10件产品中任取4件,共有C 410种基本事件,恰好取到1件次品就是取到1件次品且取到3件正品,共有C 13C 37种,因此所求概率为C 13C 37C 410=12.14.10 解析:展开式的通项为T k +1=C k 5x5-k y k,则T 4=C 35x 2y 3=10x 2y 3,故答案为10.15.18 解析:设AC ∩BD =O ,则AC →=2(AB →+BO →),AP →·AC →=AP →·2(AB →+BO →)=2AP →·AB →+2AP →·BO →=2AP →·AB →=2AP →·(AP →+PB →)=2|AP →|2=18.16.-4 解析:由题意,得第一次循环:S =0+(-2)3=-8,n =2; 第二次循环:S =-8+(-2)2=-4,n =1,结束循环,输出S 的值为-4. 17.解:(1)∵cos C =34,∴sin C =74.∵asin A =c sin C ,∴1sin A =274,∴sin A =148. (2)∵c 2=a 2+b 2-2ab cos C ,∴2=1+b 2-32b ,∴2b 2-3b -2=0.∴b =2.∴S △ABC =12ab sin C =12×1×2×74=74.18.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知,P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215, 故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设可获利润为X 万元,则X 的可能取值为0,100,120,220. 因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=15, P (X =120)=P (E F )=23×25=415, P (X =220)=P (EF )=23×35=25.故所求的分布列为:数学期望为E (X )=0×215+100×15+120×415+220×25=300+480+132015=210015=140.19.(1)证明:如图D131,连接BD 交AC 于点O ,连接EO .因为底面ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . 因为EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)解:因为PA ⊥平面ABCD ,平面ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图D131,以A 为坐标原点,AB →,AD →,AP →的方向为x 轴、y 轴、z 轴的正方向,|AP →|为单位长,建立空间直角坐标系Axyz ,则D ()0,3,0,E ⎝ ⎛⎭⎪⎫0,32,12,AE →=⎝⎛⎭⎪⎫0,32,12.图D131设B (m,0,0)(m >0),则C (m ,3,0),AC →=(m ,3,0). 设n 1=(x ,y ,z )为平面ACE 的法向量, 则⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0.可取n 1=⎝⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量, 由题设易知,|cos 〈n 1,n 2〉|=12,即33+4m 2=12.解得m =32(m =-32,舍去). 因为E 为PD 的中点,所以三棱锥E ­ACD 的高为12.故三棱锥E ­ACD 的体积V =13×12×3×32×12=38.20.解:f ′(x )=ax-a (x >0). (1)当a =1时,f ′(x )=1x -1=1-xx,令f ′(x )>0时,解得0<x <1,∴f (x )在(0,1)上单调递增; 令f ′(x )<0时,解得x >1,∴f (x )在(1,+∞)上单调递减. (2)∵函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°, ∴f ′(2)=a2-a =1.∴a =-2,f ′(x )=-2x+2.∴g (x )=x 3+x 2⎝ ⎛⎭⎪⎫m 2+2-2x =x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,g ′(x )=3x 2+(4+m )x -2.∵对任意的t ∈[1,2],函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤m2+f ′x 在区间(t,3)上总存在极值,且g ′(0)=-2,∴只需⎩⎪⎨⎪⎧g ′t <0,g ′3>0.由题知,对任意的t ∈[1,2],g ′(t )<0恒成立,∴⎩⎪⎨⎪⎧g ′1<0,g ′2<0,g ′3>0.解得-373<m <-9.(3)证明:令a =-1,f (x )=-ln x +x -3,∴f (1)=-2. 由(1)知,f (x )=-ln x +x -3在(1,+∞)上单调递增, ∴当x ∈(1,+∞)时,f (x )>f (1),即-ln x +x -1>0. ∴ln x <x -1对一切x ∈(1,+∞)成立. ∵n ≥2,n ∈N *,则有0<ln n <n -1.∴0<ln n n <n -1n .∴ln22×ln33×ln44×…×ln n n <12×23×34×…×n -1n =1n (n ≥2,n ∈N *).21.解:(1)圆O 的圆心为O (0,0),半径为r =2. ∵OM ⊥AB ,|AB |=4 55,∴|OM |=r 2-⎝ ⎛⎭⎪⎫|AB |22=4 55. ∴2k 2+1=4 55.∴k 2=14.图D132又k =k FB >0,∴k =12. (2)如图D132,∵F ⎝ ⎛⎭⎪⎫-2k ,0,B (0,2),T 为BF 中点, ∴T ⎝ ⎛⎭⎪⎫-1k ,1. 设抛物线E 的方程为y =tx 2(t >0),∵抛物线E 过点T ,∴1=t ·1k2,即t =k 2. ∴抛物线E 的方程为y =k 2x 2.∴y ′=2k 2x .设S (x 0,y 0),则k m =y ′0|x x ==2k 2x 0.假设O ,M ,N 三点共线,∵OM ⊥l ,ON ⊥m ,∴l ∥m .又k l =k >0,∴k l =k m .∴k =2k 2x 0.∴x 0=12k ,y 0=k 2x 20=k 2·14k 2=14. ∵S 在椭圆C 上,∴x 20a 2+y 20b2=1. 结合b =2,c =2k ,a 2=b 2+c 2=4+4k2. 得14k 24+4k2+1164=1.∴k 2=-5963. ∴k 无实数解,矛盾.∴假设不成立.故不存在实数k ,使得O ,M ,N 三点共线.22.证明:(1)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又因为∠PGD =∠EGA ,所以∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PFA .又AF ⊥EP ,所以∠PFA =90°,所以∠BDA =90°,故AB 为圆的直径.图D133(2)如图D133,连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°.在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD ,从而得Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .因为AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角,所以ED 为圆的直径,又由(1)知AB 为圆的直径,所以ED =AB .23.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧ x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|, 则|PA |=d sin30°=2 55|5sin(θ+α)-6|, 其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|PA |取得最大值,最大值为22 55.当sin(θ+α)=1时,|PA |取得最小值,最小值为2 55. 24.解:(1)由ab =1a +1b ≥2ab,得ab ≥2,当且仅当a =b =2时等号成立. 故a 3+b 3≥2a 3b 3≥4 2,当且仅当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥2 6ab ≥4 3.由于4 3>6,从而不存在a ,b ,使2a +3b =6.。

