Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor
二氧化锰纳米材料水热合成及形成机理研究进展
二氧化锰纳米材料水热合成及形成机理研究进展许乃才1刘宗怀2王建朝1郭承育1(1青海师范大学化学系西宁810008;2陕西师范大学化学与材料科学学院西安710062)国家自然科学基金项目(51061016)资助2011-01-21收稿,2011-05-13接受摘要不同晶型和形貌MnO 2纳米材料由于具有离子筛、分子筛、催化和电化学等许多特殊的物理和化学性质,因而在吸附材料、催化材料、锂离子二次电池的正极材料和新型磁性材料等领域显示了广阔的应用前景。
纵观合成MnO 2纳米材料的各种方法,水热合成由于简单、易于控制,并且能够有效控制其晶型、形貌和尺寸,深受研究者的青睐。
本文结合国内外的研究进展,综述了不同晶型和形貌MnO 2纳米材料的水热合成规律及形成机理。
关键词MnO 2水热合成纳米材料形成机理Progresses on Hydrothermal Synthesis and Formation Mechanismof MnO 2Nano-materialsXu Naicai 1,Liu Zonghuai 2,Wang Jianchao 1,Guo Chengyu 1(1Department of Chemistry ,Qinghai Normal University ,Xining 810008;2School of Chemistry and Materials Science ,Shaanxi Normal University ,Xi an 710062)AbstractMnO 2nano-materials with different structures and morphologies show a wide range of applications in the ion-sieve ,molecular sieve ,catalyst materials ,cathode materials for lithium ion secondary battery and new magnetic materials due to their special physical and chemical properties.In all of the synthesis methods ,hydrothermal technique is highly favored by researchers because it is simple ,controllable ,and can effectively control the crystalline ,morphology and size of MnO 2.In this paper ,the hydrothermal synthesis methods and formation mechanism of MnO 2nano-materials with different morphologies are reviewed.Keywords MnO 2,Hydrothermal synthesis ,Nano-material ,Formation mechanismMnO 2纳米材料由于其结构的特殊性而呈现许多特殊的理化性质,使其在离子筛、分子筛、催化材料、锂离子二次电池的正极材料和新型磁性材料等领域的应用中显示了广阔的前景[1 4]。
海胆状纳米MnO2的制备及其对CL-20热分解性能的影响
( ,N , ; 1. S c h o o l o fC h e m i c a lE n i n e e r i n o r t h w e s tU n i v e r s i t X i ′ a n7 1 0 0 6 9, C h i n a 2. S c i e n c ea n dT e c h n o l o n g g y g yo , , ; C o m b u s t i o na n dE x l o s i o nL a b o r a t o r X i ′ a nM o d e r nC h e m i s t r e s e a r c hI n s t i t u t e X i ′ a n7 1 0 0 6 5, C h i n a p y yR , ) 3. C o n s e r v a t i o nT e c h n o l o e a r t m e n t t h eP a l a c eM u s e u m, B e i i n 0 0 0 0 9 g yD p j g1 :S 犃 犫 狊 狋 狉 犪 犮 狋 e au r c h i n s h a e dn a n o M n O a r t i c l e sw e r es n t h e s i z e du s i n d r o t h e r m a lm e t h o d .T h ep h a s e p y gh y 2 p a r t i c l e sw e r e c h a r a c t e r i z e du s i n r a i f f r a c t i o n( c o m o s i t i o na n ds t r u c t u r eo fM n O X R D) a n ds c a n n i n l e c t r o n gX yd p ge 2p / S EM E D S) .M n O C L 2 0c o m o s i t e sw e r ep r e a r e db r i n d i n h e m i c r o s c o e e n e r i s e r s i v es e c t r o m e t r p p yg gt p g yd p p y( 2 a r t i c l e so n m i x t u r eo f n a n o M n O n dC L 2 0w i t ht h em a s s r a t i oo f 1∶2, 1∶5a n d1∶9. T h e e f f e c t o f n a n o M n O 2a 2p t h et h e r m a ld e c o m o s i t i o np e r f o r m a n c eo fC L 2 0w a ss t u d i e db i f f e r e n t i a ls c a n n i n a l o r i m e t r D S C) .T h e p yd gc y( r e s u l t s i n d i c a t e t h a t n a n o M n O o e sn o t c h a n e t h em o s t r o b a b l em e c h a n i s mf u n c t i o no f t h e t h e r m a l d e c o m o s i t i o n g p p 2d r o c e s so fC L 2 0. T h e t h e r m a l d e c o m o s i t i o np e a kt e m e r a t u r eo fC L 2 0s i n i f i c a n t l e c r e a s e sw i t ht h ea d d i t i o no f p p p g yd / n a n o M n O o m a r e dw i t hp u r eC L 2 0, t h ea a r e n ta c t i v a t i o ne n e r fM n O C L 2 0m i x t u r ew i t hd i f f e r e n t p p p g yo 2 .C 2 , m a s sr a t i o sr e d u c e s i n d i c a t i n h a tt h es e au r c h i n s h a e dn a n o M n O a na c c e l e r a t et h et h e r m a ld e c o m o s i t i o no f gt p p 2c C L 2 0. :p ; 犓 犲 狅 狉 犱 狊 h s i c a l c h e m i s t r s e au r c h i n s h a e dn a n o M n O C L 2 0; t h e r m a l d e c o m o s i t i o nm e c h a n i s m y y p p 2; 狔狑
荧光二硫化钼纳米材料的制备及其用于环境中某些离子的检测
摘要摘要本文以钼酸钠和硫脲为原材料辅以水热法制备荧光二硫化钼纳米片,把荧光二硫化钼纳米片作为荧光探针或纳米酶,并结合光谱法和化学计量学,对环境中常见的离子(Pb2+、S2-和Fe2+) 进行分析检测。
文中所提出的方法绿色环保,操作简单,选择性好,灵敏度高,且快速,能运用到实际样品中。
本论文的主要内容如下:第一章:阐述了二维纳米材料过渡金属硫属化物—二硫化钼纳米片的制备方法,物理化学性质以及在分析检测中的应用研究;简单的描述了检测对象以及创新点;展望了荧光二硫化钼纳米片在其它领域中的发展前景。
第二章:以钼酸钠和硫脲为原材料辅以水热法制备荧光二硫化钼纳米片,采用透射电子显微镜,X-射线能谱,X-射线衍射,扫描电子显微镜,紫外-可见光谱和红外光谱等表征手段对其形貌结构和化学性质进行分析。
荧光二硫化钼纳米片最佳激发和发射波长分别为250 nm和405 nm,当Pb2+加入荧光二硫化钼纳米片中能诱导荧光增强,随后加入S2-荧光猝灭,以此构建“turn on-off”荧光传感器来对Pb2+和S2-进行检测。
第三章:以上合成的二硫化钼纳米片被证明具有类过氧化物酶的催化活性,在有过氧化氢的条件下能够催化氧化邻苯二胺生成黄色产物2,3-二氨基吩嗪。
进一步加入Fe2+到纳米片中,能够显著地增强二硫化钼纳米片的类过氧化物酶的催化活性,据此原理构建出一种无标记比色纳米酶传感器,实现对Fe2+的灵敏检测。
同时采用多元曲线分辨-交替最小二乘(MCR-ALS) 对反应过程中的动力学光谱数据进行解析,发现Fe2+增强二硫化钼纳米片的类过氧化物酶的催化活性的原因是使其反应速率常数增大。
第四章:以上二硫化钼纳米片催化过氧化氢氧化邻苯二胺产生的黄色产物2,3-二氨基吩嗪同时具有很强的荧光,基于产物的荧光性质,构建了荧光检测Fe2+的传感器。
同时采用一种化学计量学“二阶校正”方法—平行因子分析法(PARAFAC) 来消除实际湖水样中的背景干扰,从而实现在未知背景干扰物质的存在下对湖水中的Fe2+的检测。
美罗培南合成的研究进展
碳青霉烯类药物的 7 种上市产品之一,也是唯一一种 单原料反应合成硫醇内酯的含环化合物,在一定环境
在我国生产的抗生素,可单独用药,因其在治疗严重 下开环,最后与母核结合得美罗培南,结合方法在不
感染方面有较高的安全性和理想的治疗效果而被广 同路径中差别较大。本文将对美罗培南现有的合成
泛应用于临床。此外,相关研究显示,美罗培南与其 路径进行总结,着重讲述美罗培南侧链合成、改造及
第7卷 第3期 2021 年 6 月
生物化工 Biological Chemical Engineering
文章编号:2096-0387(2021)03-0167-03
Vol.7 No.3 Jun. 2021
美罗培南合成的研究进展
邢佳尔,朱红薇,罗马烨,金宁,钱广
(嘉兴学院生物与化学工程学院,浙江嘉兴 314001)
摘 要:目前,化学全合成法是碳青霉烯类抗生素美罗培南的唯一合成方法。现有工艺大多采用先分别制得母核与关键侧 链,后将两者合成得目标产物的制备路线。由此,对母核与关键侧链的合成工艺进行改进是路线优化的主要方向。对美罗培南 母核与关键侧链的合成工艺路线优化进行综述,为美罗培南合成提供新的借鉴思路。
关键词:美罗培南;全合成;路线优化 中图分类号:TQ460.6 文献标识码:A
且所用的试剂均为低毒安全、环境污染小的化合物, 基(PMB),用羰基二咪唑将羧基活化,与二甲胺反应
避免了使用传统合成中的贵金属铑催化剂,在促进反 应进行的同时,大大酰硫基在碱性条件下 水解即可得到美罗培南侧链中间体。赵芳燕等 [5] 在
琐,对各中间体的纯度有较高的要求,不利于大规模 水解环节中通入氮气保护,结束后加水调节 pH=10,
他药物亦可联合用药,如与神经节苷脂联用可治疗新 开环水解的路线,对每一路线的优缺点与经济性、环
以Ca2+-邻菲啰啉配合物为模板制备铜离子印迹聚合物
以Ca2+-邻菲啰啉配合物为模板制备铜离子印迹聚合物李丽萍;杨黄金;陶晋飞;刘鹏;曹秋娥【摘要】采用分子印迹技术,物质的量比为1∶2的Cu2+-邻菲啰啉配合物为模板,4-乙烯基吡啶为功能单体,乙二醇二甲基丙烯酸酯为交联剂,模板、功能单体与交联剂的物质的量比为1:2:30,在甲醇中用沉淀聚合法制备了一个铜离子印迹聚合物.该印迹聚合物在室温和pH 5.0的条件下对Cu2+的吸附可以在1h内达到平衡,理论饱和吸附容量(Qmax)为75.01 mg/g,印迹因子(IF)为1.77.用该印迹聚合物制备的固相萃取柱对质量浓度为5.0μg/mL的Cu2+的萃取回收率为89.7%,相对标准偏差为4.7%(n=5).表明其有作为分析测定Cu2+时的固相萃取剂的应用前景.【期刊名称】《云南民族大学学报(自然科学版)》【年(卷),期】2012(021)001【总页数】4页(P18-21)【关键词】铜(Ⅱ);离子印迹聚合物;沉淀聚合法;固相萃取【作者】李丽萍;杨黄金;陶晋飞;刘鹏;曹秋娥【作者单位】云南大学化学科学与工程学院教育部自然资源药物化学重点实验室,云南昆明650091;云南大学化学科学与工程学院教育部自然资源药物化学重点实验室,云南昆明650091;云南大学化学科学与工程学院教育部自然资源药物化学重点实验室,云南昆明650091;云南大学化学科学与工程学院教育部自然资源药物化学重点实验室,云南昆明650091;云南大学化学科学与工程学院教育部自然资源药物化学重点实验室,云南昆明650091【正文语种】中文【中图分类】O631.3分子印迹技术是在一定的溶剂(也称致孔剂)中将模板分子或离子与功能单体、交联剂以及引发剂一起通过光或热引发反应,形成一种高度交联的聚合物,然后再将模板分子或离子从聚合物中洗脱出来,最终制备出一种具有与模板分子或离子相互补的三维网络结构的高分子聚合物(称为分子印迹聚合物(M I P)或离子印迹聚合物(IIP))的方法.由于印迹聚合物制备简单、成本低、使用寿命长,尤其是对模板有着特殊的记忆功能和高度的亲和性与选择性,在分离科学中受到了高度重视[1-3].目前,有关铜离子印迹聚合物的研究已有不少报道[4-17],但这些研究多采用Cu2+为模板,以本体聚合、乳液聚合法、硅胶表面聚合为制备方法,而以Cu2+-邻菲啰啉配合物为模板,采用沉淀聚合法制备铜离子印迹聚合物的研究还未见报道.本文以物质的量比为1∶2的Cu2+-邻菲啰啉配合物为模板,用沉淀聚合法制备了一个对Cu2+具有较高吸附容量与较好选择性的铜离子印迹聚合物.与部分文献报道的铜离子印迹聚合物[7-11,14,16]相比,该印迹聚合物在吸附选择或吸附容量方面具有一定的优势.用该印迹聚合物制备的固相萃取柱对质量浓度为5.0μg/mL的Cu2+的萃取回收率为8 9.7%,相对标准偏差为4.7%(n=5).该印迹聚合物有望作为分析测定Cu2+时的固相萃取剂.1 实验部分1.1 主要仪器与试剂UV-2401型紫外-可见分光光度计(日本岛津),TH Z-C恒温震荡器(江苏太仓实验设备厂).4-乙烯基吡啶(4-V P,美国Acrosorganics公司),直接使用;乙二醇二甲基丙烯酸酯(E G DMA,上海珊瑚化工厂),使用前经减压蒸馏纯化;偶氮二异丁腈(AIBN,上海试剂四厂),使用前用乙醇重结晶纯化;醋酸铜Cu(A c)2·H2O(天津博迪化工有限公司);邻菲啰啉(上海试剂三厂).实验所用试剂均为分析纯,水为超纯水.1.2 铜离子印迹聚合物(IIP)和非印迹聚合物(NIP)的制备称取0.020 0g(0.1mmol)醋酸铜于5 0mL锥形瓶中,加入0.0396g (0.2mm ol)的邻菲啰啉和2 0mL甲醇,水浴微热溶解后,再加入0.0210g (0.2mm ol)的4-V P,恒温振荡器中振荡反应3h,加入0.594 7g(3mm ol)的 E G DMA 和 1 5mg 的AIBN.混合均匀后,转入玻璃安培瓶中,通N210m i n,真空下密封安培瓶,于60℃水浴加热2 4h后,得到聚合物沉淀.沉淀用体积比含2 0%乙酸的甲醇溶液洗涤至流出物中检测不到Cu2+后,再换纯甲醇洗至中性,除去过量的H+.洗涤后的印迹聚合物(IIP)在真空下干燥4 8h即可.非印迹聚合物(NIP)的制备除不加模板Cu2+外,其余均与IIP的合成方法相同.1.3 聚合物的平衡吸附实验准确称取洗涤好的印迹(IIP)或非印迹聚合物(NIP)2 0.0mg于磨口锥形瓶中,加入一定量的底物Cu2+或其它金属离子的水溶液(p H 5.0),用水稀释至总体积为1 0mL,2 5℃下振荡5h后,过滤.取一定量滤液经适当稀释后用原子吸收光谱法测定其中Cu2+的浓度,并计算聚合物对Cu2+的平衡吸附量Q(定义为每克干聚合物所吸附的Cu2+的量,单位为mg/g)和印迹因子I F(定义为印迹聚合物的平衡吸附量QIIP与非印迹聚合物的平衡吸附量QNIP之差).1.4 铜离子印迹固相萃取实验称取100mg的铜离子印迹聚合物装于固相萃取小柱(8.5c m×0.5c m)中,制备铜离子印迹固相萃取柱(IIP-S P E柱).用2mL纯水平衡柱子后,取1.0mL质量浓度为5.0μg/mL的Cu2+水溶液(pH 5.0)上样,再依次用2mL的水淋洗柱子,3mL浓度为1.0m ol/L的 HCl水溶液洗脱柱子.收集洗脱液,并定容到3mL,然后用原子吸收光谱法测定洗脱液中Cu2+的含量,并计算柱子对Cu2+的萃取回收率.2 结果与讨论2.1 聚合物的等温吸附曲线在Cu2+质量浓度位于5~6 0mg/L范围内,采用平衡吸附实验,测定了20mg印迹聚合物IIP和2 0mg非印迹聚合物NIP对Cu2+的吸附量随吸附溶液中Cu2+起始质量浓度的变化情况,绘制了IIP和NIP对Cu2+的等温吸附曲线(图1).可见,在所研究的底物质量浓度范围内,IIP的吸附量均显著大于NIP的吸附量,且二者的吸附量之差随Cu2+质量浓度的增加而增大,这说明组成相同的2种聚合物的空间结构存在明显差异.其原因是IIP包含有与Cu2+形成络合位点的空间空穴,这种空穴对Cu2+呈现“记忆功能”,2种聚合物的吸附量的差值主要来源于这种空穴的选择性吸附,这是IIP突出的结构特征[8].同时,由图1的数据还可以算出,当吸附溶液中Cu2+的初始质量浓度达到6 0mg/L时,IIP对Cu2+的吸附量与NIP对Cu2+的吸附量之比(即印迹聚合物的印迹因子)达到了1.7 7,说明该印迹聚合物中对Cu2+产生了较好的印迹效果.2.2 印迹聚合物对Cu2+的吸附参数聚合物对底物的结合参数一般采用Scatchard分析法进行研究[18].按照Scatchard方程:Q/ρ=Qmax/Kd-Q/Kd,式中,Q为印迹聚合物的平衡吸附量,Qmax为印迹聚合物对底物的最大结合位点数,ρ为平衡吸附液中游离底物的质量浓度,Kd为印迹聚合物对底物的吸附离解常量.以Q/ρ对Q 作图,得到Scatchard曲线,通过直线的斜率和截距即可求得聚合物对底物的吸附离解常量Kd及最大结合点数Qmax.图2是按照上述原理得到的印迹聚合物IIP吸附Cu2+的Scatchard曲线.可见,在所研究的底物(Cu2+)的质量浓度范围内,聚合物IIP的Scatchard曲线是非线形的,但是将曲线按Cu2+质量浓度分为5~2 0mg/L和2 0~60mg/L后,都具有较好的线性关系.这表明在所研究的底物浓度范围内,聚合物主要形成了特异性吸附和非特异性吸附2种不同的结合位点[18].将图2中的曲线分段按Scatchard方程进行线性拟合,得到Cu2+质量浓度位于5~2 0mg/L和2 0~6 0mg/mL范围内的Scatchard方程分别为=0.5029-0.00916Q(r=0.9893)和=0.7 4 7 9-0.0 3 3 7 3Q(r=0.98 8 5).根据拟合方程的斜率和截距求得IIP吸附Cu2+的低亲和性和高亲和性结合位点的离解常量Kd分别为1 0 9.2mg/L和2 6.7 9mg/L,饱和结合位点数 Qmax分别为5 4.9 7mg/g和2 0.0 4mg/g.可见,理论上该印迹聚合物对Cu2+具有较大的饱和吸附容量(7 5.0 1mg/g)和应用价值.2.3 聚合物对Cu2+的吸附动力学行为将20mg聚合物IIP和NIP加入到1 0mL质量浓度为4 0mg/L的Cu2+水溶液中,室温下振动吸附一定时间(t)后测定聚合物的吸附量Q,以Q对t作图得到了聚合物对Cu2+的动力学吸附曲线(图3).