初中九年级数学圆测试题及答案(两套题)
(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试卷(含答案解析)(2)
一、选择题1.如图,在半径为6的O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,33tanD =,下列结论正确的个数有:( ) ①63BC =; ②3sin 2AOB ∠=; ③四边形ABOC 是菱形;④劣弧BC 的长度为4π.A .4个B .3个C .2个D .1个 2.如图,ABC ∆是O 的内接三角形,AB BC =,30BAC ∠=︒,AD 是直径,8AD =,则AC 的长为( )A .4B .43C .83D .23.如图,AB 是⊙O 的直径,∠BOD =120°,点C 为弧BD 的中点,AC 交OD 于点E ,DE =1,则AE 的长为( )A 3B 5C .23D .254.已知△ABC 是半径为2的圆内接三角形,若BC =23∠A 的度数( )A .30°B .60°C .120°D .60°或120° 5.如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,则PC 的长为( )A .6B .25C .210D .214 6.如图,AB 是O 的直径,CD 是O 的弦,30,3ACD AD ∠=︒=,下列说法错误的是( )A .30B ∠=︒ B .60BAD ∠=︒C .23BD = D .23AB = 7.如图,AB 为半圆O 的直径,C 是半圆上一点,且60COA ∠=º,设扇形AOC 、COB △、弓形BmC 的面积为1S 、2S 、3S ,则他们之间的关系是( )A .123S S S <<B .213S S S <<C .132S S S <<D .321S S S << 8.如图,ABC 中,10,8,4AB AC BC ===,以点A 为圆心,AB 为半径作圆,交BC 的延长线于点D ,则CD 长为( )A .10B .9C .45D .89.如图,在ABC 中,5AB AC ==,6BC =,D ,E 分别为线段AB ,AC 上一点,且AD AE =,连接BE 、CD 交于点G ,延长AG 交BC 于点F .以下四个结论正确的是( )①BF CF =;②若BE AC ⊥,则CF DF =;③若BE 平分ABC ∠,则32FG =; ④连结EF ,若BE AC ⊥,则2DFE ABE ∠=∠. A .①②③ B .③④C .①②④D .①②③④ 10.如图,有一块半径为1m ,圆心角为120︒扇形铁皮,要把它做成一个圆锥体容器(接缝忽略不计),那么这个圆锥体容器的高为( )A .13mB .23mC .223mD .43m 11.如图,AB 是O 的直径,C 、D 分别是O 上的两点.若33BAC ∠=︒,则D∠的度数等于( )A .57︒B .60︒C .66︒D .67︒12.4.如图,AD 是ABC ∆的外接圆O 的直径,若50BCA ︒∠=,则BAD ∠=( )A .30︒B .40︒C .50︒D .60︒二、填空题13.如图,四边形OABC 是菱形,点B ,C 在以点O 为圆心的弧EF 上,且∠1=∠2,若菱形边OA=3,则扇形OEF 的面积为___________14.如图,在矩形ABCD 中,∠DBC=30º,DC=2,E 为AD 上一点,以点D 为圆心,以DE 为半径画弧,交BC 于点F ,若CF=CD ,则图中的阴影部分面积为______________.(结果保留π)15.如图,点P 为⊙O 外一点,PA ,PB 分别与⊙O 相切于点A ,B ,∠APB =90°.若⊙O 的半径为2,则图中阴影部分的面积为_____(结果保留π).16.如图,是由一个大圆和四个相同的小圆组成的图案,若大圆的半径为2,则阴影部分的面积为______.17.如图,菱形ABCD 中,已知2AB =,60DAB ∠=︒将它绕着点A 逆时针旋转得到菱形ADEF ,使AB 与AD 重合,则点C 运动的路线CE 的长为________.18.如图,从一块直径为2m 的圆形铁皮上画出一个圆心角为90的扇形.若随机在圆及其内部投针,则针孔扎在扇形(阴影部分)的概率为____.19.已知扇形的弧长为4π,半径为9,则此扇形的圆心角为_______度.20.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,70A ∠=,50C ∠=,那么tan AEB ∠=___________.三、解答题21.在下列网格图中,每个小正方形的边长均为1个单位.Rt ABC 中,∠C =90°,AC =3,BC =4(1)试在图中作出ABC 绕A 顺时针方向旋转90°后的图形11AB C △;(2)求1BB 的长.22.如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,OD ⊥AC ,垂足为E ,连接BD .(1)求证:BD 平分∠ABC ;(2)若OE =3,AO =5,求AC 的长.23.如图,AB 是O 的弦,AC 是O 的直径,将AB 沿着AB 弦翻折.恰好经过圆心O .若O 的半径为6,求图中阴影部分的面积.24.如图,已知AB 是O 的直径,BC AB ,连接OC ,弦//AD OC ,直线CD 交BA 的延长线于点E .(1)求证:CD 是O 的切线; (2)若2DE BC =,O 的半径为2,求线段EA 的长.25.如图所示,AC 与O 相切于点C ,线段AO 交O 于点B .过点B 作//BD AC 交O 于点D ,连结,CD OC ,且OC 交DB 于点E .若30,53cm ∠=︒=CDB DB .(1)求COB ∠的大小和O 的半径长.(2)求由弦,CD BD 与弧BC 所围成的阴影部分的面积(结果保留π).26.如图,某零件的截面为弓形.(1)请用直尺和圆规作出该弓形的圆心.(2)若23AB =,弓形的高为1.①求弓形的半径②求AB 的长【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用特殊角的三角函数值求得∠D=30°,由点A 是劣弧BC 的中点,根据圆周角定理得到∠AOC=∠AOB=2∠D=60°,可对②进行判断;证得△OAC 、△OAB 都为等边三角形,根据等边三角形的性质和垂径定理可计算出BC ,可对①进行判断;利用AB=AC=OA=OC=OB 可对③进行判断;利用弧长公式,可对④进行判断.【详解】∵3tanD =, ∴∠D=30°,∵点A 是劣弧BC 的中点,∴OA ⊥BC ,∴∠AOC=∠AOB=2∠D=60°,∴sin AOB sin 60∠=︒=,所以②正确; 而OA=OC=OB=6,∴△OAC 、△OAB 都为等边三角形,∴BC26=⨯=①正确; ∵△OAC 、△OAB 都为等边三角形,∴AB=AC=OA=OC=OB ,∴四边形ABOC 是菱形,所以③正确;∵△OAC 、△OAB 都为等边三角形,∴∠COB=120°,∴劣弧BC 的长度为12064180ππ⨯=,所以④正确. 综上,正确的个数有4个,故选:A .【点睛】 本题考查了圆周角定理,弧长公式,菱形的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.B解析:B【分析】连接CD ,根据圆周角定理,可以得到30CAD ∠=︒,在Rt ACD △中,利用锐角三角函数求出AC 的长即可.【详解】解:如图,连接CD ,∵AB BC =,30BAC ∠=︒,∴AB 和BC 所对的圆心角都是60︒,∵AD 是直径,∴CD 所对的圆心角也是60︒,∴30CAD ∠=︒,在Rt ACD △中,3cos308432AC AD =⋅︒=⨯=. 故选:B .【点睛】本题考查圆周角定理和锐角三角函数,解题的关键是掌握圆周角定理,以及利用锐角三角函数解直角三角形的方法. 3.A解析:A【分析】连接AD ,可证∠ODA=∠OAD=∠AOD=60°,根据弧中点,得出∠DAC=30°,△ADE 是直角三角形,用勾股定理求AE 即可.【详解】解:连接AD ,∵∠BOD =120°,AB 是⊙O 的直径,∴∠AOD =60°,∵OA=OD ,∴∠OAD =∠ODA =60°,∵点C 为弧BD 的中点,∴∠CAD =∠BAC =30°,∴∠AED =90°,∵DE =1,∴AD=2DE=2,AE 2222213AD DE -=-=故选:A .【点睛】本题考查了圆周角的性质、勾股定理,解题关键是通过连接弦构造直角三角形,并通过弧相等导出30°角.4.D解析:D【分析】首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.【详解】解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=23∴BD=4,∴22,BD BC∴CD=1BD,2∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°-∠A=120°,∴∠A的度数为:60°或120°.故选:D.【点睛】此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.5.D解析:D【分析】延长AO 交⊙O 于B ,连接AC ,证明△PAC ∽△PCB ,进而得到PC 2=PA•PB 即可求出PC 的长.【详解】解:如下图所示:连接OC ,延长AO 交⊙O 于B ,连接AC ,BC ,∵AB 为直径,∴∠1+∠2=90°,∵OC=OA ,∴∠1=∠3,∵PC 为圆的切线,∴∠3+∠4=90°,∴∠2=∠4,又∠P=∠P ,∴△PCA ∽△PBC , ∴=PC PA PB PC,即24(104)56=⨯=⨯+=PC PA PB , ∴214=PC故选:D .【点睛】本题考查了相似三角形的性质和判定,圆的切线及圆周角定理等,熟练掌握圆的性质及相似三角形的性质和判定是解决本题的关键.6.C解析:C【分析】根据圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,再利用互余可计算出∠BAD 的度数,然后利用含30度的直角三角形三边的关系求出BD 、AB 的长即可.【详解】解:∵AB 是⊙O 的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°-∠B=90°-30°=60°,故选项A 、B 不符合题意,在Rt △ADB 中,3,3故选项C 符合题意,选项D 不符合题意,故选:C .本题考查了圆周角定理以及含30°角的直角三角形的性质等知识;熟练掌握圆周角定理是解题的关键.7.B解析:B【分析】设出半径,作出△COB 底边BC 上的高,利用扇形的面积公式和三角形的面积公式表示出三个图形面积,比较即可求解.【详解】解:作OD ⊥BC 交BC 与点D ,∵∠COA =60°,∴∠COB =120°,则∠COD =60°.∴S 扇形AOC =22603606ππ=R R ; S 扇形BOC =221203603ππ=R R . 在三角形OCD 中,∠OCD =30°,∴OD =2R ,CD =3R ,BC =3R , ∴S △OBC =23R ,S 弓形=2233R R π-=2(433)π-R , 2(433)12π-R >26πR >234R , ∴S 2<S 1<S 3.故选:B .【点睛】此题考查扇形面积公式及弓形面积公式,解题的关键是算出三个图形的面积,首先利用扇形公式计算出第一个扇形的面积,再利用弓形等于扇形﹣三角形的关系求出弓形的面积,进行比较得出它们的面积关系.8.B解析:B【分析】如图,过点A 作AE ⊥BD 于点E ,连接AD ,可得AD=AB=10,根据垂径定理可得DE=BE ,得CE=BE-BC=DE-4,再根据勾股定理即可求得DE 的长,进而可得CD 的长.解:如图,过点A作AE⊥BD于点E,连接AD,∴AD=AB=10,根据垂径定理,得DE=BE,∴CE=BE-BC=DE-4,根据勾股定理,得AD2-DE2=AC2-CE2,102-DE2=82-(DE-4)2,解得DE=132,∴CD=DE+CE=2DE-4=9,故选:B.【点睛】本题考查了垂径定理,解决本题的关键是掌握垂径定理.9.D解析:D【分析】先证明∆BAE≅ ∆CAD,再证明∆ABG≅ ∆ACG,得AF是∠BAC的平分线,进而即可判断①;先证明BDC=∠CEB=90°,根据直角三角形的性质,即可判断②;根据角平分线的性质,得点G到∆ABC的三边距离都相等,结合“等积法”即可判断③;先证明B,C,D,E在以点F为圆心的圆上,进而即可判断④.【详解】∵AB=AC,∠BAE=∠CAD,AE=AD,∴∆BAE≅ ∆CAD,∴∠ABE=∠ACD,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC-∠ABE=∠ACB-∠ACD,即:∠GBC=∠GCB,∴BG=CG,∴∆ABG≅ ∆ACG,∴∠BAG=∠CAG,即AF是∠BAC的平分线,∴BF CF=,故①正确;∵BE AC⊥,∴∠CEB=90°,由①可知:BD=CE ,∠ABC=∠ACB ,又∵BC=CB ,∴∆BDC ≅∆CEB ,∴∠BDC=∠CEB=90°,∵点F 是BC 的中点,∴CF DF =,故②正确;∵BE 平分ABC ∠,AF 平分∠BAC ,∴点G 是角平分线的交点,∴点G 到∆ABC 的三边距离都相等,且等于FG ,∵5AB AC ==,6BC =,AF ⊥BC ,∴AF=22AB BF -= 22534-=, ∴S ∆ABC =12(AB+AC+BC)∙FG=12×16FG=8FG ,S ∆ABC =12BC∙AF=12, ∴8FG=12,即:32FG =,故③正确; ∵BE AC ⊥,由①可知:CD ⊥AB , ∴B ,C ,D ,E 在以点F 为圆心的圆上,∴2DFE ABE ∠=∠,故④正确. 故选D .【点睛】本题主要考查等腰三角形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理,角平分线的性质,圆周角定理,熟练掌握“等腰三角形三线合一”,“直角三角形,斜边上的中线等于斜边的一半”,是解题的关键.10.C解析:C【分析】设做成圆锥之后的底面半径为r ,可得12012180r ππ⋅=,再利用勾股定理即可求解. 【详解】 解:设做成圆锥之后的底面半径为r ,则12012180r ππ⋅=, 解得13r =, ∴这个圆锥体容器的高为22122133h ⎛⎫=-= ⎪⎝⎭, 故选:C .【点睛】本题考查圆锥的计算,求出圆锥的底面半径是解题的关键.11.A解析:A【分析】连接OC ,根据圆周角定理计算即可;【详解】连接OC ,∵33BAC ∠=︒,∴266BOC AOC ∠=∠=︒,又∵180DOC AOC ∠+∠=︒,∴180114AOC BOC ∠=︒-∠=︒,∴1572D AOC ∠=∠=︒; 故答案选A .【点睛】本题主要考查了圆周角定理,准确计算是解题的关键.12.B解析:B【分析】根据圆周角定理即可得到结论.【详解】解:∵AD是△ABC的外接圆⊙O的直径,∴∠ABD=90°,∵∠BCA=50°,∴∠ADB=∠BCA=50°,∴BAD∠=90°-50°=40°故选:B.【点睛】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键.二、填空题13.3π【分析】算出扇形OEF的圆心角即可得到解答【详解】解:如图连结OB由题意可知:OC=OB=BC∴∠COB=60°∠COA=120°∵∠1=∠2∴∠FOE=∠COE+∠1=∠COE+∠2=∠COA解析:3π【分析】算出扇形OEF的圆心角,即可得到解答.【详解】解:如图,连结OB,由题意可知:OC=OB=BC,∴∠COB=60°,∠COA=120°,∵∠1=∠2,∴∠FOE=∠COE+∠1=∠COE+∠2=∠COA=120°,∴扇形OEF的面积=22 12012033360360OAπππ⨯⨯⨯⨯==,故答案为3π .【点睛】本题考查扇形与菱形的综合应用,熟练掌握菱形的性质及扇形面积的计算是解题关键.14.【分析】连接由矩形ABCD分别求解再求解从而可得答案【详解】解:连接矩形ABCD 故答案为:【点睛】本题考查的是矩形的性质等腰直角三角形的性质含的直角三角形的性质勾股定理的应用扇形的面积掌握以上知识是 解析:432.π--【分析】 连接DF ,由矩形ABCD ,30,2,DBC DC CF ∠=︒==分别求解,,,EDF DF BC ∠ 再求解43,,2DFC ABCD DEF S S Sπ===矩形扇形,从而可得答案.【详解】解:连接DF ,矩形ABCD ,30,2,DBC DC CF ∠=︒== 2290,4,45,2222,ADC BD DFC FDC DF ∴∠=︒=∠=∠=︒=+=224223,904545,BC EDF ∴=-=∠=︒-︒=︒(24522123243,,2223602DFC ABCD DEF S S S ππ⨯∴=====⨯⨯=矩形扇形, 432.S π∴=-阴影故答案为:32.π-【点睛】本题考查的是矩形的性质,等腰直角三角形的性质,含30的直角三角形的性质,勾股定理的应用,扇形的面积,掌握以上知识是解题的关键.15.4-π【分析】连接OAOB 由S 阴影=S 正方形OBPA-S 扇形AOB 则可求得结果【详解】解:连接OAOB ∵PAPB 分别与⊙O 相切于点AB ∴OA ⊥APOB ⊥PBPA=PB ∴∠OAP=∠OBP=90°=∠解析:4-π【分析】连接OA ,OB ,由S 阴影=S 正方形OBPA -S 扇形AOB 则可求得结果.【详解】解:连接OA ,OB ,∵PA ,PB 分别与⊙O 相切于点A ,B ,∴OA ⊥AP ,OB ⊥PB ,PA=PB ,∴∠OAP=∠OBP=90°=∠BPA ,∴四边形OBPA 是正方形,∴∠AOB=90°,∴阴影部分的面积=S 正方形OBPA -S 扇形AOB 则=22-904360π⨯⨯=4-π. 故答案为:4-π.【点睛】此题考查了切线长定理,正方形的判定与性质,扇形面积公式等知识.解题关键是连接半径,构造正方形,把阴影部分面积转化为正方形面积与扇形面积差.16.【分析】如图由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积再由勾股定理可得:从而可得答案【详解】解:如图由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积大圆的半 解析:48π-【分析】如图,由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积,再由勾股定理可得:28,AC =从而可得答案.【详解】解:如图,由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积,大圆的半径为2,90,,ACB AC BC ∠=︒=∴ 4,AB =2216,AC BC +=28,AC ∴=22248.S AC ππ∴=⨯-=-故答案为:48.π-【点睛】本题考查的是阴影部分面积的求解,勾股定理的应用,圆的对称性与正方形的性质,扇形面积与弓形面积的理解,正多边形与圆,掌握以上知识是解题的关键.17.【分析】连接ACBD 交于点O 由菱形的性质得出AC 的长由旋转的性质∠EAC=60゜再根据弧长公式求解即可【详解】解:连接ACBD 交于点O 如图∵四边形ABCD 是菱形∴AC ⊥BDOA=OC ∠BAC=∠DA 解析:233π 【分析】连接AC ,BD 交于点O ,由菱形的性质得出AC 的长,由旋转的性质∠EAC=60゜,再根据弧长公式求解即可.【详解】解:连接AC ,BD 交于点O ,如图,∵四边形ABCD 是菱形 ∴AC ⊥BD ,OA=OC ,∠BAC=12∠DAB=30゜ ∴ 112OB AB == 由勾股定理得,3OA =∴23AC =连接AE , 当AB 与AD 重合时,旋转了60゜,则∠EAC=60゜ ∴6023231803CE π== 23 【点睛】此题主要考查了旋转的性质、菱形的性质以及求弧长,运用菱形的性质求出AC 是解答此题的关键.18.【分析】连接AC 根据圆周角定理得出AC 为圆的直径解直角三角形求出AB 求出扇形面积和面积两者的面积比即是针孔扎在扇形(阴影部分)的概率【详解】解:连接AC ∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为 解析:12【分析】连接AC ,根据圆周角定理得出AC 为圆的直径,解直角三角形求出AB ,求出扇形面积和O 面积,两者的面积比,即是针孔扎在扇形(阴影部分)的概率.【详解】解:连接AC ,∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为90︒的扇形,即∠ABC=90︒, ∴AC 为直径,即AC=2m ,AB=BC (扇形的半径相等),∵AB 2+BC 2=22, ∴2m ,∴S 阴影部分=29023602ππ︒⨯=︒(m 2), 则:P 针孔扎在扇形(阴影部分)=212==2OS S OA =阴影部分ππ故答案为:12. 【点睛】 本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.19.80【分析】设此扇形的圆心角为x°代入弧长公式计算得到答案【详解】解:设此扇形的圆心角为x°由题意得解得x=80故答案为:80【点睛】本题考查的是弧长的计算掌握弧长的公式是解题的关键解析:80【分析】设此扇形的圆心角为x°,代入弧长公式计算,得到答案.【详解】解:设此扇形的圆心角为x°,由题意得,94180x ππ=, 解得,x=80,故答案为:80.【点睛】 本题考查的是弧长的计算,掌握弧长的公式180n r l π=是解题的关键. 20.【分析】求出∠AEB 的度数再求三角函数值即可【详解】解:∵∠B=∠C=50°∠A=70°∴∠AEB=180°-∠A-∠B=60°故答案为:【点睛】本题考查了圆周角的性质三角形内角和特殊角的三角函数值解析:3【分析】求出∠AEB 的度数,再求三角函数值即可.【详解】解:∵∠B=∠C=50°,∠A=70°,∴∠AEB=180°-∠A-∠B=60°,tan tan 603AEB ∠=︒=,故答案为:3.【点睛】本题考查了圆周角的性质,三角形内角和,特殊角的三角函数值,解题关键是灵活运用圆中角的关系,把已知条件集中在一个三角形中求角.三、解答题21.(1)见解析;(2)52π. 【分析】(1)根据△ABC 绕A 顺时针方向旋转90°,即可得到△AB 1C 1;(2)根据弧长计算公式,即可得出点B 运动路径的长.【详解】解:(1)如图所示,△AB 1C 1即为所求;(2)Rt ABC 中,∠C =90°,AC =3,BC =4∴AB 5==又∠BAB 1=90°,∴点B 的运动路径的长为:90551802ππ⨯=. 【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 22.(1)见解析;(2)8.【分析】(1)先根据垂径定理得出AD =CD ,再利用圆周角定理即可得出结论;(2)先根据垂径定理得出AE =12AC ,在Rt △AOE 中,利用勾股定理即可求出AE 的长,进而得出结论.【详解】(1)证明:∵OD ⊥AC ,∴AD =CD ,∴∠ABD =∠CBD ,即BD 平分∠ABC ;(2)解:∵OD ⊥AC ,∴AE =12AC ,∠OEA =90°, ∵OE =3,OA =5,∴在Rt △AOE 中,AE 2222534OE ,∴AC =2AE =8.【点睛】 本题考查了垂径定理、圆周角性质等知识,熟练掌握垂径定理与圆周角的相关性质是解答此题的关键.23【分析】根据翻折的意义,垂径定理的性质,直径上的圆周角是直角,扇形的面积等,把阴影的面积等量转化为三角形OBC 的面积求解即可.【详解】解:如图,连接OB ,BC .过点O 作OD ⊥AB ,垂足为E ,连接BD ,根据题意,得OE=ED=12OD=12OB , ∴∠ABO=∠OAB=30°,∵AC 是圆的直径,∴∠ABC=90°,∠ACB=60°,∴△OBC 是等边三角形,△OBD 是等边三角形,∴弓形OnB 的面积=弓形BmC 的面积,∴=S S △OBC 阴影=34×26=93.【点睛】本题考查了垂径定理,直径上的圆周角,阴影部分的面积,熟练掌握圆的基本性质,把阴影面积合理转型为三角形的面积是解题的关键.24.(1)见解析;(2)22AE =.【分析】(1)连接OD ,通过证明△COD ≌△COB 得到90CDO CBO ∠=∠=︒即可得到结论; (2)根据全等三角形的性质,在结合平行线分线段成比例的性质,即可求解【详解】(1)如图,连接OD .∵//AD OC ,∴DAO COB ∠=∠,ADO COD ∠=∠.又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.∵OD OB =,OC OC =,∴在COD △和COB △中OD OB COD COB OC OC =⎧⎪∠=∠⎨⎪=⎩∴()SAS COD COB ≌△△, ∴90CDO CBO ∠=∠=︒.又∵点D 在O 的切线. ∴CD 是O 的切线.(2)∵COD COB ≌△△,∴CD CB =. ∵DE =, ∴ED =.∵//AD OC , ∴DE AE CE OE=. ∵O 的半径为2,∴2AE AE =+, ∴AE =【点睛】本题考查了圆切线的判定,以及平行线分线段成比例的性质,熟练掌握圆切线的判定定理是解题关键.25.(1)60COB ∠=︒,O 的半径长为5cm ;(2)()225cm 6π 【分析】(1)根据切线的性质定理和平行线的性质定理得到OC ⊥BD ,根据垂径定理得到BE 的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE ≌△BOE ,则它们的面积相等,故阴影部分的面积就是扇形OBC 的面积.【详解】解:(1)∵AC 与⊙O 相切于点C ,∴∠ACO=90°,∵BD ∥AC ,∴∠BEO=∠ACO=90°,∴DE=EB=12(cm ) ∵∠D=30°,∴∠O=2∠D=60°,在Rt △BEO 中,sin60°=BE OB,∴22OB=, ∴OB=5,即⊙O 的半径长为5cm .(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°,又∵∠CED=∠BEO ,BE=ED ,∴△CDE ≌△OBE ,∴S 阴=S 扇OBC =60360π•52=256π(cm 2), 答:阴影部分的面积为256πcm 2.【点睛】本题考查扇形面积的计算,全等三角形的判定与性质,圆周角定理,切线的性质,解直角三角形,掌握扇形面积的计算,全等三角形的判定与性质,圆周角定理,切线的性质,解直角三角形是解题关键.26.(1)见解析;(2)①2;②4=3AB π的长 【分析】(1)在弧AB 上取一点C ,连接AC ,分别作出AC 、AB 的垂直平分线即可;(2)①根据垂径定理可得3AE BE ==,再根据勾股定理求解即可;②根据1cos 2OE AOE OA ∠==,求出圆心角,根据公式计算即可; 【详解】 (1)在弧AB 上取一点C ,连接AC ,分别作出AC 、AB 的垂直平分线,如图,点O 即为所求.(2)①如图,过点O 作OE AB ⊥交圆O 与点D ,∵23AB = ∴3AE BE ==设弓形的半径为r ,在Rt △AOE 中,222OA AE OE =+, 即()22231r r =+-, 解得:2r;②∵2OA =,1OE =, ∴1cos 2OE AOE OA ∠==, ∴60AOE =︒∠,∴2120AOB AOE ∠=∠=︒, ∴120241801803n rl πππ⨯⨯===; 【点睛】本题主要考查了尺规作图垂直平分线、垂径定理、锐角三角函数、弧长的计算,准确计算是解题的关键.。
初中数学圆形专题训练50题含(参考答案)
初中数学圆形专题训练50题含参考答案一、单选题1.如图,A ,B ,C 是⊙O 上的三点,且⊙ACB =35°,则⊙AOB 的度数是( )A .35°B .65°C .70°D .90°【答案】C 【分析】根据圆周角定理即可得.【详解】解:由圆周角定理得:223570AOB ACB ∠=∠=⨯︒=︒,故选:C .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.2.如图,在半径为R 的圆内作一个内接正方形,⊙然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n 个内切圆,它的半径是( )A .RB .(12)RC .(12)n -1RD .n R3.如图,在ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是()A.AD BD AB+<B.AD一定经过ABC的重心C.BAD CAD∠=∠D.AD一定经过ABC的外心【答案】C【分析】根据题意易得AD平分⊙BAC,然后根据三角形的重心、外心及三边关系可排除选项.【详解】解:⊙AD平分⊙BAC,⊙BAD CAD∠=∠,故C正确;在⊙ABD中,由三角形三边关系可得AD BD AB+>,故A错误;由三角形的重心可知是由三角形三条中线的交点,所以AD不一定经过ABC的重心,故B选项错误;由三角形的外心可知是由三角形三条边的中垂线的交点,所以AD不一定经过ABC的外心,故D选项错误;故选C.【点睛】本题主要考查三角形的重心、外心及角平分线的尺规作图,熟练掌握三角形的重心、外心及角平分线的尺规作图是解题的关键.4.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若⊙D=40°,则⊙A的度数为()A.20°B.25°C.30°D.40°【点睛】此题主要考查了切线的性质,正确得出⊙DOC =50°是解题关键.5.如图,点A ,B ,C 在圆O 上,65∠=︒ABO ,则ACB ∠的度数是( )A .50︒B .25︒C .35︒D .20︒6.如图4,在Rt ABC △中,90C =∠,3AC =.将其绕B 点顺时针旋转一周,则分别以BA ,BC 为半径的圆形成一圆环.该圆环的面积为( )AB .3πC .3πD .3π 【答案】C 【分析】根据勾股定理,得两圆的半径的平方差即是AC 的平方.再根据圆环的面积计算方法:大圆的面积减去小圆的面积,即9π.【详解】解:圆环的面积为πAB 2-πBC 2,=π(AB 2-BC 2),=πAC 2,=32π,=9π.故选C.7.已知水平放置半径为6cm的球形容器中装有溶液,容器内液面的面积为27πcm2,如图,是该球体的一个最大纵截面,则该截面O中阴影部分的弧长为()A.2πcm B.4πcm C.6πcm D.8πcm意,灵活运用所学知识解决问题,属于中考常考题型.8.如图,点A,B,C都在圆O上,若⊙C=34°,则⊙AOB为()A.34⊙B.56⊙C.60⊙D.68⊙【答案】D【分析】由题意直接根据圆周角定理中同圆同弧所对的圆周角等于这条弧所对的圆心角的一半进行分析即可求解.【详解】解:⊙⊙C=34°,⊙⊙AOB=2⊙C=68°.故选:D.【点睛】本题考查圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.9.下列命题中,真命题的个数是()⊙同位角相等⊙经过一点有且只有一条直线与这条直线平行⊙长度相等的弧是等弧⊙顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【答案】A【详解】解:两直线平行,同位角相等,⊙错误;经过直线外一点有且只有一条直线与这条直线平行,⊙错误;在同圆或等圆中,长度相等的弧是等弧,⊙错误;顺次连接菱形各边中点得到的四边形是矩形,⊙正确.故选A.【点睛】本题考查命题与定理.10.AB是⊙O的直径,PB、PC分别切⊙O于点B、C,弦CD AB∥,若PB=AB=10,则CD的长为()A .6B C .D .3 OCF CPE ,四边形12BE OF OF ==,【详解】解:过点⊙OCF CPE , OF OC CE PC =, PB 、PC 分别切⊙O PB PC =,10PB AB ==,11.如图,AB 是O 的直径,ACD 是O 的内接三角形,若6AB =,105ADC ∠=︒,则BC 的长为( )A .8πB .4πC .2πD .π【答案】C【分析】连接OC 、BC ,根据四边形ABCD 是圆的内接四边形和⊙D 的度数,即可求出303602π=,【点睛】本题考查了圆内接四边形的性质、圆周角定理以及弧长公式等知识,根据圆12.将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD 与直尺的一边重合,光盘与直尺相切于点B ,与直角三角板相切于点C ,且3AB =,则光盘的直径是( )A .6B .C .3D .【答案】D13.如图,正五边形ABCDE,则⊙DAC的度数为()A.30°B.36°C.60°D.72°【答案】B【分析】根据正五边形和等腰三角形的性质即可得到结论.【详解】⊙在正五边形ABCDE中,AE=DE=AB=BC,⊙E=⊙B=⊙EAB=108°,⊙⊙EAD=⊙BAC=36°,⊙⊙DAC=108°﹣36°﹣36°=36°,故选:B.【点睛】此题考查正多边形和圆,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.14.菱形对角线的交点为O,以O为圆心,以O到菱形一边的距离为半径的圆与其他几边的关系为()A.相交B.相切C.相离D.不能确定【答案】B【分析】首先根据菱形的性质可知:菱形的对角线将菱形分成四个全等的直角三角形,故四个三角形面积相等且斜边相等,然后根据等面积法得出斜边的高相等,这样问题就容易解决了.【详解】如图:⊙菱形对角线互相垂直平分,⊙AO=CO,BO=DO,AB=BC=CD=DA.⊙⊙ABO⊙⊙BCO⊙⊙CDO⊙⊙DAO.⊙⊙ABO、△BCO、△CDO、△DAO的面积相等.又⊙AB=BC=CD=DA,⊙⊙ABO、△BCO、△CDO、△DAO斜边上的高相等.即O到AB、BC、CD、DA的距离相等.⊙O到菱形一边的距离为半径的圆与另三边的位置关系是相切.故选B..【点睛】本题考查了直线与圆的位置关系,解题的关键是画出图形进行分析.15.如图,已知AB是⊙O的直径,弦CD⊙AB于点E,G是弧AB的中点,连接AD,AG ,CD ,则下列结论不一定成立的是( )A .CE =DEB .⊙ADG =⊙GABC .⊙AGD =⊙ADC D .⊙GDC =⊙BAD 【答案】D 【详解】⊙AB 是⊙O 的直径,弦CD ⊙AB ,⊙CE =DE ,A 成立;⊙G 是AB 的中点,⊙AG BG =,⊙⊙ADG =⊙GAB ,B 成立;⊙AB 是⊙O 的直径,弦CD ⊙AB ,⊙AC AD =,⊙⊙AGD =⊙ADC ,C 成立;⊙GDC =⊙BAD 不成立,D 不成立,故选D .16.