2016年浙江省高考数学试卷及解析(理科)

2016年浙江省高考数学试卷及解析(理科)

2016年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分、在每小题给出的四个选项中,只有一个是符合题目要求的、1、(5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A、[2,3]B、(﹣2,3]C、[1,2)D、(﹣∞,﹣2]∪[1,+∞)2、(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A、m∥lB、m∥nC、n⊥lD、m⊥n3、(5分)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=()A、2B、4C、3D、64、(5分)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A、∀x∈R,∃n∈N*,使得n<x2B、∀x∈R,∀n∈N*,使得n<x2C、∃x∈R,∃n∈N*,使得n<x2D、∃x∈R,∀n∈N*,使得n<x25、(5分)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A、与b有关,且与c有关B、与b有关,但与c无关C、与b无关,且与c无关D、与b无关,但与c有关6、(5分)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A、{S n}是等差数列B、{S n2}是等差数列C、{d n}是等差数列D、{d n2}是等差数列7、(5分)已知椭圆与双曲线C2:﹣y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A、m>n且e1e2>1B、m>n且e1e2<1C、m<n且e1e2>1D、m<n且e1e2<18、(5分)已知实数a,b,c、()A、若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B、若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C、若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D、若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分、9、(4分)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是、10、(6分)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=、11、(6分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3、12、(6分)已知a>b>1,若log a b+log b a=,a b=b a,则a=,b=、13、(6分)设数列{a n}的前n项和为S n,若S2=4,a n+1=2S n+1,n∈N*,则a1=,S5=、14、(4分)如图,在△ABC中,AB=BC=2,∠ABC=120°、若平面ABC外的点P 和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是、15、(4分)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是、三、解答题:本大题共5小题,共74分、解答应写出文字说明,证明过程或演算步骤、16、(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB、(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小、17、(15分)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值、18、(15分)已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min (p,q)=(Ⅰ)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围(Ⅱ)(i)求F(x)的最小值m(a)(ii)求F(x)在[0,6]上的最大值M(a)19、(15分)如图,设椭圆C:+y2=1(a>1)(Ⅰ)求直线y=kx+1被椭圆截得到的弦长(用a,k表示)(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围、20、(15分)设数列满足|a n﹣|≤1,n∈N*、(Ⅰ)求证:|a n|≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*、参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分、在每小题给出的四个选项中,只有一个是符合题目要求的、1、(5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A、[2,3]B、(﹣2,3]C、[1,2)D、(﹣∞,﹣2]∪[1,+∞)题目分析:运用二次不等式的解法,求得集合Q,求得Q的补集,再由两集合的并集运算,即可得到所求、试题解答解:Q={x∈R|x2≥4}={x∈R|x≥2或x≤﹣2},即有∁R Q={x∈R|﹣2<x<2},则P∪(∁R