可见,印迹聚合物IIP的吸附量在前1h内迅速增加,此后增加幅度逐渐变缓,2h后基本达到平衡;非印迹聚合物NIP的吸附量则在前0.5h内迅速增加,此后增幅逐渐变缓,1h时已基本达到平衡.这与大部分印迹聚合物的吸附动力学行为是一致的.这是因为印迹聚合物中的空穴对模板的匹配从而使印迹聚合物在吸附的初始阶段呈现出很快的吸附速度,但是当模板一旦被印迹聚合物的表面吸附饱和,其向印迹聚合物深处的传质有一定的位阻,导致吸附速度下降,表明了印迹聚合物中印迹效应的存在[19].2.4 印迹聚合物的吸附选择性分别以质量浓度为40mg/L 的Zn2+、Ni2+、C o2+和Fe2+的水溶液(p H 5.0)为吸附溶液,测定了2 0mg的印迹聚合物在这些吸附溶液中对各金属离子的吸附量,计算了印迹聚合物的吸附选择性因子β(定义为印迹聚合物对Cu2+的吸附量与对其它离子的吸附量之比),结果如表1所示.可见,该印迹聚合物对Zn2+、Ni2+、Co2+和 Fe2+的吸附量均明显低于对Cu2+的吸附量,即本文所合成的IIP对Cu2+具有较好的吸附选择性.表1 印迹聚合物对各金属离子的吸附量Q与吸附选择性因子β吸附离子 Cu2+ Z n2+ Ni2+CO2+Fe2+Q/(mg·g-1)11.29 3.07 4.92 3.6 5 5.12 β1.00 3.68 2.29 3.0 92.2 12.5 作为固相萃取剂的应用研究采用1.4的实验方法研究了所制备的铜离子印迹聚合物作为固相萃取剂的应用前景.结果表明,该铜离子印迹固相萃取柱对质量浓度为5.0μg/mL的Cu2+的萃取回收率为8 9.7%,5次测定结果的相对标准偏差为4.7%.结合2.4部分的实验结果可见,本文所合成的IIP对Cu2+不仅具有较好的吸附选择性,而且用其制备的固相萃取柱对低含量的Cu2+溶液具有较高的萃取回收率和重现性,有作为分析测定Cu2+时的固相萃取剂的应用前景.参考文献:[1]冯银巧,周如金,唐玉斌,等.分子印迹技术在固相萃取中的应用[J].理化检验:化学分册,2011,47(1):125-129.[2]张毅,胡玉玲,李攻科.分子印迹技术在生化分离分析中的应用[J].分析测试学报,2008,27(2):215-221.[3]RAO T P,KALA R,DANIEL S.Metal ion-imprinted polymers—Novel materials for selective recognition of inorganics[J].Analytica Chimica Acta,2006,578(2):105-116.[4]SAY R,BIRLIK E,ERSÖZ A,et al.Preconcentration of copper onion-selective imprinted polymer microbeads[J].Analytica Chimica Acta,2003,480(2):251-258.[5]ERSÖZ A,DENIZLI A,SAY R.Preconcentration of copper using double-imprinted polymer via solid phase extraction[J].Analytica Chimica Acta,2006,565(2):145-151.[6]SHAMSIPUR M,FASIHI J,KHANCHI A.A stoichiometric imprinted chelating resin for selective recognition of copper(II)ions in aqueous media[J].Analytica Chimica Acta,2007,599(2):294-300.[7]朱建华,李欣,强亮生.铜(Ⅱ)离子印迹聚合物的制备及性能[J].高等学校化学学报,2006,27(10):1 853-1 855.[8]ANURADHA B,BOOPATHI M,SINGH B,et al.Synthesis and characterization of metal ion imprinted nano-porous polymer for the selective recognition of copper[J].Biosensors and Bioelectronics,2007,22(12):3 326-3 334.[9]安富强,高保娇,李刚.硅胶表面铜(Ⅱ)离子印迹聚乙烯亚胺的制备及结合特性研究[J].高分子学报,2007(4):366-372.[10]WALAS S,TOBIASZ A,GAWIN M,et al.Application of a metalion-imprinted polymer based on salen-Cu complex to flow injection preconcentration and FAAS determination of copper[J].Talanta,2008,76(1):96-101.[11]侯琳熙,郭智勇,王邃.铜离子印迹环氧树脂基整体柱的制备及性能[J].光谱学与光谱分析,2008,28(10):2 446-2 449.[12]钟世安,袁周率,李维,等.铜离子印迹聚合物膜的制备及其渗透性能[J].应用化学,2008,25(8):989-991.[13]REN Y M,ZHANG M L,ZHAO D.Synthesis and properties of magnetic Cu(II)ion imprinted composite adsorbent for selective removal of copper [J].Desalination,2008,228(1/2/3):135-149.[14]TOBIASZ A,WALAS S,TRZEWIK B,et al.Cu(II)-imprinted styrene-divinylbenzene beads as a new sorbent for flow injection-flame atomic absorption determination of copper[J].Microchemical Journal,2009,93(1):87-92.[15]JO S H,LEE S Y,PARK K M,et al.Continuous separation of copper ions from a mixture of heavy metal ions using a three-zone carousel process packed with metal ion-imprinted polymer[J].Journal Chromatography A,2010,1 217(45):7 100-7 108.[16]HOAI N T,YOO D K,DUKJOON K.Batch and column separation characteristics of copper-imprinted porous polymer micro-beads synthesized by a direct imprinting method[J].Journal of Hazardous Materials,2010,173(1/2/3):462-467.[17]SHAMSIPUR M,BESHARATI-SEIDANI A.Synthesis of a novel nanostructured ion-imprinted polymer for very fast and highly selective recognition of copper(Ⅱ)ions in aqueous media[J].Reactive and Functional Polymers,2011,71(2):131-139.[18]ZHOU J,HE X W,LI Y J.Binding study on 5,5-diphenylhydationimprinted polymer constructed by utilizing an amide functional group [J].Analytica Chimica Acta 1999,394(8):353-359.[19]CORMACK P A G,ELORZA A Z.Molecularly imprinted polymers:synthesis and characterisation [J].Chromatography B,2004,804(1):173-182.。
纳米金催化剂催化氨硼烷的方法
纳米金催化剂催化氨硼烷的方法英文回答:Gold nanoparticles (AuNPs) have emerged as promising catalysts for ammonia borane (AB) hydrolysis due to their unique physicochemical properties and high catalytic activity. The catalytic mechanism of AuNPs in AB hydrolysis involves several key steps:1. Adsorption of AB on AuNP surface: AB molecules are initially adsorbed onto the surface of AuNPs through electrostatic interactions between the positively charged amine group and the negatively charged Au surface.2. Activation of AB: The adsorbed AB molecules are activated by the AuNPs, which weakens the B-N bond and facilitates the hydrolysis reaction. This activation is believed to occur via a combination of electronic and geometric effects.3. Hydrolysis of AB: The activated AB molecules undergo hydrolysis in the presence of water, resulting in the formation of ammonia (NH3) and hydrogen (H2). The hydrolysis reaction is catalyzed by the AuNPs, which provide a suitable surface for the reaction to take place.The catalytic activity of AuNPs in AB hydrolysis can be tuned by controlling their size, shape, and composition. For example, smaller AuNPs with a higher surface-to-volume ratio exhibit higher catalytic activity due to the increased number of active sites. Additionally, the presence of surface modifiers or dopants on AuNPs can further enhance their catalytic performance.AuNP-catalyzed AB hydrolysis has been extensively studied for various applications, including fuel cells, hydrogen production, and chemical synthesis. In fuel cells, AB serves as a hydrogen source, and AuNPs act as catalysts for AB hydrolysis, generating hydrogen for the cell's operation. In hydrogen production, AB hydrolysis using AuNP catalysts provides a clean and efficient method for generating hydrogen fuel. Furthermore, AuNP-catalyzed ABhydrolysis has been utilized in chemical synthesis to reduce metal ions and prepare nanomaterials.中文回答:纳米金催化剂由于其独特的物理化学性质和较高的催化活性,已成为氨硼烷(AB)水解中颇具前景的催化剂。
MnO_2作为超级电容器电极材料的研究进展
第卷第期年月MnO 2作为超级电容器电极材料的研究进展于文强,易清风(湖南科技大学化学化工学院,湖南湘潭411201)摘要:主要介绍了目前国内外研究MnO 2作为电化学超级电容器电极材料的最新进展和几个主要研究动向;并简要介绍了研究电化学超级电容器的几种主要的表征手段。
关键词:超级电容器;MnO 2;电极材料;表征中图分类号:TM912.9文献标志码:A文章编号:1008-7923(2009)04-0285-04Research progress on manganese dioxide for electrodematerial of supercapacitorYU Weng-qiang,YI Qing-feng(College of Chemistry and Chemical Engineering,Hunan University of Science and Technology,Xiangtan,Hunan 411201,China )Abstract:The latest progress and research field about the electrochemical supercapacitor materials at home and abroad were introduced in this paper.And the characterization methods in the research were also briefly discussed.Key words:electrochemical supercapacitor;manganese dioxide;electrode material;characterization methods收稿日期:2009-03-19基金项目:国家自然科学基金项目(20876038)和湖南科技大学研究生创新基金项目(S080109)作者简介:于文强(1983-),男,山东省人,硕士生。
水热法合成α-MnO2纳米棒及其电化学性能
a i t1 0 ℃ fr3 h T en n rd a e ada tro 0 2 m n e gh o 0 ~ 0 m. h n rd c cd a 2 o . h a oo sh v imee f1 ~ 0 n a d aln t f3 0 4 0 n T e it u e o
薛兆 辉 刘 兆 , 2 马 方伟 t 孙 丽 萍 1 霍 丽 华 1 赵 辉 1 临 ,
(黑龙 江 大 学化 学化 工与材 料 学 院 , 能 无机材 料 化 学省部 共 建教 育部 重点 实验 室 , 尔滨 1 0 8 ) 功 哈 50 0 2 大连 经 济技 术开发 区环境 保 护监 测 中心 , 大连 1 6 0 ) 16 0
性水 系 电 解液 中 , 纳 米 棒 表 现 出 良好 的 电容 性 能 , 该 当扫 描 速 率分 别 为 2m V F g ; 纳 米 材 料 是 一 种 潜 在 的 电 化 学 电 容器 电极 材 料 。 ・ 该
关 键 词 : 氧 化 锰 ; 米 棒 ; 热法 ;电 化学 电容 器 二 纳 水
水杨醛缩胺类双席夫碱过渡金属配合物的合成与表征_李翠勤
化学与生物工程2011,Vol.28No.7Chemistry &Bioen gineering55基金项目:黑龙江省教育厅资助项目(1030129)收稿日期:2011-04-28作者简介:李翠勤(1978-),女,河南人,硕士,讲师,主要从事精细化学品合成及聚烯烃的化学改性。
E mail:licuiqin78@163.com 。
doi:10.3969/j.issn.1672-5425.2011.07.013水杨醛缩胺类双席夫碱过渡金属配合物的合成与表征李翠勤1,孟祥荣2,张 鹏1,景常荣2,刘长环1,朱秀雨1(1.东北石油大学化学化工学院,黑龙江大庆163318;2.大庆石化公司化工一厂,黑龙江大庆163714)摘 要:以水杨醛与乙二胺为原料,通过席夫碱反应合成一类水杨醛缩胺类双席夫碱,并进一步与铜、锌、镍3种金属离子络合得到3种过渡金属配合物;采用元素分析、红外光谱和紫外光谱对席夫碱及其金属配合物的结构进行表征。
结果表明,合成的水杨醛缩乙二胺配体分子结构与理论结构相符,且分别与铜、锌、镍离子络合形成了稳定的过渡金属配合物。
关键词:水杨醛;席夫碱反应;金属配合物中图分类号:O 625.62 文献标识码:A文章编号:1672-5425(2011)07-0055-03席夫碱是一类非常重要的配体,通过改变连接的取代基、变化电子给予体原子本性及其位置,便可开拓出许多从链状到环状、从单齿到多齿的性能迥异、结构多变的席夫碱配体,这些配体可以与周期表中大部分金属离子形成不同稳定性的配合物[1,2]。
目前,研究较多的是水杨醛及其衍生物的席夫碱,其中水杨醛缩胺类双席夫碱是一类有代表性的离域 共轭有机分子,在合成上具有极大的灵活性和强络合作用,因具有良好的电子转移性质而成为人们研究的热点[3,4]。
此类席夫碱具有一个N,N,O,O 构成的空腔,可以容纳金属离子,形成稳定的金属配合物[5]。
张英菊等[6]对水杨醛缩乙二胺配体结构研究表明,水杨醛缩乙二胺配体失去两个酚羟基上的氢,随后与Ni 、M n 等过渡金属离子形成稳定的四齿配合物,该配合物的稳定性随配位原子数的增加而增大。
三聚硫氰酸-多壁碳纳米管的制备及其对重金属离子的去除
三聚硫氰酸-多壁碳纳米管的制备及其对重金属离子的去除CAI Shunshou;CUI Weirong;ZHU Zhihong;WEI Zhiming;QIU Jianding【摘要】利用席夫碱反应将三聚硫氰酸共价接枝到多壁碳纳米管上,合成稳定且环境友好的三聚硫氰酸-多壁碳纳米管(TTCA-MWCNTs)纳米复合材料.经三聚硫氰酸修饰的多壁碳纳米管,管壁上含有大量的硫醚单元,因此可极大提高对重金属离子的吸附容量.TTCA-MWCNTs固相萃取实验及电感耦合等离子体质谱测量结果表明,TTCA-MWCNTs对水体中的Hg2+具有优异的吸附性能,对环境水体中重金属离子的去除效率高.【期刊名称】《南昌大学学报(理科版)》【年(卷),期】2019(043)002【总页数】5页(P132-136)【关键词】三聚硫氰酸;碳纳米管;吸附;重金属离子【作者】CAI Shunshou;CUI Weirong;ZHU Zhihong;WEI Zhiming;QIU Jianding【作者单位】;;;;【正文语种】中文【中图分类】X132近年来,重金属残留物对各地清洁水的污染状况引起了人们的广泛关注[1-2]。
重金属离子的来源渠道广,包括燃料燃烧、肥料、电镀、废物处理、电池以及涂料等[3],这些有毒元素易于生物累积并严重破坏生态,甚至通过食物链逐渐积聚而对人体健康造成严重危害[4-5]。
许多重金属元素如Hg2+、Pb2+和Cu2+毒性高且不可生物降解,为了保护人类健康和生态环境,这些有毒元素在释放到环境中之前必须从污染水中去除。
有毒金属元素的常用去除技术有吸附、沉淀、固相萃取、离子交换以及膜过滤等,去除有毒重金属元素的吸附剂主要有无机材料、沸石、树脂以及活性炭等,然而这些吸附剂大多存在处理时间长或吸附效率低等问题。
因此,发展高效和低成本的吸附剂用于去除污染水中的重金属元素非常必要。
碳纳米管(CNTs)因其独特的机械性能、化学稳定性、大比表面积及其潜在的应用价值而备受关注[6]。
无铜_催化的点击化学
! 59 !