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =, 1.5m OB =,则阴影部分的面积为( )A .24.25m πB .23.25m πC .23m πD .22.25m π【答案】D 【分析】根据S 阴影=S 扇形AOD -S 扇形BOC 求解即可.17.下列命题为真命题的是( )A .同旁内角互补B .三角形的外心是三条内角平分线的交点C .平行于同一条直线的两条直线平行D .若甲、乙两组数据中,20.8S =甲,2 1.4S =乙,则乙组数据较稳定【答案】C【分析】根据平行线的性质和判定,三角形的外心性质,方差一一判断即可.【详解】解:A 、两平行线被第三直线所截,同旁内角互补,原命题是假命题,不符合题意;B 、三角形的外心是三条边垂直平分线的交点,原命题是假命题,不符合题意;C 、平行于同一条直线的两条直线平行,是真命题,符合题意;D 、若甲、乙两组数据的平均数都是3,S 甲2=0.8,S 乙2=1.4,则甲组数据较稳定,原命题是假命题,不符合题意;故选:C .【点睛】考查了命题与定理的知识,解题的关键是根据平行线的性质和判定,三角形的外心性质,方差解答.18.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D ,E 两点,且⊙ACD=45°,DF⊙AB 于点F ,EG⊙AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )A.B.C.D.19.如图,AB为⊙O的直径,AB=AC,AC交⊙O于点E,BC交⊙O于点D,F为CE 的中点,连接DF.给出以下四个结论:⊙BD=DC;⊙AD=2DF;⊙BD DE;⊙DF是⊙O的切线.其中正确结论的个数是:()A.4B.3C.2D.1【答案】B【详解】连接AD,OD,⊙AB是直径,⊙⊙ADB=⊙AEB=90°,又⊙AB=AC,⊙BD=DC,故⊙正确;⊙F是CE中点,BD=CD,⊙BE//DF,BE=2DF,但没有办法证明AD与BE相等,故⊙错误;⊙AB=AC,BD=CD,⊙⊙BAD=⊙CAD,⊙BD=DE,⊙BD=DE,故⊙正确;⊙⊙AEB=90°,⊙⊙BEC=180°-⊙AEB=90°,⊙BE//DF,⊙⊙DFC=⊙BEC=90°,⊙O为AB的中点,D为BC的中点,⊙OD//AC,⊙⊙ODF=⊙DFC=90°,⊙OD是半径,⊙DF是⊙O的切线,故⊙正确,所以正确的结论有3个,故选B.【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质、三角形的中位线等,能根据具体的图形选择和灵活运用相关性质解题是关键.二、填空题20.如图,若正五边形和正六边形有一边重合,则⊙BAC=_____.【答案】132°##132度【详解】解:⊙正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,⊙⊙BAC=360°-108°-120°=132°.故答案为132°.21.已知直角⊙ABC中,⊙C=90°,BC=3,AC=4,那么它的内切圆半径为_______.【答案】1【分析】O分别与BC、AC、AB切于点D、E、F,连接OD、OE、OF,由切线的性质可得:⊙ODC=⊙OEC=90°,设OD=OE=r根据正方形的判定即可证出四边形OECD是正方形,从而得出:EC=CD=OD=OE=r,再根据切线长定理可得:BF=BD =3-r,AF=AE =4-r,再根据勾股定理求出AB,利用AB的长列方程即可.【详解】解:如图所示,O分别与BC、AC、AB切于点D、E、F,连接OD、OE、OF⊙⊙ODC=⊙OEC=90°22.如图,AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,BE =4,CG =6,则BC =_______.【答案】10【分析】从圆外一点可以引圆的两条切线,它们的切线长相等,据此分析解答.【详解】⊙AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,BE =4,CG =6,⊙BF =BE =4,CF =CG =6,⊙BC =BF +FC =10,故填:10.【点睛】此题主要是综合运用了切线长定理和切线的性质定理.23.若一个扇形的圆心角为60︒,面积为26cm π,则这个扇形的弧长为__________ cm(结果保留π)24.如图,在O 中,弦AC =B 是圆上一点,且=45ABC ∠︒,则O 的半径R =_____.25.如图,⊙O 的内接四边形ABCD 中,⊙A =45°,则⊙C 的度数 _____________ .【答案】135°【分析】根据圆内接四边形的对角互补可得结论.【详解】∵⊙O的内接四边形ABCD中,⊙A=45°,⊙⊙C=135°.故答案为135°.【点睛】本题考查了圆内接四边形,关键是掌握圆内接四边形的性质:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).26.如图,四边形ABCD内接于⊙O,E是BC延长线上一点,若⊙BAD=105°,则⊙DCE的度数是________°.【答案】105【详解】⊙四边形ABCD是圆内接四边形,⊙⊙DAB+⊙DCB=180°,⊙⊙BAD=105°,⊙⊙DCB=180°﹣⊙DAB=180°﹣105°=75°,⊙⊙DCB+⊙DCE=180°,⊙⊙DCE=⊙DAB=105°.故答案为10527.如图,圆O的半径OA=5cm,弦AB=8cm,点P为弦AB上一动点,则点P到圆心O的最短距离是____cm.【答案】3【分析】由当OP⊙AB时,OP最短,根据垂径定理,可求得AP的长,然后由勾股定28.如图,在矩形ABCD 中,AB a ,BC b =,点P 是BC 上的一个动点,连接AP ,把PAB 沿着AP 翻折到⊙PB C '(点B '在矩形的内部),连接B C ',B D '.点P 在整个运动过程中,若存在唯一的位置使得⊙B CD 为直角三角形,则a ,b 之间的数量关系是 __.为直径作O ,当点为直角三角形且唯一,在Rt ADO 中,根据22OD OA ,可得,计算可得答案. 为直径作O ,当点到O 的最小距离等于得B CD '为直角三角形且唯一,Rt ADO 中,2AD OD +22211())22b a a +=+,整理得22b =,a>,∴=2b29.尺规作图特有的魅力曾使无数人沉湎其中,传说拿破仑通过下列尺规作图考他的大臣:⊙将半径2的⊙O六等分,依次得到A,B,C,D,E,F六个分点;⊙分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;⊙连结OG.问:OG的长是多少?大臣给出的正确答案是_________2222OA,(23)222.【点睛】本题考查了圆周角定理,等腰三角形三线合一的性质以及勾股定理解直角三30.半径为O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若⊙OBD是直角三角形,则弦BC的长为_______________.31.如图,P A,PB是⊙O的切线,A,B是切点,点C是⊙O上异于A、B的一点,若⊙P=40°,则⊙ACB的度数为_________________.【答案】110°【分析】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APBO中,根据四边形的内角和求出⊙AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出⊙ADB的度数,再根据圆内接四边形的对角互补即可求出⊙ACB的度数.【详解】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示:⊙PA、PB是⊙O的切线,⊙OA⊙AP,OB⊙BP,⊙⊙OAP=⊙OBP=90°,又⊙⊙P=40°,⊙⊙AOB=360°-(⊙OAP+⊙OBP+⊙P)=140°,32.如图,矩形ABCD 中,6AB =,9BC =.将矩形沿EF 折叠,使点A 落在CD 边中点M 处,点B 落在N 处.连接EM ,以矩形对称中心O 为圆心的圆与EM 相切于点P ,则圆的半径为________.33.如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则AMN周长的最小值为________.34.如图所示,在⊙O 中,AB 是⊙O 的直径,⊙ACB 的角平分线CD 交⊙O 于D ,则⊙ABD=_________ 度.【答案】45.【详解】试题解析:⊙CD 平分⊙ACB⊙⊙ACD=⊙BCD=45°⊙⊙ABD=⊙ACD=45°.考点:圆周角定理.35.如图,在平面直接坐标系xOy 中,()40A ,,()03B ,,()43C ,,I 是ABC ∆的内心,将ABC ∆绕原点逆时针旋转90°后,I 的对应点'I 的坐标为________.【答案】(-2,3)【分析】直接利用直角三角形的性质得出其内切圆半径,进而得出I点坐标,再利用旋转的性质得出对应点坐标.【详解】解:过点作IF⊙AC于点F,IE⊙OA于点E,⊙A(4,0),B(0,3),C(4,3),⊙BC=4,AC=3,则AB=5,⊙I是⊙ABC的内心,⊙I到⊙ABC各边距离相等,等于其内切圆的半径,⊙IF=1,故I到BC的距离也为1,则AE=1,故IE=3-1=2,OE=4-1=3,则I(3,2),⊙⊙ABC绕原点逆时针旋转90°,⊙I的对应点I'的坐标为:(-2,3).故答案为:(-2,3).【点睛】此题主要考查了旋转的性质以及直角三角形的性质,得出其内切圆半径是解题关键.36.一个半径为4cm的圆内接正六边形的面积等于_______cm2.S=ABC⊙内接正六边形的面积是故答案是:37.圆心角为40°,半径为2的扇形面积为________.38.如图,在半圆O中,直径AE=10,四边形ABCD是平行四边形,且顶点A、B、C在半圆上,点D在直径AE上,连接CE,若AD=8,则CE长为_____【答案】【详解】连接OC,过O点作BC垂线,设垂足为F,根据垂径定理、勾股定理可以得到OC=5,CF=4,OF=3,在等腰三角形CDE中,高=OF=3,底边长DE=10-8=2,根据勾股定理即可求出CE.解:连接OC,过O点作OF⊙BC,垂足为F,交半圆与点H,⊙OC=5,BC=8,⊙根据垂径定理CF=4,点H为弧BC的中点,且为半圆AE的中点,⊙由勾股定理得OF=3,且弧AB=弧CE⊙AB=CE,又⊙ABCD为平行四边形,⊙AB=CD,⊙CE=CD,⊙⊙CDE为等腰三角形,在等腰三角形CDE中,DE边上的高CM=OF=3,⊙DE=10-8=2,⊙由勾股定理得,CE2=OF2+(DE)2,⊙CE=,故答案为.本题考查了勾股定理和垂径定理以及平行四边形的性质,是基础知识要熟练掌握.39.如图,⊙O是⊙ABC的外接圆,连接OB、OC,若OB=BC,则⊙BAC的度数是_____.三、解答题40.如图,AB是⊙O的直径,C是半圆上的一点,CD是⊙O的切线,AD⊙CD于点D,交⊙O于点E.(1)求证:AC平分⊙DAB;(2)若点E为弧AC的中点,⊙O的半径为1,求图中阴影部分的面积.41.如图,AB是⊙O的直径,点C、E位于⊙O上AB两侧.在BA的延长线上取点D,使⊙ACD=⊙B.(1)求证:DC是⊙O的切线;(2)当BC=EC时,求证:AC2=AE•AD;(3)在(2)的条件下,若BC=AD:AE=5:9,求⊙O的半径.【点睛】本题考查了切线的判定,圆周角定理,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.42.如图,已知、是⊙的切线,、为切点.直径的延长线与的延长线交于点.(1)求证:;(2)若,.求图中阴影部分的面积(结果保留根号与).【答案】(1)证明见解析;(2).【详解】试题分析:(1)连接,根据是⊙的切线,由切线长定理得到AP=BP,OP平分⊙APB,根据等腰三角形的性质三线合一得到OP⊙AB,再根据AC是⊙O的直径,得到⊙ABC=90°,即AB⊙BC,BC⊙OB,得到内错角相等,由等量代换得到结果.(2)根据切线长定理和三角形全等,S△OPA=S△OPB,通过解直角三角形得到OB,PB,再根据三角形的面积和扇形的面积推出结论.试题解析:(1)证明:连接. 1分⊙是⊙的切线,⊙平分. 2分.⊙是⊙的直径,⊙, 即:. 3分⊙.⊙. 4分,⊙. 5分(2) 连接.⊙,⊙⊙、是⊙的切线,⊙,,又⊙⊙⊙⊙.⊙. 6分在中,,. 7分在中,,⊙. 8分⊙.⊙,.⊙. 9分⊙所求的阴影面积:. 10分考点:1.切线的性质;2.扇形面积的计算.43.数学课上,王老师画好图后并出示如下内容:“已知AB为O的直径,O过AC 的中点D.DE为O的切线.(1)求证:DE BC ⊥(2)王老师说:如果添加条件“1DE =,1tan 2C =”,则能求出O 的直径.请你写出求解过程.DE 为O 的切线,OD DE ∴⊥,即∠AB 为O 的直径,OA OB ∴=,即点点D 为AC 的中点,OD BC ∴∥,CED ODE ∴∠=∠=BC .DE BC ⊥1tan DE CE ∴=O∴的直径为【点睛】本题考查了圆的切线的性质、圆周角定理、三角形中位线定理、解直角三角形等知识点,熟练掌握圆的切线的性质和圆周角定理是解题关键.44.如图,点A、B、C分别是⊙O上的点,⊙B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.45.如图,在O 中,弦AB 与CD 相交于点E ,AB CD =,连接AD BC ,,25ADC ∠=︒.(1)求证:AD BC =;(2)求证:AE CE =;(3)若弦BD 经过点O ,求BEC ∠的度数. 【答案】(1)见解析(2)见解析(3)65︒【分析】(1)由AB CD =,推出AB CD =,推出BC AD =;(2)证明AED CEB ≌可得结论;(3)先求出90BCD ︒∠=,再求出25CBE,即可得答案. 【详解】(1)解:AB CD =,C ABD ∴=, AB AC CD AC ∴-=-,BC AD ∴=;(2)BC AD ,BC AD ∴=,ADE ∠和CBE ∠都是AC 的圆周角,ADE CBE ∴∠=∠,AED CEB ,AED CEB ∴≌,AE CE ∴=;(3)25ADC ,25CBE ,弦BD 经过点O ,BD ∴是O 的直径,90BCD ︒∴∠=,⊙在CEB 中,18065BEC BCD CBE .【点睛】本题考查了圆心角、弧、弦之间的关系,全等三角形的判定和性质,直径所对的圆周角是90︒,三角形的内角和,解题的关键是正确寻找全等三角形解决问题. 46.如图,在ABC 中,90ABC ∠=,O 是AB 上一点,以O 为圆心OB 为半径的圆与AB 交于点E ,与AC 交于点D ,连接DE 、DE 、OC ,且//DE OC .()1求证:AC 是O 的切线;()2若8DE OC ⋅=,求O 的半径.【答案】(1)证明见解析;(2)2. 【分析】(1)先由OD=OE ,利用等边对等角可得⊙2=⊙3,再利用DE⊙OC ;进而利用平行线的性质,可得⊙3=⊙4,⊙1=⊙2,等量代换可得⊙1=⊙4;再结合OB=OD ,OC=OC ,利用SAS 可证△DOC⊙⊙BOC ,那么⊙CDO=⊙CBO ,而⊙ABC=90°,于是⊙CDO=90°,即CD 是 O 的切线;(2)由(1)可知⊙2=⊙4,而⊙CDO=⊙BDE=90°,易证△CDO⊙⊙BDE ,可得比例线段,OD :DE=OC :BE ,又BE=2OD ,可求OD .【详解】()1证明:连接OD ,⊙OE OD =,⊙23∠=∠,又⊙//DE OC ,⊙12∠=∠,34∠=∠,⊙14∠=∠;在DOC 和BOC 中,OD OB =,14∠=∠,OC OC =,⊙DOC BOC ≅,⊙CDO CBO ∠=∠;⊙90ABC ∠=,⊙90CDO ∠=,⊙CD 是O 的切线;()2⊙BE 是直径,⊙90BDE ∠=,在COD 和BED 中,24∠=∠,90EDB ODC ∠=∠=,⊙COD BED ∽,⊙::OD DE OC BE =;又⊙2BE OD =,⊙22OD DE OC =⋅,⊙2OD =.【点睛】考查了等边对等角,平行线的性质,全等三角形的判定与性质,切线的判定,直径所对的圆周角是直角,相似三角形的判定与性质.综合性比较强,难度较大. 47.已知:对于平面直角坐标系xOy 中的点P 和O ,O 的半径为4,交x 轴于点A ,B ,对于点P 给出如下定义:过点C 的直线与O 交于点M ,N ,点P 为线段MN 的中点,我们把这样的点P 叫做关于MN 的“折弦点”.(1)若()2,0C -⊙点()10,0P ,()21,1P -,()32,2P中是关于MN 的“折弦点”的是______;⊙若直线y kx =0k ≠)上只存在一个关于MN 的“折弦点”,求k 的值;(2)点C 在线段AB 上,直线y x b =+上存在关于MN 的“折弦点”,直接写出b 的取值范围.与D相交或相切,分两种情况利用勾股定理求出【详解】(1))与D相切,与D相交或相切,=+垂直直线y xy轴交于点重合时,b有最大值,此时48.如图1,AB 为O 的直径,C 为O 上一点,连接CB ,过C 作CD AB ⊥于点D ,过点C 作BCE ∠,使BCE BCD ∠=∠,其中CE 交AB 的延长线于点E .(1)求证:CE 是O 的切线.(2)如图2,点F 在O 上,且满足2FCE ABC ∠=∠,连接AF 并延长交EC 的延长线于点G .若4CD =,3BD =,求线段FG 的长.CD OB ⊥DCB ∴∠+∠BCE ∠=∠OC OB=OCB∴∠=OCB∴∠+即:OC⊥CE∴是O的切线.(2)过点O作OHFCE∠=FCE∴∠=FCE∠=FCO∴∠OC CE⊥DCO∴∠+DCO∴∠=DCO∴∠=CDO∠=OCH∴∆≅CH CD∴=8CF∴=设OB OC=2OC OD=2(x x∴=解得:256 x.256OB OC∴==.CDB中,OC CG ⊥GCF ∴∠GCF ∴∠AFCB 是圆的内接四边形,GFC ∴∠GFC∴∆∽∴GF CF BC OC=GF =49.问题探究:(1)如图⊙,已知在⊙ABC 中,BC =4,⊙BAC =45°,则AB 的最大值是 . (2)如图⊙,已知在Rt ⊙ABC 中,⊙ABC =90°,AB =BC ,D 为⊙ABC 内一点,且AD=BD =2.,CD =6,请求出⊙ADB 的度数.问题解决:(3)如图⊙,某户外拓展基地计划在一处空地上修建一个新的拓展游戏区⊙ABC ,且AB =A C .⊙BAC =120°,点A 、B 、C 分别是三个任务点,点P 是⊙ABC 内一个打卡点.按照设计要求,CP =30米,打卡点P 对任务点A 、B 的张角为120°,即⊙APB =120°.为保证游戏效果,需要A 、P 的距离与B 、P 的距离和尽可能大,试求出AP +BP 的最大值.的外接圆O,连接)如图⊙,作⊙的外接圆O,连接BAC=90°,OB是等腰直角三角形的外接圆O,连接AKC=⊙APB 是等边三角形。
新人教版初中数学九年级数学上册第四单元《圆》测试(包含答案解析)(2)
一、选择题1.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 2.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120°3.已知△ABC 的外心为O ,连结BO ,若∠OBA=18°,则∠C 的度数为( )A .60°B .68°C .70°D .72°4.如图,AB 圆O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是( )A .CM DM =B .CB BD =C .ACD ADC ∠=∠ D .OM MB = 5.如图,A ,B ,C 三点在O 上,若120ACB ∠=︒,则AOB ∠的度数是( )A .60︒B .90︒C .100︒D .120︒ 6.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,28CDB ∠=︒,过点C 作⊙O 的切线交AB 的延长线于点E ,则E ∠等于( )A .28︒B .34︒C .44︒D .56︒ 7.如图,⊙O 的半径为2,四边形ADBC 为⊙O 的内接四边形,AB =AC ,∠D =112.5°,则弦BC 的长为( )A .2B .2C .22D .23 8.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333B .2C .3D .339.如图,⊙O 的半径为1,点 O 到直线 a 的距离为2,点 P 是直线a 上的一个动点,PA 切⊙O 于点 A ,则 PA 的最小值是( )A .1B .3C .2D .510.如图,⊙O 的直径2AB AM =,和BN 是它的两条切线,DE 切⊙O 于E ,交AM 于D ,交BN 于C ,则四边形ABCD 的面积S 的最小值为( )A .1B .2C .2D .4 11.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518π 12.在△ABC 中,∠ACB 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧BAC ,如图所示.若AB=4,AC=2,图中两个新月形面积分别为S 1,S 2,两个弓形面积分别为S 3,S 4,S 1-S 2=14π,则S 3-S 4的值是( )A .294πB .234πC .114πD .54π 二、填空题13.已知正方形MNKO和正六边形ABCDEF边长均为1,把正方形放在正六边形外边,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B顺时针旋转,使KN边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使NM边与CD边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M在图中直角坐标系中的坐标是_______,第6次点M的坐标是_______.14.如图,点A,B,C在O上,顺次连接A,B,C,O.若四边形ABCO为平行∠=________︒.四边形,则AOC15.如图,已知正方形ABCD的边长为2,点M和N分别从B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM,BN交于点P,则PC长的最小值为____________.16.已知,O的弦AB与O的半径相等,则弦AB所对的圆周角的度数为______.17.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC是该圆内接正n边形的一边,则该正n边形的面积为____.18.已知三角形三边分别为3、4、5,则该三角形内心与外心之间的距离为_____. 19.如图,四边形ABCD 内接于O ,若76A ∠=︒,则C ∠=_______ °.20.如图,△ABC 内接于O ,∠BAC=45°,AD ⊥BC 于D , BD=6,DC=4,则AD 的长是_____.三、解答题21.如图,AB ,DE 是⊙O 的直径,C 是⊙O 上的一点,且AD CE =.(1)求证:BE =CE ;(2)若∠B =50°,求∠AOC 的度数.22.如图,四边形ABCD 内接于⊙O ,AC 是⊙O 的直径,E 是AB 上一点,30AEO DAC ∠=∠=︒,连接BD .(1)求证:OAE CDB △≌△;(2)连接DE ,若DE AB ⊥,2OA =,求BC 的长.23.如图:在平面直角坐标系中,直线l 与两坐标轴分别相交,相交于C 、D 两点,且()6,0C ,30OCD ∠=︒,长度为2的线段AB (B 点在A 点右侧)在x 轴上移动,设点A的坐标为()0m ,.发现:(1)当以A 为圆心,AB 为半径的圆与直线l 相切时,求m 的值;应用:(2)当以A 为圆心,AB 为半径的A 与直线l 相交于M 、N 两点,且AMN 是等腰直角三角形,求m 的值.拓展:(3)直线l 上存在点P ,使得90APB ∠=︒,则m 的取值范围是_________(直接写出答案).24.已知:如图,ABC 中,BC AC =,以BC 为直径的O 交AB 于点O ,过点D 作DE AC ⊥于点E ,交BC 的延长线于点F .求证:(1)AD BD =,(2)DF 是O 的切线. 25.如图,长方形的长为a ,宽为2a ,用整式表示图中阴影部分的面积,并计算当2a =时阴影部分的面积(π取3.14).26.如图,O 是ABC 的外接圆,且AB AC =,点D 在弧BC 上运动,过点D 作//DE BC ,DE 交AB 的延长线于点E ,连接AD 、BD .(1)求证:ADB E ∠=∠;(2)当6AB =,3BE =时,求AD 的长?(3)当点D 运动到什么位置时,DE 是O 的切线?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据切线的性质得到OB ⊥AB ,OC ⊥AC ,求出∠BOC ,分点P 在优弧BC 上、点P 在劣弧BC 上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB 、AC 是⊙O 的切线,∴OB ⊥AB ,OC ⊥AC ,∴∠OBA =90°,∠OCA =90°∵∠A =50°,∴∠BOC =360°﹣90°﹣90°﹣50°=130°,如图,当点P 在优弧BPC 上时,∠BPC =12∠BOC =65°, 当点P ′在劣弧BC 上时,∠BP ′C =180°﹣65°=115°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.2.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,180110D B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.3.D解析:D【分析】连接OA,则OA=OB,可得∠OBA=∠OAB,再结合∠OBA=18°即可求得∠AOB=144°,再根据圆周角的性质即可求得∠C=72°.【详解】解:如图,连接OA,∵点O为ABC的外心,∴OA=OB,∴∠OBA=∠OAB,又∵∠OBA=18°,∴∠OAB=∠OBA=18°,∴∠AOB=180°-∠OAB-∠OBA=144°,∠AOB=72°,∴∠C=12故选:D.【点睛】本题考查了三角形的外心,圆周角定理,熟练掌握相关定义及性质是解决本题的关键.4.D解析:D【分析】根据垂径定理得到CM=DM,BC BD=,然后根据圆周角定理得=,AC AD∠ACD=∠ADC,而对于OM与MB的大小关系不能判断.【详解】解:∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,BC BD=,=,AC AD∴∠ACD=∠ADC.而无法比较OM,MB的大小,故选:D.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.5.D解析:D【分析】在优弧AB上取一点D,连接AD、BD,根据圆内接四边形的性质计算可得∠D,然后根据圆周角定理即可求解.【详解】解:在优弧AB 上取一点D ,连接AD 、BD ,∵四边形ADBC 是⊙O 的内接四边形,∴∠D+∠ACB=180°,∵120ACB ∠=︒∴∠D=60°∴∠AOB=120°,故选:D .【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.6.B解析:B【分析】连接OC ,由CE 为圆O 的切线,利用切线的性质得到OC 垂直于CE ,由OA=OC ,利用等边对等角得到一对角相等,再利用外角性质求出∠COE 的度数,即可求出∠E 的度数.【详解】解:连接OC ,∵CE 为圆O 的切线,∴OC ⊥CE ,∴∠COE=90°,∵∠CDB 与∠BAC 都对BC ,且∠CDB=28°,∴∠BAC=∠CDB=28°,∵OA=OC ,∴∠OAC=∠OCA=28°,∵∠COE 为△AOC 的外角,∴∠COE=56°,则∠E=34°.故选:B.【点睛】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.7.C解析:C【分析】如图:连接OB、O C,先根据圆的内接四边形对角互补得到∠C=67.5°,再利用等腰三角形的性质和三角形内角和计算出∠BAC=45°,再根据圆周角定理可得∠BOC=90°,最后根据勾股定理求解即可.【详解】解:∵四边形ADBC为⊙O的内接四边形,∠D=112.5°∴∠C=180°-∠D=180°-112.5°=67.5°∵AC=AB∴∠BAC=180°-2∠C=45°∴∠BOC=90°∴BC=2222OB OC+=+=.2222故答案为C.【点睛】本题考查了圆内接四边形的性质、等腰直角三角形的性质和圆周角定理,掌握圆内接四边形的对角互补是解答本题的突破口.8.C解析:C【分析】+的最小值,进而求解即可.利用菱形的性质及相切两圆的性质得出P与D重合时PE PF【详解】解:作点A关于直线CD的对称点A´,连接BD,DA´,∵四边形ABCD是菱形,∴AB=AD,∵∠BAD=60°,∴△ABD是等边三角形,∴∠ADB=60°,∵∠BDC=∠ADB=60°,∴∠ADN =60°,∴∠A´DN=60°,∴∠ADB+∠ADA´=180°,∴A´,D,B在一条直线上,+最小,由此可得:当点P和点D重合,E点在AD上,F点在BD上,此时PE PF∵在菱形ABCD中,∠A=60°,∴AB=AD,则△ABD为等边三角形,∴BD=AB=AD=3,∵⊙A,⊙B的半径分别为2和1,∴PE=1,DF=2,+的最小值为3.∴PE PF故选C.【点睛】本题考查了菱形的性质,等边三角形的性质,点与圆的位置关系等知识.根据题意得出点P位置是解题的关键.9.B解析:B【分析】因为PA为切线,所以△OPA是直角三角形.又OA为半径为定值,所以当OP最小时,PA 最小.根据垂线段最短,知OP=2时PA最小.运用勾股定理求解.【详解】解:作OP⊥a于P点,则OP=2.根据题意,在Rt△OPA中,22-21=3-22OP OA故选:B.【点睛】此题考查了切线的性质及垂线段最短等知识点,如何确定PA最小时点P的位置是解题的关键,难度中等偏上.10.C解析:C【分析】由切线的性质得到AM、BN与AB垂直,过点D作DF⊥BC于F,,构造一个直角三角形DFC,再由切线长定理和勾股定理列方程,得出关于y的函数关系式,根据直角梯形的面积公式求解.【详解】∵AB是直径,AM、BN是切线,∴AM⊥AB,BN⊥AB,∴AM∥BN.过点D作DF⊥BC于F,则AB∥DF.∴四边形ABFD为矩形.∴DF=AB=2,BF=AD.∵DE、DA,CE、CB都是切线,∴根据切线长定理,设DE=DA=x,CE=CB=y.在Rt△DFC中,DF=2,DC=DE+CE=x+y,CF=BC﹣BF=y﹣x,∴(x+y)2=22+(y﹣x)2,∴y=1x,∴四边形的面积S=12AB(AD+BC)=12×2×(x+1x),即S=x+1x(x>0).∵(x +1x )﹣2=x ﹣2+1x 2≥0,当且仅当x =1时,等号成立. ∴x +1x≥2,即S ≥2, ∴四边形ABCD 的面积S 的最小值为2.故选:C .【点睛】考查了切线的性质、平行线的判定、矩形的性质和勾股定理,解题关键是作出辅助线. 11.C解析:C【分析】先根据等腰三角形的性质求出∠A ,再利用圆周角定理求得∠BOC ,最后根据弧长公式求求解即可.【详解】解:∵∠OCA =50°,OA =OC ,∴∠A =50°,∴∠BOC =100°∵BO =2, ∴1002101809BC l ππ⨯==. 故答案为C . 【点睛】本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键. 12.D解析:D【分析】根据AB 和AC 的长和圆的面积公式可求得S 1+S 3,S 2+S 4的值,然后再两值相减即可得出结论.【详解】解:∵AB=4,AC=2,∴S 1+S 3=2π,S 2+S 4=2π, ∴(S 1+S 3)﹣(S 2+S 4)=(S 1﹣S 2)+(S 3﹣S 4)=32π ∵S 1-S 2=14π, ∴S 3-S 4= 32π﹣14π= 54π, 故选:D .【点睛】本题考查了圆的面积,正确表示出S1+S3,S2+S4的值是解答的关键.二、填空题13.【分析】先将正方形旋转六次的图形画出确定六次旋转之后点的位置然后通过添加辅助线构造出直角三角形进而利用含角的直角三角形的性质求得再根据勾股定理求得再根据正六边形的性质线段的和差即可求得即可得解【详解解析:13,122⎛⎫+⎪⎪⎝⎭33,22⎛⎫⎪⎪⎝⎭【分析】先将正方形旋转六次的图形画出,确定六次旋转之后点M的位置,然后通过添加辅助线构造出直角三角形,进而利用30含角的直角三角形的性质求得12FH=、12CJ=,再根据勾股定理求得63JM=,再根据正六边形的性质、线段的和差即可求得32JF=,即可得解.【详解】解:经历六次旋转后点M落在点6M处,过M作MH x⊥于点H,过6M作6M J x⊥于点J,连接6IM,如图:∵在Rt AFH中,1AF=,60AFH∠=︒,30FAH∠=︒∴1122FH AF==∵已知点M 的纵坐标是12+,即12MH =+∴点M 的坐标是:1,12⎛ ⎝⎭; ∵在6Rt CJM 中,61CM =,660JCM ∠=︒,630CM J ∠=︒∴61122CJ CM ==,6JM == ∵点I 是正六边形的中心 ∴1IC IF == ∴32JF IF IC CJ =+-=∴点6M 的坐标是:32⎛ ⎝⎭.故答案是:1,12⎛ ⎝⎭;3,22⎛ ⎝⎭【点睛】本题考查了正多边形、旋转变换、含30角的直角三角形、勾股定理、线段的和差以及坐标系中的图形与坐标,体现了数形结合的数学思想.14.120【分析】连接OB 先证明四边形ABCD 是菱形然后再说明△AOB △OBC 为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB ∵点在上∴OA=OC=OB ∵四边形为平行四边形∴四边形解析:120【分析】连接OB ,先证明四边形ABCD 是菱形,然后再说明△AOB 、△OBC 为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A ,B ,C 在O 上∴OA=OC=OB∵四边形ABCO 为平行四边形∴四边形ABCO 是菱形∴OA=OC=OB=AB=BC∴△AOB 、△OBC 为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB、△OBC为等边三角形是解答本题的关键.15.