Q)=(﹣2,3]、故选:B、点评:本题考查集合的运算,主要是并集和补集的运算,考查不等式的解法,属于基础题、2、(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A、m∥lB、m∥nC、n⊥lD、m⊥n题目分析:由已知条件推导出l⊂β,再由n⊥β,推导出n⊥l、试题解答解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m与β相交,l⊂β,∵n⊥β,∴n⊥l、故选:C、点评:本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养、3、(5分)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=()A、2B、4C、3D、6题目分析:作出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可、试题解答解:作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线x+y﹣2=0上的投影构成线段R′Q′,即SAB,而R′Q′=RQ,由得,即Q(﹣1,1)由得,即R(2,﹣2),则|AB|=|QR|===3,故选:C、点评:本题主要考查线性规划的应用,作出不等式组对应的平面区域,利用投影的定义以及数形结合是解决本题的关键、4、(5分)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A、∀x∈R,∃n∈N*,使得n<x2B、∀x∈R,∀n∈N*,使得n<x2C、∃x∈R,∃n∈N*,使得n<x2D、∃x∈R,∀n∈N*,使得n<x2题目分析:特称命题的否定是全称命题,全称命题的否定是特称命题,依据规则写出结论即可试题解答解:“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是“∃x∈R,∀n∈N*,使得n<x2“故选:D、点评:本题考查命题的否定,解本题的关键是掌握住特称命题的否定是全称命题,书写答案是注意量词的变化、5、(5分)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A、与b有关,且与c有关B、与b有关,但与c无关C、与b无关,且与c无关D、与b无关,但与c有关题目分析:根据三角函数的图象和性质即可判断、试题解答解:∵设函数f(x)=sin2x+bsinx+c,∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B、点评:本题考查了三角函数的最小正周期,关键掌握三角函数的图象和性质,属于中档题、6、(5分)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A、{S n}是等差数列B、{S n2}是等差数列C、{d n}是等差数列D、{d n2}是等差数列题目分析:设锐角的顶点为O,再设|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,判断C,D不正确,设△A n B n B n+1的底边B n B n+1上的高为h n,运用三角形相似知识,h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,进而得到数列{S n}为等差数列、试题解答解:设锐角的顶点为O,|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,则{d n}不一定是等差数列,{d n2}不一定是等差数列,设△A n B n B n+1的底边B n B n+1上的高为h n,由三角形的相似可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n﹣S n+1=S n+1﹣S n,+2则数列{S n}为等差数列、另解:可设△A1B1B2,△A2B2B3,…,A n B n B n+1为直角三角形,且A1B1,A2B2,…,A n B n为直角边,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n﹣S n+1=S n+1﹣S n,+2则数列{S n}为等差数列、故选:A、点评:本题考查等差数列的判断,注意运用三角形的相似和等差数列的性质,考查化简整理的推理能力,属于中档题、7、(5分)已知椭圆与双曲线C2:﹣y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A、m>n且e1e2>1B、m>n且e1e2<1C、m<n且e1e2>1D、m<n且e1e2<1题目分析:由题意可得m2﹣1=n2+1,即m2=n2+2,由条件可得m>n,再由离心率公式,即可得到结论、试题解答解:由题意可得m2﹣1=n2+1,即m2=n2+2,又m>1,n>0,则m>n,由e12•e22=•=•==1+>1,则e1•e2>1、故选:A、点评:本题考查双曲线和椭圆的离心率的关系,考查椭圆和双曲线的方程和性质,以及转化思想和运算能力,属于中档题、8、(5分)已知实数a,b,c、()A、若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B、若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C、若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D、若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100题目分析:本题可根据选项特点对a,b,c设定特定值,采用排除法解答、试题解答解:A、设a=b=10,c=﹣110,则|a2+b+c|+|a+b2+c|=0≤1,a2+b2+c2>100;B、设a=10,b=﹣100,c=0,则|a2+b+c|+|a2+b﹣c|=0≤1,a2+b2+c2>100;C、设a=100,b=﹣100,c=0,则|a+b+c2|+|a+b﹣c2|=0≤1,a2+b2+c2>100;故选:D、点评:本题主要考查命题的真假判断,由于正面证明比较复杂,故利用特殊值法进行排除是解决本题的关键、二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分、9、(4分)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是9、题目分析:根据抛物线的性质得出M到准线x=﹣1的距离为10,故到y轴的距离为9、试题解答解:抛物线的准线为x=﹣1,∵点M到焦点的距离为10,∴点M到准线x=﹣1的距离为10,∴点M到y轴的距离为9、故答案为:9、点评:本题考查了抛物线的性质,属于基础题、10、(6分)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=1、题目分析:根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案、试题解答解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)=sin(2x+)+1,∴A=,b=1,故答案为:;1、点评:本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键、11、(6分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是80 cm2,体积是40cm3、题目分析:由三视图可得,该组合体是一个长方体上面放置了一个小正方体,代入体积公式和面积公式计算即可、试题解答解:由三视图可得,该组合体是一个长方体上面放置了一个小正方体,则其表面积为6×22+2×42+4×2×4﹣2×22=80cm2,其体积为23+4×2×4=40,故答案为:80,40点评:本题考查了由三视图求几何体的体积和表面积,解题的关键是判断几何体的形状及相关数据所对应的几何量,考查空间想象能力、12、(6分)已知a>b>1,若log a b+log b a=,a b=b a,则a=4,b=2、题目分析:设t=log b a并由条件求出t的范围,代入log a b+log b a=化简后求出t 的值,得到a与b的关系式代入a b=b a化简后列出方程,求出a、b的值、试题解答解:设t=log b a,由a>b>1知t>1,代入log a b+log b a=得,即2t2﹣5t+2=0,解得t=2或t=(舍去),所以log b a=2,即a=b2,因为a b=b