化工时刊 2010 Vo l 24, No. 5
论文综述 )Review s∗
图 4 硫醇和烯烃的点击化学合成树状聚合物 F ig. 4 Th io l- ene click chem istry for the syn thesis o f a [ G1] - OH6 dend rmi er
F ig. 2 Pathway o f the Rad ica l Pho toadd ition o f Th io ls onto 1, 2- PBa
图 3 顺丁烯二酰亚胺和硫醇的点击反应合成 PLA F ig. 3 Synthes is o f PLA and m a lemi ide- th io l C lick reac tion
证实了此方法是一个高效的聚合物修改方法。 该方法 也 可以 运用 到聚 合物 的合 成 领域。
H aw ker和他的实验工作小组报道了通过硫醇和烯烃 的点击反应合成稳健、高效、正交树状聚合物 ( 见图 4) [ 14] 。在室温下, 无溶剂反应 1和 2在 微量的光敏 引发剂 3 的存下在, 用手持紫外灯 ( ex 365 nm ) 照 射 30 m in。微量的光敏引发剂 3起到提高反应速度 的作用, 在 1和 2之间即烯和巯基反应产生了六羟基 树枝状物质 4。高效的巯基和烯反应没有副产物的 出现, 并且 [ G 1] - OH6 用乙醚洗涤简单纯化沉淀后 获得产量为 90% 。最近, Justin W Chan, B ing Yu等 通过膦催化巯基与烯烃反应和 RAFT 制备的均聚物 N, N - 二乙基丙烯酰胺来合成三臂星形聚合物。这 也为合成星形聚合物提供了一个快速、易行、高产率 的方法 [ 15 ] 。
点击化学一般具备以下特点: ( 1) 所用原料和试剂容易获得; ( 2) 反应条件简单, 反应过程对水和氧气不敏感; ( 3) 产率高, 没有或有无害的副产品; ( 4) 立体选择性好; ( 5) 产物净化技术简单; ( 6) 产物稳定性好。 点击反应主要有 4种类型: ∃ 环加成反应, 特别
钙钛矿催化剂英语
钙钛矿催化剂英语Perovskite Catalysts: A Promising Pathway to a Sustainable FuturePerovskite materials have emerged as a remarkable class of catalysts, offering a versatile and efficient solution to a wide range of environmental and energy-related challenges. These materials, with their unique crystal structure and tunable properties, have captured the attention of researchers worldwide, paving the way for innovative applications in various fields including renewable energy, pollution control, and chemical synthesis.At the heart of perovskite catalysts lies their exceptional ability to facilitate critical chemical reactions. The perovskite structure, consisting of a central metal cation surrounded by an octahedron of anions, provides a highly customizable platform for tailoring catalytic performance. By substituting different elements into the perovskite lattice, researchers can fine-tune the material's electronic structure, surface properties, and catalytic activity, enabling targeted optimization for specific applications.One of the most promising applications of perovskite catalysts is in the realm of renewable energy. Perovskite materials havedemonstrated exceptional efficiency in the water-splitting reaction, a crucial process for the generation of clean hydrogen fuel. By leveraging the unique redox properties of perovskites, researchers have developed highly active and stable catalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), the two half-reactions that comprise water splitting. These perovskite-based catalysts have shown superior performance compared to traditional precious metal-based catalysts, making them a cost-effective and sustainable alternative for large-scale hydrogen production.Moreover, perovskite catalysts have also found applications in the field of carbon dioxide (CO2) reduction, a vital process for mitigating greenhouse gas emissions and achieving a circular carbon economy. Perovskite-based electrocatalysts have demonstrated the ability to selectively convert CO2 into valuable chemicals and fuels, such as carbon monoxide, formic acid, and methanol, with high efficiency and selectivity. This capability holds immense promise for the development of integrated CO2 capture and utilization systems, contributing to a more sustainable and environmentally-friendly future.Beyond renewable energy applications, perovskite catalysts have also made significant strides in the field of pollution control. These materials have shown remarkable catalytic activity in the removal ofvarious air and water pollutants, including nitrogen oxides (NOx), sulfur oxides (SOx), volatile organic compounds (VOCs), and heavy metals. Perovskite-based catalysts can effectively oxidize or reduce these harmful substances, transforming them into less toxic or even benign compounds. This versatility makes perovskite catalysts a promising solution for addressing pressing environmental challenges, such as urban air pollution and water contamination.In the realm of chemical synthesis, perovskite catalysts have also showcased their potential. These materials have been employed in a wide range of organic transformations, including hydrogenation, oxidation, and coupling reactions. Perovskite catalysts have demonstrated superior activity, selectivity, and stability compared to traditional metal-based catalysts, opening up new avenues for the development of more efficient and sustainable chemical processes.The remarkable performance of perovskite catalysts can be attributed to their unique structural and electronic properties. The flexibility of the perovskite structure allows for the incorporation of a diverse range of elements, enabling the fine-tuning of catalytic activity and selectivity. Additionally, the strong metal-oxygen bonds in perovskites confer excellent thermal and chemical stability, crucial for maintaining catalytic performance under harsh reaction conditions.Furthermore, the scalable and cost-effective synthesis methods for perovskite materials have made them increasingly attractive for industrial applications. Compared to traditional precious metal-based catalysts, perovskite catalysts can be produced using more abundant and less expensive raw materials, making them a more economically viable option for large-scale deployment.As the field of perovskite catalysts continues to evolve, researchers are exploring innovative strategies to further enhance their performance and broaden their applications. This includes the development of nanostructured perovskite catalysts with increased surface area and active site density, the integration of perovskites with other functional materials to create hybrid catalytic systems, and the exploration of novel perovskite compositions for targeted catalytic reactions.In conclusion, perovskite catalysts have emerged as a transformative technology, offering a promising pathway towards a more sustainable future. Their versatility, efficiency, and cost-effectiveness have positioned them as a game-changing solution in renewable energy, pollution control, and chemical synthesis. As research and development in this field continue to advance, the impact of perovskite catalysts is poised to extend far beyond their current applications, contributing to a cleaner, more environmentally-friendly, and resource-efficient world.。
高分子辅助沉积法制备钨掺杂的二氧化钒薄膜
第48卷第7期2020年7月硅酸盐学报Vol. 48,No. 7July,2020 JOURNAL OF THE CHINESE CERAMIC SOCIETY DOI:10.14062/j.issn.0454-5648.2020.07.20200017 高分子辅助沉积法制备钨掺杂的二氧化钒薄膜罗盛鲜,高敏,陈思宏,林媛(电子科技大学,电子薄膜与集成器件国家重点实验室,成都 610054)摘要:利用高分子辅助沉积法(PAD)制备出钨掺杂二氧化钒(VO2)薄膜。
采用X射线衍射、光电子能谱、扫描电子显微镜、Raman光谱等表征技术对不同含量钨掺杂的VO2薄膜性能进行了研究。
结果表明:利用PAD方法制备的VO2薄膜质量较好,且钨离子掺杂成功。
同时Raman光谱显示,钨掺杂1.0%(摩尔分数)的薄膜在相变过程中出现M2相。
电学测试结果显示,钨掺杂的VO2薄膜相变温度大幅下降,每掺杂0.3%(摩尔分数)的钨离子,相变温度下降10℃,且随着钨掺量的增加,VO2薄膜的热滞回线宽度减小。
关键词:二氧化钒;薄膜;掺杂;相变温度;热滞回线中图分类号:TQ135.11 文献标志码:A 文章编号:0454–5648(2020)07–1074–07网络出版时间:2020–04–13Preparation of Tungsten-doped Vanadium Dioxide Films by Polymer-assistedDeposition MethodLUO Shengxian, GAO Min, CHEN Sihong, LIN Yuan(State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science andTechnology of China, Chengdu 610054, China)Abstract: Tungsten (W)-doped vanadium dioxide (VO2) films were prepared by a polymer-assisted deposition (PAD) method. The morphology and phase transition of the doped VO2 films with different tungsten concentrations were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and Raman spectroscopy. The results indicate that tungsten atoms are incorporated into the VO2 films via the PAD method, and the fabricated VO2 films also show great crystallization characteristics. Based on the results by Raman spectroscopy, the M2 phase appears during the phase transition in the 1.0% (in mole) W-doped VO2 films. The results by electrical test indicate that the phase transition temperature of W-doped VO2 films is reduced by 10 as tungsten ions doped are increased by 0.3%℃(in mole), and the higher the doping concentration of tungsten is, the narrower the width of the phase transition thermal hysteresis loop will be.Keywords: vanadium dioxide; thin film; doped; phase transition temperature; thermal hysteresis loop钒元素通过与氧元素结合,生成了一系列的钒氧化物。
金属酞菁与纳米二氧化锰二元体系的电催化氧还原性能研究 大学论文
分类号商洛学院学士学位论文金属酞菁与纳米二氧化锰二元体系的电催化氧还原性能研究作者单位化学与化学工程系指导老师作者姓名专业、班级08级应用化学提交时间二〇一二年六月摘要大环化合物如酞菁( Pc) 、四甲氧基苯基卟啉( TMPP) 、四苯基卟啉( TPP) 等具有多齿配位作用及大环结构特征, 可以与过渡金属离子M ( M =Fe、Co、Ni)形成过渡金属大环化合物。
该类大环化合物具有高的共轭结构和化学稳定性且对分子氧还原表现出良好的电催化活性, 因而在催化剂领域被广泛研究。
羧基金属酞菁是以偏苯三甲酸酐、MCl2(M=Fe ,Co,Ni )、尿素及钼酸铵为原料,采用熔融法合成的2,9,16,23一四羧基金属酞菁。
此类过渡金属大环配合物酞菁配合物对分子氧的还原反应具有很高的电催化活性。
以提高催化剂的催化性能为目的,将二氧化锰和金属酞菁配成适当溶液进行电化学实验。
本文主要应用循环伏安法和线性扫描法研究了金属铁酞菁、钴酞菁和镍酞菁与二氧化锰以不同比例配制的溶液在KOH溶液中对氧电化学行为,以修饰电极和气体扩散电极为工作电极、铂电极为辅助电极、饱和甘汞电极为参比电极的三电极体系中考察和比较了制备的各种修饰电极和气体扩电极对氧还原的电催化性能。
该实验保持载体和催化剂的总量不变,采用等摩尔(质量)连续变化法改变俩种催化剂比例,通过测试不同比例的样品催化性能,选取两种催化剂的最佳比例。
关键词:电催化,修饰电极,循环伏安法,大环配合物AbstractMacrocyclic compounds (such as phthalocyanine ( Pc ), tetramethoxy phenyl porphyrin ( TMPP ), tetraphenyl porphyrin ( TPP ) etc.) with Multidentate coordination effect and large ring structure, with the transition metal ions M ( M =Fe, Co, Ni) form the transition metal macrocyclic compound. The compounds have high conjugated structure and chemical stability and the reduction of molecular oxygen showed good electrocatalytic activity, therefore is widely researched in catalyst. Carboxyl metal phthalocyanine with trimellitic anhydride ( M=Fe, Co, Ni ), urea and ammonium molybdate as the raw material, adopting melting synthesis of 2,9,16,23 one four carboxyl metal phthalocyanine. This kind of transition metal acrocyclic complexes of phthalocyanines on molecular oxygen reduction reaction with high catalytic activity.In order to improve the catalytic performance of the catalyst for the purpose, manganese dioxide and metal phthalocyanine with appropriate solution for electrochemical experiments. This paper applied cyclic voltammetry and linear scanning method of metal, iron phthalocyanine cobalt phthalocyanine and nickel phthalocyanine and manganese dioxide with different proportion of solution prepared in KOH solution on oxygen electrochemical behavior, with modified electrode and gas diffusion electrode as working electrode, platinum as auxiliary electrode, saturated calomel electrode as reference electrode in the three electrode system were studied and compared the preparation of various modified electrode or gas diffusion electrode electrocatalytic performance for oxygen reduction. The experimental maintain carrier and catalyst amount unchanged, the mole ( quality ) continuous variation method change the two kinds of catalyst ratio, proportion of the samples tested by different catalytic properties, select the best proportion of two kinds of catalyst.Key words: electriccatalytic, modified electrode, cyclic voltammetry, macrocyclic complexes.目录1 前言 (1)1.1 研究电催化还原氧的意义 (1)1.2 电催化 (2)1.2.1 电催化剂 (2)1.2.2 电催化基本概念 (2)1.2.3电催化剂的发展 (2)1.3 催化剂的研究现状 (3)1.4二氧化锰 (5)1.5循环伏安法的理论 (6)1.6影响催化剂催化性能的因素 (6)1.6.1催化剂粒子大小 (6)1.6.2催化剂晶体结构 (6)1.6.3催化剂的表面形貌 (7)1.7催化剂发展展望 (7)1.8 研究内容和目标 (7)2 实验部分 (8)2.1 实验仪器与装置 (8)2.1.1实验仪器 (8)2.1.2实验装置 (8)2.2 试剂和溶液配制 (9)2.2.1 主要试剂 (9)2.2.2溶液的配制 (9)2.2.3修饰电极的制备 (10)2.3实验方法步骤 (10)2.3.1三电极体系 (10)2.3.2实验步骤 (10)3 结果与讨论 (11)3.1 两种催化剂的最佳比例的确定 (11)3.2不同催化剂对O2还原的动力学过程 (12)3.3 催化反应电子转移数的测定——计时电量法 (14)参考文献 (16)致谢 (18)1 前言1.1 研究电催化还原氧的意义能源是国民经济发展与社会文明进步的基石,能源的可持续发展是人类社会可持续发展的重要保障之一。
Research Progress of Application of Porous Polymer in Energy Storage