【分析】根据题意和正方形的性质可利用SAS证明△ABM≌△BCN得出∠BAM=∠CBN进而可证出∠APB=90°于是可得点P在以AB为直径的圆上运动运动路径是弧BG连接OC交圆O于P如图则此时PC最解析:5-1【分析】根据题意和正方形的性质可利用SAS证明△ABM≌△BCN,得出∠BAM=∠CBN,进而可证出∠APB=90°,于是可得点P在以AB为直径的圆上运动,运动路径是弧BG,连接OC交圆O于P,如图,则此时PC最小,进一步即可求解.【详解】解:由题意得:BM=CN,∵四边形ABCD是正方形,∴∠ABM=∠BCN=90°,AB=BC=2,在△ABM和△BCN中,∵AB=BC,∠ABM=∠BCN,MB=CN,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∵∠ABP+∠CBN=90°,∴∠ABP+∠BAM=90°,∴∠APB=90°,∴点P在以AB为直径的圆上运动,设圆心为O,运动路径是弧BG,是这个圆的1,如4图所示:连接OC 交圆O 于P ,此时PC 最小,∵AB =2,∴OP =OB =1,由勾股定理得:OC =22215+=,∴PC =OC ﹣OP =51-;故答案为:51-.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理和圆的有关性质等知识;熟练掌握上述知识,证出点P 在以AB 为直径的圆上运动是解题关键.16.或【分析】由的半径为厘米弦的长为厘米可得等边三角形因此再利用圆周角定理和圆内接四边形的性质求出弦所对的圆周角注意所对的圆周角有两种情形【详解】解:如图为等边三角形则设弦所对的圆周角为当点在弦所对的优 解析:30或150︒【分析】由O 的半径为r 厘米,弦AB 的长为r 厘米,可得OAB 等边三角形,因此60AOB ∠=︒,再利用圆周角定理和圆内接四边形的性质求出弦AB 所对的圆周角.注意AB 所对的圆周角有两种情形.【详解】解:如图,OA OB AB r ===,ABO ∴为等边三角形,则60AOB ∠=︒.设弦AB 所对的圆周角为ACB ∠,当点C 在弦AB 所对的优弧上,则60230ACB ∠=︒÷=︒;当点C 在弦AB 所对的劣弧上,则18030150ACB ∠=︒-︒=︒.所以弦AB 所对的圆周角为30或150︒,故答案为:30或150︒.【点睛】本题考查了圆周角定理.同弧所对的圆周角相等,并且等于它所对的圆心角的一半.同时考查了圆内接四边形的对角互补和等边三角形的性质.17.3【分析】利用正多边形和圆的关系可知弦EC 是该圆内接正十二边形的一边所以∠EOC=30°然后计算出△EOC 的面积最后乘以12即为该多边形的面积【详解】解:如图所示连接EO 作EF ⊥CO 交CO 于点F 由题解析:3【分析】利用正多边形和圆的关系可知弦EC 是该圆内接正十二边形的一边,所以∠EOC=30°,然后计算出△EOC 的面积,最后乘以12即为该多边形的面积.【详解】解:如图所示,连接EO ,作EF ⊥CO 交CO 于点F由题意可得n =12∴∠EOC=30°∴EF=12EO=12∴S △EOC =1·2EF CO =11××122=14 ∴该正12边形的面积=12 S △EOC =3故答案为:3【点睛】本题主要考查圆的内接正多边形的性质及其应用,解题的关键是灵活运用有关定理来分析、判断、推理或解答.18.【分析】利用三角形三边分别为345可得三角形是直角三角形根据内切圆的性质可判定四边形OECE 是正方形所以用r 分别表示:CE =CD =rAE =AN =3−rBD =BN =4−r ;再利用AB 作为相等关系求出r5 【分析】利用三角形三边分别为3、4、5,可得三角形是直角三角形,根据内切圆的性质可判定四边形OECE 是正方形,所以用r 分别表示:CE =CD =r ,AE =AN =3−r ,BD =BN =4−r ;再利用AB 作为相等关系求出r =1,则可得AN =2,N 为圆与AB 的切点,M 为AB 的中点,根据直角三角形中外接圆的圆心是斜边的中点,即M 为外接圆的圆心;在Rt △OMN 中,先求得MN =AM−AN =12,由勾股定理可求得OM 的长. 【详解】解:∵三角形三边分别为3、4、5,∴32+42=52,∴三角形是直角三角形,如图,设Rt△ABC,∠C=90°,AC=3,BC=4,AB=5,设Rt△ABC的内切圆的半径为r,则OD=OE=r,∵∠C=90°,∴CE=CD=r,AE=AN=3﹣r,BD=BN=4﹣r,∴4﹣r+3﹣r=5,解得r=1,∴AN=2,在Rt△OMN中,MN=AM﹣AN=12,∴OM=52.55【点睛】此题考查了直角三角形的外心与内心概念、勾股定理的逆定理、内切圆的性质.解决本题的关键是掌握直角三角形的外心与内心概念.19.104【分析】根据圆内接四边形的对角互补列式计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∴∠C=180°﹣∠A=180°﹣76°=104°故答案为:104【点睛】本题考查的是解析:104【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=104°,故答案为:104.【点睛】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.20.12【分析】连接OAOBOC过点O作OE⊥AD于EOF⊥BC于F根据圆周角定理得到∠BOC=90°再根据等腰直角三角形的性质计算求出OB再由DF=BD-BF得出DF然后等腰直角三角形的性质求出OF根解析:12【分析】连接OA、OB、OC过点O作OE⊥AD于E,OF⊥BC于F,根据圆周角定理得到∠BOC=90°,再根据等腰直角三角形的性质计算,求出OB,再由DF=BD-BF得出DF,然后等腰直角三角形的性质求出OF,根据勾股定理求出AE,再根据AD=AE+OF得到答案.【详解】解:∵BD=6,DC=4,∴BC=BD+DC=10∵∠BAC=45°,∴∠BOC=90°,∴252==OB BC连接OA、OB、OC过点O作OE⊥AD于E,OF⊥BC于F,∴BF=FC=5,∴DF=BD-BF=1,∵∠BOC=90°,BF=FC∴OF=1BC=5,2∵AD⊥BC,OE⊥AD,OF⊥BC,∴四边形OFDE为矩形,∴OE=DF=1,DE=OF=5,在Rt△AOE中,227,=-=AE OA OE∴AD=AE+DE=12.本题考查的是三角形的外接圆,掌握圆周角定理、垂径定理、等腰直角三角形的性质是解题的关键.三、解答题21.(1)见解析;(2)20°【分析】(1)根据∠AOD=∠BOE 可知AD BE ,再由AD CE =即可得出结论; (2)先根据等腰三角形的性质求出∠BOE 的度数,再由BE=CE 可得出∠BOE=∠COE ,根据补角的定义即可得出结论.【详解】解:(1)证明:∵∠AOD=∠BOE ,∴AD BE .∵AD CE =,∴BE CE =,∴BE=CE ;(2)∵∠B=50°,OB=OE ,∴∠BOE=180°-50°-50°=80°.∵由(1)知,BE=CE ,∴∠COE=∠BOE=80°,∴∠AOC=180°-80°-80°=20°.【点睛】本题考查的是圆心角、弧、弦的关系,熟知在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解答此题的关键.22.(1)见解析;(2. 【分析】(1)借助同圆中,同弧上的圆周角相等,利用AAS 证明全等;(2) 过O 作OH AB ⊥,利用三角形全等,勾股定理,建立一元二次方程求解即可.【详解】解:(1)证明:∵AC 是O 的直径,∴90ADC ∠=︒.∵30CAD ∠=︒,∴2AC CD =.∵2AC OA =,∴OA CD =.∵BC BC =,CD CD =,∴EAO CDB ∠=∠,CAD CBD ∠=∠.∵AEO DAC ∠=∠,∴AEO CBD ∠=∠.∴OAE CDB △≌△;(2)解:连接DE ,过O 作OH AB ⊥于H ,∴AH HB =.∵AO OC =,∴2BC OH =.设OH x =,∵30OEA CAD ∠=∠=︒, ∴3HE x =.由(1)知OAE CDB △≌△,∴AE DB =.∵AD AD =,∴60ABD ACD ∠=∠=︒.∵DE AB ⊥,∴30BDE ∠=︒.∴2DB BE =,AE DB =.∴2AE BE =.设AH HB y ==, 则3AE y x =+,3BE y x =-. ∴()323y x y x =. ∴33y x =.在Rt OAH 中,2OA =,33AH x =,OH x =,222OH AH OA +=,()2222x +=.解得17x =,27x =-(舍去).∴7OH =.∴2BC OH ==. 【点睛】本题考查了圆周角的性质,垂径定理,勾股定理,方程思想,熟练运用圆周角定理,作辅助线,构造垂径定理是解题的关键.23.(1)2m =;(2)6m =-6m =+3)3m 7≤≤【分析】(1)在平面直角坐标系中作出直线l 并画出当以A 为圆心,AB 为半径的圆与直线l 相切时的图形,由切线的性质可得Rt ACE △,然后再根据含30角的直角三角形的性质、圆的基本性质求得24AC AE ==,最后利用线段的和差求得2OA OC AC =-=,即可得到点A 的坐标,进而求得m 的值;(2)由AMN 相对于x 轴的位置分两种情况进行讨论,添加辅助线过点A 作AF MN ⊥、过点A 作AG MN ⊥,根据等腰直角三角形的性质可求得MN =根据等腰三角形的三线合一以及直角三角形斜边上的中线等于斜边的一半可求得AF =、AG =30角的直角三角形的性质求得AC =而利用线段的和差求得6OA =-、6OA =+A 的坐标,进而求得m 的值;(3)以AB 为直径作Q ,根据直径所对的圆周角是直角可在Q 上找到符合要求的点P 使得90APB ∠=︒.当Q 在x 轴上向右平移的过程中,直线l 和Q 的位置关系从相离到相切再到相交、再到相切、最后再相离,其中当直线l 和Q 相切或相交时直线l 上存在点P ,使得90APB ∠=︒.画出图形,求得当直线l 和Q 相切于x 轴上方或下方点P 时点A 的坐标,即可求得相应的m 的值,最后可得m 的取值范围.【详解】解:(1)∵当以A 为圆心,AB 为半径的圆与直线l 相切于点E 时,连接AE ,如图:∴AE CD ⊥∵2AE AB ==,30ACE ∠=︒∴在Rt ACE △中,24AC AE ==∵()6,0C∴6OC =∴2OA OC AC =-=∴点A 的坐标为()2,0∴2m =.(2)①当AMN 在x 轴上方时,过点A 作AF MN ⊥,如图:∵AMN 是等腰直角三角形∴90MAN ∠=︒,2AM AN == ∴2222MN AM AN =+=∵AF MN ⊥ ∴122AF MN == ∵30ACF ∠=︒ ∴在Rt ACF 中,222AC AF ==∴622OA OC AC =-=-∴点A 的坐标为()622,0- ∴622m =-;②当AMN 在x 轴下方时,过点A 作AG MN ⊥,如图:∵AMN 是等腰直角三角形∴90MAN ∠=︒,2AM AN == ∴2222MN AM AN =+=∵AG MN ⊥ ∴122AG MN ==∵30ACG OCD ∠=∠=︒ ∴在Rt ACG 中,222AC AG ==∴622OA OC AC =+=+∴点A 的坐标为(622,0+ ∴622m =+∴综上所述,622m =-622m =+(3)当点P 位于x 轴上方点1P 时直线l 和Q 相切,当点P 位于线段12PP (不包含两端点)上时直线l 和Q 相交,当点P 位于x 轴下方点2P 时直线l 和Q 相切,如图:直线l 和Q 相切于x 轴上方点1P 时,连接11PQ∴11PQ l ⊥,22P Q l ⊥∵11222A B A B == ∴111111112PQ AQ A B ===,222222112P Q A Q A B === ∵112230PCQ P CQ ∠=∠=︒∴在11Rt PCQ 中,11122Q C PQ ==;在22Rt P CQ 中,22222Q C P Q ==∴11113OA OC Q C AQ =--=;22227OA OC Q C A Q =+-=∴此时,点A 的坐标为()3,0或()7,0∴3m =或7m =∴直线l 上存在点P ,使得90APB ∠=︒,则m 的取值范围是3m 7≤≤. 故答案是:3m 7≤≤【点睛】本题考查了平面直角坐标系中坐标与图形、含30角的直角三角形的性质、圆的基本性质、直线与圆的位置关系、切线的性质、等腰直角三角形的性质、直角三角形的性质、线段的和差等知识点,渗透了分类讨论的数学思想,熟练掌握相关知识点是解题的关键. 24.(1)证明见解析;(2)证明见解析.【分析】(1)如图(见解析),先根据圆周角定理可得90BDC ∠=︒,再根据等腰三角形的三线合一即可得证;(2)先根据等腰三角形的三线合一可得ACD BCD ∠=∠,再根据等腰三角形的性质可得ODC BCD ∠=∠,从而可得ACD ODC ∠=∠,然后根据平行线的判定与性质可得OD DF ⊥,最后根据圆的切线的判定即可得证.【详解】(1)如图,连接CD ,BC 是O 的直径,90BDC ∴∠=︒,即CD AB ⊥,又BC AC =,CD ∴是AB 边上的中线(等腰三角形的三线合一),AD BD ∴=;(2)如图,连接OD ,,BC AC CD AB =⊥,ACD BCD ∴∠=∠,OC OD =,ODC BCD ∴∠=∠,ACD ODC ∴=∠∠,//OD AC ∴,DE AC ⊥,即DF AC ⊥,OD DF ∴⊥,又OD 是O 的半径,DF ∴是O 的切线.【点睛】本题考查了等腰三角形的三线合一、圆周角定理、圆的切线的判定等知识点,较难的是题(2),熟练掌握圆的切线的判定定理是解题关键.25.2(2)4a π-,1.14 【分析】根据对称性用a 表示出阴影的面积,再将a=2代入求解即可.【详解】解:由题意可知:S 阴=211442222a a a π⎡⎤⎛⎫-⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 2(2)4a π-= 当2a =时,S 阴=(3.142)4 1.144-⨯=.【点睛】本题考查列代数式、代数式求值、圆的面积公式、三角形的面积公式,解答的关键是找出面积之间的关系,利用基本图形的面积公式解决问题.26.(1)见解析;(2)AD =3)理由见解析.【分析】(1)根据圆周角定理及平行线的性质不难求解;(2)根据题意证明ABD ADE ∼,列出比例式即可求解;(3)要使DE 是圆的切线,那么D 就是切点,AD ⊥DE ,又根据AD 过圆心O ,BC ∥ED ,根据垂径定理可得出D 应是弧BC 的中点.【详解】(1)在ABC 中,∵AB AC =,∴ABC C ∠=∠.∵//DE BC ,∴ABC E ∠=∠,∴E C ∠=∠.又∵ADB C ∠=∠,∴ADB E ∠=∠.(2)解:∵ABC AED ∠=∠,A ABC CB =∠∠,ADB ACB ∠=∠,∴ADB E ∠=∠,BAD BAD ∠=∠,∴ABD ADE ∼, ∴AB AD AD AE=, 又6AB =,3BE =, ∴AD =.(3)当点D 是弧BC 的中点时,DE 是O 的切线. ∵当点D 是弧BC 的中点时,AD BC ⊥,且AD 过圆心O , 又∵//DE BC ,∴AD ED ⊥.∴DE 是O 的切线. 【点睛】本题主要考查了圆周角定理,切线的判定,平行线的性质,垂径定理相似三角形的判定与性质等知识点,正确运用好圆心角,弧,弦的关系是解题的关键.。
人教版九年级上册数学《圆》单元测试卷(含答案)
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、单选题OP ,则点P与O的位置关系是( ) 1.已知O的半径为5,同一平面内有一点P,且7A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2.已知正六边形的边长是2,则该正六边形的边心距是()A.1 B C.2 D.23.如图,已知在⊙O中,BC是直径,AB=DC,∠AOD=80°,则∠ABC等于( )A.40°B.65°C.100°D.105°4.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=( )A.85°B.95°C.105°D.115°5.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°6.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD的度数为()A.25°B.50°C.40°D.80°7.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为() A.相离B.相切C.相交D.相切、相交均有可能8.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外9.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定10.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为()A.4 B.C.D.212.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为O的直径,弦AB CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )A.12寸B.13寸C.24寸D.26寸二、填空题13.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D =_____度.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为______.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.20.如图,矩形ABCD 中,3AB =,4AD =.作DE ⊥AC 于点E ,作AF ⊥BD 于点F .(1)求AF 、AE 的长;(2)若以点A 为圆心作圆, B 、C 、D 、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求A的半径 r 的取值范围.21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?23.如图,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,延长BO分别与⊙O、切线P A相交于C、Q两点.(1)求证:PB是⊙O的切线;(2)QD为PB边上的中线,若AQ=4,CQ=2,求QD的值.24.如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,8CD cm =,求直径AB 的长.25.如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为BD 的中点.若40A ∠=,求B ∠的度数.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)参考答案一、单选题12.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD 为的直径,弦,垂足为E ,CE=1寸,AB=10寸,求直径CD 的长”,依题意得CD 的长为( )A .12寸B .13寸C .24寸D .26寸【答案】D 【解析】【分析】连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE ,最后根据勾股定理进一步求解即可.【详解】如图,连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,∵CD 为的直径,弦,垂足为E ,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知, O AB CD⊥2xx 2x x O AB CD ⊥12在Rt △AOE 中,,∴,解得:,∴,即CD 长为26寸.【点评】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.二、填空题13.如图,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 切⊙O 于C ,连接AC ,若∠CAB =30°,则∠D =_____度.【答案】30【解析】【分析】连接OC ,如图,根据切线的性质得∠OCD =90°,再根据等腰三角形的性质和三角形外角性质得到∠COD =60°,然后利用互余计算∠D 的度数.【详解】连接OC ,如图,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD =90°.∵OA =OC ,∴∠ACO =∠CAB =30°,∴∠COD =∠ACO +∠CAB =60°,∴∠D =90°﹣∠COD =90°﹣60°=30°. 故答案为30.222AO AE OE =+()22251x x =+-13x =226x=【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质. 14.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.【答案】1【解析】【分析】根据同弧或等弧所对的圆周角相等可得∠A=∠CDB=30°,再根据AB 是⊙O 的直径,得出∠ACB=90°,则BC=AB ,从而得出结论. 【详解】解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=, 故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.12121212⨯=【答案】【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【详解】设扇形的半径为r.根据题意得:6π解得:r=故答案为【点评】本题考查了扇形的面积公式.熟练将公式变形是解题的关键.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.【答案】10cm【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•30=300π,然后解方程即可.【详解】解:根据题意得•2π•r•30=300π,解得r=10(cm).245360rπ=1212故答案为:10cm.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.【答案】证明见解析【解析】【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【详解】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,∵OA=OB又∵M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,OM ONAOC BOCOC OC,=⎧⎪∠=∠⎨⎪=⎩∴△MOC≌△NOC(SAS),∴MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点评】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.【答案】(1)见解析【解析】【分析】(1)由角平分线性质定理可得DE =DF ,由圆内接四边形性质可得∠A +∠BCD =180°,然后代换可得∠A =∠DCF ,又∠DEA =∠F =90°, 所以△AED ≌△CFD;(2)由三角形全等可得AE =CF ,BE =BF ,设AE =CF =x ,可得x =1;在Rt △BFD ,根据30°所对的直角边是斜边的一半,则BD =2DF ,利用勾股定理解得BD =【详解】(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°,又∵∠DCF +∠BCD =180°,∴∠A =∠DCF∵BD 是∠ABC 的角平分线,又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∠DEA =∠F =90°,∴△AED ≌△CFD.(2)∵△AED ≌△CFD ,∴AE =CF ,BE =BF ,设AE =CF =x ,则BE =10-x ,BF =8+x ,即10-x =8+x ,解得x =1,在Rt △BFD ,∠DBC =30°,设DF =y ,则BD =2y ,∵BF 2+DF 2=BD 2,∴y 2+92=(2y)2,y =BD =【点评】本题考查了全等三角形的性质和判定,勾股定理等知识,由条件灵活转移线段关系是解题关键. 20.如图,矩形中,,.作DE ⊥AC 于点E ,作AF ⊥BD 于点F . (1)求AF 、AE 的长;(2)若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求的半径 的取值范围.【答案】(1),;(2) 【解析】【分析】(1)先利用等面积法算出AF=,再根据勾股定理得出; (2)根据题意点F 只能在圆内,点C 、D 只能在圆外,所以⊙A 的半径r 的取值范围为.【详解】解:如图,ABCD 3AB =4AD =A B C D Ar 125AF =165AE = 2.44r <<125165AE = 2.44r <<(1)在矩形中,,.∴∵DE ⊥AC ,AF ⊥BD ,∴ ; ∴AF=, 同理,DE=, 在Rt △ADE 中,=, (2) 若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,则r>2.4,当至少有2个点在圆外,r<4,故⊙A 的半径r 的取值范围为:21.如图,已知.(1)用尺规作正六边形,使得是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.ABCD 3AB =4AD =11··22ABD S AB AD BD AF ==△125125165A B C D 2.44r <<O O【答案】(1)答案见解析;(2)答案见解析【解析】【分析】(1)利用正六边形的性质外接圆边长等于外接圆半径;(2)连接对角线以及利用正六边形性质.【详解】解:(1)如图所示:,(2)如图所示:【点评】此题主要考查了复杂作图以及全等三角形和正六边形的性质,根据正六边形性质得出作法是解题关键.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?【答案】5cm【解析】【分析】先根据垂径定理求出AD 的长,设OA=rcm ,则OD=(r-2)cm ,再根据勾股定理求出r 的值即可.【详解】解:作OD ⊥AB 于D ,如图所示:∵AB=8cm ,OD ⊥AB ,小坑的最大深度为2cm ,∴AD=AB=4cm . 设OA=rcm ,则OD=(r-2)cm在Rt △OAD 中,∵OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm;即铅球的半径OA 的长为5cm .【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 是切点,B 是⊙O 上一点,且P A =PB ,延长BO 分别与⊙O 、切线P A 相交于C 、Q 两点.(1)求证:PB 是⊙O 的切线;(2)QD 为PB 边上的中线,若AQ =4,CQ =2,求QD 的值.12【答案】(1)详见解析;(2)QD【解析】【分析】(1)要证明PB 是⊙O 的切线,只要证明∠PBO=90°即可,根据题意可以证明△OBP ≌△OAP ,从而可以解答本题;(2)根据题意和勾股定理的知识,可以求得QD 的值.【详解】(1)证明:连接OA ,在△OBP 和△OAP 中,,∴△OBP ≌△OAP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,A 是切点,∴∠OAP =90°,∴∠OBP =90°,∵OB 是半径,∴PB 是⊙O 的切线;(2)连接OCPA PB OB OAOP OP ⎧⎪⎨⎪⎩===∵AQ=4,CQ=2,∠OAQ=90°,设OA=r,则r2+42=(r+2)2,解得,r=3,则OA=3,BC=6,设BP=x,则AP=x,∵PB是圆O的切线,∴∠PBQ=90°,∴x2+(6+2)2=(x+4)2,解得,x=6,∴BP=6,∴BD=3,∴QD,即QD【点评】本题考查切线的判定与性质,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.如图,的直径垂直弦于,且是半径的中点,,求直径的长.【解析】【分析】连接OC ,根据垂径定理可求CM =DM =4cm ,再运用勾股定理可求半径OC ,则直径AB 可求.【详解】连接OC .设圆的半径是r .∵直径AB ⊥CD,∴CM =DM =CD =4cm . ∵M 是OB 的中点,∴OM =r ,由勾股定理得:OC 2=OM 2+CM 2,∴r 2=(r )2+42,解得:r =,则直径AB =2r =(cm ).【点评】本题考查了垂径定理,解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.25.如图,四边形内接于,为的直径,点为的中点.若,求的度数. O AB CD M M OB 8CD cm =AB 1212123ABCD O AB O C BD 40A ∠=B ∠【答案】.【解析】【分析】连接AC ,根据圆周角定理可得∠ACB=90°,∠BAC=∠BAD ,然后根据∠B 与∠BAC 互余即可求解.【详解】解:连接,∵是直径,∴,∵点为的中点,,∴, ∴在中,.【点评】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)【答案】见解析70B ∠=12AC AB 90ACB ∠=C BD 40BAD ∠=11402022BAC BAD ∠=∠=⨯=Rt ABC 902070B ∠=-=【解析】【分析】根据圆的性质,弦的垂直平分线过圆心,所以只要找到两条弦的垂直平分线,交点即为圆心,有圆心就可以作出圆轮.【详解】如图:圆O为所求.【点评】本题考查了圆的基本性质,是一种求圆心的作法.作圆的方法有:①圆心半径;②三个圆上的点.。
【单元练】人教版初中九年级数学上册第二十四章《圆》经典练习题(含答案解析)