a,所以b2b=b a,则a=2b=b2,解得b=2,a=4,故答案为:4;2、点评:本题考查对数的运算性质,以及换元法在解方程中的应用,属于基础题、13、(6分)设数列{a n}的前n项和为S n,若S2=4,a n+1=2S n+1,n∈N*,则a1=1,S5=121、题目分析:运用n=1时,a1=S1,代入条件,结合S2=4,解方程可得首项;再由n >1时,a n=S n+1﹣S n,结合条件,计算即可得到所求和、+1试题解答解:由n=1时,a1=S1,可得a2=2S1+1=2a1+1,又S2=4,即a1+a2=4,即有3a1+1=4,解得a1=1;=S n+1﹣S n,可得由a n+1S n+1=3S n+1,由S2=4,可得S3=3×4+1=13,S4=3×13+1=40,S5=3×40+1=121、故答案为:1,121、点评:本题考查数列的通项和前n项和的关系:n=1时,a1=S1,n>1时,a n=S n ,考查运算能力,属于中档题、﹣S n﹣114、(4分)如图,在△ABC中,AB=BC=2,∠ABC=120°、若平面ABC外的点P 和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是、题目分析:由题意,△ABD≌△PBD,可以理解为△PBD是由△ABD绕着BD旋转得到的,对于每段固定的AD,底面积BCD为定值,要使得体积最大,△PBD必定垂直于平面ABC,此时高最大,体积也最大、试题解答解:如图,M是AC的中点、①当AD=t<AM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AE,DM=﹣t,由△ADE∽△BDM,可得,∴h=,V==,t∈(0,)②当AD=t>AM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AH,DM=t﹣,由等面积,可得,∴,∴h=,∴V==,t∈(,2)综上所述,V=,t∈(0,2)令m=∈[1,2),则V=,∴m=1时,V max=、故答案为:、点评:本题考查体积最大值的计算,考查学生转化问题的能力,考查分类讨论的数学思想,对思维能力和解题技巧有一定要求,难度大、15、(4分)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是、题目分析:根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论、试题解答解:由绝对值不等式得≥|•|+|•|≥|•+•|=|(+)•|,于是对任意的单位向量,均有|(+)•|≤,∵|(+)|2=||2+||2+2•=5+2•,∴|(+)|=,因此|(+)•|的最大值≤,则•≤,下面证明:•可以取得,(1)若|•|+|•|=|•+•|,则显然满足条件、(2)若|•|+|•|=|•﹣•|,此时|﹣|2=||2+||2﹣2•=5﹣1=4,此时|﹣|=2于是|•|+|•|=|•﹣•|≤2,符合题意,综上•的最大值是,法2:由于任意单位向量,可设=,则|•|+|•|=||+||≥||+|=||=|+|,∵|•|+|•|≤,∴|+|≤,即(+)2≤6,即||2+||2+2•≤6,∵||=1,||=2,∴•≤,即•的最大值是、法三:设=,=,=,则=+,=﹣,|•|+|•|=||+||=||≤||,由题设当且仅当与同向时,等号成立,此时(+)2取得最大值6,由于|+|2+|﹣|)2=2(||2+||2)=10,于是(﹣)2取得最小值4,则•=,•的最大值是、故答案为:、点评:本题主要考查平面向量数量积的应用,根据绝对值不等式的性质以及向量三角形不等式的关系是解决本题的关键、综合性较强,有一定的难度、三、解答题:本大题共5小题,共74分、解答应写出文字说明,证明过程或演算步骤、16、(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB、(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小、题目分析:(Ⅰ)利用正弦定理,结合和角的正弦公式,即可证明A=2B(Ⅱ)若△ABC的面积S=,则bcsinA=,结合正弦定理、二倍角公式,即可求角A的大小、试题解答(Ⅰ)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bcsinA=,∴2bcsinA=a2,∴2sinBsinC=sinA=sin2B,∴sinC=cosB,∴B+C=90°,或C=B+90°,∴A=90°或A=45°、点评:本题考查了正弦定理,解三角形,考查三角形面积的计算,考查二倍角公式的运用,属于中档题、17、(15分)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值、题目分析:(I)先证明BF⊥AC,再证明BF⊥CK,进而得到BF⊥平面ACFD、(II)方法一:先找二面角B﹣AD﹣F的平面角,再在Rt△BQF中计算,即可得出;方法二:通过建立空间直角坐标系,分别计算平面ACK与平面ABK的法向量,进而可得二面角B﹣AD﹣F的平面角的余弦值、试题解答(I)证明:延长AD,BE,CF相交于点K,如图所示,∵平面BCFE⊥平面ABC,∠ACB=90°,∴AC⊥平面BCK,∴BF⊥AC、又EF∥BC,BE=EF=FC=1,BC=2,∴△BCK为等边三角形,且F为CK的中点,则BF⊥CK,∴BF⊥平面ACFD、(II)方法一:过点F作FQ⊥AK,连接BQ,∵BF⊥平面ACFD、∴BF⊥AK,则AK⊥平面BQF,∴BQ⊥AK、∴∠BQF是二面角B﹣AD﹣F的平面角、在Rt△ACK中,AC=3,CK=2,可得FQ=、在Rt△BQF中,BF=,FQ=、可得:cos∠BQF=、∴二面角B﹣AD﹣F的平面角的余弦值为、方法二:如图,延长AD,BE,CF相交于点K,则△BCK为等边三角形,取BC的中点,则KO⊥BC,又平面BCFE⊥平面ABC,∴KO⊥平面BAC,以点O为原点,分别以OB,OK的方向为x,z的正方向,建立空间直角坐标系O﹣xyz、可得:B(1,0,0),C(﹣1,0,0),K(0,0,),A(﹣1,﹣3,0),,、=(0,3,0),=,=(2,3,0)、设平面ACK的法向量为=(x1,y1,z1),平面ABK的法向量为=(x2,y2,z2),由,可得,取=、由,可得,取=、∴==、∴二面角B﹣AD﹣F的余弦值为、点评:本题考查了空间位置关系、法向量的应用、空间角,考查了空间想象能力、推理能力与计算能力,属于中档题、18、(15分)已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min (p,q)=(Ⅰ)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围(Ⅱ)(i)求F(x)的最小值m(a)(ii)求F(x)在[0,6]上的最大值M(a)题目分析:(Ⅰ)由a≥3,讨论x≤1时,x>1,去掉绝对值,化简x2﹣2ax+4a ﹣2﹣2|x﹣1|,判断符号,即可得到F(x)=x2﹣2ax+4a﹣2成立的x的取值范围;(Ⅱ)(i)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,求得f(x)和g(x)的最小值,再由新定义,可得F(x)的最小值;(ii)分别对当0≤x≤2时,当2<x≤6时,讨论F(x)的最大值,即可得到F (x)在[0,6]上的最大值M(a)、试题解答解:(Ⅰ)由a≥3,故x≤1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2+2(a﹣1)(2﹣x)>0;当x>1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2﹣(2+2a)x+4a=(x﹣2)(x﹣2a),则等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围是[2,2a];(Ⅱ)(i)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,则f(x)min=f(1)=0,g(x)min=g(a)=﹣a2+4a﹣2、由﹣a2+4a﹣2=0,解得a1=2+,a2=2﹣(负的舍去),由F(x)的定义可得m(a)=min{f(1),g(a)},即m(a)=;(ii)当0≤x≤2时,F(x)≤f(x)≤max{f(0),f(2)}=2=F(2);当2<x≤6时,f(x)≤g(x)≤max{g(2),g(6)}=max{2,34﹣8a}=max{f(2),f(6)}、则M(a)=、点评:本题考查新定义的理解和运用,考查分类讨论的思想方法,以及二次函数的最值的求法,不等式的性质,考查化简整理的运算能力,属于中档题、19、(15分)如图,设椭圆C:+y2=1(a>1)(Ⅰ)求直线y=kx+1被椭圆截得到的弦长(用a,k表示)(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围、题目分析:(Ⅰ)联立直线y=kx+1与椭圆方程,利用弦长公式求解即可、(Ⅱ)写出圆的方程,假设圆A与椭圆有4个公共点,再利用对称性有解已知条件可得任意一A(0,1)为圆心的圆与椭圆至多有3个公共点,a的取值范围,进而可得椭圆的离心率的取值范围、试题解答解:(Ⅰ)由题意可得:,可得:(1+a2k2)x2+2ka2x=0,得x1=0或x2=,直线y=kx+1被椭圆截得到的弦长为:=、(Ⅱ)假设圆A与椭圆有4个公共点,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|=|AQ|,记直线AP,AQ的斜率分别为:k1,k2;且k1,k2>0,k1≠k2,由(1)可知|AP|=,|AQ|=,故:=,所以,(k12﹣k22)[1+k12+k22+a2(2﹣a2)k12k22]=0,由k1≠k2,k1,k2>0,可得:1+k12+k22+a2(2﹣a2)k12k22=0,因此a2(a2﹣2)①,因为①式关于k1,k2的方程有解的充要条件是:1+a2(a2﹣2)>1,所以a>、因此,任意点A(0,1)为圆心的圆与椭圆至多有三个公共点的充要条件为:1<a≤,e==得,所求离心率的取值范围是:、点评:本题考查直线与椭圆的位置关系的综合应用,椭圆与圆的位置关系的综合应用,考查分析问题解决问题的能力,考查转化思想以及计算能力、20、(15分)设数列满足|a n﹣|≤1,n∈N*、(Ⅰ)求证:|a n|≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*、题目分析:(I)使用三角不等式得出|a n|﹣|a n+1|≤1,变形得﹣≤,使用累加法可求得<1,即结论成立;(II)利用(I)的结论得出﹣<,进而得出|a n|<2+()m•2n,利用m的任意性可证|a n|≤2、试题解答解:(I)∵|a n﹣|≤1,∴|a n|﹣|a n+1|≤1,∴﹣≤,n∈N*,∴=(﹣)+(﹣)+…+(﹣)≤+++…+==1﹣<1、∴|a n|≥2n﹣1(|a1|﹣2)(n∈N*)(II)任取n∈N*,由(I)知,对于任意m>n,﹣=(﹣)+(﹣)+…+(﹣)≤++…+=<∴|a n|<(+)•2n≤[+•()m]•2n=2+()m•2n、①由m的任意性可知|a n|≤2否则,存在n 0∈N*,使得|a|>2,取正整数m0>log且m0>n0,则2•()<2•()=|a|﹣2,与①式矛盾综上,对于任意n∈N*,都有|a n|≤2点评:本题考查了不等式的应用与证明,等比数列的求和公式,放缩法证明不等式,难度较大。

2016-2017学年舟山中学高三第二学期四月模拟考试数学试卷

2016-2017学年舟山中学高三第二学期四月模拟考试数学试卷

2016—2017学年舟山中学高三第二学期四月模拟考试数学试卷考生须知:1.本卷满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写学校、班级、姓名、试场号、座位号及准考证号并填涂相应数字。

3.所有答案必须写在答题卷上,写在试卷上无效; 4.考试结束后,只需上交答题卷。

一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}xB x x R =≤∈,则集合U AC B 为 ( ▲ )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[-2.三条不重合的直线c b a ,,及三个不重合的平面γβα,,,下列命题正确的是( ▲ ) A .若n m n ⊥=⊥,,βαβα ,则α⊥m B .若m n m ,,βα⊂⊂∥n ,则α∥β C .若m ∥n ,α∥n m ⊥,β,则βα⊥ D .若ββα⊥⊥⊥m n n ,,,则α⊥m3.已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ▲ ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件4.满足下列条件的函数)(x f 中,)(x f 为偶函数的是( ▲ )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+5.函数()sin()(,0,0,)2f x A x x R A πωϕωϕ=+∈>><的部分图象如图所示, 如果12,(,)63x x ππ∈-,且12()()f x f x =,则12()f x x +等于 ( ▲ )A.12B.2C.3D.16.已知双曲线22221(0,0)x y a b a b-=>>上有一点A ,它关于原点的对称点为B ,双曲线的右焦点为F ,满足0AF BF ⋅=,且6ABF π∠=,则双曲线的离心率e 的值是( ▲ )A.13+ B. 13 C.2 237.已知锐角A 是ABC ∆的一个内角,,,a b c 是三角形中各角的对应边,若221sin cos 2A A -=,则下列各式正确的是( ▲ ) A.2b c a += B.2b c a +< C.2b c a +≤ D.2b c a +≥ 8.如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( ▲ ) A.直线 B.圆C.双曲线D.抛物线9.已知向量b a ⊥,2=-b a ,定义:b a c )1(λλλ-+=,其中10≤≤λ.若2121=⋅c c λ,则λc 的值不可能...为( ▲ ) A .55 B.33 C.22D.110.已知函数2()2,{()0}{(())0}xf x x mx n x f x x f f x =++⋅===≠∅,则m n +的取值范围( ▲ ) A. [0,4) B. [4,8] C. [4,2]- D. (2,8]-第Ⅱ卷(非选择题 共110分)二、 填空题: 本大题共7小题,多空题每题6分,单空题每题4分,共36分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年浙江省舟山中学高考数学仿真试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.集合A={0,2,3},B={x|y=3x﹣x0},则A∩B=()A.{0}B.{8,26}C.{8}D.{2,3}2.若函数f(x)=3sin(2x+θ)(0<θ<π)是偶函数,则f(x)在[0,π]上的递增区间是()A.[0,] B.