Research Progress of Application of Porous Polymer in Energy StorageFang Zhang, Yang YuUrban Construction Engineering Department, Huazhong University of Science and TechnologyWenhua College, 58thGuanshan 3Road, Wuhan, Hubei Province, China,430074fangchang8188@Keywords: Polymer, porous materials, energy storage, porous carbonAbstract: Nowadays, one of the research emphases in clean energy field is to apply porous polymer as energy storage media to capture and save abundant energy. Researches in this area focus on theoretical methods and syntheses of new materials. Researches on theoretical methods include investigations on mechanical strength, characteristic of heat and mass transfer, internal structure and hydrophilicity of materials using mathematical, physical and chemical methods. Syntheses of new materials include synthesis of porous carbon and porous metal organic frameworks materials and construction of battery structure use polymer organics as matrix.IntroductionUnder the circumstances of fossil energy shortage and global warming, research on clean energy is becoming more and more important. One of the most important topics is to find appropriate energy carrier and effective and doable methods to capture H 2, CH 4 and CO 2 in limited space. Nowadays, researches are focus on theoretical methods and syntheses of new materials. Polymer porous materials have been applied in fuel cell, solar cell, lithium ion battery and super capacitor to store energy. 1 Researches on theoretical methodsResearches on theoretical methods mainly include mechanical strength, characteristics of heat and mass transfer, internal flow field, channel structure, transfer characteristics of two-phase flow, hydrophilicity of materials and water swelling of electrode. These researches used methods such as simulation, mathematical modeling, geometric blur, particle element, and by means of techniques like neutron scattering, gas absorption, neutron radiography and electrochemical impedance spectrometry. Jiang, JW, et al. [1] summarized the function of molecular simulations in application research on nano-porous materials in energy area, and proved that molecular-level studies can bridge the gap between physical and engineering sciences. Thi X. T. Sayle et al. [2] simulated the mechanical deformation of meso-porous Li-−MnO 2 under stress using molecular dynamics simulation, and generated a full atomistic model of meso-porous β-MnO 2 to explain volume changes during charge/discharge cycles in rechargeable Li-ion battery materials. Hiroyasu Furukawa et al. [3] measured H 2, CH 4, and CO 2 isotherm of seven porous covalent organic frameworks (COFs). The results proved that material with the best performance rivaled the best metal-organic frameworks and other porous materials in their capacities. Linli He et al. [4] compared surface areas of four nano-porous carbons obtained by small-angle neutron scattering (SANS) and CO 2 and N 2 sorption, found that calculation data of pore size obtained from SANS were similar to results obtained from X-ray scattering to similar porous carbon materials. Yasutaka Nishida et al. [5] numerically studied a model of porous composite microstructures for solid oxide fuel cell anodes with three-dimensional particle element method, and found that the numerical results were in good agreement with the experimentally measured triple-phase boundary density. M. Maidhily et al. [6] used Electrochemical Impedance Spectroscopy to evaluate two different types of gas diffusion electrodes for polymer electrolyte membrane fuel cells (PEMFCs). It was observed that the two types of electrodes with double side gas diffusion layer (DSGDL) and single side gas diffusion layer (SSGDL) showeddifferent behavior with respect to operating conditions. The DSGDL is favorable for operating at higher temperature and relative humidity, while SSGDL is favorable under dry gas operation. Naiqing Zhang et al. [7] used the breath figures method, prepared honeycomb porous La0.6Sr0.4Co0.2 Fe0.8O3−δ –Gd0.2Ce0.8O2−δ (LSCF–GDC) composite cathodes with nontoxic and easily available water droplets as templates. The Scanning Electron Microscopy micrographs suggested that experimental conditions and concentration of polymer and LSCF–GDC powder affected the pore structure of the membranes. Energy capacity of porous carbon materials relates to the surface properties. Researches on surface area, internal surface structure and internal surface flow field of porous materials are also of great importance. Joshua S. Preston et al. [8]investigated gradual property change between the micro-porous layer and the macro-porous layer of bilayer diffusion media, and developed a mathematical model describing the effects of this gradual interfacial region. Yun Wang[9] investigated porous medium flow field of polymer electrolyte fuel cells, and proposed an approach of channel development for polymer electrolyte fuel cells (PEFCs), i.e., to fill porous media in the channel region, allowing a simultaneous transport of gaseous reactant, liquid, heat, and electron through the porous-media channel. On this basis, Yun Wang [10]analyzed the two-phase transport in the porous-media channel for PEFCs and found that the impact of capillary action can be neglected for the liquid transport along the channel.Catalyst and hydrophobicity of porous materials are important to electrodes performance, and water management is one of the most important factors for improving the performance in PEMFCs. The micro-porous layers in the membrane electrode assembly provide proper pores and paths for mass transport, thereby allowing for the control of the water balance. Minjeh Ahn et al. [11] studied the influence of hydrophilicity in micro-porous layer for PEMFCs. The result indicated that the hydrophilicity control in the micro-porous layers has a positive effect on the water management in PEMFCs. S. Pulloor Kuttanikkad et al. [12] simulated pore network to study water transport in a model gas diffusion layer of PEMFCs in relation with the change in hydrophobicity that might be due to aging or temperature effect. The system was found to be weakly dependent on the fraction of hydrophilic elements as long as this fraction was below the percolation threshold, whereas an increase in wettability above the percolation threshold diminished access of gas to the catalyst layer.2 Researches on syntheses of new materialsPolymer porous materials include porous carbon, porous metal organic frameworks (MOFs) materials and others have been widely used in energy storage area. Construction of batteries using different kinds of polymer organic materials as matrix is one of the research focuses.2.1 Porous carbon materialsIn energy industry, porous carbon materials are widely used to produce electrode and batteries with super capability to store energy, H2and CH4for the low price, long service life and stable performance. Characteristics of porous carbon materials are affected by both the carbon structure and property of the pores. Martin Oschatz et al.[13]obtained a hierarchical and highly porous carbide-derived carbon (CDC) by nano-casting of pre-ceramic precursors into cubic ordered silica and subsequent chlorination. Resulting CDC replica materials show high methane and n-butane capacity. In order to prove the feasibility of using porous carbon foam material in a proton exchange membrane fuel cell, Jin Kim et al. [14] constructed a single PEMFC with reticulated vitreous carbon foam. Compared with that of a conventional fuel cell, this cell produced comparative power density. Du He Yun et al. [15] obtained catalyst layer comprising of low loading of platinum nano-particles supported by a directly grown micro-porous carbon nano-tube (CNT) layer, and combined this catalyst layer on a proton exchange membrane fuel cell. Results showed that the cell performed well without exhibiting water-flooding.2.2 MOFs materialsPorous MOFs materials experienced great development in the last decades. Their chemically-tunable structures and functionality nano-space in skeleton played an important role in the storage of H2 and CH4, capture of CO2, gas separation, catalysis and fuel cell. Ma, TY et al. [16] combined a considerablenumber of organic functional groups into the metal phosphonate hybrid framework, and obtained meso-porous metal phosphonates. Small amount of organic additives and the pH value of the reaction solution have a large impact on the morphology and textural properties of the resultant hybrid meso-porous metal phosphonate solids. The materials have impressive performances in the fields of energy.2.3 polymer organic matrixConstruction of batteries using different kinds of polymer organic materials as matrix is one of the research focuses. Prabal Sapkota et al. [17] designed and manufactured a zinc air fuel cell of taper-end structure with a polyamide-base engineering plastic. The air cathode with multiple layers of MnO2 and CeO2 showed a remarkably stable electricity-generating performance even at high current density. Tienhoa Nguyen et al. [18] synthesized a highly porous polyimide film with tunable pore size, porosity and thickness, and then used this film as matrix to construct a Nafion-infiltrated composite membrane. This membrane demonstrated significantly improved performance. Lawrence Berkeley National Laboratory developed a new kind of compound material composed by nano-particles of Mg dispersed by methacrylate polymer as matrix [19]. Mg contained abundant vacancy which could deposit H2, and polymer matrix provided the best barrier property. This compound material did not need high temperature to absorb and release H2, and avoided metal oxidation, overcame the main technical obstacle of H2 storage. Sung Hyun Yuna et al. [20] reported a novel non-fluorinated composite polymer electrolyte membrane reinforced by an electrospun nano-fiber porous substrate having a symmetrically pore-filled structure. Water swelling of the membrane was significantly suppressed and the proton conductivities were improved, performances in a H2/O2 fuel cell were also greatly enhanced. A. Eguizábal et al. [21] developed a novel hybrid membrane based on polybenzimidazole and ETS-10 titanosilicate type materials functionalized with sulfonic groups, and this membrane had been used in high temperature proton exchange membrane fuel cells applications, consequentially, the conductivity values of the membrane were improved.3 ConclusionsAs the research progress of theoretical methods and syntheses of new materials, porous polymer like porous carbon materials, MOFs materials and polymer organic matrix, should get increasingly great attention and affirmation in energy storage field.References[1]Jiang JW, Babarao R, Hu ZQ, Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: from zeolites, etal-organic frameworks to protein crystals, Chemical Society Reviews. 40 (7) (2011) 3599-3612.[2]Thi X T Sayle, Phuti E. Ngoepe, Dean C. Sayle, Simulating mechanical deformation in nanomaterials with application for energy storage in nanoporous architectures, ACS Nano. 3 (10) (2009) 3308-3314.[3]Hiroyasu Furukawa, Omar M. Yaghi, Storage of hydrogen, Methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications, J. Am. Chem. Soc. 131 (25) (2009) 8875-8883.[4]Lilin He, Suresh M. Chathoth, Yuri B, Melnichenko, Small-angle neutron scattering characterization of the structure of nanoporous carbons for energy-related applications, Microporous and Mesoporous Materials. 149 (2012) 46-54.[5]Yasutaka Nishida, Satoshi Itoh, A modeling study of porous composite microstructures for solid oxide fuel cell anodes, Electrochimica Acta. 56 (7) (2011) 2792-2800.[6]M Maidhily, N Rajalakshmi, K S Dhathathreyan, Electrochemical impedance diagnosis of micro porous layer in polymer electrolyte membrane fuel cell electrodes, International Journal of Hydrogen Energy. 36 (19) 2011 12352-12360.[7]Naiqing Zhang, Juan Li, Dan Ni, et al., Preparation of honeycomb porous La0.6Sr0.4Co0.2Fe0.8O3 −δ–Gd0.2Ce0.8O2−δ composite cathodes by breath figures method for solid oxide fuel cells, Applied Surface Science. 258 (1) (2011) 50-57.[8]Joshua S. Preston, Richard S. Fu, Ugur Pasaogullari, et al., Consideration of the role of micro-porous layer on liquid water distribution in polymer electrolyte fuel cells, J. Electrochem. Soc. 158 (2) (2011) B239-B246.[9]Yun Wang, Porous-Media Flow Fields for Polymer Electrolyte Fuel Cells: I. Low Humidity Operation, J. Electrochem. Soc. 156 (10) (2009) B1124-B1133.[10]Yun Wang, Porous-Media Flow Fields for Polymer Electrolyte Fuel Cells: II. Analysis of Channel Two-Phase Flow, J. Electrochem. Soc. 156 (10) (2009) B1134-B1141.[11]Minjeh Ahna, Yong-Hun Chob, Yoon-Hwan Choa, et al., Influence of hydrophilicity in micro- porous layer for polymer electrolyte membrane fuel cells, Electrochimica Acta. 56 (5) 2011 2450-2457.[12]S Pulloor Kuttanikkad, M Prat, J. Pauchet, Pore-network simulations of two-phase flow in a thin porous layer of mixed wettability: Application to water transport in gas diffusion layers of proton exchange membrane fuel cells, Journal of Power Sources. 196 (3) (2011) 1145-1155.[13]Martin Oschatz, Emanuel Kockrick, Marcus Rose, et al., A cubic ordered, mesoporous carbide- derived carbon for gas and energy storage applications, Carbon. 48 (2010) 3987-3992.[14]Jin Kim, Nicolas Cunningham, Development of porous carbon foam polymer electrolyte membrane fuel cell, Journal of Power Sources. 195 (8) (2010) 2291-2300.[15]Du He Yun, Wang Chen Hao, Hsu Hsin Cheng, et al., High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell, Journal of Materials Chemistry. 21 (8) (2011) 2512-2516.[16]Ma TY, Yuan ZY, Metal phosphonate hybrid mesostructures: Environmentally friendly multifunctional materials for clean energy and other applications, Chemsuschem. 4 (10) (2011) 1407-1419.[17]Prabal Sapkota, Honggon Kim, An experimental study on the performance of a zinc air fuel cell with inexpensive metal oxide catalysts and porous organic polymer separators, Journal of Industrial and Engineering Chemistry. 16 2010 39-44.[18]Tienhoa Nguyen, XinWang, Multifunctional composite membrane based on a highly porous polyimide matrix for direct methanol fuel cells, Journal of Power Sources. 195 2010 1024-1030.[19]Zhi Ming, A new style nano-compound polymer material for H2 storage, World Plastic. 29 (7) (2011) 70.[20]Sung Hyun Yuna, Jung Je Wooa, Seok Jun Seoa, et al., Sulfonated poly(2,6-dimethyl-1,4- phenylene oxide) (SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells, Journal of Membrane Science. 367 ( 1-2) (2011) 296-305.[21]A. Eguizábal, J Lemus, M Urbiztondo,et al., Novel hybrid membranes based on polybenzimidazole and ETS-10 titanosilicate type material for high temperature proton exchange membrane fuel cells: A comprehensive study on dense and porous systems, Journal of Power Sources. 196 (21) 2011 8994-9007.Advances on Material Science and Manufacturing Technologies10.4028//AMR.621Research Progress of Application of Porous Polymer in Energy Storage 10.4028//AMR.621.27。