一、选择题1.如图,,AB AC 分别是O 的直径和弦,OD AC ⊥于点,D 连接,BD BC .若10,8AB AC ==,则BD 的长是( )A .25B .4C .213D .245C 解析:C【分析】 先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到CD=AD=12AC=4,然后利用勾股定理计算BD 的长. 【详解】解:∵AB 为直径,∴∠ACB=90°,∴22221086BC AB AC =-=-=,∵OD ⊥AC , ∴CD=AD=12AC=4, 在Rt △CBD 中,222246213BD BC CD =+=+=.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.2.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104πB解析:B【分析】连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,根据垂直平分线可得AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,再根据OB=OC即可列出方程求得x=7,最后再根据圆的面积公式计算即可.【详解】解:如图,连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,则OB=OC,AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,∵OB=OC,∴OB2=OC2,∴22+(16-x) 2=62+x2,解得x=7,∴r2=OB2=22+92=85,∴圆的面积S=πr2=85π,故选:B.【点睛】本题考查了作三角形的外心,垂径定理的应用,圆的面积公式,熟练掌握垂径定理是解决本题的关键.3.如图,分别以AB,AC为直径的两个半圆,其中AC是半圆O的一条弦,E是弧AEC中点,D是半圆ADC中点.若DE=2,AB=12,且AC˃6,则AC长为()A.2B.2C.2D.2D解析:D【分析】连接OE,交AC于点F,由勾股定理结合垂径定理求出AF的长,即可得到结论.【详解】解:连接OE ,交AC 于点F ,∵E 为AEC 的中点,∴OE AC ⊥,F 为AC 的中点,∵12AB =∴6OE AO ==设EF x =,则6OF x =-∵F 为AC 的中点,D 为半圆ADC 的中点,∴DF AC ⊥,DF AF =∵2DE =,∴2DF x AF =+=在Rt △AOF 中,222OA OF AF =+即2226(6)(2)x x =-++, ∴122x =+,222x =-∴2(2)822AC x =+=+或822-∵6AC >∴822AC =+故选:D【点睛】本题考查了垂径定理,熟练掌握垂径定理,运用勾股定理求出AF 是解题的关键. 4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80πB解析:B【分析】 先根据底面周长可求得底面圆的半径,再根据圆锥的侧面积公式计算即可求解.【详解】解:∵2πr=8π,∴r=4,又∵母线l=5,∴圆锥的侧面积=πrl =π×4×5=20π.故选:B .【点睛】本题考查了圆锥的侧面积计算方法,牢记有关圆锥和扇形之间的对应关系是解决本题的关键.5.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2πC .23πD .πA解析:A【分析】过A 作AD ⊥BC ,连接AF ,求出∠FAE ,再利用弧长计算公式计算EF 的长即可.【详解】解:过A 作AD 垂直BC ,连接AF ,如图,∵2,30,45AB B C =∠=︒∠=︒,可得2∴AC=2,∵AC=AF∴∠AFC=∠C=45°,∴∠FAE=∠AFC-∠B=45°-30°=15°∴EF 的长为:152180π⨯=6π 故选:A【点睛】此题主要考查了弧长的计算,关键是掌握弧长计算公式.6.已知⊙O ,如图,(1)作⊙O 的直径AB ;(2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点;(3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个D解析:D【分析】 ①根据作图过程可得AC AD =,根据垂径定理可判断;②连接OC ,根据作图过程可证得△AOC 为等边三角形,由等边三角形的性质即可判断; ③根据直角三角形中30°角所对的直角边等于斜边的一半即可判断.【详解】解:①∵以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点,∴AC AD =,根据垂径定理可知,AB ⊥CE ,CE=DE ,∴①正确;②连接OC ,∵AC=OA=OC ,∴△AOC 为直角三角形,∵AB ⊥CE ,∴AE=OE ,∴BE=BO+OE=3AE ,∴②正确;③∵AB 为直径,∴∠ACB=90°,∵∠CAB=60°,∴∠ABC=30°,∴BC=2CE ,∴③正确,故选:D .【点睛】本题考查了垂径定理、圆周角定理、等边三角形的判定与性质、含30°角的直角三角形的性质,理解基本作图知识,熟练掌握各基本性质和综合运用是解答的关键.7.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .102解析:C【分析】 根据圆周角定理得出∠D=∠B ,得出△ABC 是等腰直角三角形,进而解答即可.【详解】∵AC=AC ,∴∠D=∠B ,∵∠BAC=∠D ,∴∠B=∠BAC ,∴△ABC 是等腰三角形,∵AB 是直径,∴△ABC 是等腰直角三角形,∵AC=5,∴AB=52故选:C .【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B .8.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD DB =,5OC =,3OD =,则AB 的长为( )A.8 B.6 C.4 D.2A解析:A【分析】连接OB,根据⊙O的半径为5,CD=2得出OD的长,再由垂径定理的推论得出OC⊥AB,由勾股定理求出BD的长,进而可得出结论.【详解】解:连接OB,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴2222=-=-=,BD OB OD.534∴AB=2BD=8.故选:A.【点睛】本题考查的是垂径定理以及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD的中点.若∠=︒,则B的度数是()A50A.50︒B.55︒C.60︒D.65︒D解析:D【分析】连接AC,根据圆心角、弧、弦的关系求出∠BAC,根据圆周角定理求出∠ACB=90°,根据三角形内角和定理计算即可.【详解】解:连接AC ,∵点C 为BD 的中点,∴∠BAC=12∠BAD=25°, ∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠B=90°-∠BAC=65°,故选:D .【点睛】本题考查的是圆心角、弧、弦的关系、圆周角定理的应用,掌握圆心角、弧、弦的关系定理和圆周角定理是解题的关键.10.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°C解析:C【分析】 延长DO 交AB 于点H ,连接OB ,证明△△AOD BOD ≅,OD 是AOB ∠的角平分线,求得290345∠=︒-∠=︒,进行求解即可;【详解】延长DO 交AB 于点H ,连接OB ,∵四边形ABCD 是平行四边形,45C ∠=︒,∴345∠=︒,∵DA DB =,OA OB =,∴△△AOD BOD ≅,∴OD 是AOB ∠的角平分线,又∵AO BO =,∴DH AB ⊥,∴290345∠=︒-∠=︒,又∵221∠=∠,∴18045135AOD ∠=︒-︒=︒.故选:C .【点睛】本题主要考查了与圆有关的计算,结合全等三角形的性质和角平分线的性质计算即可.二、填空题11.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.【分析】先将正方形旋转六次的图形画出确定六次旋转之后点的位置然后通过添加辅助线构造出直角三角形进而利用含角的直角三角形的性质求得再根据勾股定理求得再根据正六边形的性质线段的和差即可求得即可得解【详解 解析:13,12⎛+ ⎝⎭332⎛ ⎝⎭【分析】先将正方形旋转六次的图形画出,确定六次旋转之后点M 的位置,然后通过添加辅助线构造出直角三角形,进而利用30含角的直角三角形的性质求得12FH =、12CJ =,再根据勾股定理求得632JM =,再根据正六边形的性质、线段的和差即可求得32JF =,即可得解.【详解】解:经历六次旋转后点M 落在点6M 处,过M 作MH x ⊥于点H ,过6M 作6M J x ⊥于点J ,连接6IM ,如图:∵在Rt AFH 中,1AF =,60AFH ∠=︒,30FAH ∠=︒∴1122FH AF == ∵已知点M 的纵坐标是312+,即312MH =+ ∴点M 的坐标是:13,12⎛ ⎝⎭; ∵在6Rt CJM 中,61CM =,660JCM ∠=︒,630CM J ∠=︒∴61122CJ CM ==,226632JM CM CJ =-= ∵点I 是正六边形的中心∴1IC IF ==∴32JF IF IC CJ =+-=∴点6M 的坐标是:33,22⎛⎫ ⎪ ⎪⎝⎭. 故答案是:13,122⎛⎫+ ⎪ ⎪⎝⎭;33,22⎛⎫ ⎪ ⎪⎝⎭【点睛】本题考查了正多边形、旋转变换、含30角的直角三角形、勾股定理、线段的和差以及坐标系中的图形与坐标,体现了数形结合的数学思想.12.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________. 【分析】M 点为BC 和AB 的垂直平分线的交点利用点ABC 坐标易得BC 的垂直平分线为直线x=3AB 的垂直平分线为直线y=x 从而得到M 点的坐标然后计算MB 得到⊙M 的半径【详解】解:∵点ABC 的坐标分别是(解析:()3,310【分析】M 点为BC 和AB 的垂直平分线的交点,利用点A 、B 、C 坐标易得BC 的垂直平分线为直线x=3,AB 的垂直平分线为直线y=x ,从而得到M 点的坐标,然后计算MB 得到⊙M 的半径.【详解】解:∵点A ,B ,C 的坐标分别是(0,2),(2,0),(4,0),∴BC 的垂直平分线为直线x=3,∵OA=OB ,∴△OAB 为等腰直角三角形,∴AB 的垂直平分线为第一、三象限的角平分线,即直线y=x ,∵直线x=3与直线y=x 的交点为M 点,∴M 点的坐标为(3,3),∵22(32)310MB =-+=∴⊙M 10.故答案为(3,3),10.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了坐标与图形的性质.13.如图,等腰直角△ABC中,∠BAC=90°,AB=AC=4.平面内的直线l经过点A,作CE⊥l 于点E,连接BE.则当直线l绕着点A转动时,线段BE长度的最大值是________.【分析】以AC为直径作圆O连接BO并延长交圆O于点可得BO+O>B从而可得BO+OE>B即BE为最大值再由勾股定理求出BO 的长即可解决问题【详解】解:由题意知CE⊥l于点E∴以AC为直径作圆O∵CE解析:225+【分析】以AC为直径作圆O,连接BO,并延长交圆O于点E',可得BO+O E'>B E',从而可得BO+OE>B E',即BE为最大值,再由勾股定理求出BO的长即可解决问题.【详解】解:由题意知,CE⊥l于点E,∴以AC为直径作圆O,∵CE⊥AE,∴点E在圆O上运动,连接BO,并延长交圆O于点E',如图,∴BO+O E'>B E',∵OE=O E',∴BO+OE>B E',∴BE的长为最大值,∵AO=OC=OE,且AB=AC=4,∴122OE AC==又∵∠BAC=90°∴22222BO AO AB=+=+=4220∴25BO=∴BE=252+=+BO OE+故答案为:225【点睛】此题主要考查了求线段的最大值,构造出△ACE的外接贺是解答本题的关键.14.如图,点A,B,C在O上,顺次连接A,B,C,O.若四边形ABCO为平行∠=________︒.四边形,则AOC120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB、△OBC为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB 、△OBC 为等边三角形是解答本题的关键.15.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.2【分析】方法一:在轴上取一点连接可求由可得由点在上运动可知共线时可以取得最大值或最小值最大值最小值由最大值与最小值求出即可;方法二:连接取中点连接利用三角形三边关系有可得作差计算即可【详解】解:方解析:2【分析】方法一:在x 轴上取一点()6,0E ,连接PE ,可求3OB BE ==,22345AE +=,由OM PM =,OB BE =,可得12BM PE =,由点P 在A 上运动,可知P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,由最大值与最小值求出72m =,32n =即可;方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,利用三角形三边关系有BN MN BM BN MN -≤≤+,可得m BN MN =+,n BN MN =-,作差计算22m n MN PA -===即可.【详解】解:方法一:在x 轴上取一点()6,0E ,连接PE ,∵()3,0B ,()3,4A ,∴3OB BE ==,22345AE =+=,∵OM PM =,OB BE =,∴12BM PE =, ∵点P 在A 上运动, ∴P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,∴72m =,32n =, ∴2m n -=, 故答案为2.方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,BN MN BM BN MN -≤≤+,m BN MN =+,n BN MN =-,22m n MN PA -===.故答案为:2.【点睛】本题考查三角形的中位线,勾股定理,三角形三边关系,线段和差,掌握三角形的中位线,勾股定理,三角形三边关系,线段和差,引辅助线构造准确图形是解题关键. 16.如图,已知点C 是半圆О上一点,将弧BC 沿弦BC 折叠后恰好经过点,O 若半圆O 的半径是2,则图中阴影部分的面积是________________________.【分析】过点O 作OD ⊥BC 于E 交半圆O 于D 点连接CD如图根据垂径定理由OD ⊥BC 得BE =CE 再根据折叠的性质得到ED =EO 则OE =OB 则可根据含30度的直角三角形三边的关系得∠OBC =30°即∠AB 解析:23π 【分析】过点O 作OD ⊥BC 于E ,交半圆O 于D 点,连接CD ,如图,根据垂径定理由OD ⊥BC 得BE =CE ,再根据折叠的性质得到ED =EO ,则OE =12OB ,则可根据含30度的直角三角形三边的关系得∠OBC =30°,即∠ABC =30°则∠AOC=60°,由于OC =OB ,则弓形OC 的面积=弓形OB 的面积,然后根据扇形的面积公式及S 阴影部分=S 扇形OAC 即可得到阴影部分的面积.【详解】如图:过点O 作OD ⊥BC 于E ,交半圆O 于D 点,连接CD ,∵OD ⊥BC ,∴BE =CE ,∵半圆O 沿BC 所在的直线折叠,圆弧BC 恰好过圆心O ,∴ED =EO ,∴OE =12OB , ∴∠OBC =30°,即∠ABC =30°,∴∠AOC=60°;∵OC =OB ,∴弓形OC 的面积=弓形OB 的面积,∴S 阴影部分=S 扇形OAC =260223603ππ⋅= . 【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了垂定定理、圆周角定理和扇形的面积公式.17.如图,在圆O 的内接五边形ABCDE 中,40CAD ∠=︒,则B E ∠+∠=_______°.220【分析】连接CE根据圆内接四边形对角互补可得∠B+∠AEC=180°再根据同弧所对的圆周角相等可得∠CED=∠CAD然后求解即可【详解】解析:220【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【详解】连接CE,∵五边形ABCDE是⊙O的内接五边形,∴四边形ABCE是⊙O的内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=40°,∴∠B+∠AED=180°+40°=220°【点睛】本题考查圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题关键.BC=,若点P是矩形ABCD上一动点,要使得18.在矩形ABCD中,43AB=6∠=︒,则AP的长为__________.或4或8【分析】取CD中点P1连接60APBAP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B是等边三角形可得∠AP1B =60°过点A点P1点B作圆与ADBC各有一个交点即这样的P点一共3个再运用勾解析:434或8.【分析】取CD中点P1,连接AP1,BP1,由勾股定理可求AP1=BP1=3△AP1B是等边三角形,可得∠AP1B=60°,过点A,点P1,点B作圆与AD,BC各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD 中点P 1,连接AP 1,BP 1,如图1,∵四边形ABCD 是矩形∴AB =CD =43,AD =BC =6,∠D =∠C =90°∵点P 1是CD 中点∴CP =DP 1=23∴AP 1=221AD DP +=43, BP 1=221BC CP +=43 ∴AP 1=P 1B =AB∴△APB 是等边三角形∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交,∴这样的P 点一共有3个当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形,∴3,43,90AB A CD AD =∠===︒∵260,AP B ∠=︒∴221,2P A P B = 即222,P B P A =在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -=∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形,∴∠B=90°∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒ ∴331,2BP AP = 在3Rt ABP ∆中,22233,AP BP AB -=222331()(43),2AP AP -= 23348,4AP = ∴8,AP =综上所述,AP 的长为:43或4或8.故答案为:43或4或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.19.如图,半径为10的扇形AOB 中,∠AOB=90°,C 为AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE=36°,则图中阴影部分的面积为____.10π【分析】连接OC 易得△ODE ≌△ECO 所以扇形OBC 的面积就是图中阴影部分的面积因此求得扇形OBC 的面积即可【详解】解:如下图连接OC ∵∠AOB=90°CD ⊥OACE ⊥OB ∴四边形ODCE 为矩解析:10π【分析】连接OC ,易得△ODE ≌△ECO ,所以扇形OBC 的面积就是图中阴影部分的面积,因此求得扇形OBC 的面积即可.【详解】解:如下图连接OC ,∵∠AOB=90°、CD ⊥OA 、CE ⊥OB∴四边形ODCE 为矩形∴OD=CE ,OE 为公共边∴△ODE ≌△ECO∴△ODE 的面积=△ECO 的面积∴图中阴影部分的面积=2236361010360360O BC SOB πππ-==⨯=. 故答案为:10π.【点睛】本题考查扇形面积的计算和矩形的性质.其关键是用矩形性质对阴影部分进行等积变换,发现△ODE 的面积=△ECO 的面积.20.湖州南浔镇河流密如蛛网,民间有“千步一桥”之说.如图,某圆弧形桥拱的跨度AB =12米,拱高CD =4米,则该拱桥的半径为____米. 65【分析】根据垂径定理的推论此圆的圆心在CD 所在的直线上设圆心是O 连接OA 根据垂径定理和勾股定理求解【详解】根据垂径定理的推论知此圆的圆心在CD 所在的直线上设圆心是O 连接OA 拱桥的跨度AB=12m解析:6.5【分析】根据垂径定理的推论,此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.【详解】根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O ,连接OA . 拱桥的跨度AB =12m ,拱高CD =4m ,根据垂径定理,得AD=6 m ,利用勾股定理可得:()22264AO AO =--,解得:AO =6.5m .即圆弧半径为6.5米,故答案为:6.5.【点睛】本题综合运用了勾股定理以及垂径定理.注意由半径、半弦、弦心距构造的直角三角形进行有关的计算. 三、解答题21.如图,AB 是⊙O 的直径,点C 在⊙O 上,BD 平分ABC ∠交⊙O 于点D ,过点D 作DE BC ⊥,垂足为E .(1)求证:DE 与⊙O 相切;(2)若10AB =,6AD =,求DE 的长.解析:(1)见解析;(2)245 【分析】(1)连接OD ,由BD 为角平分线得到OBD CBD ∠=∠,再由OB=OD ,利用等边对等角得到ODB OBD ∠=∠,从而得出ODB CBD ∠=∠,利用内错角相等两直线平行得到OD 与BE 平行,由DE 垂直于BE 得到OD 垂直于DE ,即可得证;(2)过D 作DH AB ⊥于H ,根据HL 得出△≌△Rt ADH Rt CDE ,得出AH CE =,再根据勾股定理得出22221068BD AB AD -=-=,再利用等积法即可得出DE 的长.【详解】(1)证明:连接OD .∵OD OB =,∴ODB OBD ∠=∠.∵BD 平分ABC ∠,∴OBD CBD ∠=∠.∴ODB CBD ∠=∠,∴//OD BE .∴180BED ODE ∠+∠=︒.∵BE DE ⊥,∴90BED ∠=︒.∴90ODE ∠=︒.∴OD DE ⊥.∴DE 与O 相切;(2)过D 作DH AB ⊥于H .∵BD 平分ABC ∠,DE BE ⊥,∴DH DE =.∵AD CD =,∴AD CD =.∴()Rt ADH Rt CDE HL △≌△,∴AH CE =.∵AB 是O 的直径,∴90ADB ∠=︒. ∵10AB =,6AD =, ∴22221068BD AB AD =-=-=. ∵1122AB DH AD BD ⋅=⋅,∴245DH =. ∴245DE =. 【点睛】 此题考查了切线的判定,角平分线的性质、圆周角定理、平行线的判定与性质等知识,熟练掌握切线的判定方法是解本题的关键,属于中考常考题型.22.如图,AB 是圆的直径,且AD//OC ,求证:CD BC =.解析:证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC 或者OD 都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC =.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化. 23.如图,已知直线PT 与⊙O 相交于点T ,直线PO 与⊙O 相交于A 、B 两点,已知PTA B ∠=∠.(1)求证:PT 是⊙O 的切线;(2)若3PT BT ==解析:(1)证明见解析;(2)364π- 【分析】 (1)先根据圆周角定理得:∠ATB=90°,则∠B+∠OAT=90°,根据同圆的半径相等和等腰三角形的性质得:∠OAT=∠2,从而得∠PTA+∠2=90°,即∠OTP=90°,所以直线PT 与⊙O 相切;(2)利用TP=TB 得到∠P=∠B ,而∠OAT=2∠P ,所以∠OAT=2∠B ,则利用∠ATB=90°可计算出∠B=30°,∠POT=60°,利用含30度的直角三角形三边的关系得到AT=12AB ,△AOT 为等边三角形,然后根据扇形的面积公式和图中阴影部分的面积=S 扇形OAT -S △AOT 进行计算.【详解】(1)证明:连接OT ,∵AB 是⊙O 的直径,∴∠ATB=90°,∴∠B+∠OAT=90°,∵OA=OT ,∴∠OAT=∠2,∵∠PTA=∠B ,∴∠PTA+∠2=90°,即∠OTP=90°,∴直线PT 与⊙O 相切;(2)∵3PT BT ==∴∠P=∠B=∠PTA ,∵∠TAB=∠P+∠PTA ,∴∠TAB=2∠B ,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,在Rt △ABT 中,设AT=a ,则AB=2AT=2a ,∴a 232=(2a)2,解得:a=1,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 为等边三角形, 13312AOT S ∴=⨯=. ∴阴影部分的面积2Δ 60133360464AOT AOTS S ππ⨯=-=-=-扇形. 【点睛】本题考查了切线的判定、勾股定理,此类题常与方程结合,列方程求圆的半径和线段的长,也考查了扇形的面积公式.24.如图,已知AB 是O 的直径,四边形AODE 是平行四边形,请用无刻度直尺按下列要求作图.(1)如图1,当点D 在圆上时,作BAC ∠的平分线;(2)如图2,当点D 不在圆上时,作BAC ∠的平分线.解析:(1)见解析;(2)见解析.【分析】(1)由四边形AODE 是平行四边形,结合圆的 半径相等,可知四边形AODE 是菱形,利用菱形的性质即可做出BAC ∠的平分线;(2)延长OD 交于圆一点,连接该点与点A ,由此即可作出C BA ∠的平分线.【详解】解:(1)如图①:AD 即为所求.∵四边形AODE 是平行四边形点D 在圆上∴四边形AODE 是菱形∴AD 平分BAC ∠;(2)如图②:延长OD 交于圆一点P ,连接AP ,同理可证AP 即为所求.【点睛】此题考查尺规作图,关键是掌握圆的相关知识及角平分线的判定方法.25.如图1是某人荡秋千的情形,简化成图2所示,起始状态下秋千顶端O 与座板A 的距离为2m (此时OA 垂直于地面),现一人荡秋千时,座板到达点B (OA 不弯曲).(1)当BOA 30∠=时,求AB 弧的长度(保留π);(2)当从点C 荡至点B ,且BC 与地面平行,3m BC =时,若点A 离地面0.4m ,求点B 到地面的距离(保号根号).解析:(1)3m π;(2)127()52m -. 【分析】(1)利用弧长公式计算,得到答案;(2)根据等腰三角形的性质求出BD ,根据勾股定理求出OD ,结合图形计算即可.【详解】解:(1)AB 弧线的长度=302()1803m ππ⨯=; (2)如图,∵OB=OC ,OD ⊥BC ,∴1322BD BC ==, 在Rt △OBD 中,OD 2+BD 2=OB 2, ∴2222372()2OD OB BD =-=-=, ∴点B 到地面的距离=712720.4252-+=-, 答:点B 到地面的距离为127(5m -. 【点睛】本题考查的是解直角三角形的应用、弧长的计算、勾股定理,掌握弧长公式是解题的关键.26.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠CAE=∠ADC .(1)求证:AE 是⊙O 的切线;(2)若⊙O 的半径为2,∠B=60°,求图中阴影部分的面积.(结果保留根号和π) 解析:(1)见解析;(2)433π- 【分析】(1)根据AB 是直径得到∠ACB=90°,根据已知条件得到∠BAE =90°,即可得到结果; (2)作OM ⊥AC ,垂足为M ,求得AM=3,根据扇形的面积计算公式计算即可;【详解】(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵∠B=∠ADC=∠CAE ,∴∠BAE=∠BAC+∠EAC=∠BAC+∠B=90°,∴ BA ⊥AE ,∴AE 是⊙O 的切线.(2)解:作OM ⊥AC ,垂足为M .∵∠B=60°,∴∠AOC=2∠B=120°,∴∠AOM=∠COM=60°, ∴OM=12AO=1, ∴3 ∴AC=2AM=23∴S 阴=S 扇形AOC -S △AOC =120414-231336023ππ. 【点睛】本题主要考查了切线的证明和扇形的面积计算,准确分析计算是解题的关键. 27.如图,ABC 内接于O ,60BAC ∠=︒,点D 是BC 的中点.BC ,AB 边上的高AE ,CF 相交于点H .试证明:(1)FAH CAO ∠=∠;(2)四边形AHDO 是菱形.解析:(1)见详解;(2)见详解【分析】(1)连接AD ,根据题意易得,BAD CAD OD BC ∠=∠⊥,则有∠DAE=∠ODA ,∠DAO=∠ODA ,然后根据角的等量关系可求解;(2)过点O 作OM ⊥AC 于M ,由题意易得AC=2AM ,AC=2AF ,进而可证△AFH ≌△AMO ,然后可得四边形AHDO 是平行四边形,最后问题可证.【详解】证明:(1)连接AD ,如图所示:∵点D 是BC 的中点,∴,BAD CAD OD BC ∠=∠⊥,∵AE ⊥BC ,∴AE ∥OD ,∴∠DAE=∠ODA ,∵OA=OD ,∴∠DAO=∠ODA ,∴∠BAD-∠DAE=∠CAD-∠DAO ,∴∠FAH=∠CAO ;(2)过点O 作OM ⊥AC 于M ,∴AC=2AM ,∵CF ⊥AB ,∠BAC=60°,∴AC=2AF ,∴AF=AM ,∵∠AFH=∠AMO=90°,∠FAH=∠OAM ,∴△AFH ≌△AMO (ASA ),∴AH=AO ,∵OA=OD ,∴AH //CD ,∴四边形AHDO 是平行四边形,∵OA=OD ,∴四边形AHDO 是菱形.【点睛】本题主要考查圆周角定理、垂径定理及菱形的判定,熟练掌握圆周角定理、垂径定理及菱形的判定是解题的关键.28.已知PA 、PB 分别与O 相切于点A ,B 两点,76APB ∠=︒ ,C 为O 上一点. (1)如图,求ACB ∠的大小; (2)如图,AE 为O 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.解析:(1)52︒;(2)19︒【分析】(1)连接OA 、OB ,根据切线的性质得到90OAP OBP ∠=∠=︒,可以求出AOB ∠的度数,再根据圆周角定理得到ACB ∠的度数;(2)连接CE ,根据(1)的结论,先求出BCE ∠的度数,再由圆周角定理得到BAE BCE ∠=∠,再等腰三角形ABD 中求出底角ADB ∠的度数,再由外角和定理就可以求出EAC ∠的度数.【详解】解:(1)如图,连接OA 、OB ,∵PA 、PB 是O 的切线,∴90OAP OBP ∠=∠=︒,∴360909076104AOB ∠=︒-︒-︒-︒=︒,根据圆周角定理,1522ACB AOB ∠=∠=︒;(2)如图,连接CE , ∵AE 是O 的直径, ∴90ACE ∠=︒, ∵52ACB ∠=︒, ∴905238BCE ∠=︒-︒=︒, ∴38BAE BCE ∠=∠=︒, ∵AB AD =, ∴71ABD ADB ∠=∠=︒, ∴19EAC ADB ACB ∠=∠-∠=︒.【点睛】本题考查圆周角定理和切线的性质,解题的关键是掌握这些性质定理进行求解.。
九年级数学下册第二十四章《圆》单元测试题-沪科版(含答案)
九年级数学下册第二十四章《圆》单元测试题-沪科版(含答案)一、单选题1.北京教育资源丰富,高校林立,下面四个高校校徽主题图案中,既不是中心对称图形,也不是轴对称图形的是( ) A .B .C .D .2.如图,在正方形网格中,点 A , B , C , D , O 都在格点上.下列说法正确的是( )A .点 O 是 ABC 的内心B .点 O 是 ABC 的外心C .点 O 是ABD 的内心 D .点 O 是ABD 的外心3.如图,BC 为直径,35ABC ∠=︒ ,则D ∠的度数为( )A .35︒B .45︒C .55︒D .65︒4.如图,若O 的半径为5,圆心O 到一条直线的距离为2,则这条直线可能是( )A .1lB .2lC .3lD .4l5.底面半径为3,高为4的圆锥侧面积为( )A .15πB .20πC .25πD .30π6.如图,圆的两条弦AB ,CD 相交于点E ,且AD CB =,∠A =40°,则∠DEB 的度数为( )A.50°B.100°C.70°D.80°7.下列条件中,不能确定一个圆的是()A.圆心与半径B.直径C.平面上的三个已知点D.三角形的三个顶点8.若一个正n边形的每个内角为144°,则这个正n边形的边数为()A.8B.9C.10D.119.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,用图中阴影部分围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.4B.32C.42D.21010.如图,已知AB是∠O的直径,弦CD∠AB,垂足为E,且∠BCD=30°,CD=3.则图中阴影部分的面积S阴影=()A.2πB.83πC.43πD.38π二、填空题11.正十边形的中心角等于度.12.若O的半径为5cm,点A到圆心O的距离为4cm,那么点A与O的位置关系是.13.若一个正多边形的一个外角等于36°,则这个正多边形的边数是.14.如图,在边长为4的等边∠ABC中,以B为圆心、BA为半径画弧,再以AB为直径画半圆,则阴影部分的面积为.三、计算题15.如图,AB是∠O的直径,点D在∠O上,∠DAB=45°,BC∠AD,CD∠AB.若∠O的半径为1,求图中阴影部分的面积(结果保留π).16.计算高为4cm,底面半径为3cm的圆锥的体积.(圆锥的体积= 13×底面积×高,π取3)四、解答题17.如图扇形纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB长为30cm,贴纸部分BD 长为20cm,求贴纸部分的面积.18.在一个3m×4m的矩形地块上,欲开辟出一部分作花坛,要使花坛的面积为矩形面积的一半,且使整个图案绕它的中心旋转180°后能与自身重合,请给出你的设计方案.19.如图,已知O ,A 是BC 的中点,过点A 作AD BC .求证:AD 与O 相切.20.如图,AB 是 O 的直径,弦 CD AB ⊥ 于点E ,若 8AB = , 6CD = ,求 OE 的长.21.已知AB ,AC 为弦,OM∠AB 于M ,ON∠AC 于N ,求证:MN∠BC 且MN =12BC .22.如图,∠O 的半径为17cm ,弦AB∠CD ,AB=30cm ,CD=16cm ,圆心O 位于AB ,CD 的上方,求AB 和CD 的距离.五、综合题23.如图,已知AB是∠O的直径,弦CD与直径AB相交于点F.点E在∠O外,作直线AE,且∠EAC=∠D.(1)求证:直线AE是∠O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.参考答案1.【答案】D【解析】【解答】解:A、不是中心对称图形,是轴对称图形,故该选项不符合题意;B、是中心对称图形,不是轴对称图形,故该选项不符合题意;C、不是中心对称图形,是轴对称图形,故该选项不符合题意;D、既不是中心对称图形,也不是轴对称图形,故该选项符合题意.故答案为:D.【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此一一判断得出答案.2.【答案】D【解析】【解答】解:根据点A,B,C,D,O 都在正方形网格的格点上.可知:点O到点A ,B ,D 的三点的距离相等,所以点O是∠ABD的外心.故答案为:D.【分析】根据图形可得点O到点A、B、D的距离相等,然后结合外心的概念进行判断.3.【答案】C【解析】【解答】解:∵CB是直径,∴∠BAC=90°,∵∠ABC=35°,∴∠ACB=90°-35°=55°,∴∠D=∠C=55°,故答案为:C.【分析】先利用圆周角的性质和三角形的内角和求出∠ACB=90°-35°=55°,再利用圆周角的性质可得∠D=∠C=55°。
人教版数学九年级上册《圆》单元测试题(含答案)