[,π] C.[,]D.[,π]3.已知a,b是两条互相垂直的异面直线,下列说法中不正确的是()A.存在平面α,使得a⊂α且b⊥αB.存在平面β,使得b⊂β且a∥βC.若点A,B分别在直线a,b上,且满足AB⊥b,则一定有AB⊥aD.过空间某点不一定存在与直线a,b都平行的平面4.设F1、F2是双曲线﹣=1(a>0,b>0)的左、右焦点,P为双曲线左支上任意一点,若|PF2|=2|PF1|,∠F1PF2=60°,则双曲线离心率等于()A.B.C. +D.﹣5.已知各项均为正数的等比数列{a n}满足a7=a6+2a5,若存在两项a m,a n使得的最小值为()A.B.C.D.6.已知x,y满足的最大值为3a+9,最小值为3a﹣3.则a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,0] D.(﹣∞,﹣1]∪[1,+∞)7.设双曲线=1(a>0,b>0)的右焦点为F,过点F与x轴垂直的直线l交两渐近线于A,B两点,与双曲线的其中一个交点为P,设坐标原点为O,若(m,n∈R),且mn=,则该双曲线的渐近线为()A.B.C. D.8.若函数f(x)=x2+ax+b有两个零点x1,x2,且3<x1<x2<5,那么f(3),f(5)()A.只有一个小于1 B.都小于1C.都大于1 D.至少有一个小于1二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.若点A(0,1)落在圆C:x2+y2+2x﹣4y+k=0(C为圆心)的外部,则|AC|=,实数k的取值范围是.10.设,为单位向量,且,的夹角为60°,若=+3,=2,则|+|等于,向量在方向上的投影为.11.一个棱锥的三视图如图所示,则该棱锥的所有棱长之和等于,棱锥的体积等于.12.已知数列{a n}为首项为a的等差数列,数列{+2n}是公比为q的等比数列,则q=,实数a的取值范围是.13.抛物线x2=﹣8y的准线交y轴于点A,过A作直线交抛物线于M,N两点,点B在抛物线的对称轴上,若(2+)⊥,则||的取值范围是.14.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下列命题正确的是.(写出所有正确的命题的编号)①线段BM的长是定值;②点M在某个球面上运动;③存在某个位置,使DE⊥A1C;④存在某个位置,使MB∥平面A1DE.15.△ABC中,AB=5,AC=2,BC上的高AH=4,=x+y,则=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.在△ABC中,角A,B,C所对的边分别为a,b,c,满足=,b=,cos2C=.(Ⅰ)求B,a的值;(Ⅱ)若A>,如图,D为边BC中点,P是边AB上动点,求|CP|+|PD|的最小值.17.如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(Ⅰ)求证:AD⊥BM;(Ⅱ)若=λ(0<λ<1),当二面角E﹣AM﹣D大小为时,求λ的值.18.已知数列{a n}的前n项和记为S n,且满足S n=2a n﹣n(n∈N*).(1)求a1,a2的值,并证明:数列{a n+1}是等比数列;(2)证明:.19.已知中心在原点O的椭圆左,右焦点分别为F1,F2,F2(1,0),且椭圆过点(1,)(1)求椭圆的方程;(2)过F2的直线l与椭圆交于不同的两点A,B,则△F1AB的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.20.已知函数f(x)=ax2+bx+c,当|x|≤1时,|f(x)|≤1恒成立.(Ⅰ)若a=1,b=c,求实数b的取值范围;(Ⅱ)若g(x)=|cx2﹣bx+a|,当|x|≤1时,求g(x)的最大值.2016年浙江省舟山中学高考数学仿真试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.集合A={0,2,3},B={x|y=3x﹣x0},则A∩B=()A.{0}B.{8,26}C.{8}D.{2,3}【考点】交集及其运算.【分析】求出B中x的范围确定出B,找出A与B的交集即可.【解答】解:∵A={0,2,3},B={x|y=3x﹣x0}={x|x≠0},∴A∩B={2,3},故选:D.2.若函数f(x)=3sin(2x+θ)(0<θ<π)是偶函数,则f(x)在[0,π]上的递增区间是()A.[0,] B.[,π] C.[,]D.[,π]【考点】正弦函数的奇偶性.【分析】利用诱导公式,余弦函数的单调性,得出结论.【解答】解:∵函数f(x)=3sin(2x+θ)(0<θ<π)是偶函数,∴φ=,f(x)=3sin(2x+)=3cos2x,令2kπ﹣π≤2x≤2kπ,求得kπ﹣≤x≤kπ,可得函数f(x)的增区间为[kπ﹣,kπ],k∈Z.则f(x)在[0,π]上的递增区间为[,π],故选:B.3.已知a,b是两条互相垂直的异面直线,下列说法中不正确的是()A.存在平面α,使得a⊂α且b⊥αB.存在平面β,使得b⊂β且a∥βC.若点A,B分别在直线a,b上,且满足AB⊥b,则一定有AB⊥aD.过空间某点不一定存在与直线a,b都平行的平面【考点】空间中直线与平面之间的位置关系.【分析】根据异面直线的性质进行逐项分析判断.【解答】解:对于A,设a,b的公垂线为AB,其中A∈a,B∈b.过B作a的平行线a′,设直线a与a′确定的平面为平面α,则AB⊂α,a⊂α,a′⊂α,∵b⊥AB,b⊥a,∴b⊥α.故A正确;对于B,过b上一点C作a′∥a,设b与a′所确定的平面为β,则a∥β,故B正确.对于C,设a,b的公垂线为CB,且C∈a,B∈b.在a上取异于C的点A,则b⊥平面ABC,∴AB⊥b,但显然AB与a不垂直,故C错误;对于D,当空间一点在直线a或直线b上时,显然不存在与直线a,b都平行的平面,故D 正确.故选:C.4.设F1、F2是双曲线﹣=1(a>0,b>0)的左、右焦点,P为双曲线左支上任意一点,若|PF2|=2|PF1|,∠F1PF2=60°,则双曲线离心率等于()A.B.C. +D.﹣【考点】双曲线的简单性质.【分析】运用双曲线的定义和三角形的余弦定理,结合双曲线的离心率公式,计算即可得到所求值.【解答】解:由双曲线的定义可得,|PF2|﹣|PF1|=2a,由|PF2|=2|PF1|,可得|PF2|=4a,|PF1|=2a,在△PF1F2中,由余弦定理可得|F1F2|2=|PF2|2+|PF1|2﹣2|PF2|•|PF1|cos∠F1PF2,即为4c2=16a2+4a2﹣2•4a•2a•=12a2,即有c=a,则e==.故选:B.5.已知各项均为正数的等比数列{a n}满足a7=a6+2a5,若存在两项a m,a n使得的最小值为()A.B.C.D.【考点】基本不等式;等比数列的通项公式.【分析】由a7=a6+2a5求得q=2,代入求得m+n=6,利用基本不等式求出它的最小值.【解答】解:由各项均为正数的等比数列{a n}满足a7=a6+2a5,可得,∴q2﹣q﹣2=0,∴q=2.∵,∴q m+n﹣2=16,∴2m+n﹣2=24,∴m+n=6,∴,当且仅当=时,等号成立.故的最小值等于,故选A.6.已知x,y满足的最大值为3a+9,最小值为3a﹣3.则a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,0] D.(﹣∞,﹣1]∪[1,+∞)【考点】简单线性规划.【分析】作出x、y满足约束条件图形,由图形判断出最优解,列出关于a的不等关系,再由不等式求出a的取值范围即可.【解答】解:画出x、y满足约束条件所围成的图形,有3个顶点(3,9),(3,﹣3),(﹣3,3),把它们分别代入ax+y得(3,9)⇒z=3a+9(3,﹣3)⇒z=3a﹣3(﹣3,3)⇒z=﹣3a+3由题意得,解得﹣1≤a≤1.