多晶型MnO2-Ru复合催化剂的制备及其电催化水解析氧性能的研究
第53卷第2期2024年2月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.53㊀No.2February,2024多晶型MnO 2-Ru 复合催化剂的制备及其电催化水解析氧性能的研究李㊀佳,袁仲纯,姚梦琴,刘㊀飞,马㊀俊(贵州大学化学与化工学院,贵阳㊀550025)摘要:在二氧化锰(MnO 2)中引入杂原子是调整电化学水氧化催化活性位点的有效方法㊂在电催化析氧反应(OER)中,虽然已经研究出了许多MnO 2的改性方法,但很少有研究以MnO 2为主体,讨论MnO 2晶型对催化活性的影响㊂基于此,本文制备了4种晶型的MnO 2(α-MnO 2㊁β-MnO 2㊁γ-MnO 2和δ-MnO 2),并系统地研究了Ru 加入MnO 2制备得到的催化剂(x -MnO 2-Ru)的OER 性能㊂线性扫描伏安法和计时电位法测试结果表明,β-MnO 2在Ru 加入后得到的催化剂(β-MnO 2-Ru)电化学性能最佳,在电流密度为10mA㊃cm -2时拥有300mV 的较低过电位,而且运行24h 后仍保持较好的催化活性㊂结合表征发现,β-MnO 2-Ru 具有较多的Mn 3+和缺陷氧空位,从而具有优异的电催化性能㊂关键词:二氧化锰;多晶型;钌;析氧反应;电解水;催化活性;电流密度中图分类号:TQ032.4㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2024)02-0336-08Preparation of Polymorph MnO 2-Ru Composite Catalyst and Its Electrocatalytic Performance for Oxygen Evolution in WaterLI Jia ,YUAN Zhongchun ,YAO Mengqin ,LIU Fei ,MA Jun(College of Chemistry and Chemical Engineering,Guizhou University,Guiyang 550025,China)Abstract :The introduction of heteroatoms into manganese dioxide (MnO 2)is an effective method to adjust the active site of electrochemical water oxidation catalysis.Although many modification methods for MnO 2have been studied in electrocatalytic oxygen evolution reaction (OER),few studies have focused on the influence of regulating different crystal forms of MnO 2on catalytic activity.This article prepared four different crystal forms of MnO 2(α-MnO 2,β-MnO 2,γ-MnO 2and δ-MnO 2),and systematically studied the catalytic performance of the catalyst (x -MnO 2-Ru)prepared by adding Ru to α-MnO 2,β-MnO 2,γ-MnO 2and δ-MnO 2for OER.The results of linear sweep voltammetry and chronopotentiometry measurements show that the catalyst prepared by adding Ru to β-MnO 2(β-MnO 2-Ru)has the best electrochemical performance.β-MnO 2-Ru shows a low overpotential (300mV at 10mA㊃cm -2)and outstanding catalytic activity with small degradation after 24h operation.It is found that β-MnO 2-Ru exhibits excellent electrocatalytic performance due to its abundance of Mn 3+and defect oxygen vacancies.Key words :manganese dioxide;polymorph;ruthenium;oxygen evolution reaction;electrolyzed water;catalytic activity;current density ㊀㊀收稿日期:2023-07-31㊀㊀基金项目:铜仁市科技局科技支撑计划( 2021 16);贵州能矿锰业集团有限公司产学研合作项目;贵州大学实验室开放项目(SYSKF2023-041)㊀㊀作者简介:李㊀佳(1999 ),女,贵州省人,硕士研究生㊂E-mail:lj3082643757@ ㊀㊀通信作者:姚梦琴,博士,讲师㊂E-mail:mqyao@ 刘㊀飞,博士,教授㊂E-mail:ce.feiliu@0㊀引㊀㊀言随着全球能源消耗的快速增长,传统化石能源的资源短缺和环境污染问题越来越突出,因此发展氢能源已成为全球共识㊂在众多氢能源生产方法中,电解水制氢由于具有绿色环保㊁生产灵活㊁氢气纯度较高等诸多优点,得到了广泛的研究和应用㊂电解水涉及析氢反应(hydrogen evolution reaction,HER)和析氧反应㊀第2期李㊀佳等:多晶型MnO2-Ru复合催化剂的制备及其电催化水解析氧性能的研究337㊀(oxygen evolution reaction,OER)两个半反应,相较于阴极HER涉及的两电子转移,阳极OER涉及四电子转移㊂发生OER动力学反应缓慢,极大阻碍了电解水装置的工作,因此迫切需要开发高效OER催化剂[1-2]㊂在碱性条件下,目前的电解水技术已经成熟并成功地实现了工业化大规模应用㊂但是面对碱性制氢工业中存在能耗较高的问题,发展高效稳定的碱性OER催化剂仍然是目前研究的重中之重[3]㊂现有的OER催化剂主要是Ir㊁Ru等贵金属及其化合物,虽然具有较高的电催化性能,但成本高㊁储量低㊁稳定性差等缺点使贵金属基催化剂难以实现大规模应用[4]㊂因此,寻找低贵金属用量且具有高性能的OER催化剂有重要的现实意义㊂在众多锰基氧化物中,MnO2是锰基氧化物在电化学中的经典代表㊂MnO2不仅具有低成本㊁低毒㊁环境友好和储量丰富的优点[5-6],而且与其他锰基氧化物相比,其[MnO6]八面体的连接模式不同,导致具有不同的形态和隧道结构,如硬锰矿(α-MnO2)㊁软锰矿(β-MnO2)㊁水钠锰矿(δ-MnO2)等[7-8],同时也赋予了独特的电化学特性[9-10]㊂然而MnO2催化剂本身仍存在电导率差和活性位点少等缺点,这使其电催化活性受到了一定的限制[7,11]㊂因此,在电催化领域中对MnO2的改性仍然是一个热门话题[12-13]㊂例如MnO2/碳复合催化剂㊁MnO2-金属复合催化剂和MnO2/金属氧化物复合催化剂等方法[14],常被用于改善MnO2在OER中的活性㊂Tian等[15]通过简单的微波辅助水热反应合成了碳点(CDs)与MnO2复合催化剂(CDs-MnO2),用作高效OER催化剂,并探讨了CDs和MnO2含量之比对催化活性的影响㊂结果表明,CDs0.15-MnO2拥有最好的OER 性能,仅需343mV的过电位即可达到10mA㊃cm-2的电流密度,且在反应过程中能够保持较高稳定性㊂Xiong等[16]开发了一种薄Ni3S2/MnO2异质纳米阵列(NF-Ni3S2/MnO2),发现NF-Ni3S2/MnO2具有一定的暴露界面和活性位点,可以完美地整合并优化层状Ni3S2和MnO2的优点,从而实现了在碱性条件下高效的电解水性能㊂在电流密度为10mA㊃cm-2时,NF-Ni3S2/MnO2的过电位为260mV㊂虽然研究者们已经从不同的角度对MnO2进行了改性,但是尚未有研究以MnO2为主体,讨论MnO2晶型对OER性能的影响㊂基于此,本研究制备了4种晶型的MnO2(α-MnO2㊁β-MnO2㊁γ-MnO2和δ-MnO2),并将Ru加入到其中制备MnO2-金属复合催化剂,进一步探究Ru加入后所得到的催化剂的性能㊂结合结构表征与电化学测试研究了MnO2晶型对催化OER性能的影响㊂1㊀实㊀㊀验1.1㊀实验试剂试验所需原材料如表1所示㊂表1㊀试验所用原材料Table1㊀Raw materials used for testingName of drug Chemical formula or abbreviation Purity Source一水合硫酸锰MnSO4㊃H2O AR成都金山化学试剂有限公司高锰酸钾KMnO4AR重庆川东化工有限公司过硫酸铵(NH4)2S2O8AR成都市科龙化工试剂厂无水三氯化钌RuCl3㊃x H2O AR北京伊诺凯科技有限公司异丙醇C3H8O AR麦克林全氟磺酸萘酚溶液5%Nafion AR北京新亚恒奥科技有限公司1.2㊀催化剂的制备1.2.1㊀x-MnO2(x=α㊁β㊁γ㊁δ)的制备多晶型MnO2的制备条件如表2所示㊂1.2.2㊀x-MnO2-Ru(x=α㊁β㊁γ㊁δ)的制备将0.1g的x-MnO2分散在20mL H2O中并超声处理30min㊂将0.0325g的RuCl3㊃x H2O(AR)溶于20mL H2O中㊂室温条件下,将RuCl3溶液注入剧烈搅拌下的x-MnO2悬浮液中,持续反应48h㊂然后通过真空过滤收集产物,并用去离子水洗涤数次㊂将获得的产物在80ħ的烘箱中干燥后,在200ħ的空气中进一步退火1h㊂制备得到含有12%(质量分数)Ru的x-MnO2-Ru(x=α㊁β㊁γ㊁δ)㊂338㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷表2㊀多晶型MnO2的制备条件Table2㊀Preparation condition of polymorphic MnO2MnO2crystal form Manganesesource OxidantManganesesource/oxidantReactiontemperature/ħReactiontime/hα-MnO2MnSO4㊃H2O KMnO43ʒ2801β-MnO2MnSO4㊃H2O(NH4)2S2O8 1.0ʒ1.416512γ-MnO2MnSO4㊃H2O(NH4)2S2O8 1.0ʒ1.49012δ-MnO2MnSO4㊃H2O KMnO43ʒ8160121.3㊀浆液配制取5mg催化剂样品溶于800μL超纯水和200μL异丙醇的混合溶液,超声30min,加入20μL5% Nafion溶液,超声90min均匀分散,静置备用㊂1.4㊀表征与电化学测试采用D8Advance型X射线衍射仪(布鲁克衍射荧光事业部)对样品进行晶体结构分析;采用JSM-7800F 型扫描电子显微镜(日本日立公司)对样品进行形貌表征;采用ESCALAB250Xi型X射线光电子能谱仪(赛默飞)对样品进行表面化学价态分析㊂利用电化学工作站(CHI760E)的三电极体系完成电化学性能测试㊂取10μL浆液滴在面积为0.07cm2的玻碳电极上制备工作电极,以碳棒作为对电极,Hg/HgO电极作为参比电极,在1mol㊃L-1KOH溶液中进行测试,ECSA=C dl/C S(C dl为双层电容,C S取值为40μF㊃cm-2)㊂图1㊀不同晶型MnO2加入Ru前后的XRD图谱Fig.1㊀XRD patterns of MnO2with different crystal forms before and after Ru adding.(a)~(d)XRD patterns of x-MnO2and x-MnO2-Ru;(e)~(h)exemplified peak shift in XRD patterns of x-MnO2-Ru2㊀结果与讨论2.1㊀催化剂的表征2.1.1㊀X射线粉末衍射(XRD)采用XRD对晶体结构进行分析,图1(a)~(d)显示了Ru加入前后催化剂的XRD图谱㊂可以观察到合成的x-MnO2分别与α-MnO2(JCPDS#44-0141)㊁β-MnO2(JCPDS#24-0735)㊁γ-MnO2(JCPDS#14-0644)和δ-MnO2(JCPDS#80-1098)[17-19]的标准卡片对应良好,表明4种晶型的MnO2成功合成㊂尽管Ru加入后的衍射峰与原始MnO2的衍射峰相似,但衍射峰强度明显下降,这是由于Ru的加入减小了它们的结晶度[20]㊂当Ru加入后,所有晶型MnO2的单个衍射峰都产生了偏移,这表明Ru掺杂到了MnO2的结构中[21-22](见图1㊀第2期李㊀佳等:多晶型MnO2-Ru复合催化剂的制备及其电催化水解析氧性能的研究339㊀(e)~(h))㊂此外,只有δ-MnO2-Ru观察到两个杂峰,通过对比发现它们归属于RuO2(JCPDS#40-1290)[23],表明在δ-MnO2-Ru中有一部分Ru以RuO2的形式存在[19]㊂2.1.2㊀扫描电子显微镜(SEM)图2(a)~(d)分别是α-MnO2㊁β-MnO2㊁γ-MnO2和δ-MnO2晶体的SEM照片㊂从图中可以看出:α-MnO2是直径约700nm的纳米球;β-MnO2是长度约为800nm的棒状;而γ-MnO2整体表现为球形,每个球是由大量尖锐的纳米线构成;δ-MnO2显示出微片堆叠而成的层状形貌㊂图2(e)~(h)分别显示了Ru加入之后所制备的4种催化剂的照片,可以观察到,相比于原始的MnO2,Ru加入所制备得到的催化剂表面粗糙度增加,但形貌未受到明显的影响㊂图2㊀x-MnO2和x-MnO2-Ru的SEM照片Fig.2㊀SEM images of x-MnO2and x-MnO2-Ru2.1.3㊀X射线光电子能谱(XPS)研究表明,具有较高Mn3+含量和氧空位的MnO2具有更好的催化活性[24-25]㊂因此,为了进一步研究催化剂中所含元素化学态的影响,利用XPS对不同晶型Ru加入前后MnO2中Mn和O的化学状态进行了分析㊂在α-MnO2-Ru㊁β-MnO2-Ru㊁γ-MnO2-Ru和δ-MnO2-Ru的全谱图中出现了Ru3p峰,证实Ru已经成功加入MnO2(见图3(i))㊂所有样品的Mn2p光谱可以被去卷积为两个主要的子峰,分别为641.7eV的Mn3+和642.7eV的Mn4+[19](见图3(ii))㊂由表3可以发现,β-MnO2的Mn3+/Mn4+比率为2.08,这个值是δ-MnO2的5倍左右㊂相较于α-MnO2㊁β-MnO2㊁γ-MnO2㊁δ-MnO2,Ru的加入使4种催化剂的Mn3+/Mn4+比率分别增加了(以Δ表示MnO2加入Ru前后Mn3+/Mn4+的差值)0.26㊁1.06㊁0.24㊁0.19,这主要是由于多晶型结构特点的不同㊂α-MnO2㊁β-MnO2的隧道结构中阳离子较多,为了平衡隧道内的阳离子,α-MnO2和β-MnO2具有较高的Mn3+/Mn4+比率㊂MnO2的O1s光谱可以被去卷积为3个子峰,分别为529.3eV的晶格氧(O L)㊁530.7eV的缺陷氧(O d)和531.6eV的表面吸附氧(O surf)(见图3(iii))[19]㊂相较于原始MnO2,Ru的加入也使相应催化剂中O d的含量都有所增加(见表3)㊂对于x-MnO2(x=α㊁β㊁γ),α-MnO2具有[1ˑ1]和[2ˑ2]的一维隧道结构,其中[2ˑ2]隧道能够接纳半径达0.15nm的阳离子及H2O分子,这种大隧道也导致它有着最高的孔隙度㊂β-MnO2的[MnO6]八面体以共边的连接方式延伸成具有[1ˑ1]的隧道结构,尺寸仅为1.89Å的隧道使其有着最小的孔隙度,因此它具有紧密堆积的晶格结构㊂γ-MnO2是由[1ˑ1]和[1ˑ2]交错的一维隧道结构组成,因此γ-MnO2的孔隙度大小处于α-MnO2和β-MnO2之间[26]㊂研究表明,具有紧密堆积的MnO2在Ru加入后会产生更多的缺陷[19]㊂这也很好地解释了尽管β-MnO2的O d含量仅为13.25%(O d在氧物种中的含量,下同),而Ru加入后O d含量增加到了29.31%㊂而且γ-MnO2/γ-MnO2-Ru㊁α-MnO2/α-MnO2-Ru的O d含量变化趋势也与其隧道结构的大小变化相一致㊂而对于具有独特层状结构的δ-MnO2,Ru的加入会导致其缺陷340㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷有较明显的增加㊂表3㊀基于高分辨率XPS Mn2p光谱和XPS O1s光谱的所有MnO2样品中Mn3+/Mn4+和O d含量的分析Table3㊀Analysis of Mn3+/Mn4+and O d content in all MnO2samples based on the high resolutionXPS Mn2p and O1s spectraSample Mn3+/Mn4+Δ(Mn3+/Mn4+)O d content/%ΔO d/%α-MnO2 1.990.2623.95 3.36α-MnO2-Ru 2.2527.31β-MnO2 2.08 1.0613.2516.06β-MnO2-Ru 3.1429.31γ-MnO2 1.770.2417.8611.15γ-MnO2-Ru 2.0129.01δ-MnO20.470.1912.6114δ-MnO2-Ru0.6626.6(i)Full spectrum:(a)α-MnO2versusα-MnO2-Ru;(b)β-MnO2versusβ-MnO2-Ru;(c)γ-MnO2versusγ-MnO2-Ru;(d)δ-MnO2versusδ-MnO2-Ru(ii)Mn2p:(a)α-MnO2versusα-MnO2-Ru;(b)β-MnO2versusβ-MnO2-Ru;(c)γ-MnO2versusγ-MnO2-Ru;(d)δ-MnO2versusδ-MnO2-Ru(iii)O1s:(a)α-MnO2versusα-MnO2-Ru;(b)β-MnO2versusβ-MnO2-Ru;(c)γ-MnO2versusγ-MnO2-Ru;(d)δ-MnO2versusδ-MnO2-Ru图3㊀x-MnO2和x-MnO2-Ru的XPS谱图Fig.3㊀XPS spectra of x-MnO2and x-MnO2-Ru2.2㊀电催化性能测试本文采用三电极体系,在1mol㊃L-1KOH溶液中测试了x-MnO2-Ru的OER性能㊂在电化学反应过程㊀第2期李㊀佳等:多晶型MnO2-Ru复合催化剂的制备及其电催化水解析氧性能的研究341㊀中的过电位㊁塔菲尔斜率和稳定性是评判电催化OER性能的重要参数[27]㊂通过线性扫描伏安法(linear sweep voltammetry,LSV)对所制备催化剂的OER性能进行了评估,可以观察到,晶型对催化剂的OER性能影响较大㊂从图4(b)进一步分析过电位(电流密度达到10mA㊃cm-2时的过电势,表示为η10),得到η10从大到小的顺序依次为:δ-MnO2-Ru(η10=546mV)㊁γ-MnO2-Ru(η10=530mV)㊁α-MnO2-Ru(η10=330mV)㊁β-MnO2-Ru(η10=300mV)㊂对原始MnO2的催化性能进行了测试,从图4(a)中的LSV曲线可以看到在1mA㊃cm-2的电流密度下,α-MnO2㊁β-MnO2和γ-MnO2的过电位分别为450㊁476和427mV,而δ-MnO2甚至达不到1mA㊃cm-2的电流密度㊂但Ru加入后所有MnO2样品的OER活性都显著提高,这一现象表明Ru 加入MnO2后所引起的变化对催化剂的活性产生了影响㊂此外,在相同测试条件下对商用RuO2进行了LSV 测试得到其过电位为527mV㊂过电位η是指在催化反应过程中,催化反应达到一定电流密度时所需实际电压(E i)超过理论电压(E t)的部分(η=E i-E t)㊂η越小,电流密度所需的实际电压越低,耗能相对越小,催化活性越高[28-30]㊂通过拟合得到了x-MnO2-Ru的塔菲尔斜率(Tafel)曲线,并进行了研究,结果如图4(c)所示㊂从图中可以看到,4种催化剂的塔菲尔斜率大小顺序与η10大小顺序一致㊂塔菲尔斜率越低,表明反应的速度越快,电催化性能就越好[31]㊂可以看到β-MnO2-Ru的塔菲尔斜率仅为108.16mV㊃dec-1,具有最好的催化活性㊂图4(d)是不同催化剂在η10的过电位下获得的电化学阻抗谱㊂拟合到由溶液电阻(R s)㊁电荷转移阻抗(R ct)和恒定相位元件(CPE)组成的等效电路后,β-MnO2-Ru的R ct值仅为51Ω㊂这表明β-MnO2-Ru 在电极界面处的电子运输阻力较小,更有利于加快反应动力学㊂除了催化活性,催化剂的稳定性也是评价电催化性能的重要指标㊂在电流密度为10mA㊃cm-2下,对β-MnO2-Ru进行了计时电位法测试结果如图4(e)所示㊂从图中可以看出,β-MnO2-Ru拥有较好的稳定性(运行24h后仍保持较好的催化活性)㊂在确定β-MnO2-Ru具有最好性能后,对具有不同含量Ru(6%㊁12%和18%)的β-MnO2-Ru催化剂进行了测试,其LSV曲线如图4(f)所示,从图中可以看出,负载量为12%的β-MnO2-Ru具有最好的OER性能㊂图4㊀x-MnO2和x-MnO2-Ru在1mol㊃L-1KOH溶液中的OER性能测试图Fig.4㊀OER performance test plots of x-MnO2and x-MnO2-Ru in1mol㊃L-1KOH solution在不同扫描速率(20~100mV㊃s-1)下对催化剂进行CV测试(见图5(a)~(d)),进一步得到的C dl曲线(见图5(e)),而电化学活性面积(electrochemical active surface area,ECSA)是通过分析C dl来确定的㊂ECSA与342㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷C dl呈正相关关系,因此较大的ECSA意味着样品具有较好的电催化活性㊂β-MnO2-Ru的C dl为5.2mF㊃cm-2,明显大于α-MnO2-Ru(3.3mF㊃cm-2)㊁γ-MnO2-Ru(1.8mF㊃cm-2)和δ-MnO2-Ru(1.0mF㊃cm-2)㊂此外,为了更好地反应出x-MnO2-Ru的本征活性,图5(f)是用ECSA归一化的LSV曲线,可以看到β-MnO2-Ru依旧具有最佳的OER催化活性,这意味着其具有最高的内在活性㊂图5㊀ECSA相关测试图Fig.5㊀ECSA related test diagrams3㊀结㊀㊀论本文以MnO2为主体,讨论了调控不同晶型MnO2对催化活性的影响,并对催化剂进行了结构表征和OER性能的测试㊂研究结果表明:1)α-MnO2㊁β-MnO2㊁γ-MnO2和δ-MnO2在加入Ru后表现出较大的活性差异,其中β-MnO2-Ru的性能最好,当电流密度为10mA㊃cm-2时过电位达到300mV,且保持了良好的电催化稳定性(运行24h后仍保持较好的催化活性)㊂2)MnO2的隧道结构㊁Mn3+和O d的含量是影响催化活性的关键因素㊂具有较小隧道结构([1ˑ1])的β-MnO2,在Ru加入后含有更多的Mn3+/Mn4+(3.14)和O d含量(29.31%),从而导致β-MnO2-Ru具有最好的催化性能㊂参考文献[1]㊀SONG J J,WEI C,HUANG Z F,et al.A review on fundamentals for designing oxygen evolution electrocatalysts[J].Chemical Society Reviews,2020,49(7):2196-2214.[2]㊀LU X Y,ZHAO C.Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at highcurrent densities[J].Nature Communications,2015,6:6616.[3]㊀YU S,WU Y,XUE Q,et al.A novel multi-walled carbon nanotube-coupled CoNi MOF composite enhances the oxygen evolution reactionthrough synergistic effects[J].Journal of Materials Chemistry A,2022,10(9):4936-4943.[4]㊀SHI Q R,ZHU C Z,DU D,et al.Robust noble metal-based electrocatalysts for oxygen evolution reaction[J].Chemical Society Reviews,2019,48(12):3181-3192.[5]㊀SONG Z,MA Y L,LI C E.The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphenenanocomposite[J].Science of the Total Environment,2019,651:580-590.㊀第2期李㊀佳等:多晶型MnO2-Ru复合催化剂的制备及其电催化水解析氧性能的研究343㊀[6]㊀GUO W,YU C,LI S F,et al.Strategies and insights towards the intrinsic capacitive properties of MnO2for supercapacitors:challenges andperspectives[J].Nano Energy,2019,57:459-472.[7]㊀MENG Y T,SONG W Q,HUANG H,et al.Structure-property relationship of bifunctional MnO2nanostructures:highly efficient,ultra-stableelectrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media[J].Journal of the American Chemical Society,2014,136(32):11452-11464.[8]㊀KITCHAEV D A,DACEK S T,SUN W H,et al.Thermodynamics of phase selection in MnO2framework structures through alkali intercalationand hydration[J].Journal of the American Chemical Society,2017,139(7):2672-2681.