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、选择题(每小题只有一个正确选项,把正确选项的代号填在题后的括号内,本大题共8小题,每小题3分,共24分)1.有4个命题:①直径相等的两圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧,其中真命题是【 】A .①③ B .①③④ C .①④ D .①2.如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是 【 】 A .3 B .5 C .15 D .173.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 等于 【 】 A .116° B .32° C .58° D .64°4.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 【 】 A .相离 B .相切 C .相交 D .无法判断5.△ABC 为⊙O 的内接三角形,若∠AOC =160°,则∠ABC 的度数是 【 】A .80°B .160°C .100°D .80°或100°6.△ABC 中,内切圆I 和边BC 、CA 、AB 分别切于点D 、E 、F ,则∠FDE 与∠A 的关系是A .∠FDE 与21∠A 相等 B .∠FDE 与21∠A 互补 【 】 C .∠FDE 与21∠A 互余 D .无法确定7.如图,圆O 与正方形ABCD 的两边AB 、AD 分别相切于点M 、N ,且DE 与圆O 相切于 E 点.若圆O 的半径为5,且AB =11,则DE 的长度是 【 】 A .5B .6C .D .(第2题)8.将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为 【 】 A . B . C .D . 32二、填空题(本大题共6小题,每小题3分,共18分)9.如图,AB 是半圆的直径,点D 是AC 的中点,∠ABC =50°,则∠DAB = .10.如图,△ABC 放置在平面直角坐标系中,其中A (3,0),B (2,1),C (2,-3),则这个三角形的外心坐标是__ __.11.如图,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(﹣3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为 . 12.正六边形的外接圆与内切圆的半径之比为 .13.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的 格点上,将△ABC 绕点B 逆时针旋转到△A ′BC ′的位置,且点A ′、C ′仍落在格点上,则图中阴影部分的面积是 .(结果保留π)14.平面内有四个点A 、O 、B 、C ,其中∠AOB =120°,∠ACB =60°,AO =BO =2,则满足 题意的OC 长度为整数的值可以是 .三、(本大题共2小题,每小题6分,共12分)15. 如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC =BD .求证:OC =OD .(第15题)(第9题)(第10题)(第8题)(第7题)(第13题)16.如图,△ABC 内接于⊙O ,BD 为⊙O 的直径,∠BAC =120°,AB =AC , AD =6,求DC 的长.四、(本大题共2小题,每小题7分,共14分)17.如图,AD 为ABC ∆外接圆的直径,AD BC ⊥,垂足为点F ,ABC ∠的平分线交AD 于点E ,连接BD ,CD . (1) 求证:BD CD =;(2) 小明说:“B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上.” 你认为小明的说法正确吗?请说明理由.18.如图,⊙O 的直径AB =10,C 、D 是圆上的两点,且.设过点D 的切线ED 交AC的延长线于点F .连接OC 交AD 于点G . (1)求证:DF ⊥AF . (2)求OG 的长.五、(本大题共2小题,每小题8分,共16分) 19.如图,ABC △是O 的内接三角形,点C 是优弧AB 上一点(点C 不与A B ,重合),设OAB α∠=,C β∠=.(1)当35α=时,求β的度数;(2)猜想α与β之间的关系,并给予证明.20.如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD , 且∠CDB =∠OBD =30°,DB =cm .(1)求证:AC 是⊙O 的切线;(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)CBAO(第19题)(第16题)ABCEFD(第17题)(第18题)(第20题)六、填空题(本大题共2小题,每小题8分,共16分)21.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.(第21题)22.如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD 上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.(第22题)参考答案一、1.A 2.B 3.B 4.C 5.D 6.C 7.B 8.A二、9. 650; 10. (-2,-1); 11. 1或5 ; 12.23: ; 13.1334-π ; 14.2或3或4 三、15.证明:方法一.如图,连结OA ,OB ,∵∠OCD =∠ODC∴∠OCA =∠ODB 又∵OA =OB ∴∠OAC =∠OBD∴△AOC ≌△BOD (SAS ) ∴AC =BD方法二.如图,过O 作OE ⊥AB 于点E ,∵OE ⊥AB ∴EA =EB∵∠OCD =∠ODC ∴OC =OD∴CE =DE ∴AC =BD 16.解:∵BD 为⊙O 的直径,∴∠BAD =∠BCD =90°,∵∠BAC =120°,∴∠CAD =120°﹣90°=30°, ∴∠CBD =∠CAD =30°, 又∵∠BAC =120°,∴∠BDC =180°﹣∠BAC =180°﹣120°=60°, ∵AB =AC ,∴∠ADB =∠ADC ,∴∠ADB =∠BDC =×60°=30°,∵AD =6,∴在Rt △ABD 中,BD =AD ÷cos60°=6÷=4,在Rt △BCD 中,DC =BD =×4=2.四、17.(1)证明:∵AD 为直径,AD BC ⊥,∴BD CD =.∴BD CD =.(2)答:B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. 理由:由(1)知:BD CD =,∴BAD CBD ∠=∠.∵DBE CBD CBE ∠=∠+∠,DEB BAD ABE ∠=∠+∠,CBE ABE ∠=∠, ∴DBE DEB ∠=∠.∴DB DE =由(1)知:BD CD =.∴DB DE DC ==.∴B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. 18.解:(1)连接OD ,∵,OBAC DOBAC DE∴∠CAD =∠DAO =∠ODA =30°,∠ABD =60°, ∵ED 是⊙O 的切线∴∠ODF =90°∴∠ADF =60°,∴∠CAD +∠ADF =90°, ∴∠AFD =90°∴DF ⊥AF .(2)连结BD ,在Rt △ABD 中,∠BAD =30°,AB =10, ∴BD =5, ∵=,∴OG 垂直平分AD ,∴OG 是△ABD 的中位线, ∴OG =BD =.五、19.(1)解:连接OB ,则OA OB =,35OBA OAB ∴∠=∠=.180110AOB OAB OBA ∴∠=-∠-∠=. 1552C AOB β∴=∠=∠=.(2)答:α与β之间的关系是90αβ+=. 连接OB ,则OAOB =.OBA OAB α∴∠=∠=.1802AOB α∴∠=-.11(1802)9022C AOB βαα∴=∠=∠=-=-.90αβ+=.20.(1)证明:连结OC ,OD ,根据圆周角定理得:∠COB =2∠CDB =2×30°=60°, ∵AC ∥BD ,∴∠A =∠OBD =30°,∴∠OCA =180°﹣30°﹣60°=90°,即OC ⊥AC , ∵OC 为半径,∴AC 是⊙O 的切线;(2)解:∵AC 为⊙O 的切线,∴OC ⊥AC . ∵AC ∥BD , ∴OC ⊥BD .由垂径定理可知,MD =MB =BD =.在Rt △OBM 中,∠COB =60°,OB ===6.在△CDM 与△OBM 中,第20题∴△CDM ≌△OBM ∴S △CDM =S △OBM∴阴影部分的面积S 阴影=S 扇形BOC ==6πcm 2.六、21.解:(1)证明:在△AEB 和△DEC 中,∴△AEB ≌△DEC (ASA ),∴EB=EC ,又∵BC=CE ,∴BE=CE=BC ,∴△EBC 为等边三角形,∴∠ACB =60°; (2)解:∵OF ⊥AC ,∴AF=CF ,∵△EBC 为等边三角形,∴∠GEF =60°, ∴∠EGF =30°, ∵EG =2,∴EF =1,又∵AE=ED =3,∴CF=AF =4, ∴AC =8,EC =5,∴BC =5,作BM ⊥AC 于点M ,∵∠BCM =60°, ∴∠MBC =30°, ∴CM =52,BM =22532BC CM -=,∴AM =AC ﹣CM =112, ∴AB =227AM BM +=.(1)根据题意,当AP =DQ 时,四边形APQD 为矩形.此时,4t =20﹣t ,解得t =4(s ).答:t 为4时,四边形APQD 为矩形; (2)当PQ =4时,⊙P 与⊙Q 外切.①如果点P 在AB 上运动.只有当四边形APQD 为矩形时,⊙P 与⊙Q 外切. PQ=4.由(1),得t =4(s );②如果点P 在BC 上运动.此时t ≥5,则CQ ≥5,PQ ≥CQ ≥5>4, ∴⊙P 与⊙Q 外离;③如果点P 在CD 上运动,且点P 在点Q 的右侧.可得CQ =t ,CP =4t ﹣24.当CQ ﹣CP =4时,⊙P 与⊙Q 外切.此时,t ﹣(4t ﹣24)=4,解得;④如果点P 在CD 上运动,且点P 在点Q 的左侧.当CP ﹣CQ =4时,⊙P 与⊙Q 外切. 此时,4t ﹣24﹣t =4,解得,∵点P 从A 开始沿折线A ﹣B ﹣C ﹣D 移动到D 需要11s , 点Q 从C 开始沿CD 边移动到D 需要20s ,而,∴当t为4s,,时,⊙P与⊙Q外切.22.证明:连接ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.∵∠AMO=∠PMN,∴∠PNM=∠AMO.∴∠PNO=∠PNM+∠ONA=∠AMO+∠ONA=90°.即PN与⊙O相切.(2)成立.证明:连接ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.在Rt△AOM中,∴∠OMA+∠OAM=90°,∴∠PNM+∠ONA=90°.∴∠PNO=180°﹣90°=90°.即PN与⊙O相切.(3)解:连接ON,由(2)可知∠ONP=90°.∵∠AMO=15°,PM=PN,∴∠PNM=15°,∠OPN=30°,∵∠PON=60°,∠AON=30°.作NE⊥OD,垂足为点E,则NE=ON•sin60°=1×=.S阴影=S△AOC+S扇形AON﹣S△CON=OC•OA+CO•NE =×1×1+π﹣×1×=+π﹣.。
最新人教版九年级初三数学上册《圆》同步练习题含答案
九年级数学上册第24章《圆》同步练习一、选择题1.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切2.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,则∠BDC=()A.80°B.70°C.60°D.50°3.如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A.102 B.20 C.18 D.2024.如图,△ABC内接于⊙O,且∠ABC=700,则∠AOC为()(A)1400 (B)1200(C)900 (D)3505.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定6.(3分)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30° B.45° C.60° D.90°7.(3分)(2015•牡丹江)如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于().A.32° B.38° C.52° D.66°8.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A.24cm B.48cm C.96cm D.192cm二、填空题9.用半径为6cm的半圆围成一个圆锥的侧面,则圆锥的底面半径等于 cm.10.一个几何体的三视图如图,根据图示的数据计算该几何体的表面积为.(结果保留π)11.如果一个扇形的圆心角为120°,半径为6,那么该扇形的弧长是.12.如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为 cm.13.(3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径.14.(3分)边长为1的正三角形的内切圆半径为.15.(3分)(2015•郴州)已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为cm2.16.(4分)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC= .三、解答题17.如图,已知AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C ,若AB=2,∠P=30°,求AP 的长(结果保留根号).已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A.18.求证: BC 是⊙O 的切线;19.若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长. O EDCB A20.如图,已知⊙O 与BC 相切,点C 不是切点,AO ⊥OC ,∠OAC=∠ABO ,且AC=BO ,判断直线AB 与⊙O 的位置关系,并说明理由.21.已知,如图,直线MN 交⊙O 于A ,B 两点,AC 是⊙O 的直径,DE 切⊙O 于点D ,且DE ⊥MN 于点E .(1)求证:AD 平分∠CAM .(2)若DE=6,AE=3,求⊙O 的半径.22.(10分)如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧AC的长(结果保留π).参考答案1.C2.B .3.B .4.A5.B .6.D .7.B .8.B .9.310.24π.11.4π.12.4.13.1.14 15.3π.16.17.18.证明:(1)∵AB 为⊙O 的直径∴∠D=90°, ∠A+∠ABD=90° ∵∠DBC =∠A∴∠DBC+∠ABD=90°∴BC ⊥AB∴BC 是⊙O 的切线19.∵OC ∥AD ,∠D=90°,BD=6∴OC ⊥BD∴BE=12BD=3 ∵O 是AB 的中点∴AD=2EO -∵BC ⊥AB ,OC ⊥BD∴△CEB ∽△BEO ,∴2BE CE OE =•∵CE=4, ∴94OE =∴AD=9220.直线AB 与⊙O 的位置关系是相离.理由见解析.21.(1)证明见解析;(2)⊙O的半径为7.5.22.(1)证明见试题解析;(2)2π.学习名言警句:1.在科学上面没有平坦的大道,只有不畏劳苦沿着陡峭山路攀登的人,才有希望到达光辉的顶点。
《常考题》初中九年级数学上册第二十四章《圆》基础卷(含答案解析)
一、选择题1.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在⊙O 上,点D 在优弧ADB 上,DA DB =,则AOD ∠的度数为( )A .165°B .155°C .145°D .135° 2.如图,,AB AC 分别是O 的直径和弦,OD AC ⊥于点,D 连接,BD BC .若10,8AB AC ==,则BD 的长是( )A .25B .4C .213D .245 3.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .63 4.如图,在半径为8的O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,30D ︒∠=,下列结论不正确的是( )A .OA BC ⊥B .83BC =C .四边形ABOC 是菱形D .扇形OAC 的面积为643π 5.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25B .43C .25或45D .23或43 6.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70°7.已知⊙O ,如图, (1)作⊙O 的直径AB ;(2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点;(3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个8.如图,不等边ABC 内接于O ,下列结论不成立的是( )A .12∠=∠B .14∠=∠C .2AOB ACB ∠=∠D .23ACB ∠=∠+∠ 9.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( )A .B .C .D .10.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠ 11.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD DB =,5OC =,3OD =,则AB 的长为( )A .8B .6C .4D .212.如图,PA 、PB 、CD 是O 的切线,切点分别是A 、B 、E ,CD 分别交PA 、PB 于C 、D 两点,若60APB ∠=︒,则COD ∠的度数( )A .50°B .60°C .70°D .75°13.如图,⊙O 的半径为2,四边形ADBC 为⊙O 的内接四边形,AB =AC ,∠D =112.5°,则弦BC 的长为( )A .2B .2C .22D .23 14.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .121313C .4D .515.在扇形中,∠AOB =90°,面积为4πcm 2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为 ( )A .1cmB .2cmC .3n cmD .4cm二、填空题16.如图,等腰直角△ABC 中,∠BAC=90°,AB=AC=4.平面内的直线l 经过点A ,作CE ⊥l 于点E ,连接BE.则当直线l 绕着点A 转动时,线段BE 长度的最大值是________.17.如图,矩形ABCD 和正方形BEFG 中2AB =,3AD =,1BE =,正方形BEFG 绕点B 旋转过程中,线段DF 的最小值为______.18.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,58AOB ∠=,B 是弧AC 的中点,则BDC ∠的度数为___________.19.如图,A ,B ,P 是半径为2的O 上的三点,45APB ∠=︒,则弦AB 的长为______.20.如图,AB 是⊙O 的直径,C 是BA 延长线上一点,点D 在⊙O 上,且CD=OA ,CD 的延长线交⊙O 于点E ,若∠BOE=54°,则∠C=______.21.小明用一张扇形纸片做一个圆锥的侧面,已知该扇形的半径是10cm ,弧长是12πcm 2,那么这个圆锥的高是________cm .参考答案22.如图,已知AD 为半圆形O 的直径,点B ,C 在半圆形上,AB BC =,30BAC ∠=︒,8AD =,则AC 的长为________.23.如图,四边形ABCD 内接于O ,若76A ∠=︒,则C ∠=_______ °.24.如图,AB 是O 的直径,O 交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的有______(填序号) ①AD BC ⊥;②EDA B ∠=∠;③12OA AC =;④DE 是O 的切线.25.如图,半径为3的⊙O 与边长为8的等边三角形ABC 的两边AB 、BC 都相切,连接OC ,则OC =_____.26.如图,已知空间站A 与星球B 距离为a ,信号飞船C 在星球B 附近沿圆形轨道行驶,B ,C 之间的距离为b .数据S 表示飞船C 与空间站A 的实时距离,那么S 的最小值________.三、解答题27.如图,在⊙O 中,C 是AB 的中点,∠ACB=∠AOB .求证:四边形OACB 是菱形.28.如图,已知在△ABC 中,∠A =90°.(1)作∠ABC 的角平分线交AC 于点P ,以点P 为圆心,PA 长为半径作⊙P ,则⊙P 与BC 的位置关系是 .(2)在(1)的条件下,若AB=3,BC=5,求⊙P 的面积.29.第十届亚运会在广东召开,有三名运动员分别下榻在A 、B 、C 三个宾馆,三个宾馆由三条道路相连,如图所示.(1)为建一个公共活动场地P 到三个宾馆的距离相等.请用尺规作图方法作出点P ,使得点P 落在△ABC 内部.保留作图痕迹,不要求写作法.(2)如果ACB α∠=,那么APB ∠=______.30.已知点A 、B 在半径为2的⊙O 上,直线AC 与⊙O 相切,OC OB ,连接AB 交OC 于点D .(1)如图①,若60ACO ︒∠=,求B : (2)如图②,OC 与⊙O 交于点E ,若//BE OA ,求AB 的长.。
新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷
新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷并且可以用于解决一些圆的问题。
在圆O中,圆心角∠XXX和∠AEB相等,则弦AB和DE相等,弦BC和BD相等,弦AC和AD相等,且弦心距相等。
七、切线与切点1、切线定义:过圆上一点的直线称为圆的切线;2、切点定义:圆上与切线相切的点称为切点;3、定理:切线垂直于半径,切点在切线上,且切点到圆心的距离等于半径长。
在圆O中,点A在圆上,线段AB是圆O上的一条切线,点B是切点,且AB垂直于半径OA,AB上的点与圆心O的距离等于半径OA的长度。
参考答案:一、圆的概念集合形式的概念:圆是到定点的距离等于定长的点的集合。
圆的外部是到定点的距离大于定长的点的集合,圆的内部是到定点的距离小于定长的点的集合。
轨迹形式的概念:圆是到定点的距离等于定长的点的轨迹,以定点为圆心,定长为半径的圆。
垂直平分线是到线段两端距离相等的点的轨迹,角的平分线是到角两边距离相等的点的轨迹,到直线的距离相等的点的轨迹是平行于这条直线且到这条直线的距离等于定长的两条直线,到两条平行线距离相等的点的轨迹是平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系点在圆内的距离小于半径,点在圆上的距离等于半径,点在圆外的距离大于半径。
三、直线与圆的位置关系直线与圆相离的距离大于半径,直线与圆相切的距离等于半径,直线与圆相交的距离小于半径。
四、圆与圆的位置关系圆与圆外离的距离大于两圆半径之和,圆与圆外切的距离等于两圆半径之和,圆与圆相交的距离在两圆半径之差和之和之间,圆与圆内切的距离等于两圆半径之差,圆与圆内含的距离小于两圆半径之差。
五、垂径定理垂径定理是指垂直于弦的直径平分弦且平分弦所对的弧。
推论1包括平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧,弦的垂直平分线经过圆心并且平分弦所对的两条弧,平分弦所对的一条弧的直径垂直平分弦并且平分弦所对的另一条弧。
六、圆心角定理圆心角定理是指同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
人教版九年级上册数学圆专题卷(有答案)
人教版九年级上册数学圆专题卷(有答案)一、单选题(共12题;共24分)1.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是().A. πr2B. πr2C. πr2D. πr22.若⊙O的半径为6,点P在⊙O内,则OP的长可能是()A. 5B. 6C. 7D. 83.如图,A、B、C三点在⊙O上,∠AOB=80º,则∠ACB的大小()`A. 40ºB. 60ºC. 80ºD. 100º4.已知AB、CD是两个不同圆的弦,如AB=CD,那么与的关系是()A. =B. >C. <D. 不能确定5.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A. 2B. 4C. 8D. 166.已知⊙O1与⊙O2的半径分别为3和4,若圆心距O1O2=1,则两圆的位置关系是():A. 相交B. 相离C. 内切D. 外切7.两圆的半径分别是5cm和4cm,圆心距为7cm,则两圆的位置关系是( )A. 相交B. 内切C. 外切D. 外离8.如图,某公园的一座石拱桥是圆弧形(劣弧),拱的半径为13米,拱高CD为8米,则拱桥的跨度AB 的长为())A. 20米B. 24米C. 28米D. 24米9.如图,PA、PB、DE分别切⊙O于A、B、C点,若圆O的半径为6,OP=10,则△PDE的周长为()A. 10B. 12C. 16D. 2010.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为()A. B. 2 C. 2 D. 311.(2017•葫芦岛)如图,点A,B,C是⊙O上的点,∠AOB=70°,则∠ACB的度数是())A. 30°B. 35°C. 45°D. 70°12.如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的各顶点称为格点,直角△ABC的顶点均在格点上,则满足条件的点C有()A. 6个B. 8个C. 10个D. 12个二、填空题(共6题;共20分)13.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB =________°.14.(2011•南通)比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点:相同点:①________;②________.不同点:①________;②________.!15.如图,在⊙O中,点A、O、D和点B、O、C分别在一条直线上,图中共有 ________条弦,它们分别是 ________16.如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为________.17.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是________.18.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为________cm.三、综合题(共5题;共56分)19.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.》(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.20.如图,在半径为2的⊙O中,弦AB长为2.、(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.21.(2015•北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD 的延长线交于点P,使∠PED=∠C.^(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.;22.(2017•安顺)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2 ,求阴影部分的面积.23.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB=________°,理由是:________;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.`答案一、单选题1.B2. A3. A4.D5. B6. C7. A8. B9. C 10.C 11.B 12. C二、填空题13.4414.都是轴对称图形;都有外接圆和内切圆;内角和不同;对角线的条数不同15.三;AE,DC,AD.16.17.618.三、综合题19. (1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)解:∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.20.(1)解:过点O作OD⊥AB于点D,连接AO,BO.如图1所示:∵OD⊥AB且过圆心,AB=2,∴AD= AB=1,∠ADO=90°,在Rt△ADO中,∠ADO=90°,AO=2,AD=1,∴OD= = .即点O到AB的距离为.(2)解:如图2所示:∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA= (360°﹣∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.21.(1)证明:如图,连接OE.∵CD是圆O的直径,∴∠CED=90°.∵OC=OE,∴∠1=∠2.又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵点E在圆上,∴PE是⊙O的切线;(2)证明:∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)解:设EF=x,则CF=2x,∵⊙O的半径为5,∴OF=2x﹣5,在RT△OEF中,OE2=OF2+EF2,即52=x2+(2x﹣5)2,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴,即,∴PF=,∴PD=PF﹣DF=﹣2=.22.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂中平分BC,∴EC=EB,在△OCE和△OBE中,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切(2)解:设⊙O的半径为r,则OD=r﹣1,在Rt△OBD中,BD=CD= BC= ,∴(r﹣1)2+()2=r2,解得r=2,∵tan∠BOD= = ,∴∠BOD=60°,∴∠BOC=2∠BOD=120°,在Rt△OBE中,BE= OB=2 ,∴阴影部分的面积=S四边形OBEC﹣S扇形BOC=2S△OBE﹣S扇形BOC=2× ×2×2 ﹣=4 ﹣π23.(1)90;直径所对的圆周角是直角(2)解:△EAD是等腰三角形.证明:∵∠ABC的平分线与AC相交于点D,∴∠CBD=∠ABE∵AE是⊙O的切线,∴∠EAB=90°∴∠AEB+∠EBA=90°,∵∠EDA=∠CDB,∠CDB+∠CBD=90°,∵∠CBE=∠ABE,∴∠AED=∠EDA,∴AE=AD∴△EAD是等腰三角形(3)解:∵AE=AD,AD=6,∴AE=AD=6,∵AB=8,∴在直角三角形AEB中,EB=10∵∠CDB=∠E,∠CBD=∠ABE∴△CDB∽△AEB,∴= = =∴设CB=4x,CD=3x则BD=5x,∴CA=CD+DA=3x+6,在直角三角形ACB中,AC2+BC2=AB2即:(3x+6)2+(4x)2=82,解得:x=﹣2(舍去)或x=∴BD=5x=。
人教版初中数学九年级数学上册第四单元《圆》测试卷(有答案解析)(2)