故选B.7.设双曲线=1(a>0,b>0)的右焦点为F,过点F与x轴垂直的直线l交两渐近线于A,B两点,与双曲线的其中一个交点为P,设坐标原点为O,若(m,n∈R),且mn=,则该双曲线的渐近线为()A.B.C. D.【考点】双曲线的简单性质.【分析】求出A、C坐标,然后求出P的坐标,代入双曲线方程,利用mn=,即可求出双曲线的离心率,即可求出双曲线的渐近线方程.【解答】解:由题意可知A(c,),B(c,),代入=((m+n)c,(m﹣n)),得P((m+n)c,(m﹣n)),代入双曲线方程=1,整理可得4e2mn=1,因为mn=,所以可得e=,所以=,所以1+=,所以=,所以双曲线的渐近线方程为y=±x,故选:B.8.若函数f(x)=x2+ax+b有两个零点x1,x2,且3<x1<x2<5,那么f(3),f(5)()A.只有一个小于1 B.都小于1C.都大于1 D.至少有一个小于1【考点】二次函数的性质.【分析】由题意可得f(x)=(x﹣x1)(x﹣x2),利用基本不等式可得f(3)•f(5)<1,从而得出结论.【解答】解:由题意可得函数f(x)=(x﹣x1)(x﹣x2),∴f(3)=(3﹣x1)(3﹣x2)=(x1﹣3)(x2﹣3),f(5)=(5﹣x1)(5﹣x2),∴f(3)•f(5)=(x1﹣3)(x2﹣3)(5﹣x1)(5﹣x2)=[(x1﹣3)(5﹣x1)][(x2﹣3)(5﹣x2)]<()2()2=1×1=1,即f(3)•f(5)<1.故f(3),f(5)两个函数值中至少有一个小于1,故选:D.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.若点A(0,1)落在圆C:x2+y2+2x﹣4y+k=0(C为圆心)的外部,则|AC|=,实数k的取值范围是(3,5).【考点】圆与圆的位置关系及其判定.【分析】求出圆的圆心坐标,利用距离公式求解|AC|,列出不等式求解实数k的取值范围.【解答】解:圆C:x2+y2+2x﹣4y+k=0,C为圆心(﹣1,2),半径为:.则|AC|==.点A(0,1)落在圆C:x2+y2+2x﹣4y+k=0(C为圆心)的外部,,可得:k∈(3,5).故答案为:10.设,为单位向量,且,的夹角为60°,若=+3,=2,则|+|等于3,向量在方向上的投影为.【考点】平面向量数量积的运算.【分析】根据向量的数量的运算和向量模的即可求出,利用向量在向量方向上的投影公式求得答案.【解答】解:∵设,为单位向量,且,的夹角为60°,=+3,=2,∴|+|2=2+2+||||cos60°=1+1+1=3,∴|+|=,∴+=3+3=3(+),∴|+|=3,∵•=(+3)•2=6•+22=6×1×1×+2=5,||=|2|=2,∴向量在方向上的投影为=,故答案为:,.11.一个棱锥的三视图如图所示,则该棱锥的所有棱长之和等于4+4,棱锥的体积等于.【考点】由三视图求面积、体积.【分析】由三视图知几何体是一个三棱锥,在对应的正方体中作出此三棱锥,利用正方体的长度和位置关系求出各个棱长,利用分割法和椎体的体积公式求出此三棱锥的体积. 【解答】解:由三视图知几何体是一个三棱锥A ﹣BCD ,如图:图中的正方体的棱长是2,其中A 、B 、E 、F 分别是对应边的中点,C 、D 是对应面的中心,由图得,AB ⊥平面CDE ,AB=CD=2,CF=AE=BE=1,又BF=,则BC==,即AD=BD=AC=BC=所以棱锥的各棱长之和:4+4,又DE=EC=BF=,CD=2,所以几何体的体积V=V A ﹣DEC +V B ﹣DEC =2×=2×=,故答案为:.12.已知数列{a n }为首项为a 的等差数列,数列{+2n }是公比为q 的等比数列,则q= 1,或2 ,实数a 的取值范围是 a ≠﹣1 . 【考点】等比数列的通项公式.【分析】利用等差数列与等比数列的通项公式、分类讨论即可得出. 【解答】解:设等差数列{a n }的公差为d , ∴a 2+2=a +2+d ,a 4+4=a +3d +4,a 8+8=a +7d +8, ∵数列{+2n }是公比为q 的等比数列,∴(a+3d+4)2=(a+2+d)(a+7d+8),化为:d=﹣1或d=a.①d=﹣1时,a2+2=a+1,a4+4=a+1,a8+8=a+1,a≠﹣1时,q=1.②d=a,a2+2=2a+2,a4+4=4a+4,a8+8=8a+8,a≠﹣1时,q=2.综上可得:q=1,2,a≠﹣1.故答案分别为:q=1,2;a≠﹣1.13.抛物线x2=﹣8y的准线交y轴于点A,过A作直线交抛物线于M,N两点,点B在抛物线的对称轴上,若(2+)⊥,则||的取值范围是(6,+∞).【考点】抛物线的简单性质.【分析】由题意可设直线MN的方程为y=kx+2,M (x1,x2),N(x2,y2),MN 的中点E (x0,y0),联立方程可得x2+8kx+16=0,由△>0可求k的范围,由方程的根与系数关系及中点坐标公式可求MN的中点E,由即BE⊥MN即M在MN的垂直平分线,则MN的垂直平分线与y轴的交点即是B,令x=0可求B的纵坐标,结合K的范围可求||的范围【解答】解:由题意可得A(0,2),直线MN的斜率k存在且k≠0设直线MN的方程为y=kx+2,M (x1,x2),N(x2,y2),MN 的中点E(x0,y0),联立方程可得x2+8kx+16=0则可得,△=64k2﹣64>0,即k2>1,x1+x2=﹣8k,y1+y2=k(x1+x2)+4=4﹣8k2∴x0=(x1+x2)=﹣4k,y0=(y1+y2)=2﹣4k2即E(﹣4k,2﹣4k2)又2+=2+2=2,∵(2+)⊥,即BE⊥MN即M在MN的垂直平分线则MN的垂直平分线y+4k2﹣2=﹣(x+4k)与y轴的交点即是B,令x=0可得,y=﹣2﹣4k2则||=2+4k2>6故答案为(6,+∞).14.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下列命题正确的是①②④.(写出所有正确的命题的编号)①线段BM的长是定值;②点M在某个球面上运动;③存在某个位置,使DE⊥A1C;④存在某个位置,使MB∥平面A1DE.【考点】命题的真假判断与应用.【分析】取CD中点F,连接MF,BF,则平面MBF∥平面A1DE,可得④正确;由余弦定理可得MB2=MF2+FB2﹣2MF•FB•cos∠MFB,所以MB是定值,M是在以B为球心,MB 为半径的球上,可得①②正确.A1C在平面ABCD中的射影为AC,AC与DE不垂直,可得③不正确.【解答】解:①取CD中点F,连接MF,BF,则MF∥DA1,BF∥DE,∴平面MBF∥平面A1DE,∴MB∥平面A1DE,故D正确由∠A1DE=∠MFB,MF=A1D=定值,FB=DE=定值,由余弦定理可得MB2=MF2+FB2﹣2MF•FB•cos∠MFB,所以MB是定值,故①正确.②∵B是定点,∴M是在以B为球心,MB为半径的球上,故②正确,③∵A1C在平面ABCD中的射影为AC,AC与DE不垂直,∴存在某个位置,使DE⊥A1C不正确,故③错误.④取CD中点F,连接MF,BF,则平面MBF∥平面A1DE,可得④正确;故正确的命题有:①②④,故答案为:①②④.15.△ABC中,AB=5,AC=2,BC上的高AH=4,=x+y,则=.【考点】平面向量的基本定理及其意义.【分析】可过H作AC的平行线交AB于D,作AB的平行线,交AC于E,这样根据正弦定理及平行线的知识、三角函数的诱导公式即可得出,而由条件容易求出cosC,cosB的值,进而得出.由向量加法的平行四边形法则及向量数乘的几何意义可得到,进而可以求出x,y,从而得出的值.【解答】解:如图,过H分别作AC,AB的平行线,分别交AB于D,AC于E;则四边形ADHE为平行四边形;由正弦定理,;在Rt△ABH中,AB=5,AH=4;∴BH=3,cosB=;同理cosC=;∴;∵=;又;∴;∴.