[9]㊀LIU M J,WANG Q,LIU Z Y,et al.In-situ N-doped MnCO3anode material via one-step solvothermal synthesis:doping mechanisms andenhanced electrochemical performances[J].Chemical Engineering Journal,2020,383:123161.[10]㊀LIN L S,SONG J B,SONG L A,et al.Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhancechemodynamic therapy[J].Angewandte Chemie International Edition,2018,57(18):4902-4906.[11]㊀IYER A,DEL-PILAR J,KING ONDU C K,et al.Water oxidation catalysis using amorphous manganese oxides,octahedral molecular sieves(OMS-2),and octahedral layered(OL-1)manganese oxide structures[J].The Journal of Physical Chemistry C,2012,116(10):6474-6483.[12]㊀XU G Y,YUE M F,QIAN Z X,et al.Metal-support interactions alter the active species on IrO x for electrocatalytic water oxidation[J].Journalof Materials Chemistry A,2023,11(28):15204-15210.[13]㊀ABE H,MURAKAMI A,TSUNEKAWA S,et al.Selective catalyst for oxygen evolution in neutral brine electrolysis:an oxygen-deficientmanganese oxide film[J].ACS Catalysis,2021,11(11):6390-6397.[14]㊀TANG Y J,ZHENG S S,CAO S A,et al.Advances in the application of manganese dioxide and its composites as electrocatalysts for the oxygenevolution reaction[J].Journal of Materials Chemistry A,2020,8(36):18492-18514.[15]㊀TIAN L,WANG J J,WANG K,et al.Carbon-quantum-dots-embedded MnO2nanoflower as an efficient electrocatalyst for oxygen evolution inalkaline media[J].Carbon,2019,143:457-466.[16]㊀XIONG Y,XU L L,JIN C D,et al.Interface-engineered atomically thin Ni3S2/MnO2heterogeneous nanoarrays for efficient overall watersplitting in alkaline media[J].Applied Catalysis B:Environmental,2019,254:329-338.[17]㊀ZENG X C,ZHANG X J,LIU S,et al.A highly efficient cathode catalystγ-MnO2@CNT composite for sodium-air batteries[J].Science ChinaChemistry,2019,62(6):727-731.[18]㊀XU T Z,ZHANG P Y,ZHANG H Y.Ultrathinδ-MnO2nanoribbons for highly efficient removal of a human-related low threshold odorant-aceticacid[J].Applied Catalysis B:Environmental,2022,309:121273.[19]㊀QIN Y Z,LIU Y,ZHANG Y Z,et al.Ru-substituted MnO2for accelerated water oxidation:the feedback of strain-induced and polymorph-dependent structural changes to the catalytic activity and mechanism[J].ACS Catalysis,2023,13(1):256-266.[20]㊀ZHANG Y,GUO H R,SONG M,et al.Modulation of the morphology and electronic structure of Ni3S2nano-forests via P and Mo co-doping inpolyoxometalates to promote the urea oxidation reaction[J].Journal of Materials Chemistry A,2023,11(7):3584-3593.[21]㊀GU Y D,MIN Y X,LI L,et al.Crystal splintering ofβ-MnO2induced by interstitial Ru doping toward reversible oxygen conversion[J].Chemistry of Materials,2021,33(11):4135-4145.[22]㊀ATTANAYAKE N H,THENUWARA A C,PATRA A,et al.Effect of intercalated metals on the electrocatalytic activity of1T-MoS2for thehydrogen evolution reaction[J].ACS Energy Letters,2018,3(1):7-13.[23]㊀HU Y,HUANG Z Y,ZHANG Q,et al.Interfacial engineering of Co5.47N/Mo5N6nanosheets with rich active sites synergistically accelerateswater dissociation kinetics for Pt-like hydrogen evolution[J].Journal of Colloid and Interface Science,2023,643:455-464. [24]㊀YAN G B,LIAN Y B,GU Y D,et al.Phase and morphology transformation of MnO2induced by ionic liquids toward efficient water oxidation[J].ACS Catalysis,2018,8(11):10137-10147.[25]㊀MENEZES P W,WALTER C,CHAKRABORTY B,et bination of highly efficient electrocatalytic water oxidation with selectiveoxygenation of organic substrates using manganese borophosphates[J].Advanced Materials,2021,33(9):e2004098.[26]㊀夏㊀熙.二氧化锰及相关锰氧化物的晶体结构㊁制备及放电性能(4)[J].电池,2005,35(3):199-203.XIA X.Crystal structure,preparation and discharge performancefor manganese dioxides and related manganese oxides(Ⅳ)[J].Battery Bimonthly,2005,35(3):199-203(in Chinese).[27]㊀刁金香,邱㊀雨,郭晓辉.介孔Co3S4纳米棒的制备及电催化产氧性能的研究[J].人工晶体学报,2018,47(2):370-373+381.DIAO J X,QIU Y,GUO X H.Synthesis of mesoporous Co3S4nanorods and their application as electrocatalysts for efficient oxygen evolution[J].Journal of Synthetic Crystals,2018,47(2):370-373+381(in Chinese).[28]㊀ZHANG B,ZHENG X L,VOZNYY O,et al.Homogeneously dispersed multimetal oxygen-evolving catalysts[J].Science,2016,352(6283):333-337.[29]㊀WANG Y,ZHAO Y Z,LIU L A,et al.Mesoporous single crystals with Fe-rich skin for ultralow overpotential in oxygen evolution catalysis[J].Advanced Materials,2022,34(20):1-11.[30]㊀QIN Y,YU T T,DENG S H,et al.RuO2electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reactionperformance[J].Nature Communications,2022,13:3784.[31]㊀ZOU X X,ZHANG Y.Noble metal-free hydrogen evolution catalysts for water splitting[J].Chemical Society Reviews,2015,44(15):5148-5180.。
分等级大微孔、介孔大孔
ARTICLEOPENReceived11Dec2012|Accepted16May2013|Published14Jun2013A solid with a hierarchical tetramodalmicro-meso-macro pore size distributionYu Ren1,Zhen Ma2,3,Russell E.Morris1,Zheng Liu1,Feng Jiao4,Sheng Dai3&Peter G.Bruce1Porous solids have an important role in addressing some of the major energy-related pro-blems facing society.Here we describe a porous solid,a-MnO2,with a hierarchical tetramodalpore size distribution spanning the micro-,meso-and macro pore range,centred at0.48,4.0,18and70nm.The hierarchical tetramodal structure is generated by the presence ofpotassium ions in the precursor solution within the channels of the porous silica template;thesize of the potassium ion templates the microporosity of a-MnO2,whereas theirreactivity with silica leads to larger mesopores and macroporosity,without destroying themesostructure of the template.The hierarchical tetramodal pore size distribution influencesthe properties of a-MnO2as a cathode in lithium batteries and as a catalyst,changingthe behaviour,compared with its counterparts with only micropores or bimodalmicro/mesopores.The approach has been extended to the preparation of LiMn2O4with ahierarchical pore structure.1EaStCHEM,School of Chemistry,University of St Andrews,St Andrews KY169ST,UK.2Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention(LAP3),Department of Environmental Science and Engineering,Fudan University,Shanghai200433,China.3Chemical Sciences Division,Oak Ridge National Laboratory,Oak Ridge,T ennessee37831,USA.4Department of Chemical and Biomolecular Engineering,University of Delaware,Newark,Delaware19716,USA.Correspondence and requests for materials should be addressed to P.G.B.(email:p.g.bruce@).P orous solids have an important role in addressing some of the major problems facing society in the twenty-first century,such as energy storage,CO2sequestration,H2 storage,therapeutics(for example,drug delivery)and catalysis1–8. The size of the pores and their distribution directly affect their ability to function in a particular application2.For example, zeolites are used as acid catalysts in industry,but their micropores impose severe diffusion limitations on the ingress and egress of the reactants and the catalysed products9.To address such issues, great effort is being expended in preparing porous materials with a bimodal(micro and meso)pore structure by synthesizing zeolites or silicas containing micropores and mesopores10–17,or microporous metal–organic frameworks with ordered mesopores18.Among porous solids,porous transition metal oxides are particularly important,because they exhibit many unique properties due to their d-electrons and the variable redox state of their internal surfaces8,19–22.Here we describe thefirst solid(a-MnO2)possessing hierarchical pores spanning the micro,meso and macro range, centred at0.48,4.0,18and70nm.The synthesis method uses mesoporous silica as a hard template.Normally such a template generates a mesoporous solid with a unimodal23–31or,at most,a bimodal pore size distribution32–38.By incorporating Kþions in the precursor solution,within the silica template,the Kþions act bifunctionally:their size templates the formation of the micropores in a-MnO2,whereas their reactivity with silica destroys the microporous channels in KIT-6comprehensively, leading to the formation of a-MnO2containing large mesopores and,importantly,macropores,something that has not been possible by other methods.Significantly,this is achieved without destroying the silica template by alkaline ions.The effect of the tetramodal pore structure on the properties of the material is exemplified by considering their use as electrodes for lithium-ion batteries and as a catalyst for CO oxidation and N2O decomposition.The novel material offers new possibilities for combining the selectivity of small pores with the transport advantages of the large pores across a wide range of sizes.We also present results demonstrating the extension of the method to the synthesis of LiMn2O4with a hierarchical pore structure.ResultsComposition of tetramodal a-MnO2.The composition of the synthesized material was determined by atomic absorption ana-lysis and redox titration to be K0.08MnO2(the K/Mn ratio of the precursor solution was1/3).The material is commonly referred to as a-MnO2,because of the small content of Kþ19.N2sorption analysis of tetramodal a-MnO2.The tetramodal a-MnO2shows a type IV isotherm(Fig.1a).The pore size dis-tribution(Fig.1b)in the range of0.3–200nm was analysed using the density functional theory(DFT)method applied to the adsorption branch of the isotherm39–42,as this is more reliable than analysing the desorption branch43;note that this is not the DFT method used in ab initio electronic structure calculations. Plots were constructed with vertical axes representing ‘incremental pore volume’and‘incremental surface area’.Large (macro)pores can account for a significant pore volume while representing a relatively smaller surface area and vice versa for small(micro)pores.Therefore,when investigating a porous material with a wide range of pore sizes,for example,micropore and macropore,the combination of surface area and pore volume is essential to determine the pore size distribution satisfactorily (Fig.1b).Considering both pore volume and surface area, significant proportions of micro-,meso-and macropores are evident,with distinct maxima centred at0.70,4.0,18and70nm.To probe the size of the micropores more precisely than is possible with DFT,the Horvath–Kawazoe pore size distribution analysis was employed44.A single peak was obtained at0.48nm(Fig.1c),in good accord with the0.46-nm size of the2Â2channels of a-MnO2 (refs.19,21).The relatively small Brunauer–Emmett–Teller(BET) surface area of tetramodal a-MnO2(79–105m2gÀ1; Supplementary Table S1)compared with typical surface areas of mesoporous metal oxides(90–150m2gÀ1)45is due to the significant proportion of macropores(which have small surface areas)and relatively large(18nm)mesopores—a typical mesoporous metal oxide has only3–4nm pores.TEM analysis of tetramodal a-MnO2.Transmission electron microscopic(TEM)data for tetramodal a-MnO2,Fig.2, demonstrates a three-dimensional pore structure with a sym-metry consistent with space group Ia3d.From the TEM data,an a0lattice parameter of23.0nm for the mesostructure could be extracted,which is in good agreement with the value obtained from the low-angle powder X-ray diffraction(PXRD)data, a0¼23.4nm(Supplementary Fig.S1a).High-resolution TEM images in Fig.2c–e demonstrate that the walls are crystalline with a typical wall thickness of10nm.The lattice spacings of0.69,0.31 and0.35nm agree well with the values of6.92,3.09and3.46Åfor the[110],[310]and[220]planes of a-MnO2(International Centre for Diffraction Data(ICDD)number00-044-0141), respectively.The wide-angle PXRD data matches well with the PXRD data of bulk cryptomelane a-MnO2(Supplementary Fig. S1b),confirming the crystalline walls.The various pores in tetramodal a-MnO2can be observed by TEM directly:the0.48-nm micropores are seen in Fig.2e(2Â2 tunnels with dimensions of0.48Â0.48nm in the white box);the 4.0-nm pores are shown in Fig.2b–d;the18-nm pores are shown in Fig.2a;the70-nm pores are evident in Fig.2b(highlighted with white circles).Li intercalation.Li can be intercalated into bulk a-MnO2 (ref.46).Therefore,it is interesting to compare Li intercalation into bulk a-MnO2(micropores only)and bimodal a-MnO2 (micropores along with a single mesopore of diameter3.6nm,see Methods)with tetramodal a-MnO2(micro-,meso-and macropores).Each of the three a-MnO2materials was subjected to Li intercalation by incorporation as the positive electrode in a lithium battery,along with a lithium anode and a non-aqueous electrolyte(see Methods).The results of cycling(repeated intercalation/deintercalation of Li)the cells are shown in Fig.3. Although all exhibit good capacity to cycle Li at low rates of charge/discharge(30mA gÀ1),tetramodal a-MnO2shows sig-nificantly higher capacity(Li storage)at a high rate of 6,000mA gÀ1(corresponding