一、选择题1.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在⊙O 上,点D 在优弧ADB 上,DA DB =,则AOD ∠的度数为( )A .165°B .155°C .145°D .135°2.下列说法不正确的是( )A .不在同一直线上的三点确定一个圆B .90°的圆周角所对的弦是直径C .平分弦的直径垂直于这条弦D .等弧所对的圆周角相等3.下列说法:(1)三点确定一个圆;(2)直径所对的圆周角是直角;(3)平分弦的直径垂直于弦,并且平分弦所对的弧;(4)相等的圆心角所对的弧相等;(5)圆内接四边形的对角互补.其中正确的个数为( )A .1个B .2个C .3个D .4个4.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120° 5.点P 到圆上各点的最大距离为10cm ,最小距离为6cm ,则此圆的半径为( ) A .8cmB .5cm 或3cmC .8cm 或2cmD .3cm 6.已知正方形的边长a ,其内切圆的半径为r ,外接圆的半径为R ,则::R r a =( ) A .2:1:2 B .2:1:1 C .2:1:1 D .2:2:4 7.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠ACB=30°,AB= 3,则阴影部分的面积( )A .32B .33C .3π26-D .3π36- 8.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139° 9.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠ 10.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,28CDB ∠=︒,过点C 作⊙O 的切线交AB 的延长线于点E ,则E ∠等于( )A .28︒B .34︒C .44︒D .56︒ 11.已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是( ) A .18cm 2B .218cm πC .27cm 2D .227cm π 12.在扇形中,∠AOB =90°,面积为4πcm 2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为 ( )A .1cmB .2cmC .3nD .4cm二、填空题13.已知O 的直径10AB =cm ,CD 是O 的弦,AE CD ⊥,垂足为点E ,BF CD ⊥,垂足为点F ,且8CD =cm ,则BF AE -的长为________cm .14.如图所示,在平面直角坐标系中,正六边形OABCDE 边长是6,则它的外接圆圆心P 的坐标是______.15.如图,,PA PB 切⊙O 于,A B ,点C 在AB 上,DE 切⊙O 于C ,10cm,PO =⊙O 的半径为6cm ,则PDE △的周长是_________cm .16.如图,AB AC 、分别为O 的内接正方形、内接正三角形的边,BC 是圆内接正n 边形的一边,则n 的值为_______________________.17.如图,半径为10的扇形AOB 中,∠AOB=90°,C 为AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE=36°,则图中阴影部分的面积为____.18.如图,在扇形AOB 中90AOB ∠=︒,正方形CDEF 的顶点C 是AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2________.19.小红在手工制作课上,用面积为215cm π,半径为15cm 的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为_______cm .20.如图所示,在⊙O 中,AB 为弦,交AB 于AB 点D ,且OD=DC ,P 为⊙O 上任意一点,连接PA ,PB ,若⊙O 的半径为1,则S △PAB 的最大值为_____.三、解答题21.如图,AB 是⊙O 的直径,点C 在⊙O 上,BD 平分ABC ∠交⊙O 于点D ,过点D 作DE BC ⊥,垂足为E .(1)求证:DE 与⊙O 相切;(2)若10AB =,6AD =,求DE 的长.22.如图,已知,90Rt ABC ACB ∆∠=︒.(1)请在图中用无刻度的直尺和圆规作一个圆,使得圆心О在边AC 上,且与边,AB BC 所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,若9,12AC BC ==,求O 的半径. 23.如图,若O 是ABC 的外接圆,AD 为直径,60ABC ∠=︒.(1)求DAC ∠的度数;(2)若4=AD ,求阴影部分的面积.24.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,求大正方形的面积.25.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠CAE=∠ADC .(1)求证:AE 是⊙O 的切线;(2)若⊙O 的半径为2,∠B=60°,求图中阴影部分的面积.(结果保留根号和π) 26.如图,O 中,AB CD =,A C ∠=∠,AB 与CD 交于点P .求证=DP BP .【参考答案】***试卷处理标记,请不要删除一、选择题解析:D【分析】连接OB,根据平行四边形的性质可得∠OAB=∠C=45°,再根据等腰三角形的等边对等角得∠OBA=∠OAB=45°,则∠AOB=90°,由DA=DB得∠AOD=∠BOD,进而可求得∠AOD的度数.【详解】解:连接OB,∵四边形ABCO是平行四边形,∴∠OAB=∠C=45°,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠AOB=90°,∵DA=DA,∴∠AOD=∠BOD=1(360°﹣90°)=135°,2故选:D.【点睛】本题考查平行四边形的性质,等腰三角形的性质,圆心角、弧、弦的关系等知识,熟练掌握平行四边形的性质和等腰三角形的性质,熟知等弦所对的圆心角相等是解答的关键.2.C解析:C【分析】根据确定圆的条件对A进行判断;根据垂径定理的推论对C进行判断;根据圆周角定理及其推论对B、D进行判断.【详解】解:A.不在同一直线上的三点确定一个圆,说法正确;B. 90°的圆周角所对的弦是直径,说法正确;C. 平分弦(非直径)的直径垂直于弦,所以B选项错误;D. 等弧所对的圆周角相等,说法正确;故选:C【点睛】此题主要考查了圆的相关知识的掌握.解答此题的关键是要熟悉课本中的性质定理.解析:B【分析】根据确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质一一判断即可.【详解】解:(1)任意三点确定一个圆;错误,应该是不在同一直线上的三点可以确定一个圆; (2)直径所对的圆周角是直角;正确;(3)平分弦的直径垂直于弦;并且平分弦所对的弧,错误,直径与直径互相平分,但不一定互相垂直;(4)相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;(5)圆内接四边形对角互补;正确;故选:B .【点睛】本题考查确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,180110D B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.5.C解析:C【分析】分析题意,本题应分两种情况讨论:(1)点P 在圆内;(2)点P 在圆外;根据“一个点到圆的最大距离和最短距离都在过圆心的直线上”可知,点P 到圆的最大距离与最小距离的和或差即是圆的直径,进而即可得出半径的长.【详解】当点P 在圆内时,圆的直径是10+6=16cm ,所以半径是8cm .当点P 在圆外时,圆的直径是10-6=4cm ,所以半径是2cm .故选C .【点睛】本题考查了圆的有关性质,熟知一个点到圆的最大距离和最短距离都在过圆心的直线上是解题的关键.6.A解析:A【分析】经过圆心O 作正方形一边AB 的垂线OC ,垂足是C .连接OA ,则在直角△OAC 中,∠AOC=45°.OC 是边心距r ,OA 即半径R ,进而即可求解【详解】如图:作出正方形的边心距,连接正方形的一个顶点和中心可得到一直角三角形 在中心的直角三角形的角为360°÷4÷2=45°,∴内切圆的半径为2a ,外接圆的半径为22a , ∴::R r a22a :2a :a=2:1:2 故选A【点睛】本题主要考查正多边形的外接圆与内切圆的半径,掌握相关概念,作出图形,是解题的关键.7.C解析:C【分析】首先求出∠AOB ,OB ,然后利用S 阴=S △ABO −S 扇形OBD 计算即可.【详解】连接OB .∵AB 是⊙O 切线,∴OB ⊥AB ,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=3,∠A=30°,∴OB=ABtan30°=1,∴S阴=S△ABO−S扇形OBD=12×1×3−2601360π⋅=3π26-.故选:C.【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.8.C解析:C【分析】利用圆周角定理求出∠BOC即可解决问题.【详解】解:∵∠BOC=2∠BDC,∠BDC=21°,∴∠BOC=42°,∴∠AOC=180°-42°=138°.故选:C.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型.9.D解析:D【分析】利用切线长定理证明△PAG≌△PBG即可得出.【详解】解:连接OA,OB,AB,AB交PO于点G,由切线长定理可得:∠APO=∠BPO,PA=PB,又∵PG=PG,∴△PAG≌△PBG,从而AB⊥OP.因此A.B.C都正确.无法得出AB=PA=PB,可知:D是错误的.综上可知:只有D是错误的.故选:D.【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答.10.B解析:B【分析】连接OC,由CE为圆O的切线,利用切线的性质得到OC垂直于CE,由OA=OC,利用等边对等角得到一对角相等,再利用外角性质求出∠COE的度数,即可求出∠E的度数.【详解】解:连接OC,∵CE为圆O的切线,∴OC⊥CE,∴∠COE=90°,∵∠CDB与∠BAC都对BC,且∠CDB=28°,∴∠BAC=∠CDB=28°,∵OA=OC,∴∠OAC=∠OCA=28°,∵∠COE为△AOC的外角,∴∠COE=56°,则∠E=34°.故选:B.【点睛】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.11.B解析:B【分析】已知底面半径即可求得底面周长,即展开图中,扇形的弧长,然后根据扇形的面积公式即可求解.【详解】解:底面周长是2×3π=6π,则圆锥的侧面积是:12×6π×6=18π(cm 2). 故选:B .【点睛】 本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.12.A解析:A【分析】圆锥的底面周长等于侧面展开图的扇形弧长,因而要先求扇形的弧长,根据扇形的面积公式2360n R S π=,可以求出扇形的半径,就可以求出弧长. 【详解】 解:根据扇形的面积公式2360n R S π=得到:2904360R ππ=; ∴R=4,则弧长9042180cm ππ⋅==, 设圆锥的底面半径为r ,则2π=2πr ;∴r=1cm .故选:A .【点睛】 本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.二、填空题13.6【分析】如图作OH ⊥CD 于H 连接AH 延长AH 交BF 于K 连接OC 证明AE=FK 利用勾股定理求出OH 再利用三角形的中位线定理求出BK 即可解决问题【详解】解:如图作OH ⊥CD 于H 连接AH 延长AH 交BF 于解析:6【分析】如图,作OH ⊥CD 于H ,连接AH ,延长AH 交BF 于K ,连接OC .证明AE=FK ,利用勾股定理求出OH ,再利用三角形的中位线定理求出BK 即可解决问题.【详解】解:如图,作OH ⊥CD 于H ,连接AH ,延长AH 交BF 于K ,连接OC .∵OH ⊥CD ,∴CH=DH=4(cm ),∠CHO=90°,∴222254OC CH -=-=3(cm ),∵AE ⊥CD ,BF ⊥CD ,∴AE ∥OH ∥BF ,∵OA=OB ,∴EH=FH ,∵∠AEH=∠KFH=90°,∠AHE=∠FHK ,∴△AEH ≌△KFH (AAS ),∴AH=HK ,AE=FK ,∵AO=OB ,∴OH=12BK , ∴BK=6(cm ),∴BF-AE=BF-FK=BK=6(cm ).故答案为6.【点睛】本题考查了垂径定理,勾股定理,三角形的中位线定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.14.【分析】如图所示连接POPA 过点P 作PG ⊥OA 于点G 由正六边形推出为等边三角形进而求出OGPG 的长度即可求得P 点坐标【详解】解:如图所示连接POPA 过点P 作PG ⊥OA 于点G 则∵多边形为正六边形∴∵∴ 解析:(3,33【分析】如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,由正六边形OABCDE 推出OPA 为等边三角形,进而求出OG 、PG 的长度即可求得P 点坐标.【详解】解:如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,则90OGP ∠=︒, ∵多边形OABCDE 为正六边形,∴60OPA ∠=︒,∵PO PA =,∴OPA 为等边三角形,又∵PG ⊥OA ,∴PG 平分OPA ∠,∴30OPG ∠=︒,又∵OA=6, ∴11163222OG OP OA ===⨯=, ∴由勾股定理得:22226333PG OP OG =-=-=,∴P 的坐标是()3,33, 故答案为:()3,33【点睛】本题考查正多边形外接圆的问题,熟练掌握正多边形的性质,灵活运用三角形相关知识解决边角关系是本题的关键.15.16【分析】连接OAOB 由切线长定理可得:PA=PBDA=DCEC=EB ;由勾股定理可得PA 的长△PDE 的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB 即可求得△PDE 的周长【详解解析:16【分析】连接OA 、OB ,由切线长定理可得:PA=PB ,DA=DC ,EC=EB ;由勾股定理可得PA 的长,△PDE 的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB ,即可求得△PDE 的周长.【详解】解:连接OA 、OB ,如图所示:∵PA 、PB 为圆的两条切线,∴由切线长定理可得:PA=PB ,同理可知:DA=DC ,EC=EB ;∵OA ⊥PA ,OA=6cm ,PO=10cm ,∴由勾股定理得:PA=8cm ,∴PA=PB=8cm ;∵△PDE 的周长=PD+DC+CE+PE ,DA=DC ,EC=EB ;∴△PDE 的周长=PD+DA+PE+EB=PA+PB=16cm ,故答案为:16.【点睛】本题考查的是切线长定理,分析图形时关键是要仔细探索,找出图形的各对相等切线长. 16.【分析】根据正方形以及正三边形的性质得出进而得出即可得出n 的值【详解】解:如图所示连接AOBOCO ∵ABAC 分别为⊙O 的内接正方形内接正三边形的一边∴∴∴故答案为:12【点睛】此题主要考查了正多边形解析:12【分析】 根据正方形以及正三边形的性质得出360904AOB ︒∠==︒,3603120AOC ==︒∠︒,进而得出30BOC ∠=︒,即可得出n 的值.【详解】解:如图所示,连接AO ,BO ,CO .∵AB 、AC 分别为⊙O 的内接正方形、内接正三边形的一边,∴360904AOB ︒∠==︒,3603120AOC ==︒∠︒, ∴30BOC ∠=︒,∴3601230n ︒==︒, 故答案为:12.【点睛】此题主要考查了正多边形和圆的性质,根据已知得出30BOC ∠=︒是解题关键. 17.10π【分析】连接OC 易得△ODE ≌△ECO 所以扇形OBC 的面积就是图中阴影部分的面积因此求得扇形OBC 的面积即可【详解】解:如下图连接OC ∵∠AOB=90°CD ⊥OACE ⊥OB ∴四边形ODCE 为矩解析:10π【分析】连接OC ,易得△ODE ≌△ECO ,所以扇形OBC 的面积就是图中阴影部分的面积,因此求得扇形OBC 的面积即可.【详解】解:如下图连接OC ,∵∠AOB=90°、CD ⊥OA 、CE ⊥OB∴四边形ODCE 为矩形∴OD=CE ,OE 为公共边∴△ODE ≌△ECO∴△ODE 的面积=△ECO 的面积∴图中阴影部分的面积=2236361010360360O BC SOB πππ-==⨯=. 故答案为:10π.【点睛】本题考查扇形面积的计算和矩形的性质.其关键是用矩形性质对阴影部分进行等积变换,发现△ODE 的面积=△ECO 的面积. 18.【分析】连结OC 根据勾股定理可求OC 的长根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积依此列式计算即可求解【详解】连接如图∵在扇形中又故答案为:【点睛】考查了正方形的性质和扇形面解析:24π-【分析】连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.【详解】连接OC ,如图,∵在扇形AOB 中,90AOB ∠=︒,AC BC =,45COD ∴∠=︒,又CD DE ⊥,45OCD COD ∴∠=∠=︒,OD CD ∴==4OC ∴==,224541243602ODC BOC S S Sππ⨯∴=-=-⨯=-阴影扇形. 故答案为:24π-.【点睛】考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度. 19.1【分析】根据扇形的面积公式与圆的周长公式即可求解【详解】由得:扇形的弧长=(厘米)圆锥的底面半径=(厘米)故答案是:1【点睛】本题主要考查圆锥的底面半径掌握圆锥的侧面扇形弧长等于底面周长是解题的关键 解析:1【分析】根据扇形的面积公式与圆的周长公式,即可求解.【详解】 由1=2S lR 扇形得:扇形的弧长=215152ππ⨯÷=(厘米), 圆锥的底面半径=221ππ÷÷=(厘米).故答案是:1.【点睛】本题主要考查圆锥的底面半径,掌握圆锥的侧面扇形弧长等于底面周长,是解题的关键. 20.【分析】作直径CE 连OAAEBE 利用垂经定理的AD=BD 在利用勾股定理计算出AD 则AB=2AD 当点P 与点E 重合时P 点到AB 的距离最大然后根据三角形面积公式求解即可【详解】延长CD 交⊙O 于点E 连接OA解析:4【分析】作直径CE ,连OA 、AE 、BE ,利用垂经定理的AD=BD ,在利用勾股定理计算出AD ,则AB=2AD ,当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解即可.【详解】延长CD 交⊙O 于点E ,连接OA ,AE ,BE 如图,∵OA=OC=1,OD=CD ,∴OD=CD=12OC=12, ∵OC ⊥AB ,∴AD=2232OA OD -=, AD=BD=12AB , AB=2AD=3,∴sin ∠OAD=12OD OA =, ∴∠OAD=30º, ∴∠AOD =90º-∠OAD =60º,∵OA =OE ,∴∠OAE=∠OEA ,∵∠AOD=∠OAE+∠OEA ,∴∠OAE=∠OEA=30º,∵CE ⊥AB ,∴AE=BE ,∴∠OEB=∠OEA=30º,∴∠AEB=∠OEB+∠OEA=60º,∴△ABE 是等边三角形,∴AE=AB=3,DE=2232AE AD -=, S △ABE =1332AB DE =, ∵在△ABP 中,当点P 与点E 重合时,AB 边上的高取最大值,此时△ABP 的面积最大, ∴S △ABP 的最大值=334. 故答案为:334.【点睛】本题考查三角形面积,掌握垂经定理,勾股定理,和引辅助线构造图形,找到当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解是解题关键.三、解答题21.(1)见解析;(2)245 【分析】(1)连接OD ,由BD 为角平分线得到OBD CBD ∠=∠,再由OB=OD ,利用等边对等角得到ODB OBD ∠=∠,从而得出ODB CBD ∠=∠,利用内错角相等两直线平行得到OD 与BE 平行,由DE 垂直于BE 得到OD 垂直于DE ,即可得证;(2)过D 作DH AB ⊥于H ,根据HL 得出△≌△Rt ADH Rt CDE ,得出AH CE =,再根据勾股定理得出22221068BD AB AD =-=-=,再利用等积法即可得出DE 的长.【详解】(1)证明:连接OD .∵OD OB =,∴ODB OBD ∠=∠.∵BD 平分ABC ∠,∴OBD CBD ∠=∠.∴ODB CBD ∠=∠,∴//OD BE .∴180BED ODE ∠+∠=︒.∵BE DE ⊥,∴90BED ∠=︒.∴90ODE ∠=︒.∴OD DE ⊥.∴DE 与O 相切;(2)过D 作DH AB ⊥于H .∵BD 平分ABC ∠,DE BE ⊥,∴DH DE =.∵AD CD =,∴AD CD =.∴()Rt ADH Rt CDE HL △≌△,∴AH CE =.∵AB 是O 的直径,∴90ADB ∠=︒. ∵10AB =,6AD =, ∴22221068BD AB AD -=-=.∵1122AB DH AD BD ⋅=⋅,∴245DH =. ∴245DE =. 【点睛】 此题考查了切线的判定,角平分线的性质、圆周角定理、平行线的判定与性质等知识,熟练掌握切线的判定方法是解本题的关键,属于中考常考题型.22.(1)见解析;(2)O 的半径为4 【分析】(1)先作∠ABC 的角平分线,交AC 于点O ,然后过O 作AB 的垂线,交AB 于E ,以O 为圆心,OE 为半径作圆即可;(2)先利用勾股定理求出AB ,然后由OBC ABO ABC S S S ∆∆∆+=即可求出O 的半径.【详解】解:(1)如图所示:(2)设直线AB 与O 切于点D ,连接OD ,则,OD AB ⊥90,ACB ∴∠=︒22222291215AB AC BC ∴=+=+=.15,AB ∴=设O 的半径为,r由得OBC ABO ABC S S S ∆∆∆+=1215912,r r +=⨯4,r ∴=即O 的半径为4【点睛】本题考查了尺规作图,切线的性质,理解题意熟练掌握角平分线和垂线的作图是解题的关键.23.(1)30°;(2)233π+ 【分析】连接DC,则有ABC ADC ∠=∠ 利用AD 是直径,得到90ACD ∠= ,便可求出DAC ∠. 根据(1)的结论和已知,先求出AOC s、OCD S 扇形 便可求出阴影部分面积.【详解】解:(1)连接DC 如图所示∵60ABC ∠=︒∴ABC ADC ∠=∠60=︒∵AD 是直径∴90ACD ∠=∴DAC ∠=30°(2)连接OC,作OE ⊥ AC,垂足为E∵4=AD∴AO=OD=OC=230OCA DAC ∴∠=∠=60DOC ∴∠=在Rt AOE 中OE=1、3∴3∴AOC s =12OE AC •3∴OCD S 扇形=2360n R π 2602360π⨯ =23π ∴阴影部分面积为:233π+. 【点睛】 本题考查了圆周角性质,圆直径所对的圆周角是直角,扇形面积计算,属于基础题. 24.64cm 2【分析】连接OA 、OB 、OE ,证Rt △ADO ≌Rt △BCO ,推出OD=OC ,设AD=a ,则OD=12a ,由勾股定理求出OA=OB=OE=5a ,求出EF=FC=4cm ,在△OFE 中由勾股定理求出a ,即可求出答案.【详解】解:连接OA 、OB 、OE ,∵四边形ABCD 是正方形,∴AD=BC ,∠ADO=∠BCO=90°,∵在Rt △ADO 和Rt △BCO 中∵OA OB AD BC=⎧⎨=⎩, ∴Rt △ADO ≌Rt △BCO ,∴OD=OC ,∵四边形ABCD 是正方形,∴AD=DC ,设AD=acm ,则OD=OC=12DC=12AD=12acm , 在△AOD 中,由勾股定理得:5acm , ∵小正方形EFCG 的面积为16cm 2,∴EF=FC=4cm ,在△OFE 中,由勾股定理得:5a)2=42+(12a+4)2, 解得:a=-4(舍去),a=8,∴正方形面积为264cm故答案为:64cm².【点睛】本题考查了全等三角形的性质和判定,勾股定理的应用,主要考查学生运用定理进行计算的能力,用的数学思想是方程思想.25.(1)见解析;(2)433π- 【分析】(1)根据AB 是直径得到∠ACB=90°,根据已知条件得到∠BAE =90°,即可得到结果; (2)作OM ⊥AC ,垂足为M ,求得AM=3,根据扇形的面积计算公式计算即可;【详解】(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵∠B=∠ADC=∠CAE ,∴∠BAE=∠BAC+∠EAC=∠BAC+∠B=90°,∴ BA ⊥AE ,∴AE 是⊙O 的切线.(2)解:作OM ⊥AC ,垂足为M .∵∠B=60°,∴∠AOC=2∠B=120°,∴∠AOM=∠COM=60°, ∴OM=12AO=1, ∴3 ∴AC=2AM=23∴S 阴=S 扇形AOC -S △AOC =120414-231336023ππ.【点睛】本题主要考查了切线的证明和扇形的面积计算,准确分析计算是解题的关键. 26.见解析.【分析】根据已知条件和圆周角定理证明△APD ≌△CPB 即可得到DP=BP .【详解】证明:∵AB CD,∴CD = AB,∴ CD- CA= AB - AC,∴ AD = BC.又∵∠A=∠C,∠APD=∠CPB,∴△APD≌△CPB.∴DP=BP.【点睛】本题考查了全等三角形的判定以及圆心角定理:在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立.。
九年级数学圆的测试题及答案(两套题)[1]
圆圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。
2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。
3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。
5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。
6.直径所对的圆周角是 90°,90°所对的弦是直径。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。
8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线,切线长相等,这点与圆心之间的连线平分这两条切线的夹角。
难点解析华东师大版九年级数学下册第27章 圆同步测评试题(含详解)
华东师大版九年级数学下册第27章 圆同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB 为O 的直径,弦CD AB ⊥于E ,已知16CD =,6OE =,则O 的直径为( )A .10B .18C .26D .202、如图,A ,B ,C ,D 都是O 上的点,OA BC ⊥,垂足为E ,若26OBC ∠=︒,则ADC ∠的度数为( )A .26︒B .32︒C .52︒D .64︒3、O 的半径为5 , 若直线l 与该圆相交, 则圆心O 到直线l 的距离可能是 ( )A .3B .5C .6D .104、如图,O 是ABC ∆的外接圆,40OCB ∠=︒,则A ∠的度数是( )A .40︒B .80︒C .50︒D .45︒5、如图,PA 、PB 是O 的切线,A 、B 是切点,点C 在O 上,且58ACB ∠=︒,则APB ∠等于( )A .54°B .58°C .64°D .68°6、如图,圆形螺帽的内接正六边形的面积为2,则圆形螺帽的半径是( )A .1cmB .2cmC .D .4cm7、矩形ABCD 中,AB =8,BC =4,点P 在边AB 上,且AP =3,如果⊙P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( )A .点B 、C 均在⊙P 内B .点B 在⊙P 上、点C 在⊙P 内 C .点B 、C 均在⊙P 外D .点B 在⊙P 上、点C 在⊙P 外8、如图,DC 是⊙O 的直径,弦AB ⊥CD 于M ,则下列结论不一定成立的是( )A .AM =BMB .CM =DMC .AC BC =D .AD BD =9、如图,AD 为O 的直径,8AD =,DAC ABC ∠=∠,则AC 的长度为( )A .B .C .4D .10、如图,四边形ABCD 内接于O ,如果它的一个外角64DCE ︒∠=,那么BOD ∠的度数为( )A .20︒B .64︒C .116︒D .128︒第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、如图,扇形AOB 的圆心角为120°,弦AB = _____.2、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径..是______步.3、已知点A 、B 、C 、D 在圆O 上,且FD 切圆O 于点D ,OE CD ⊥于点E ,对于下列说法:①圆上AbB 是优弧;②圆上AbD 是优弧;③线段AC 是弦;④CAD ∠和ADF ∠都是圆周角;⑤COA ∠是圆心角,其中正确的说法是________.4、如图,四边形ABCD 内接于O ,E 为直径AB 延长线上一点,且AB DC ,若70A ∠=︒,则CBE ∠的度数为______.5、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=AC的长为_____.6、如图,在⊙O中,AB=AC,AB=10,BC=12,D是BC上一点,CD=5,则AD的长为______.7、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.8、如图,已知P 的半径为1,圆心P 在抛物线2112y x =-+上运动,当P 与x 轴相切时,圆心P 的横坐标为______.9、如图,AB 为O 的弦,半径⊥OD AB 于点C .若8AB =,2CD =,则O 的半径长为______.10、如图,PA 、PB 分别与O 相切于A 、B 两点,若58P ∠=︒,则ACB ∠的度数为________.三、解答题(5小题,每小题8分,共计40分)1、【教材呈现】下图是华师版九年级下册数学教材第43页的部分内容.圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径.(如图)【推论证明】已知:△ABC 的三个顶点都在⊙O 上,且∠ACB =90°.求证:线段AB 是⊙O 的直径.请你结合图①写出推论1的证明过程.【深入探究】如图②,点A ,B ,C ,D 均在半径为1的⊙O 上,若∠ACB =90°,∠ACD =60°.则线段AD 的长为 .【拓展应用】如图③,已知△ABC 是等边三角形,以AC 为底边在三角形ABC 外作等腰直角三角形ACD ,点E 是BC 的中点,连结DE . 若AB =DE 的长为 .2、已知四边形 ABCD 是菱形, 4AB =, 点 E 在射线 CB 上, 点 F 在射线 CD 上,且 EAF BAD ∠=∠.(1)如图, 如果 90BAD ∠=, 求证: AE AF = ;(2)如图, 当点 E 在 CB 的延长线上时, 如果 60ABC ∠=, 设 ,AF DF x y AE==, 试建立 y与 x 的函数关系式,并写出 x 的取值范围(3)联结 ,2AC BE , 当 AEC △ 是等腰三角形时,请直接写出 DF 的长.3、如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =5,AC =3.(1)求tanA 的值;(2)若D 为AB 的中点,连接CD 、BD ,求弦CD 的长.4、如图,△ABC 内接于⊙O ,弦BD ⊥AC ,垂足为E .点D ,点F 关于AC 对称,连接AF 并延长交⊙O 于点G .(1)连接OB ,求证:∠ABD =∠OBC ;(2)求证:点F,点G关于BC对称;(3)若BF=OB=2,求△ABC面积的最大值.5、下面是小玟同学设计的“作一个角等于已知角”的尺规作图过程.已知:在△ABC中,AB=BC,BD平分∠ABC交AC于点D.求作:∠BPC,使∠BPC=∠BAC.作法:① 分别以点B和点C为圆心,大于12BC的长为半径作弧,两弧交于点E和点F,连接EF交BD于点O;② 以点O为圆心,OB的长为半径作⊙O;③ 在劣弧AB上任取一点P(不与点A、B重合),连接BP和CP.所以∠BPC=∠BAC.根据小玟设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OA、OC.∵AB=BC,BD平分∠ABC,∴BD⊥AC且AD=CD.∴OA=OC.∵EF是线段BC的垂直平分线,∴OB= .∴OB=OA.∴⊙O 为△ABC 的外接圆.∵点P 在⊙O 上,∴∠BPC =∠BAC ( )(填推理的依据).-参考答案-一、单选题1、D【解析】【分析】连接OC ,由垂径定理及勾股定理即可求得圆的半径,从而可得直径的长.【详解】连接OC ,∵AB 为O 的直径,弦CD AB ⊥于E , ∴182CE CD ==,∴10OC ,∴O 的直径220AB OC ==,故选:D .【点睛】本题考查了垂径定理及勾股定理,连接OC 得到直角三角形是关键.2、B【解析】【分析】连接OC .根据OA BC ⊥确定AC AB =,90OEB ∠=︒,进而计算出AOB ∠,根据圆心角的性质求出AOC ∠,最后根据圆周角的性质即可求出ADC ∠.【详解】解:如下图所示,连接OC .∵OA BC ⊥,∴AC AB =,90OEB ∠=︒.∴AOC AOB ∠=∠.∵26OBC ∠=︒.∴64AOB ∠=︒.∴64AOC ∠=︒∵ADC ∠和AOC ∠分别是AC 所对的圆周角和圆心角, ∴3122A ADC OC ∠=︒∠=.故选:B.【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.3、A【解析】【分析】根据直线l和⊙O相交⇔d<r,即可判断.【详解】解:∵⊙O的半径为5,直线l与⊙O相交,∴圆心D到直线l的距离d的取值范围是0≤d<5,故选:A.【点睛】本题考查直线与圆的位置关系,解题的关键是记住①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.4、C【解析】【分析】在等腰三角形OCB中,求得两个底角∠OBC、∠OCB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.【详解】=,解:在OCB∆中,OB OC∴∠=∠;OBC OCB∠=︒-∠-∠,COB OBC OCB40OCB∠=︒,180100COB ∴∠=︒; 又12A COB ∠=∠, 50A ∴∠=︒,故选:C .【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.5、C【解析】【分析】连接OB ,OA ,根据圆周角定理可得2116AOB ACB ∠=∠=︒,根据切线性质以及四边形内角和性质,求解即可.【详解】解:连接OB ,OA ,如下图:∴2112AOB ACB ∠=∠=︒∵PA 、PB 是O 的切线,A 、B 是切点∴90OBP OAP ∠=∠=︒∴由四边形的内角和可得:36064APB OBP OAP AOB ∠=︒-∠-∠-∠=︒故选C .【点睛】此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.6、D【解析】【分析】根据圆内接正六边形的性质可得△AOB 是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB 是正三角形,过O 作OM AB ⊥于,M设半径为r ,即OA =OB =AB =r ,OM =OA •sin∠OAB ,∵圆O 的内接正六边形的面积为cm 2),∴△AOB 的面积为13=436(cm 2), 即1432AB OM, 134322r r ,解得r =4,故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.7、D【解析】【分析】如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.【详解】解:如图所示,连接DP,CP,∵四边形ABCD是矩形,∴∠A=∠B=90°,∵AP=3,AB=8,∴BP=AB-AP=5,∵5PD==,∴PB=PD,>=,∴PC PB PD∴点C在圆P外,点B在圆P上,故选D.【点睛】本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.8、B【解析】【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦AB⊥CD,CD过圆心O,∴AM=BM,AC BC=,AD BD=,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.9、A【解析】【分析】连接CD,由等弧所对的圆周角相等逆推可知AC=DC,∠ACD=90°,再由勾股定理即可求出AC=【详解】解:连接CD∠=∠∵DAC ABC∴AC=DC又∵AD为O的直径∴∠ACD=90°∴222+=AC DC AD∴22=2AC AD∴8===AC AD故答案为:A.【点睛】本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.10、D【解析】【分析】由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD =2∠A =128°.【详解】∵64DCE ∠=︒∴18064116BCD ∠=︒-︒=︒∵四边形ABCD 内接于O∴180********A BCD ∠=︒-∠=︒-︒=︒又∵2BOD A ∠=∠∴264128A ∠=⨯︒=︒.