故答案为:.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.在△ABC中,角A,B,C所对的边分别为a,b,c,满足=,b=,cos2C=.(Ⅰ)求B,a的值;(Ⅱ)若A>,如图,D为边BC中点,P是边AB上动点,求|CP|+|PD|的最小值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)已知等式利用正弦定理化简,整理得到关系式,再利用余弦定理表示出cosB,将得出关系式代入求出cosB的值,确定出B的度数,由题意确定出sinC的值,再由b与sinB的值,利用正弦定理求出c的值,再利用余弦定理求出a的值即可;(Ⅱ)由A>,知a=2,作C关于AB的对称点C′,连C′D,C′P,C′B,如图所示,由余弦定理求出C′D的长,利用两点之间线段最短即可确定出|CP|+|PD|的最小值.【解答】解:(Ⅰ)已知等式利用正弦定理化简得:==,整理得:a2+c2﹣b2=ac,∴cosB==,∵B为△ABC的内角,∴B=;由cos2C=,得到sinC=,∵b=,sinB=,由正弦定理得:=,即=,解得:c=3,由b2=a2+c2﹣ac,得7=a2+9﹣3a,即a2﹣3a+2=0,解得:a=1或a=2;(Ⅱ)由A>,知a=2,作C关于AB的对称点C′,连C′D,C′P,C′B,由余弦定理得:|C′D|2=|BD|2+|BC′|2+|BD|•|BC′|=12+22+2=7,|CP|+|PD|=|C′P|+|PD|≥|C′D|=,当C′,P,D共线时取等号,则CP+PD的最小值为.17.如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(Ⅰ)求证:AD⊥BM;(Ⅱ)若=λ(0<λ<1),当二面角E﹣AM﹣D大小为时,求λ的值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(Ⅰ)推导出BM⊥AM,从而BM⊥平面ADM,由此能证明AD⊥BM.(Ⅱ)法一:过点E作MB的平行线交DM于F,过点F作AM的垂线,垂足为H,连接HE,则∠EHF即为二面角E﹣AM﹣D的平面角,由此能求出当二面角E﹣AM﹣D大小为时λ的值.法二:以M为原点,MA,MB 所在直线为x 轴,y 轴,建立空间直角坐标系,利用向量法能求出当二面角E﹣AM﹣D大小为时λ的值.【解答】证明:(Ⅰ)∵,∴BM⊥AM,又平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM,∴BM⊥平面ADM.又AD⊂平面ADM,∴AD⊥BM.解:(Ⅱ)(方法一)过点E作MB的平行线交DM于F,由BM⊥平面ADM,得EF⊥平面ADM,在平面ADM中过点F作AM的垂线,垂足为H,连接HE,则∠EHF即为二面角E﹣AM﹣D的平面角,大小为.设FM=x,则,在Rt△FHM 中,由∠EFH=90°,∠EHF=60°,则.由EF∥MB,MB=2,则,即,解得x=4﹣2.故当二面角E﹣AM﹣D 大小为时,,即.(方法二)以M为原点,MA,MB 所在直线为x 轴,y 轴,建立如图所示空间直角坐标系,M(0,0,0),,,,且,所以,,设平面EAM 的法向量为,则,,所以,.又平面DAM 的法向量为,所以,,解得,或(舍去).所以,.18.已知数列{a n }的前n 项和记为S n ,且满足S n =2a n ﹣n (n ∈N *). (1)求a 1,a 2的值,并证明:数列{a n +1}是等比数列;(2)证明:.【考点】数列的求和. 【分析】(1)分别令n=1,2,计算即可得到所求;由当n ≥2时,S n =2a n ﹣n ,S n ﹣1=2a n ﹣1﹣(n ﹣1),相减再由构造数列,即可得证;(2)先证得﹣•≤<,累加再由不等式的性质,即可得证.【解答】解:(1)当n=1时,2a 1﹣1=S 1,解得a 1=1, 当n=2时,S 2=2a 2﹣2⇒a 1+a 2=2a 2﹣2⇒a 2=a 1+2=3, 当n ≥2时,S n =2a n ﹣n ,S n ﹣1=2a n ﹣1﹣(n ﹣1), 两式相减得:a n =2a n ﹣2a n ﹣1﹣1, 即a n =2a n ﹣1+1,两边同加1得到:a n +1=2(a n ﹣1+1), 所以{a n +1}是以a 1+1=2为首项,2为公比的等比数列,所以;(2)证明:,,求和得到不等式:,因为,所以原不等式成立.19.已知中心在原点O 的椭圆左,右焦点分别为F 1,F 2,F 2(1,0),且椭圆过点(1,) (1)求椭圆的方程;(2)过F 2的直线l 与椭圆交于不同的两点A ,B ,则△F 1AB 的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.【考点】椭圆的简单性质. 【分析】(1)方法一、求得c=1,将已知点代入椭圆方程,解方程可得a ,b ,进而得到椭圆方程;方法二、运用椭圆的定义,结合两点的距离公式,求得a=2,再由a ,b ,c 的关系,可得b ,进而得到椭圆方程;(2)设A(x1,y1),B(x2,y2),不妨设y1>0,y2<0,设△F1AB的内切圆的半径R,可得三角形的面积为4R,可设直线l的方程为x=my+1,代入椭圆方程,运用韦达定理,再由三角形的面积公式,化简整理,运用换元法和对勾函数的单调性,即可得到所求最大值及此时直线的方程.【解答】解:(1)法一:由题意可设椭圆方程为+=1(a>b>0).由题意可得c=1,即a2﹣b2=1,将(1,)代入椭圆方程可得+=1,解得a=2,b=,可得椭圆方程为+=1;法二:直接用椭圆的定义,由椭圆的焦点为(﹣1,0),(1,0)且过(1,),可得,即a=2,c=1,b==,得到椭圆方程为为+=1.(2)设A(x1,y1),B(x2,y2),不妨设y1>0,y2<0,设△F1AB的内切圆的半径R,由椭圆的定义可得△F1AB的周长为4a=8,可得,因此△F1AB面积最大,R就最大,由题知,直线l的斜率不为零,可设直线l的方程为x=my+1,由得(4+3m2)y2+6my﹣9=0,得y1+y2=﹣,y1y2=﹣,则S=|F1F2|•(y1﹣y2)===,令t=,则m2=t2﹣1,代入得=≤=3,即当t=1,m=0时,S≤3,又因为S=4R,所以R max=,这时所求内切圆面积的最大值为πR2=,故存在直线方程为x=1,△F1AB内切圆面积的最大值为.20.已知函数f(x)=ax2+bx+c,当|x|≤1时,|f(x)|≤1恒成立.(Ⅰ)若a=1,b=c,求实数b的取值范围;(Ⅱ)若g(x)=|cx2﹣bx+a|,当|x|≤1时,求g(x)的最大值.【考点】二次函数的性质;分段函数的应用.【分析】(Ⅰ)若a=1,b=c,则|f(1)|=|1+b+b|≤1,f(x)的对称轴,进而求得实数b的取值范围;(Ⅱ)由当|x|≤1时,|f(x)|≤1恒成立,可知|f(﹣1)|≤1,|f(0)|≤1,|f(1)|≤1,利用放缩法,可得当x=0时,g(x)=|﹣x2+2|取到最大值2.【解答】解:(Ⅰ)由a=1且b=c,得,…当x=1时,|f(1)|=|1+b+b|≤1,得﹣1≤b≤0.…故f(x)的对称轴,所以当|x|≤1时,,…解得…综上,实数b的取值范围为.…(Ⅱ)由当|x|≤1时,|f(x)|≤1恒成立,可知|f(﹣1)|≤1,|f(0)|≤1,|f(1)|≤1,…且由f(﹣1)=a﹣b+c,f(0)=c,f(1)=a+b+c,解得,,c=f(0).…故≤1+1=2…且当a=2,b=0,c=﹣1时,若|x|≤1,则|f(x)|=|2x2﹣1|≤1恒成立,且当x=0时,g(x)=|﹣x2+2|取到最大值2.所以,g(x)的最大值为2.…2016年8月2日。

相关文档
最新文档