to charge and discharge in3min). The tetramodal a-MnO2can store three times the capacity(Li) compared with bimodal a-MnO2,and18times that of a-MnO2 with only micropores,at the high rate of intercalation/deinter-calation(Fig.3).The superior rate capability of tetramodal a-MnO2over microporous and bimodal forms may be assigned to better Liþtransport in the electrolyte within the hierarchical pore structure of tetramodal a-MnO2.The importance of elec-trolyte transport in porous electrodes has been discussed recently35,47,48and the results presented here reinforce the beneficial effect of a hierarchical pore structure.Catalytic studies.CO oxidation and N2O decomposition were used as reactions to probe the three different forms of a-MnO2as catalysts(Supplementary Fig.S2).As shown in Supplementary Fig.S2a,tetramodal a-MnO2demonstrates better catalytic activity compared with only micropores or bimodal a-MnO2;thetemperature of half CO conversion (T 50)was 124°C for tetra-modal a -MnO 2,whereas microporous and bimodal a -MnO 2exhibited a T 50value of 275°C and 209°C,respectively.In the case of N 2O decomposition,a -MnO 2with only micropores demonstrated no catalytic activity in the range of 200–400°C,in accord with a previous report 49.Tetramodal and bimodal a -MnO 2showed catalytic activity and reached 32%and 20%of N 2O conversion,respectively,at a reaction temperature of 400°C.The differences in catalytic activity are related to the differences in the material.A detailed study focusing on the catalytic activity alonewould be necessary to demonstrate which specific features of the textural differences (pore size distribution,average manganese oxidation state,K þand so on)between the different MnO 2materials are responsible for the differences in behaviour.However,the preliminary results shown here do illustrate that such differences exist.Porous LiMn 2O 4.To demonstrate the wider applicability of the synthesis method,LiMn 2O 4with a hierarchical pore structurewas1801601401201008060402000.00.20.40.60.81.0V (c m 3 g –1)Pore diameter (nm)0.0120.0100.0080.0060.0040.0020.000I n c r e m e n t a l p o r e v o l u m e (c m 3 g –1)Pore width (nm)I n c r e m e n t a l s u r f a c e a r e a (m 2 g –1)I n c r e m e n t a l s u r f a c e a r e a (m 2 g –1)P /P 0Figure 1|N 2sorption analysis of tetramodal a -MnO 2.(a )N 2adsorption–desorption isotherms,(b )DFT pore size distribution and (c )Horvath–Kawazoe pore size distribution from N 2adsorption isotherm for tetramodal a -MnO 2.Figure 2|TEM images of tetramodal a -MnO 2.TEM images along (a )[100]direction,showing 18nm mesopores (scale bar,50nm);(b )4.0and 70nm pores (70nm pores are highlighted by white circles;scale bar,100nm);(c –e )high-resolution (HRTEM)images of tetramodal a -MnO 2showing 4.0and 0.48nm pores (scale bar,10nm).Inset is representation of a -MnO 2structure along the c axis,demonstrating the 2Â2micropores as shown in the HRTEM (white box)in e .Purple,octahedral MnO 6;red,oxygen;violet,potassium.synthesized in a way similar to that of tetramodal a -MnO 2.The main difference is the use of LiNO 3instead of KNO 3(see Methods).In this case,Li þreacts with the silica template col-lapsing/blocking the microporous channels in the KIT-6and resulting in the large mesopores and macropores (17and 50nm)in the LiMn 2O 4obtained.The use of Li þinstead of the larger K þdeters the formation of micropores because Li þis too small.TEM analysis illustrates the hierarchical pore structure of LiMn 2O 4(Supplementary Fig.S3):4.0nm pores are evident in Supplementary Fig.S3b;17nm pores in Supplementary Fig.S3a;and 50nm pores in Supplementary Fig.S3b (highlighted with white circles).The d-spacing of 0.47nm in the high-resolution TEM image (Supplementary Fig.S3c)is in good accordance with the values of 0.4655nm for the [111]planes of LiMn 2O 4(ICDD number 00-038-0789)and with the wide-angle PXRD data (Supplementary Fig.S4).The original DFT pore size distribution analysis from N 2sorption (adsorption branch)gives three pore sizes in the range of 1–100nm centred at 4.0,17and 50nm (Supplementary Fig.S5).A more in-depth presentation of the results for LiMn 2O 4will be given in a future paper;preliminary results presented here illustrate that the basic method can be applied beyond a -MnO 2.DiscussionTurning to the synthesis of the tetramodal a -MnO 2,the details are given in the Methods section.Hard templating using silica templates,such as KIT-6,normally gives rise to materials with unimodal or,at most,bimodal mesopore structures,and in the latter case the smaller mesopores dominate over the larger mesopores 8,32,35.Alkali ions are excellent templates for micropores in transition metal oxides 19,21,but they have been avoided in nanocasting from silica templates because of concerns that they would react with and,hence,destroy thesilica20018016014012010080604020D i s c h a r g e c a p a c i t y (m A h g –1)0Cycle numberx in Li x MnO 2Figure 3|Electrochemical behaviour of different a -MnO 2.Capacity retention for tetramodal a -MnO 2cycled at 30(empty blue circles)and 6,000mA g À1(filled blue circles);bulk a -MnO 2cycled at 30(empty red squares)and 6,000mA g À1(filled red squares);bimodal a -MnO 2cycled at 30(empty black triangle)and 6,000mA g À1(filled blacktriangles).18 nm pores70 nm poresTwo sets of mesoporeschannels connecting both sets of mesoporesEtching of silica Etching of silica Etching of silica template2discontinuously within one set of the KIT-6mesoporesFigure 4|Formation mechanism of meso and macropores in tetramodal a -MnO 2.When both KIT-6mesochannels are occupied by a -MnO 2and then the silica between them etched away,the remaining pore is 4nm (centre portion of figure).When a -MnO 2grows in only one set of mesochannels and then the KIT-6is dissolved away,the remaining metal oxide has 18nm pores (upper portion of figure).The comprehensive destruction of the microchannels in KIT-6by K þleads to a -MnO 2growing in only a proportion of one set of the KIT-6mesochannels,resulting in the formation of B 70nm pores (lower portion of figure).template50.Here,not only have alkali ions been used successfully in precursor solutions without destroying the template mesostructure but they give rise to macropores in the a-MnO2, thus permitting the synthesis of a tetramodal,micro-small,meso-large,meso-macro pore structure.Synthesis begins by impregnating the KIT-6silica template with a precursor solution containing Mn2þand Kþions.On heating,the Kþions template the formation of the micropores in a-MnO2,as the latter forms within the KIT-6template.KIT-6 consists of two interpenetrating mesoporous channels linked by microporous channels51–53.The branches of the two different sets of mesoporous channels in KIT-6are nearest neighbours separated by a silica wall of B4nm53;therefore,when both KIT-6mesochannels are occupied by a-MnO2and the silica between them etched away,the remaining pore is4nm(see centre portion of Fig.4).It has been shown previously,by a number of authors,that by varying the hydrothermal conditions used to prepare the KIT-6,the proportion of the microchannels can be decreased to some extent,thus making it difficult to simultaneouslyfill the neighbouring KIT-6mesoporous channels by the precursor solution of the target mesoporous metal oxide33–35.As a result,the target metal oxide grows in only one set of mesochannels of the KIT-6host but not both.When the KIT-6is dissolved away,the remaining metal oxide has B18nm pores,because the distance between adjacent branches of the same KIT-6mesochannels is greater than between the two different mesochannels in KIT-6.Here we propose that the Kþions have a similar effect on the KIT-6to that of the hydrothermal synthesis,but by a completely different mechanism.Reaction between the Kþions in the precursor solution with the silica during calcination results in the formation of Kþ-silicates,which cause collapse or blocking of the microporous channels in KIT-6,such that the a-MnO2grows in one set of the KIT-6mesochannels,giving rise to18nm pores in a-MnO2when the silica is etched away,see top portion of Fig.4. However,the reaction between Kþand the silica is more severe than the effect of varying the hydrothermal treatment.In the former case,the KIT-6microchannels are so comprehensively destroyed that the proportion of the large(18nm)to smaller (4nm)mesopores is greater than can be achieved by varying hydrothermal conditions.The comprehensive destruction of the microchannels in KIT-6by Kþ,perhaps augmented by some minor degradation of parts of the mesochannels,leads to a-MnO2 growing in only a proportion of one set of the KIT-6 mesochannels,resulting in the formation of B70nm pores in a-MnO2,see lower portion of Fig.4.In summary,the Kþreactivity with the silica goes beyond what can be achieved by varying the conditions of hydrothermal synthesis and is responsible for generating the tetramodal pore size distribution reported here. The mechanism of pore formation in a-MnO2by reaction between Kþand the silica template is supported by several findings.First,by the lower K/Mn molar ratio of thefinal tetramodal a-MnO2product(0.08)compared with the starting materials(0.33)implies that some of the Kþions in the impregnating solution have reacted with the silica.Second, support for collapse/blocking of the microporous channels in KIT-6due to reaction with Kþwas obtained by comparing the texture of KIT-6impregnated with an aqueous solution contain-ing only KNO3and calcined at300and500°C.The micropore volume in KIT-6is the greatest,with no KNO3in the solution;it then decreases continuously as the calcination temperature and calcination time is increased,such that after2and5h at500°C the micropore volume has decreased to zero(Supplementary Fig. S6).Third,we prepared tetramodal a-MnO2using a similar synthetic procedure to that described in the Methods section, except that this time we used a covered tall crucible for the calcination step.Sun et al.54have shown that using a covered,tall crucible when calcining results in porous metal oxides with much larger particle sizes.If the70-nm pores had arisen simply from the gaps between the particles,then the pore size would have changed;in contrast,it remained centred at70nm, Supplementary Fig.S7,consistent with the70-nm pores being intrinsic to the materials and arising from reaction with the Kþas described above.Fourth,if the synthesis of MnO2is carried out using the KIT-6template but in the absence Kþions,then the DFT pore size distribution shown in Supplementary Fig.S8is obtained.The0.48-and70-nm pores are now absent,but the4-and18-nm pores remain.This demonstrates the key role of Kþin the formation of the smallest and largest pores and,hence,in generating the tetramodal pore size distribution.The absence of Kþmeans that there is nothing to template the0.48nm pores and so a-MnO2is not formed;the b-polymorph is obtained instead.The absence of Kþalso means that the microchannels in the KIT-6template remain intact,resulting in no70nm pores and the dominance of the4-nm pores compared with the 18-nm pores.The hierarchical pore structure can be varied systematically by controlling the synthesis conditions,in particular the Kþ/Mn ratio of the precursor solution.A range of Kþ/Mn ratios,1/5,1/3and1/2,gave rise to a series of pore size distributions,in which the pore sizes remained the same but the relative proportions of the different pores varied (Supplementary Table S1).The higher the Kþ/Mn ratio,the greater the proportion of macropores and large mesopores.This is in accord with expectations,as the higher the Kþconcentra-tion in the precursor solution the greater the collapse/blocking of the microporous channels in the KIT-6(as noted above),and hence the greater the proportion of macropores and large mesopores.Indeed,these results offer further support for the mechanism of pore size distribution arising from reaction between Kþand the silica template.In conclusion,tetramodal a-MnO2,thefirst porous solid with a tetramodal pore size distribution,has been synthesized.Its hierarchical pore structure spans the micro,meso and macropore range between0.3and200nm,with pore dimensions centred at 0.48,4.0,18and70nm.Key to the synthesis is the use of Kþions that not only template the formation of micropores but also react with the silica template,therefore,breaking/blocking the micro-porous channels in the silica template far more comprehensively than is possible by varying the hydrothermal synthesis conditions, to the extent that macropores are formed,and without destroying the silica mesostructure by alkali ions,as might have been expected.The resulting hierarchical