故选:D .【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.二、填空题1、4π3【解析】【分析】阴影部分面积为扇形与三角形的面积差,分别求解两部分的面积然后即可.【详解】解:由题意知:∵OA OB =∴△OAB 为等腰三角形 ∴()1180120302OAB ∠=︒-︒=︒∵12cos30OA⨯︒=∴2OA = ∵π120π24π1801803n r S ⨯⨯===扇1sin 302OAB S OA =⨯⨯︒⨯∴4π3AOB S S S=-=阴扇故答案为:4π3【点睛】本题考查了扇形的面积,锐角三角函数等知识.解题的关键在于求解扇形与三角形的面积. 2、6【解析】【分析】依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;【详解】设直角三角形中能容纳最大圆的半径为:r ;17= 依据直角三角形面积公式:12S ah =,即为1815602S =⨯⨯=; 内切圆半径面积公式:1()2S r a b c =++,即为1(81517)2S r =⨯++; 所以160(81517)2r =++,可得:3r =,所以直径为:26d r ==;故填:6;【点睛】本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;3、①②③⑤【解析】【分析】根据优弧的定义,弦的定义,圆周角的定义,圆心角的定义逐项分析判断即可【详解】解:AbB,AbD都是大于半圆的弧,故①②正确,,A C在圆上,则线段AC是弦;故③正确;C A D都在圆上,,,∴CAD∠是圆周角而F点不在圆上,则ADF∠不是圆周角故④不正确;O是圆心,,C A在圆上∴COA∠是圆心角故⑤正确故正确的有:①②③⑤故答案为:①②③⑤【点睛】本题考查了优弧的定义,弦的定义,圆周角的定义,圆心角的定义,理解定义是解题的关键.优弧是大于半圆的弧,任意圆上两点的连线是弦,顶点在圆上,并且两边都和圆相交的角叫做圆周角,顶点在圆心,并且两边都和圆相交的角叫做圆心角.4、110°##110度【解析】【分析】根据圆内接四边形性质求出110C ∠=︒,再根据平行线的性质求出CBE ∠的度数即可.【详解】解:∵四边形ABCD 内接于O ,∴180A C ∠+∠=︒,∵70A ∠=︒,∴110C ∠=︒,∵AB DC ,∴110CBE C ∠=∠=︒;故答案为:110°.【点睛】本题考查了圆内接四边形的性质,解题关键是根据圆内接四边形的性质求出110C ∠=︒.5、4π3【解析】【分析】连接OB ,交AC 于点D ,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC 为菱形,根据菱形的性质可得:OB AC ⊥,OA AB =,AD DC =,根据等边三角形的判定得出OAB 为等边三角形,由此得出120AOC ∠=︒,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.【详解】解:如图所示,连接OB ,交AC 于点D ,∵四边形OABC 为平行四边形,OA OC =,∴四边形OABC 为菱形,∴OB AC ⊥,OA AB =,12AD DC AC === ∵OA OB AB ==,∴OAB 为等边三角形,∴60AOB ∠=︒,∴120AOC ∠=︒,在Rt OAD 中,设AO r =,则12OD r =, ∴222AD OD AO +=,即22212r r ⎛⎫+= ⎪⎝⎭, 解得:2r =或2r =-(舍去),∴AC 的长为:120241803ππ⨯⨯=, 故答案为:43π. 【点睛】 题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.6、3+3【解析】【分析】过A作AE⊥BC于E,过C作CF⊥AD于F,根据圆周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF, AF即可求解.【详解】解:过A作AE⊥BC于E,过C作CF⊥AD于F,则∠AEB=∠CFD=90°,∵AB=AC, AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴8AE===,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴AB BE AE CD DF CF==,∵AB=10,CD=5,BE=6,AE=8,∴10685DF CF==,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,则AF =∴AD=DF+AF=3+故答案为:3+【点睛】本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.7、2π【解析】【分析】利用勾股定理求出AC 及AB 的长,根据阴影面积等于AB C CAC DAB S S S''''--扇形扇形求出答案. 【详解】解:由旋转得,AB AB AC AC ''==,90CAC '∠=︒,B AC ''∠=∠BAC =30°,∵∠ABC =90°,∠BAC =30°,BC =1,∴AC =2BC =2,AB60CAB '∠=︒, ∴阴影部分的面积=AB C CAC DAB S S S ''''--扇形扇形2260902113603602ππ⨯⨯=--⨯=2π故答案为:2π.【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.8、2或2-或0【解析】【分析】当⊙P 与x 轴相切时,圆心P 的纵坐标为1或-1,根据圆心P 在抛物线上,所以当y 为±1时,可以求出点P 的横坐标.【详解】解:当y =1时,有1=-12x 2+1,x =0.当y =-1时,有-1=-12x 2+1,x =2±.故答案是:2或2-或0.【点睛】本题考查的是二次函数的综合题,利用圆与x轴相切得到点P的纵坐标,然后代入抛物线求出点P的横坐标.9、5【解析】【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,再连接OA,在Rt△OAC中利用勾股定理求出r的值即可.【详解】解:∵⊙O的弦AB=8,半径OD⊥AB,∴AC=12AB=12×8=4,设⊙O的半径为r,则OC=r-CD=r-2,连接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.10、61【解析】【分析】根据已知条件可得出90OAP OBP ∠=∠=︒,122AOB ∠=︒,再利用圆周角定理得出1612C AOB ∠=∠=︒即可.【详解】解:PA 、PB 分别与O 相切于A 、B 两点,OA PA ∴⊥,OB PB ⊥,90OAP OBP ∴∠=∠=︒,180********AOB P ∴∠=︒-∠=︒-︒=︒,111226122C AOB ∴∠=∠=⨯︒=︒. 故答案为:61︒.【点睛】本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.三、解答题1、【推论证明】见解析;【拓展应用】1+【解析】【分析】推论证明:根据圆周角定理求出180AOB ∠=︒,即可证明出线段AB 是⊙O 的直径;深入探究:连接AB ,首先根据∠ACB =90°得出AB 是⊙O 的直径,然后求出30BCD ∠=︒,然后根据同弧所对的圆周角相等得到30BAD ∠=︒,然后根据30°角直角三角形的性质求出BD 的长度,最后根据勾股定理即可求出AD 的长度;拓展应用:连接AE ,作CF ⊥DE 交DE 于点F ,首先根据等边三角形三线合一的性质求出AE BC ⊥,然后证明出A ,E ,C ,D 四点共圆,然后根据同弧或等弧所对的圆周角相等求出45CED CAD ∠=∠=︒,30EDC EAC ∠=∠=︒,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.【详解】解:推论证明:∵90C ∠=︒∴180AOB ∠=︒,∴A ,B ,O 三点共线,又∵点O 是圆心,∴AB 是⊙O 的直径;深入探究:如图所示,连接AB ,∵∠ACB =90°∴AB 是⊙O 的直径∴90ADB ∠=︒∵∠ACD =60°∴30BCD ACB ACD ∠=∠-∠=︒∵DB DB =∴30BAD BCD ∠=∠=︒∴在Rt ABD ∆中,112BD AB ==∴AD拓展应用:如图所示,连接AE ,作CF ⊥DE 交DE 于点F ,∵△ABC 是等边三角形,点E 是BC 的中点∴AE BC ⊥,1302CAE BAC ∠=∠=︒又∵以AC 为底边在三角形ABC 外作等腰直角三角形ACD∴90ADC ∠=︒,45DAC ∠=︒∴点A ,E ,C ,D 四点都在以AC 为直径的圆上,∵DC DC =∴45CED CAD ∠=∠=︒∵CF ⊥DE∴EFC ∆是等腰直角三角形∴EF CF =,222EF CF EC +=∴222EF EC =∵1122EC BC AB ===∴222EF =,解得:1EF =∴1FC = ∵EC EC =∴30EDC EAC ∠=∠=︒∴在Rt FCD ∆中,22CD FC ==∴DF∴1DE EF DF =+=【点睛】此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.2、 (1)证明过程详见解答; (2)4(04)4x y x -=<< (3)85DF =或167 【解析】【分析】(1)先证明四边形ABCD 是正方形,再证明ABE ADF ∆≅∆,从而命题得证;(2)在AD 上截取DG DF =,先证明DGF ∆是正三角形,再证明ABE AGF ∆∆∽,进一步求得结果;(3)当AE AC =时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N ,证明ABH FND ∆∆∽,AGF ABE ∠=∠,可推出12DG DF =,再证明ABE AGF ∆∆∽,可推出442DG GF -=,从而求得DF ,当6AC CE ==时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N ,作BM AC ⊥于M ,先根据1122ABC S AC BM BC AH ∆=⋅=⋅求得AH ,进而求得BH ,根据ABH FGN ∆∆∽,ABE AFF ∆∆∽,14DG GF =和412DG GF +=,从而求得DF ,根据三角形三边关系否定AE CE =,从而确定DF 的结果.(1) 解:证明:四边形ABCD 是菱形,90BAD ∠=︒,∴菱形ABCD 是正方形,90BAE ABC ADF ∴∠=∠=∠=︒,AD AB =,BAE DAF ∠=∠,()ABE ADF ASA ∴∆≅∆,AE AF ∴=;(2)解:如图1,在AD 上截取DG DF =,四边形ABCD 是菱形,60ADF ABC ∴∠=∠=︒,6AD AB ==,DGF ∴∆是正三角形,60DFG ∴∠=︒,GF DF DG x ===,120AGF ABE ∴∠=∠=︒,4AG x =-,BAE DAF ∠=∠,ABE AGF ∴∆∆∽, ∴AF AG AE AB=, 4(04)4x y x -∴=<<; (3)如图2,当AE AC =时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N ,11(42)322CH CE ∴==⨯+=,90FND AHB ∠=∠=︒,D FGD ∠=∠,2DG DN =, 431BH BC CH ∴=-=-=,四边形ABCD 是菱形,D ABC ∴∠=∠,ABH FND ∴∆∆∽,AGF ABE ∠=∠, ∴14DN BH DF AB ==, ∴12DG GF =①, BAE DAF ∠=∠,ABE AGF ∴∆∆∽, ∴AG GF AB BE=, ∴442DG GF -=②, 由①②得,85GF =, 85DF ∴=,如图3,当6AC CE ==时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N , 作BM AC ⊥于M ,132CM AC ∴==,BM ∴= 由1122ABC S AC BM BC AH ∆=⋅=⋅得,4AH =⋅,AH ∴12BH ∴, 由第一种情形知:ABH FGN ∆∆∽,ABE AFF ∆∆∽, ∴18GN BH FG AB ==,12AG AB GF BE ==, ∴14DG GF =①,412DG GF +=②, 由①②得,167GF =,7AB BE AE+>,BC BE AE ∴+>,即CE AE>,综上所述:85DF=或167.【点睛】本题考查了菱形性质,正方形的判定和性质,相似三角形的判定和性质,面积法等知识,解题的关键是作辅助线,构造相似三角形.3、 (1)4 tan3A=【解析】【分析】(1)根据直径所对的圆周角是90°可判断∠ACB=90º,再根据勾股定理求得BC的长度,从而可求得tanA的值;(2)过点B作BE⊥CD于E,根据相等的弧对应圆周角相等可得∠ACD=∠BCD=45º,从而可得Rt△BCE 为直角三角形,求得BE的值,再根据同弧所对的圆周角相等可得∠A=∠D,利用(1)中所求正切值即可求得DE的值,从而求得CD的值.(1)解:∵AB为⊙O的直径,∴∠ACB=90º,∵AB=5,AC=3,∴BC=4,3(2) 解:过点B 作BE ⊥CD 于E ,∵D 为AB 的中点,∴ AD BD =,∴ ∠ACD =∠BCD =45º,∵BC =4,在Rt △BCE 中,BE CE ==∵∠A=∠D , ∴4tan tan 3D A ==, 在Rt △BDE 中,tan 3BE DE D ===∴CD =CE +DE=2. 【点睛】本题考查圆周角定理,三角函数的应用,勾股定理等.(1)中能根据直径所对的圆周角是90°得出∠ACB =90º是解题关键;(2)中正确构造辅助线,构造直角三角形是解题关键.4、 (1)见解析(2)见解析(3)△ABC 的面积最大值为【解析】【分析】(1)连接OC ,根据BD AC ⊥,得出90BAC ABD ︒∠+∠=,根据,OB OC =得出,OBC OCB ∠=∠可得1902OBC BOC ︒∠+∠=,可得∠BAC =12BOC ∠,得出90BAC OBC ︒∠+∠=即可; (2)连接AD ,BG .根据点D ,点F 关于AC 对称,得出AC 垂直平分DF ,可得AD AF =,根据同弧所对圆周角性质D AFD ∠=∠,∠FAC =∠DAC ,得出DC GC =,∠DBC =∠GBC ,根据∠ADB =∠AGB ,∠AFD =∠BFG ,得出BF =BG ,根据∠CAG =∠CBG ,得出BC ⊥FG 即可;(3)连结OG ,CG 延长BO ,交⊙O 于H ,连结GH ,设AG 与BC 交于M ,由(2)得BF =BG =2,可证△OBG 为等边三角形,得出∠BOG =60°,根据OH =OG ,得出∠OHG =∠OGH =1302BOG ∠=︒,可得∠BAG =∠BCG =∠H =30°,利用30°直角三角形性质可得BA =2BM ,根据勾股定理在Rt △ABG 中,AG ⊥BC 于M ,AM=,设BM =x ,AM ,GM函数CM =MGx ABC 的面积最大,求出x(1)证明:如图①,连接OC ,BD AC ⊥,90AEB︒∴∠=,90BAC ABD︒∴∠+∠=,OB OC=,OBC OCB∴∠=∠,2180OBC BOC︒∴∠+∠=,∴1902OBC BOC︒∠+∠=,∵∠BAC=12BOC ∠,90BAC OBC︒∴∠+∠=,ABD OBC∴∠=∠;(2)证明:如图②,连接AD,BG.∵点D,点F关于AC对称,∴AC垂直平分DF,AD AF=,D AFD∴∠=∠,∠FAC=∠DAC,∴DC GC=,∴∠DBC=∠GBC,∵∠ADB =∠AGB ,∠AFD =∠BFG ,∴BF =BG ,∵∠CAG =∠CBG ,∵BC ⊥FG ,∴点F ,点G 关于BC 对称;(3)(3)连结OG ,CG 延长BO ,交⊙O 于H ,连结GH ,设AG 与BC 交于M ,由(2)得BF =BG =2,∵BO =GO =2=BG ,∴△OBG 为等边三角形,∴∠BOG =60°,∵OH =OG ,∴∠OHG =∠OGH =1302BOG ∠=︒, ∴∠BAG =∠BCG =∠H =30°,∴BA =2BM ,在Rt △ABG 中,AG ⊥BC 于M ,AM,设BM =x ,∴AM ,GM ,∴CM =MG∴S △ABC =S △ABM +S △ACM =111222BM AM CM AM x ⨯+⨯=,∴当x ABC 的面积最大,∴解得xS △ABC 最大=2S △ABM =2212x ⨯⨯==【点睛】本题考查直线垂直性质,互余性质,等腰三角形内角和性质,轴对称性质,线段垂直平分线性质,等腰三角形性质,同和所对圆周角性质,等边三角形判定与性质,30°直角三角形性质,勾股定理,三角形面积公式,锐角三角函数,函数最值等知识,通过辅助线画出准确图形是解题关键.5、 (1)作图见解析(2)OC ,同弧所对的圆周角相等【解析】【分析】(1)按照步骤作图即可(2)由垂直平分线性质,以及圆周角性质补全证明过程即可. (1)如图所示(2)证明:连接OA、OC.∵AB=BC,BD平分∠ABC,∴BD⊥AC且AD=CD.∴OA=OC.∵EF是线段BC的垂直平分线,∴OB=OC.∴OB=OA.∴⊙O为△ABC的外接圆.∵点P在⊙O上,∴∠BPC=∠BAC(同弧所对的圆周角相等).【点睛】本题考查了尺规作图、线段垂直平分线性质、圆周角性质,线段垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等,圆周角性质推论:同弧或等弧所对的圆周角相等.。
九年级上学期数学《圆》单元测试卷带答案
④平行四边形是中心对称图形,它只有一个对称中心,就是两条对角线的交点,故④正确;
⑤等边三角形是轴对称图形,故⑤错误;
故答案为:D.
[点睛]本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点, ;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点, ;
(3)相离:直线和圆没有公共点时,叫做直线和圆相离, .(D为圆心到直线的距离)
4.如图,已知A B、A D是⊙O的弦,∠B=30°,点C在弦A B上,连接CO并延长交⊙O于点D,∠D=30°,则∠B A D的度数是()
A.30°B.40°C.50°D.60°
[答案]D
[解析]
[分析]
连接 ,根据圆的半径相等证明 , ,即可得到结论.
详解]解:连接 ,
∵ ,
∴ ,
∵ ,
∴ ,
∴ ,
故答案为:D.
[点睛]本题考查同圆半径相等的性质.关键是利用同圆半径相等作辅助线构造等腰三角形.
5.如图,A B为⊙O的弦,A B=8,OC⊥A B于点D,交⊙O于点C,且C D=1,则⊙O的半径为()
④平行四边形是中心对称图形,它只有一个对称中心,就是两条对角线的交点;
⑤等边三角形既是中心对称,又是轴对称图形.
A.①②④B.③④C.①③⑤D.①④
7.在正六边形A B C DEF的中,若BE=,则这个正六边形外接圆半径是()
A. B. 5C. D. 5
人教版九年级上册数学《圆》单元测试卷(含答案)
人教版九年级上册数学《圆》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图,边长为1的菱形ABCD 绕点A 旋转,当B C ,两点恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于( )A .6π B .4π C .3π D .2π2.已知和的半径分别为1和,如果两圆的位置关系为相交,那么圆心距的取值范围在数轴上表示正确的是( ) A . B . C .D .3.如图,35BAC ∠=︒,40CED ∠=︒,则BOD ∠的度数是( )A .75︒B .80︒C .150︒D .135︒4.如图,O 中,弦AB CD 、相交于点P 若3070A APD ∠=︒∠=︒,,则B ∠等于( )A.30︒B.35︒C.40︒D.50︒FDCBEA1O 2O 412O OC5.已知在直角坐标系中,以点为圆心,以为半径作,则直线()与的位置关系是( ) A .相切 B .相交 C .相离 D .与值有关6.如图,一量角器放置在AOB ∠上,角的一边OA 与量角器交于点C 、D ,且点C处的度数是20︒,点D 处的度数为110°,则AOB ∠的度数是( ) A 、20° B 、25° C 、45° D 、55°7.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,A 的半径为2.下列说法中不正确的是( ) A .当5a <时,点B 在A 内 B .当5a 1<<点B 在A 内 C .当a <1时,点B 在A 外 D .当5a >时,点B 在A 外8.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .9.如图,⊙O 是△ABC 的外接圆,已知∠B=60°,则∠CAO 的度数是( )B()03A ,3A 2y kx =+0k ≠Ak D AOB 12024πcm 26πcm 29πcm 212πcm OBA6cm120°A .15︒B .30︒ C.40︒ D .60︒10.如图所示,点A 、B 、P 在O 上,且50APB ∠=︒.若点M 是O 上的动点,要使ABM ∆为等腰三角形,则所有符合条件的点M 有( ) A .1 个 B .2 个 C .2 个 D .4个二 、填空题(本大题共5小题,每小题3分,共15分)11.如图,CD 是O 的直径,弦AB CD ⊥于点H ,若30D ∠=︒,1CH cm =,则AB =12.一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为______.13.将ABC △绕点B 逆时针旋转到A BC ''△使A B C '、、在同一直线上,若90BCA ∠=°,4cm 30AB BAC ︒=∠=,,则图中阴影部分面积为 cm 2.14.如图,O 的两条弦AB CD 、互相垂直,垂足为E ,且AB CD =,已知PDC13CE ED ==,,则O 的半径是15.已知:如图,直角ABC ∆中,90ACB ∠=︒,1AC BC ==,DEF 的圆心为A ,如果图中两个阴影部分的面积相等,那么AD 的长是 (结果不取近似值).三 、解答题(本大题共7小题,共55分)16.如图,点A B ,在直线MN 上,11AB =厘米,A B ,的半径均为1厘米.A 以每秒2厘米的速度自左向右运动,与此同时,B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为1r t =+(0)t ≥.(1)试写出点A B ,之间的距离d (厘米)与时间t (秒)之间的函数表达式; (2)问点A 出发后多少秒两圆相切?17.已知:如图,点C 在以AB 为直径的⊙O 上,点D 在AB 的延长线上,BCD A ∠=∠.(1)求证:CD 为⊙O 的切线;(2) 过点C 作CE AB ⊥于E .若42,cos 5CE D ==,求⊙O 的半径.FC B18.从ABC △的顶点A 到BC 引垂线AD ,从D 向AB 、AC 引垂线DE DF 、,垂足为E F 、,求证:B E F C 、、、四点共圆.19.已知:如图,AB 为O 的直径,弦AC OD ∥,BD 切O 于B ,联结CD .(1)判断CD 是否为O 的切线,若是请证明;若不是请说明理由. (2)若2AC =,6OD =,求O 的半径.20.如图,在中,直径垂直于弦,垂足为,连接,将沿翻折得到,直线与直线相交于点.若,求的长.DCFEDCBAODCABO AB CD E AC ACD △ACACF △FC AB G 2OB BG ==CD21.如图,在△ABC 中,分别以AB ,AC 为直径在△ABC 外作半圆1O 和半圆2O ,其中1O 和2O 分别为两个半圆的圆心.F 是边BC 的中点,点D 和点E 分别为两个半圆圆弧的中点.过点A 作半圆2O 的切线,交CE 的延长线于点Q ,过点Q 作直线FA 的垂线,交BD 的延长线于点P ,连结PA . 求证:PA 是半圆1O 的切线.22.正方形ABCD 的四个顶点都在O 上,E 是O 上的一点.(1)如图①,若点E 在AB 上,F 是DE 上的一点,DF BE =.求证:ADF ABE ≌△△;(2)在(1)的条件下,小明还发现线段DE BE AE 、、之间满足等量关系:DE BE -.请你说明理由;(3)如图②,若点E 在AD 上.写出线段DE BE AE 、、之间的等量关系.(不必证明)Q图1 图2人教版九年级上册数学《圆》单元测试卷答案解析一 、选择题1.C;【解析】连接AC ,根据菱形的性质得知1AB BC ==,由于在扇形AEF 中,AB AC ,均为半径,故1AB AC ==,所以得知ABC ∆是等边三角形.所以弧BC的长度就可以看做是A Θ周长的16去计算了. 2.A;∵,,∴, ∴数轴上表示为.【解析】根据两圆的位置关系是相交,则这两个圆的圆心距d 大于两半径之差小于两半径之和,从而解决问题.【点评】本题考查了由两圆半径和圆心距之间数量关系判断两圆位置关系的方法.3.D;35BAC ∠=︒,40CED ∠=︒.BC ∴所对圆心角为70︒.CD 所对的圆心角为80︒.∴150BOD ∠=︒ .【解析】考查同弧所对圆周角是圆心角的一半.4.C;同弧所对的圆周角相等,30,180110,D A BPD APD ∠=∠=︒∠=︒-∠=︒ 在BPD ∆中,18040B BPD D ∠=︒-∠-∠=︒.5.B;因为直线与y 轴的交点是,所以. 则圆心到直线的距离一定小于1,所以直线和一定相交.故选. 【解析】要判断直线()与的位置关系,只需求得直线和轴的交点与圆心的距离,再根据点到直线的所有线段中,垂线段最短,进行分析.【点评】考查了直线和圆的位置关系与数量之间的联系. 6.B;【解析】连接CE 、ED∵角的一边OA 与量角器交于点C 、D ,且点C 处的度数是20°,点D 处的度数为110°,413-=415+=35P <<A 2y kx =+()02B ,1AB =A B 2y kx =+0k ≠A y即4∠=20°,OED ∠=110°,∴∠3=∠OED -∠4=110°-20°=90°. ∴∠1=∠2=45°,∠5=∠2+∠3=45°+90°=135° 故∠AOB =180°-∠5-∠4=180°-135°-20°=25° 故选B .7.A;由图可知B .当5a 1<<时点B 在A 内;当5a =或1时点B 在A 上;当a <1或5a >,点B 在A 外8.D;【解析】此题考查的是扇形的面积公式:2360n R S π=︒,把题中的已知条件带入求解即可. 9.B;【解析】此题综合考查了圆周角定理和三角形的内角和定理解:连接OC ,由圆周角定理,得2120AOC B ∠=∠=︒,OAC ∆中,OA OC =, ∴30CAO ACO ∠=∠=︒. 10.D【解析】50APB ∠=︒,∴弦AB 不是直径,APB ∆不是等边三角形.(1)当MA MB =时,MAB ∆是等腰三角形,这时M 点是弦AB 的垂直平分线与圆O 的交点,有两个;(2)当AB AM =时,这样的M 点只有一个.(3)当AB MB =时,这样的M 点只有一个.综上可得符合条件的点M 有4个.二 、填空题11.cm【解析】利用直径所对圆周角是90︒.CB连结AC ,90CAD ∠=︒,30D ∠=︒,∴60ACD ∠=︒,在Rt AHC ∆中,tan 60AH CH =︒=2AB AH ∴==12.2cm 或3cm .【关键词】分类讨论思想 【解析】(1)当点在圆外时,512cm 2r -==,(2)当点在圆内时,513cm 2r +==.13.3π;【解析】此题需要把BC 所在的圆补充完整,设它与线段AB 的交点为D ,与'A B 的交点为E .从而看出整个阴影部分可以割补成扇形'ABA 的面积-扇形BDE 的面积.即221(42)34ππ-=.14.;作OF CD ⊥于F ,OG AE ⊥于G ,由垂径定理得,11(13)222CD DF CD ===+=1.OF EF ∴==连结OD ,在ODF ∆中,由勾股定理得,OD =.【解析】利用ABC ADF S S =扇形△三 、解答题16.(1)211d t =-;(2)点A 出发后3秒、113秒、11秒、13秒两圆相切.DC【解析】(1)当0 5.5t ≤≤时,函数表达式为112d t =-; 当 5.5t >时,函数表达式为211d t =-. (2)两圆相切可分为如下四种情况:①当两圆第一次外切,由题意,可得112113t t t -=++=,; ②当两圆第一次内切,由题意,可得11112113t t t -=+-=,; ③当两圆第二次内切,由题意,可得2111111t t t -=+-=,; ④当两圆第二次外切,由题意,可得2111113t t t -=++=,. 所以,点A 出发后3秒、113秒、11秒、13秒两圆相切. 17.(1)证明:连接CO .∵AB 是⊙O 直径, ∴190OCB ∠+∠=︒. ∵AO CO =,∴1A ∠=∠.∵5A ∠=∠, ∴590OCB ∠+∠=︒. 即90OCD ∠=︒. ∴OC CD ⊥.又∵OC 是⊙O 半径, ∴CD 为⊙O 的切线. (2)∵OC CD ⊥于C , ∴390D ∠+∠=︒. ∵CE AB ⊥于E , ∴3290∠+∠=︒. ∴2D ∠=∠. ∴cos 2cos D ∠=.DC在△OCD 中,90OCD ∠=︒, ∴cos 2CECO∠=, ∵4cos 5D =,2CE =, ∴245CO =. ∴52CO =. ∴⊙O 的半径为5218.∵180AED AFD ∠+∠=︒∴A E D F 、、、四点共圆,∴AFE ADE ∠=∠,又∵AD BC DE AB ⊥⊥,∴ADE ABC ∠=∠,∴AFE ABC ∠=∠,∴B E F C 、、、四点共圆【解析】结合双垂直ABD △及四点共圆A E D F 、、、即可得出答案 19.(1)判断:CD 是O 的切线证明:联结OC ∵ AC OD ∥∴A BOD ∠=∠,ACO COD ∠=∠ ∵ OA OC = ∴A ACO ∠=∠∴BOD COD ∠=∠∵ OB OC =, OD 为公共边∴BOD COD ∆∆≌ ∴B OCD ∠=∠∵ BD 是O 的切线,AB 为直径∴ ∠90ABD =︒ ∴ ∠90OCD =︒∴ CD 是O 的切线 (2) 联结BC 交OD 于E ∵ CD 和BD 都是O 的切线 ∴CD =BD ,CDO BDO ∠=∠∴ BC ⊥OD ,BE CE =,90OBD ∠=︒∴OBE ODB ∆∆∽ ∴OB OEOD OB=由BE CE =, OA OB =得OE 为ABC ∆的中位线即112OE AC == ∴16OB OB=得OB =(舍负) ∴O .20.连接∵,∴.由翻折得,,. ∴,∴. ∴. ∴直线与相切. 在中,, ∴.在中,. ∵直径垂直于弦, ∴.【解析】连接,证即可.根据题意,证可得,从而,得证;根据垂径定理可求后求解.在中,根据三角函数可得.结合求,从而得解. 【点评】此题考查了切线的判定、垂径定理、解直角三角形等知识点,难度中等.21.设直线FA 与PQ 的垂足为M ,过C 作CS ⊥MF 于S ,过B 作BR ⊥MF 于R ,连接DR 、AD 、DMCO OA OC =12∠=∠13∠=∠90F AEC ∠=∠=︒23∠=∠OC AF ∥90OCG F ∠=∠=︒FC O Rt OCG △1cos 22OC OC COG OG OB ∠===60COG ∠=︒Rt OCE△sin 602CE OC =⋅︒==ABCD 2CD CE ==OC OC FG ⊥AF FG ⊥FAC ACO ∠=∠OC AF ∥OC FG ⊥CE Rt OCG △60COG ∠=︒2OC =CE.∵F 是BC 边的中点,∴ABF ACF S S △△.∴BR=CS , 由(2)已证∠CAQ=90°, AC=AQ, ∴∠2+∠3=90°.∵FM ⊥PQ, ∴∠2+∠1=90°, ∴∠1=∠3. 同理:∠2=∠4, ∴AMQ CSA △≌△. ∴AM=CS, ∴AM=BR.同(2)可证AD=BD ,∠ADB=∠ADP=90°, ∴∠ADB=∠ARB=90°, ∠ADP=∠AMP=90°.∴A 、D 、B 、R 四点在以AB 为直径的圆上,A 、D 、P 、M 四点在以AP 为直径的圆上,且∠DBR+∠DAR=180°, ∴∠5=∠8, ∠6=∠7, ∵∠DAM+∠DAR=180°, ∴∠DBR=∠DAM. ∴DBR DAM △≌△. ∴∠5=∠9. ∴∠RDM=90°. ∴∠5+∠7=90°.∴∠6+∠8=90°. ∴∠PAB=90°. ∴PA ⊥AB.又AB 是半圆1O 直径, ∴PA 是半圆1O 的切线.【解析】利用BRF CSF ≌△△得出BR CS =,然后利用ASC QMA ≌△△得出CS AM =,即可得BR AM =,然后证出DBR DAM ≌△△,得出59∠=∠,然后利用两次四点共圆,得出58∠=∠,9APM ∠=∠,即得到8APM ∠=∠,即PA AB ⊥ 22.(1)在正方形ABCD 中,AB AD =∵12DF BE =∠=∠,, ∴ADF ABE ≌△△.(2)由(1)有ADF ABE ≌△△,∴34AF AE =∠=∠,. 在正方形ABCD 中,90BAD ∠=︒. ∴390BAF ∠+∠=︒. ∴490BAF ∠+∠=︒. ∴90EAF ∠=︒.∴EAF △是等腰直角三角形. ∴222EF AE AF =+. ∴222EF AE =.∴EF =.即DE DF -=.∴DE BE -.(3)BE DE -.理由如下:在BE 上取点F ,使BF DE =,连接AF . 易证ADE ABF ≌△△,∴AF AE DAE BAF =∠=∠,,在正方形ABCD 中,90BAD ∠=︒. ∴90BAF DAF ∠+∠=︒. ∴∠DAE+∠DAF=90°. ∴90EAF ∠=︒.∴EAF △是等腰直角三角形. ∴222EF AE AF =+. ∴222EF AE =.∴EF =.即BE BF -=.∴BE DE -.【解析】(1)中易证AD AB =,EB DF =,所以只需证明ADF ABE ∠=∠,利用同弧所对的圆周角相等不难得出,从而证明全等;(2)中易证AEF △是等腰直角三角形,所以EF =,所以只需证明DE BE EF -=即可,由BE DF =不难证明此问题;(3)类比(2)不难得出(3)的结论.【点评】本题主要考查圆周角定理,全等三角形的判定及勾股定理,难度适中.。
九年级上册数学《圆》单元测试卷(附答案)
17.如图,半圆O的直径AE=4,点B,C,D均在半圆上.若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为.
18.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是 中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).
又∵∠AOD=30°,r=1cm
∴在△OEP1中OP1=2PE=2×1=2cm
又∵OP=6cm
∴P1P=6-2=4cm
∴圆P到达圆P1需要时间为:4÷1=4(s),
同理,当圆P在直线CD的右侧时,所需的时间为(6+2)÷1=8(s).
综上可知:P与直线CD相切时,时间为4s或8s,
故选D.
点睛:P与CD相切应有两种情况,一种是在射线OA上,另一种在射线OB上,设对应的圆的圆心分别在P1,P2两点.当P在P1点时,根据切线的性质,在直角△O P1E中,由30°的角所对的直角边等于斜边的一半,即可求得O P1的长,进而求得P P1的长,从而求得由P到P1移动的时间;根据O P2=O P1,即可求得P P2,也可以求得求得由P到P2移动的时间.
4.如图,在⊙O中, = ,∠AOB=40°,则∠ADC的度数是()
A 40°B. 30°C. 20°D. 15°
【答案】C
【解析】
【详解】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.
解:∵在⊙O中, = ,
∴∠AOC=∠AOB,
∵∠AOB=40°,
人教版九年级数学上册 《第24章圆》单元测试含答案解析
《第24章圆》一、填空题1.已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为()A.40° B.80° C.160°D.120°2.点P在⊙O内,OP=2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1cm B.2cm C. cm D. cm3.已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定4.如图:点A、B、C、D为⊙O上的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O的路线做匀速运动.设运动的时间为t秒,∠APB的度数为y.则下列图象中表示y与t之间函数关系最恰当的是()A.B.C.D.5.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切6.如图,⊙O的直径AB与弦AC的夹角为30°,切线CD与AB的延长线交于点D,若⊙O的半径为2,则CD的长为()A.2 B.4 C.2 D.47.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠DOR的度数是()A.60 B.65 C.72 D.758.如图,⊙A,⊙B,⊙C,⊙D,⊙E互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积是()A.πB.1.5πC.2πD.2.5π二、选择题9.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为.10.如图,在△ABC中,∠A=90°,AB=AC=2cm,⊙A与BC相切于点D,则⊙A的半径长为cm.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形性质描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB⊥弦CD于点E,设AE=x,BE=y,用含x,y 的式子表示图中的弦CD的长度),通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数x,y的不等式,你也能发现这个不等式吗?写出你发现的不等式.12.如图,∠AOB=30°,OM=6,那么以M为圆心,4为半径的圆与直OA的位置关系是.13.如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC= cm.14.阅读下面材料:在数学课上,老师请同学思考如下问题:小亮的作法如下:老师说:“小亮的作法正确.”请你回答:小亮的作图依据是.三、解答题(7+7+8+8)15.已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.求证:(1)△ABC是等边三角形;(2).16.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB= 寸,CD= 寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.17.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.18.如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE ⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为4,求EF的长度.《第24章圆》(北京市西城区重点中学)参考答案与试题解析一、填空题1.已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为()A.40° B.80° C.160°D.120°【考点】三角形的外接圆与外心.【分析】根据圆周角定理得∠BOC=2∠A=160°.【解答】解:∵点O为△ABC的外心,∠A=80°,∴∠BOC=2∠A=160°.故选C.【点评】熟练运用圆周角定理计算,即在同圆或等圆中同弧所对的圆周角等于它所对的圆心角的一半.2.点P在⊙O内,OP=2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1cm B.2cm C. cm D. cm【考点】垂径定理;勾股定理.【专题】计算题.【分析】过P作AB⊥OP交圆与A、B两点,连接OA,故AB为最短弦长,再解Rt△OPA,即可求得AB的长度,即过点P的最短弦的长度.【解答】解:过P作AB⊥OP交圆与A、B两点,连接OA,如下图所示:故AB为最短弦长,由垂径定理可得:AP=PB已知OA=3,OP=2在Rt△OPA中,由勾股定理可得:AP2=OA2﹣OP2∴AP==cm∴AB=2AP=2cm故此题选D.【点评】本题考查了最短弦长的判定以及垂径定理的运用.3.已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定【考点】点与圆的位置关系.【分析】根据题意可知点P可能在圆外也可能在圆上,也可能在圆内,所以无法确定.【解答】解:∵PA=,⊙O的直径为2∴点P的位置有三种情况:①在圆外,②在圆上,③在圆内.故选D.【点评】本题考查了圆的认识,做题时注意多种情况的考虑.4.如图:点A、B、C、D为⊙O上的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O的路线做匀速运动.设运动的时间为t秒,∠APB的度数为y.则下列图象中表示y与t之间函数关系最恰当的是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意,分P在OC、CD、DO之间3个阶段,分别分析变化的趋势,又由点P作匀速运动,故①③都是线段,分析选项可得答案.【解答】解:根据题意,分3个阶段;①P在OC之间,∠APB逐渐减小,到C点时,为45°,②P在CD之间,∠APB保持45°,大小不变,③P在DO之间,∠APB逐渐增大,到O点时,为90°;又由点P作匀速运动,故①③都是线段;分析可得:B符合3个阶段的描述;故选:B.【点评】本题主要考查了函数图象与几何变换,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.5.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切【考点】直线与圆的位置关系;坐标与图形性质.【分析】本题应将该点的横纵坐标分别与半径对比,大于半径的相离,等于半径的相切.【解答】解:∵是以点(2,3)为圆心,2为半径的圆,如图所示:∴这个圆与y轴相切,与x轴相离.故选A.【点评】直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.6.如图,⊙O的直径AB与弦AC的夹角为30°,切线CD与AB的延长线交于点D,若⊙O的半径为2,则CD的长为()A.2 B.4 C.2 D.4【考点】切线的性质.【专题】压轴题.【分析】连接OC,BC,AB是直径,CD是切线,先求得∠OCD=90°再求∠COB=2∠A=60°,利用三角函数即可求得CD的值.【解答】解:连接OC,BC,AB是直径,则∠ACB=90°,∵CD是切线,∴∠OCD=90°,∵∠A=30°,∴∠COB=2∠A=60°,CD=OC•tan∠COD=2.故选A.【点评】本题利用了切线的性质,直径对的圆周角是直角求解.7.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠DOR的度数是()A.60 B.65 C.72 D.75【考点】三角形的外接圆与外心;等边三角形的性质;正方形的性质.【分析】根据等边三角形和正方形的性质,求得中心角∠POR和∠POD,二者的差就是所求.【解答】解:连结OD,如图,∵△PQR是⊙O的内接正三角形,∴PQ=PR=QR,∴∠POR=×360°=120°,∵四边形ABCD是⊙O的内接正方形,∴∠AOD=90°,∴∠DOP=×90°=45°,∴∠AOQ=∠POR﹣∠DOP=75°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.8.如图,⊙A,⊙B,⊙C,⊙D,⊙E互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积是()A.πB.1.5πC.2πD.2.5π【考点】扇形面积的计算;多边形内角与外角.【专题】压轴题.【分析】圆心角之和等于五边形的内角和,由于半径相同,那么根据扇形的面积2公式计算即可.【解答】解:图中五个扇形(阴影部分)的面积是=1.5π故选B.【点评】解决本题的关键是把阴影部分当成一个扇形的面积来求,圆心角为五边形的内角和.二、选择题9.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为(2,0).【考点】确定圆的条件;坐标与图形性质.【专题】网格型.【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故答案为:(2,0)【点评】能够根据垂径定理的推论得到圆心的位置.10.如图,在△ABC中,∠A=90°,AB=AC=2cm,⊙A与BC相切于点D,则⊙A的半径长为cm.【考点】切线的性质.【专题】压轴题.【分析】连接AD,则有AD是△ABC的斜边上的高,可判定△ABC是等腰直角三角形,所以BC=AB=2,利用点D是斜边的中点,可求AD=BC=cm.【解答】解:连接AD;∵∠A=90°,AB=AC=2cm,∴△ABC是等腰直角三角形,∴BC=AB=2;∵点D是斜边的中点,∴AD=BC=cm.【点评】本题利用了切线的性质,等腰直角三角形的判定和性质求解.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形性质描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB⊥弦CD于点E,设AE=x,BE=y,用含x,y 的式子表示图中的弦CD的长度),通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数x,y的不等式,你也能发现这个不等式吗?写出你发现的不等式.【考点】垂径定理的应用.【专题】数形结合.【分析】此题中隐含的不等关系:直径是圆中最长的弦,所以AB≥CD.首先可以表示出AB=x+y,再根据相交弦定理的推论和垂径定理,得CD=2CE=2.【解答】解:∵直径AB⊥弦CD于点E,∴CE=DE,根据相交弦定理的推论,得CE2=AE•BE,则CE=,∴CD=2CE=2.又∵AB=x+y,且AB≥CD,∴x+y≥2.【点评】本题考查:直径是圆中最长的弦;相交弦定理的推论以及垂径定理的综合应用.12.如图,∠AOB=30°,OM=6,那么以M为圆心,4为半径的圆与直OA的位置关系是相交.【考点】直线与圆的位置关系.【分析】利用直线l和⊙O相切⇔d=r,进而判断得出即可.【解答】解:过点M作MD⊥AO于点D,∵∠AOB=30°,OM=6,∴MD=3,∴MD<r∴以点m为圆心,半径为34的圆与OA的位置关系是:相交.故答案为:相交.【点评】此题主要考查了直线与圆的位置,正确掌握直线与圆相切时d与r的关系是解题关键.13.如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC= 8cm.【考点】圆周角定理.【专题】压轴题.【分析】结合等腰三角形的性质、圆周角定理、三角形的内角和定理求得三角形AOC是等腰直角三角形,再根据勾股定理即可求解.【解答】解:连接OC.∵OA=OC,∴∠OAC=∠OCA.又∵∠B=∠OAC=∠AOC,∴∠AOC=90°.∴AC=OA=8cm.【点评】此题综合运用了等腰三角形的性质、圆周角定理、三角形的内角和定理以及勾股定理.14.阅读下面材料:在数学课上,老师请同学思考如下问题:小亮的作法如下:老师说:“小亮的作法正确.”请你回答:小亮的作图依据是垂径定理.【考点】垂径定理的应用;作图—复杂作图.【分析】利用垂径定理得出任意两弦的垂直平分线交点即可.【解答】解:根据小亮作图的过程得到:小亮的作图依据是垂径定理.故答案是:垂径定理.【点评】此题主要考查了复杂作图以及垂径定理,熟练利用垂径定理的性质是解题关键.三、解答题(7+7+8+8)15.已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.求证:(1)△ABC是等边三角形;(2).【考点】等边三角形的判定;圆周角定理.【专题】证明题.【分析】(1)连接OD,根据切线的性质得到OD⊥DE,从而得到平行线,得到∠ODB=∠A,∠ODB=∠B,则∠A=∠B,得到AC=BC,从而证明该三角形是等边三角形;(2)再根据在圆内直径所对的角是直角这一性质,推出30°的直角三角形,根据30°所对的直角边是斜边的一半即可证明.【解答】证明:(1)连接OD,得OD∥AC;∴∠BDO=∠A;又OB=OD,∴∠OBD=∠ODB;∴∠OBD=∠A;∴BC=AC;又∵AB=AC,∴△ABC是等边三角形;(2)如上图,连接CD,则CD⊥AB;∴D是AB中点;∵AE=AD=AB,∴EC=3AE;∴AE=CE.【点评】本题中作好辅助线是解题的关键,连接过切点的半径是圆中常见的辅助线作法之一.另外还要掌握等边三角形的判定和性质以及30°的直角三角形的性质.16.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB= 1 寸,CD= 10 寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.【考点】垂径定理的应用;勾股定理.【分析】根据题意容易得出AB和CD的长;连接OB,设半径CO=OB=x寸,先根据垂径定理求出CA 的长,再根据勾股定理求出x的值,即可得出直径.【解答】解:根据题意得:AB=1寸,CD=10寸;故答案为:1,10;(2)连接CO,如图所示:∵BO⊥CD,∴.设CO=OB=x寸,则AO=(x﹣1)寸,在Rt△CAO中,∠CAO=90°,∴AO2+CA2=CO2.∴(x﹣1)2+52=x2.解得:x=13,∴⊙O的直径为26寸.【点评】本题考查了勾股定理在实际生活中的应用;根据题意作出辅助线,构造出直角三角形,运用勾股定理得出方程是解答此题的关键.17.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.【考点】圆心角、弧、弦的关系.【专题】几何综合题.【分析】(1)根据垂径定理知,弧CD=2弧BC,由圆周角定理知,弧BC的度数等于∠BOC的度数,弧AD的度数等于∠CPD的2倍,可得:∠CPD=∠COB;(2)根据圆内接四边形的对角互补知,∠CP′D=180°﹣∠CPD,而:∠CPD=∠COB,∴∠CP′D+∠COB=180°.【解答】(1)证明:连接OD,∵AB是直径,AB⊥CD,∴.∴∠COB=∠DOB=∠COD.又∵∠CPD=∠COD,∴∠CPD=∠COB.(2)解:∠CP′D+∠COB=180°.理由如下:连接OD,∵∠CPD+∠CP′D=180°,∠COB=∠DOB=∠COD,又∵∠CPD=∠COD,∴∠COB=∠CPD,∴∠CP′D+∠COB=180°.【点评】本题利用了垂径定理和圆周角定理及圆内接四边形的性质求解.18.如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE ⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为4,求EF的长度.【考点】切线的判定;等边三角形的性质.【分析】(1)连接OD,根据等边三角形的性质求出∠ODE=90°,根据切线的判定定理证明即可;(2)连接AD,BF,根据等边三角形的性质求出DC、CF,根据直角三角形的性质求出EC,结合图形计算即可.【解答】(1)证明:如图1,连接OD,∵△ABC是等边三角形,∴∠B=∠C=60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE⊥OD于点D.∵点D在⊙O上,∴DE是⊙O的切线;(2)解:如图2,连接AD,BF,∵AB为⊙O直径,∴∠AFB=∠ADB=90°.∴AF⊥BF,AD⊥BD.∵△ABC是等边三角形,∴,.∵∠EDC=30°,∴.∴FE=FC﹣EC=1.人教版九年级数学【点评】本题考查的是切线的判定、等边三角形的性质以及直角三角形的性质,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.。
九年级上学期数学《圆》单元综合测试题(含答案)
(2)求阴影部分面积.
21.如图,四边形A B C D内接于⊙O,A B是⊙O的直径,A C和B D相交于点E,且D C2=CE•C A.
(1)求证:B C=C D;
(2)分别延长A B,D C交于点P,过点A作AF⊥C D交C D 延长线于点F,若PB=OB,C D= ,求圆O的半径.
A.130°B.65°C.50°或130°D.65°或115°
7.边长分别等于6Cm、8Cm、10Cm的三角形的内切圆的半径为()Cm.
A. B. C. D.
8.如图,已知⊙O是等腰Rt△A B C的外接圆,点D是 上一点,B D交A C于点E,若B C=4,A D= ,则AE的长是()
A.1B.1.2C.2D.3
[答案]4π
[解析]
[分析]
根据弧长的计算公式计算可得答案.
[详解]解:由弧长计算公式为:
可得: = =4 ,
故本题正确答案为4 .
[点睛]本题主要考查弧长的计算,其中弧长公式为: .
11.用一个半径为3Cm,圆心角为120 的扇形围成一个圆锥的侧面,则圆锥的高为______Cm.
[答案]
[解析]
A. B. C. D.
[答案]A
[解析]
试题分析:过点O作OD⊥A B,则OD= ,∴A D= ,∴PD=AP-A D=x- ;
∴ = ,根据垂径定理可得: = -4= ,即y= (0≤x≤5)
考点:二次函数的应用、勾股定理、切线的性质
二、填空题
10.在半径为6Cm的圆中,120°的圆心角所对的弧长为_____Cm.
22.如图,已知四边形A B C D内接于⊙O,点E在C B 延长线上,连结A C、AE,∠A C B=∠B AE=45°.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆基础知识+两套题附参考答案与圆有关的位置关系1.点与圆的位置关系共有三种:① 点在圆外 ,② 点在圆上 ,③ 点在圆内 ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为: ①d > r ,②d = r ,③d < r.2.直线与圆的位置关系共有三种:① 相交 ,② 相切 ,③ 相离 ; 对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为: ①d < r ,②d = r ,③d > r.3.圆与圆的位置关系共有五种:① 内含 ,② 相内切 ,③ 相交 ,④ 相外切 ,⑤ 外离 ; 两圆的圆心距d 和两圆的半径R 、r (R ≥r )之间的数量关系分别为:①d < R-r ,②d = R-r ,③ R-r < d < R+ r ,④d = R+r ,⑤d > R+r. 4.圆的切线 垂直于 过切点的半径;经过 直径 的一端,并且 垂直于 这条 直径 的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。
与圆有关的计算1.圆的周长为 2πr ,1°的圆心角所对的弧长为 180rπ ,n °的圆心角所对的弧长为 180r n π ,弧长公式为180rn l π=n 为圆心角的度数上为圆半径) .2. 圆的面积为 πr 2,1°的圆心角所在的扇形面积为 3602r π ,n °的圆心角所在的扇形面积为S= 360n 2R π⨯ = r l 21(n 为圆心角的度数,R 为圆的半径). 3.圆柱的侧面积公式:S= 2 πr l (其中r 为 底面圆 的半径 ,l 为 圆柱 的高.) 4. 圆锥的侧面积公式:S=πr l (其中r 为 底面 的半径 ,l 为 母线 的长.) 圆锥的侧面积与底面积之和称为圆锥的全面积A 组一、选择题(每小题3分,共45分)1.在△ABC 中,∠C=90°,AB =3cm ,BC =2cm,以点A 为圆心,以2.5cm 为半径作圆,则点C 和⊙A 的位置关系是( )。
A .C 在⊙A 上 B.C 在⊙A 外C .C 在⊙A 内 D.C 在⊙A 位置不能确定。
2.一个点到圆的最大距离为11cm ,最小距离为5cm,则圆的半径为( )。
A .16cm 或6cm B.3cm 或8cm C .3cm D.8cm 3.AB 是⊙O 的弦,∠AOB =80°则弦AB 所对的圆周角是( )。
A .40° B.140°或40° C .20° D.20°或160° 4.O 是△ABC 的内心,∠BOC 为130°,则∠A 的度数为( )。
A .130° B.60° C .70° D.80°5.如图1,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是( )。
A .55° B.60° C .65° D.70°6.如图2,边长为12米的正方形池塘的周围是草地,池塘边A 、B 、C 、D 处各有一棵树,且AB=BC=CD=3米.现用长4米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在( )。
A . A 处 B . B 处 C .C 处 D .D 处图1 图27.已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是( )。
A .内含 B.内切 C .相交 D. 外切 8.已知半径为R 和r 的两个圆相外切。
则它的外公切线长为( )。
A .R +r B.R 2+r 2C .R+r D.2Rr 9.已知圆锥的底面半径为3,高为4,则圆锥的侧面积为( )。
A.10π B .12π C.15π D.20π 10.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( )。
A .3B .4C .5D .6 11.下列语句中不正确的有( )。
①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦③圆是轴对称图形,任何一条直径都是它的对称轴 ④长度相等的两条弧是等弧A .3个 B.2个 C .1个 D.4个 12.先作半径为23的第一个圆的外切正六边形,接着作上述外切正六边形的外接圆,再作上述外接圆的外切正六边形,…,则按以上规律作出的第8个外切正六边形的边长为( )。
A .7)332(B.8)332( C .7)23( D.8)23( 13.如图3,⊿ABC 中,∠C=90°,BC=4,AC=3,⊙O 内切于⊿ABC ,则阴影部分面积为( ) A .12-π B.12-2π C .14-4π D.6-π14.如图4,在△ABC 中,BC =4,以点A 为圆心、2为半径的⊙A 与BC 相切于点D ,交AB于E ,交 AC 于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是( )。
A .4-94π B .4-98π C .8-94π D .8-98π15.如图5,圆内接四边形ABCD 的BA 、CD 的延长线交于P ,AC 、BD 交于E ,则图中相似三角形有( )。
A .2对 B.3对 C .4对 D.5对图3 图4 图5二、填空题(每小题3分,共30分)1.两圆相切,圆心距为9 cm ,已知其中一圆半径为5 cm ,另一圆半径为_____.2.两个同心圆,小圆的切线被大圆截得的部分为6,则两圆围成的环形面积为_________。
3.边长为6的正三角形的外接圆和内切圆的周长分别为_________。
4.同圆的外切正六边形与内接正六边形的面积之比为_________。
5.矩形ABCD 中,对角线AC =4,∠ACB =30°,以直线AB 为轴旋转一周得到圆柱的表面积是_________。
6.扇形的圆心角度数60°,面积6π,则扇形的周长为_________。
7.圆的半径为4cm ,弓形弧的度数为60°,则弓形的面积为_________。
8.在半径为5cm 的圆内有两条平行弦,一条弦长为6cm ,另一条弦长为8cm ,则两条平行弦之间的距离为_________。
9.如图6,△ABC 内接于⊙O,AB=AC ,∠BOC=100°,MN 是过B 点而垂直于OB 的直线,则∠ABM=________,∠CBN=________;10.如图7,在矩形ABCD 中,已知AB=8 cm ,将矩形绕点A 旋转90°,到达A ′B ′C ′D ′的位置,则在转过程 中,边CD 扫过的(阴影部分)面积S=_________。
图6 图7三、解答下列各题(第9题11分,其余每小题8分,共75分)1.如图,P 是⊙O 外一点,PAB 、PCD 分别与⊙O 相交于A 、B 、C 、D 。
(1)PO 平分∠BPD ; (2)AB=CD ;(3)OE ⊥CD ,OF ⊥AB ;(4)OE=OF 。
从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明。
ABPO E FCD2.如图,⊙O 1的圆心在⊙O 的圆周上,⊙O 和⊙O 1交于A ,B ,AC 切⊙O 于A ,连结CB ,BD 是⊙O 的直径,∠D =40°求:∠A O 1B 、∠ACB 和∠CAD 的度数。
3.已知:如图20,在△ABC 中,∠BAC=120°,AB=AC ,BC=43,以A 为圆心,2为半径作⊙A ,试问:直线BC 与⊙A 的关系如何?并证明你的结论。
AB C4.如图,ABCD 是⊙O 的内接四边形,DP ∥AC ,交BA 的延长线于P ,求证:AD ·DC =PA ·BC 。
5.如图⊿ABC 中∠A =90°,以AB 为直径的⊙O 交BC 于D ,E 为AC 边中点,求证:DE 是⊙O 的切线。
6.如图,已知扇形OACB 中,∠AOB =120°,弧AB 长为L =4π,⊙O ′和弧AB 、OA 、OB 分别相切于点C 、D 、E ,求⊙O 的周长。
7.如图,半径为2的正三角形ABC 的中心为O ,过O 与两个顶点画弧,求这三条弧所围成的阴影部分的面积。
8.如图,ΔABC 的∠C =Rt ∠,BC =4,AC =3,两个外切的等圆⊙O 1,⊙O 2各与AB ,AC ,BC 相切于F ,H ,E ,G ,求两圆的半径。
9.如图①、②、③中,点E 、D 分别是正△ABC 、正四边形ABCM 、正五边形ABCMN 中以C 点为顶点的相邻两边上的点,且BE = CD ,DB 交AE 于P 点。
P AB CDO图③图②图①B MP P EE D D BCBCAANMP E D CA⑴求图①中,∠APD 的度数;⑵图②中,∠APD 的度数为___________,图③中,∠APD 的度数为___________; ⑶根据前面探索,你能否将本题推广到一般的正n 边形情况.若能,写出推广问题和结论;若不能,请说明理由。
B 组一、选择题(每小题3分,共24分)1.如图,把一个量角器放置在∠BAC 的上面,则∠BAC 的度数是( ) (A )30o .(B )60o .(C )15o .(D )20o .O Pyx(第1题) (第2题) (第3题)2.如图,实线部分是半径为9m 的两条等弧组成的游泳池.若每条圆弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( ) (A )12πm .(B )18πm .(C )20πm .(D )24πm .3.如图,P (x ,y )是以坐标原点为圆心,5为半径的圆周上的点,若x ,y 都是整数,则这样的点共有( ) (A )4.(B )8.(C )12.(D )16. 4.用一把带有刻度尺的直角尺,(1)可以画出两条平行的直线a 和b ,如图①;(2)可以画出∠AOB 的平分线OP ,如图②;(3)可以检验工件的凹面是否为半圆,如图③;(4)可以量出一个圆的半径,如图④.这四种说法正确的有( )图① 图② 图③ 图④(A )4个.(B )3个.(C )2个.(D )1个.5.如图,这是中央电视台“曲苑杂谈”中的一幅图案,它是一扇形,其中∠AOB 为120o ,OC 长为8cm ,CA 长为12cm ,则阴影部分的面积为( ) (A )264cm π.(B )2112cm π.(C )2114cm π.(D )2152cm π.(第5题) (第6题) (第7题)6.如图,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿与半径OB 夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB 上,此时∠AOE =56o ,则α的度数是( )(A)52o.(B)60o.(C)72o.(D)76o.7.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃片应该是()(A)第①块.(B)第②块.(C)第③块.(D)第④块.8.已知圆锥的底面半径为1cm,母线长为3cm,则其全面积为()(A)π.(B)3π.(C)4π.(D)7π.二、填空题(每小题3分,共18分)9.某单位拟建的大门示意图如图所示,上部是一段直径为10米的圆弧形,下部是矩形ABCD,其中AB=3.7米,BC=6米,则弧AD的中点到BC的距离是____________米.321321Oyx1(第9题)(第10题)(第11题)10.如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为_____________cm.11.如图,∠1的正切值等于_____________.12.一个小熊的头像如图所示.图中反映出圆与圆的四种位置关系,但是其中有一种位置关系没有反映出来.请你写出这种位置关系,它是____________.(第12题)(第13题)(第14题)13.如图,U型池可以看作一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为______________m.(边缘部分的厚度忽略不计,结果保留整数)14.三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm)如图所示.则三个几何体的体积和为cm3.(计算结果保留π)三、解答题(每小题6分,共18分)15.如图,AB为⊙O直径,BC切⊙O于B,CO交⊙O交于D,AD的延长线交BC于E,若∠C = 25°,求∠A的度数.16.如图,AB 是OD 的弦,半径OC 、OD 分别交AB 于点E 、F ,且AE =BF ,请你找出线段OE 与OF 的数量关系,并给予证明.17.如图,P 为正比例函数x y 23=图象上的一个动点,⊙P 的半径为3,设点P 的坐标为(x ,y ).(1)求⊙P 与直线2=x 相切时点P 的坐标;(2)请直接写出⊙P 与直线2=x 相交、相离时x 的取值范围.四、解答题(每小题8分,共24分)18.从卫生纸的包装纸上得到以下资料:两层300格,每格11.4cm×11cm ,如图甲.用尺量出整卷卫生纸的半径(R )与纸筒内芯的半径(r ),分别为5.8cm 和2.3cm ,如图乙.那么该两层卫生纸的厚度为多少cm ?(π取3.14,结果精确到0.001cm )图① 图②19.如图,A 是半径为12cm 的⊙O 上的定点,动点P 从A 出发,以2πcm/s 的速度沿圆周逆时针运动,当点P 回到A 地立即停止运动. (1)如果∠POA =90o ,求点P 运动的时间;(2)如果点B 是OA 延长线上的一点,AB =OA ,那么当点P 运动的时间为2s 时,判断直线BP 与⊙O 的位置关系,并说明理由.20.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A 、B 、C . (1)用直尺画出该圆弧所在圆的圆心M 的位置;(2)若A 点的坐标为(0,4),D 点的坐标为(7,0),试验证点D 是否在经过点A 、B、C的抛物线上;(3)在(2)的条件下,求证直线CD是⊙M的切线.五、解答题(每小题8分,共16分)21.如图,图①是一个小朋友玩“滚铁环”的游戏。