tetramodal structure demon-strates different behaviours compared with microporous and bimodal a-MnO2as a cathode material for Li-ion batteries,and when used as a catalyst for CO oxidation and N2O decomposi-tion.The method has been extended successfully to the preparation of hierarchical LiMn2O4.MethodsSynthesis.Tetramodal a-MnO2(surface area96m2gÀ1,K0.08MnO2)was pre-pared by two-solvent impregnation55using Kþand mesoporous silica KIT-6as the hard template.KIT-6was prepared according to a previous report (hydrothermal treatment at100°C)51.In a typical synthesis of tetramodal a-MnO2, 7.53g of Mn(NO3)2Á4H2O(98%,Aldrich)and1.01g of KNO3(99%,Aldrich)were dissolved in B10ml of water to form a solution with a molar ratio of Mn/K¼3.0. Next,5g of KIT-6was dispersed in200ml of n-hexane.After stirring at room temperature for3h,5ml of the Mn/K solution was added slowly with stirring.The mixture was stirred overnight,filtered and dried at room temperature until a completely dried powder was obtained.The sample was heated slowly to500°C (1°C minÀ1),calcined at that temperature for5h with a cover in a normal crucible unless is specified54and the resulting material treated three times with a hot aqueous KOH solution(2.0M),to remove the silica template,followed by washing with water and ethanol several times,and then drying at60°C.Bimodal a-MnO2(surface area58m2gÀ1,K0.06MnO2)with micropore and a single mesopore size of3.6nm was prepared by using mesoporous silica SBA-15as a hard template.The SBA-15was prepared according to a previous report56.Bulk a-MnO2(surface area8m2gÀ1,K0MnO2)was prepared by the reaction between325mesh Mn2O3(99.0%,Aldrich)and6.0M H2SO4solution at80°C for 24h,resulting in the disproportionation of Mn2O3into a soluble Mn2þspecies and the desired a-MnO2product46.Treatment of KIT-6with KNO3was carried out as follows:1.01g of KNO3was dissolved in B15ml of water to form a KNO3solution.Five grams of mesoporous KIT-6was dispersed in200ml of n-hexane.After stirring at room temperature for 3h,5ml of KNO3solution was added slowly with stirring.The mixture was stirred overnight,filtered and dried at room temperature until a completely dried powder was obtained.The sample was heated slowly to300or500°C(1°C minÀ1), calcined at that temperature for5h and the resulting material was washed with water and ethanol several times,and then dried at60°C overnight.The synthesis method for hierarchical porous LiMn2O4was similar to that of tetramodal a-MnO2.The main difference was to use1.01g of LiNO3instead of KNO3.After impregnation into KIT-6,calcination and silica etching,porous LiMn2O4was obtained.Characterization.TEM studies were carried out using a JEOL JEM-2011, employing a LaB6filament as the electron source,and an accelerating voltage of 200keV.TEM images were recorded by a Gatan charge-coupled device camera in a digital format.Wide-angle PXRD data were collected on a Stoe STADI/P powder diffractometer operating in transmission mode with Fe K a1source radiation(l¼1.936Å).Low-angle PXRD data were collected using a Rigaku/MSC,D/max-rB with Cu K a1radiation(l¼1.541Å)operating in reflection mode with a scintillation detector.N2adsorption–desorption analysis was carried out using a Micromeritics ASAP2020.The typical sample weight used was100–200mg. The outgas condition was set to300°C under vacuum for2h,and all adsorption–desorption measurements were carried out at liquid nitrogen tem-perature(À196°C).The original DFT method for the slit pore geometry was used to extract the pore size distribution from the adsorption branch usingthe Micromeritics software39–42.A Horvath–Kawazoe method was used to extract the microporosity44.Mn and K contents were determined by chemical analysis using a Philips PU9400X atomic adsorption spectrometer.The average oxidation state of framework manganese in a-MnO2samples was determined by a redoxtitration method57.Electrochemistry.First,the cathode was constructed by mixing the active material (a-MnO2),Kynar2801(a copolymer based on polyvinylidenefluoride),and Super S carbon(MMM)in the weight ratio80:10:10.The mixture was cast onto Al foil (99.5%,thickness0.050mm,Advent Research Materials,Ltd)from acetone using a Doctor-Blade technique.After solvent evaporation at room temperature and heating at80°C under vacuum for8h,the cathode was assembled into cells along with a Li metal anode and electrolyte(Merck LP30,1M LiPF6in1:1v/v ethylene carbonate/dimethyl carbonate).The cells were constructed and handled in anAr-filled MBraun glovebox(O2o0.1p.p.m.,H2O o0.1p.p.m.).Electrochemical measurements were carried out at30°C using a MACCOR Series4200cycler.Catalysis.Catalytic CO oxidation was tested in a plug-flow microreactor(Alta-mira AMI200).Fifty milligrams of catalyst was loaded into a U-shaped quartz tube (4mm i.d.).After the catalyst was pretreated inflowing8%O2(balanced with He) at400°C for1h,the catalyst was then cooled down,the gas stream switched to1% CO(balanced with air)and the reaction temperature ramped using a furnace(at a rate of1°C minÀ1above ambient temperature)to record the light-off curve.The flow rate of the reactant stream was37cm3minÀ1.A portion of the product stream was extracted periodically with an automatic sampling valve and was analysed using a dual column gas chromatograph with a thermal conductivity detector.To perform N2O decomposition reaction testing,0.5g catalyst was packed into a U-shaped glass tube(7mm i.d.)sealed by quartz wool,and pretreated inflowing 20%O2(balance He)at400°C for1h(flow rate:50cm3minÀ1).After cooling to near-room temperature,a gas stream of0.5%N2O(balance He)flowed through the catalyst at a rate of60cm3minÀ1,and the existing stream was analysed by a gas chromatograph(Agilent7890A)that separates N2O,O2and N2.The reaction temperature was varied using a furnace,and kept at100,150,200,250,300,350 and400°C for30min at each reaction temperature.The N2O conversion determined from GC analysis was denoted as X¼([N2O]in—[N2O]out)/[N2O]inÂ100%.References1.Corma,A.From microporous to mesoporous molecular sieve materials andtheir use in catalysis.Chem.Rev.97,2373–2419(1997).2.Davis,M.E.Ordered porous materials for emerging applications.Nature417,813–821(2002).3.Taguchi,A.&Schu¨th,F.Ordered mesoporous materials in catalysis.Micro.Meso.Mater.77,1–45(2005).4.Fe´rey,G.Hybrid porous solids:past,present,future.Chem.Soc.Rev.37,191–214(2008).5.Bruce,P.G.,Scrosati,B.&Tarascon,J.M.Nanomaterials for rechargeablelithium batteries.Angew.Chem.Int.Ed.47,2930–2946(2008).6.Zhai,Y.et al.Carbon materials for chemical capacitive energy storage.Adv.Mater.23,4828–4850(2011).7.Tu¨ysu¨z,H.&Schu¨th,F.in Advances in Catalysis.Chapter Two Vol.55pp127–239(Academic Press,2012).8.Ren,Y.,Ma,Z.&Bruce,P.G.Ordered mesoporous metal oxides:synthesis andapplications.Chem.Soc.Rev.41,4909–4927(2012).9.Corma,A.State of the art and future challenges of zeolites as catalysts.J.Catal.216,298–312(2003).10.Liu,Y.,Zhang,W.&Pinnavaia,T.J.Steam-stable aluminosilicatemesostructures assembled from zeolite type Y seeds.J.Am.Chem.Soc.122, 8791–8792(2000).11.Meng,X.J.,Nawaz,F.&Xiao,F.S.Templating route for synthesizingmesoporous zeolites with improved catalytic properties.Nano Today4,292–301(2009).12.Lopez-Orozco,S.,Inayat,A.,Schwab,A.,Selvam,T.&Schwieger,W.Zeoliticmaterials with hierarchical porous structures.Adv.Mater.23,2602–2615(2011).13.Na,K.et al.Directing zeolite structures into hierarchically nanoporousarchitectures.Science333,328–332(2011).14.Chen,L.-H.et al.Hierarchically structured zeolites:synthesis,mass transportproperties and applications.J.Mater.Chem.22,17381–17403(2012).15.Tsapatsis,M.Toward high-throughput zeolite membranes.Science334,767–768(2011).16.Zhang,X.et al.Synthesis of self-pillared zeolite nanosheets by repetitivebranching.Science336,1684–1687(2012).17.Jiang,J.et al.Synthesis and structure determination of the hierarchicalmeso-microporous zeolite ITQ-43.Science333,1131–1134(2011).18.Zhao,Y.et al.Metal–organic framework nanospheres with well-orderedmesopores synthesized in an ionic liquid/CO2/surfactant system.Angew.Chem.Int.Ed.50,636–639(2011).19.Feng,Q.,Kanoh,H.&Ooi,K.Manganese oxide porous crystals.J.Mater.Chem.9,319–333(1999).20.Tiemann,M.Repeated templating.Chem.Mater.20,961–971(2008).21.Suib,S.L.Structure,porosity,and redox in porous manganese oxide octahedrallayer and molecular sieve materials.J.Mater.Chem.18,1623–1631(2008).22.Zheng,H.et al.Nanostructured tungsten oxide–properties,synthesis,andapplications.Adv.Funct.Mater.21,2175–2196(2011).ha,S.C.&Ryoo,R.Synthesis of thermally stable mesoporous cerium oxidewith nanocrystalline frameworks using mesoporous silica templates.Chem.Commun.39,2138–2139(2003).24.Tian,B.Z.et al.General synthesis of ordered crystallized metal oxidenanoarrays replicated by microwave-digested mesoporous silica.Adv.Mater.15,1370–1374(2003).25.Zhu,K.K.,Yue,B.,Zhou,W.Z.&He,H.Y.Preparation of three-dimensionalchromium oxide porous single crystals templated by mun.39,98–99(2003).26.Tian,B.Z.et al.Facile synthesis and characterization of novel mesoporous andmesorelief oxides with gyroidal structures.J.Am.Chem.Soc.126,865–875 (2004).27.Jiao,F.,Shaju,K.M.&Bruce,P.G.Synthesis of nanowire and mesoporouslow-temperature LiCoO2by a post-templating reaction.Angew.Chem.Int.Ed.44,6550–6553(2005).28.Rossinyol,E.et al.Nanostructured metal oxides synthesized by hard templatemethod for gas sensing applications.Sens.Actuator B Chem.109,57–63(2005).29.Shen,W.H.,Dong,X.P.,Zhu,Y.F.,Chen,H.R.&Shi,J.L.MesoporousCeO2and CuO-loaded mesoporous CeO2:Synthesis,characterization,and CO catalytic oxidation property.Micro.Meso.Mater.85,157–162(2005).30.Wang,Y.Q.et al.Weakly ferromagnetic ordered mesoporous Co3O4synthesized by nanocasting from vinyl-functionalized cubic Ia3d mesoporous silica.Adv.Mater.17,53–56(2005).31.Ren,Y.et al.Ordered crystalline mesoporous oxides as catalysts for COoxidation.Catal.Lett.131,146–154(2009).32.Jiao,K.et al.Growth of porous single-crystal Cr2O3in a3-D mesopore system.mun.41,5618–5620(2005).33.Rumplecker,A.,Kleitz,F.,Salabas,E.L.&Schu¨th,F.Hard templating pathwaysfor the synthesis of nanostructured porous Co3O4.Chem.Mater.19,485–496 (2007).34.Jiao,F.et al.Synthesis of ordered mesoporous NiO with crystalline walls anda bimodal pore size distribution.J.Am.Chem.Soc.130,5262–5266(2008).35.Ren,Y.,Armstrong,A.R.,Jiao,F.&Bruce,P.G.Influence of size on therate of mesoporous electrodes for lithium batteries.J.Am.Chem.Soc.132, 996–1004(2010).。
花状软锰矿的超声合成及其对亚甲基蓝的脱色性能
花状软锰矿的超声合成及其对亚甲基蓝的脱色性能杨爱丽;魏秉庆;张政军【摘要】Flower-like manganese wads (MWs) was synthesized via a simple and inexpensive ultrasonic method for the first time. The structure and morphology of MWs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The decolorization efficiencies of MWs for azo dye methylene blue (MB) were examined as a function of solution pH, stirring time, MWs dosage, and initial MB concentration. Results showed that MWs had higher decolorization efficiency (the maximum decolorization rate of nearly 100%in 90min) than other catalysts, such as Mn3O4/H2O2 (the maximum decolorization rate of 99.7%in 3h), ZnS/CdS (the maximum decolorization rate of 73% in 6h under light irradiation), and sulfate modified titania (the maximum decolorization rate of nearly 100%in 4h under solar radiation). Most importantly, MWs alone can effectively remove MB from the solution without using H2O2or other special devises such as UV light and ultrasonic equipment.%首次通过操作简便成本低廉的超声方法合成花状软锰矿(MWs).采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)以及能量散布分析仪(EDS)等测试手段对其结构和形貌进行表征.研究了MWs对偶氮染料亚甲基蓝(MB)的脱色性能,考察pH值、反应时间、MWs投加量以及MB初始浓度等影响因子对脱色效果影响.结果表明,MWs对MB具有优良的脱色性能,90min达到近100%的脱色率,无需使用H2O2或者UV灯和超声等其它辅助设备,这明显优于其他催化剂,如Mn3O4/H2O2需3h达到99.7%最大脱色率、ZnS/CdS在光照下需6h最大脱色率仅为73%、硫改性的TiO2光照下需4h才能达到近100%的脱色率.【期刊名称】《中国环境科学》【年(卷),期】2014(000)006【总页数】7页(P1435-1441)【关键词】软锰矿(MWs);超声合成;表征;亚甲基蓝(MB);脱色【作者】杨爱丽;魏秉庆;张政军【作者单位】清华大学材料科学与工程学院,北京 100084;特拉华大学机械工程学院,美国19716;清华大学材料科学与工程学院,北京 100084【正文语种】中文【中图分类】X703工业染料废水中的有机染料大多具有复杂的芳香环结构,化学稳定性好且不易降解.水体中残余染料的毒性可能导致水生态系统的破坏,对动物和人类健康亦具有一定危害性.因此,废水中染料污染物的去除已成为环境修复领域的研究热点之一[1-2]. 目前,对于废水中染料的去除多采用 H2O2或H2O2/锰氧化物作为活性氧化剂[3-4].不过,H2O2的化学稳定性较差,室温下分解速度较快,20min内便完全分解,使其对于水中有害物质的降解作用受到限制[1,5].为了克服这一缺陷,化学稳定性较好的高级氧化技术相继被开发,如氧化[6]、超声辐照[7]、臭氧[8]以及紫外可见光光照[9-10]等催化技术.催化氧化技术作为一种有效而经济的废水净化处理技术受到广泛关注[11-12].不过,该技术通常需要 UV灯、超声等专门操作设备,这便增加了处理成本和能耗,处理过程也相对复杂化.锰氧化物具有来源丰富、价格低廉、无毒和稳定性好等诸多优良品质,在电化学、催化、吸附和环境修复等领域受到广泛关注[13-14].不过,锰氧化物的合成方法存在成本高、耗时长等缺点[15-16].软锰矿为MnO和MnO2的多价态杂相体,更利于界面电子传输,提高催化反应活性[17],从而能更有效地去除废水中的有害污染物[18].目前有关软锰矿制备的文献报道极少.本文通过简单低廉的超声辐照方法合成花状软锰矿(MWs),采用超声法合成这种含多价态锰且呈现片层堆积球形花状聚集态形貌的锰氧化物的方法国内外尚未见报道.文章研究了MWs对MB的脱色性能(无需使用UV或者超声等专门辅助设备),实验考察了 pH、反应时间、MWs投加量以及MB初始浓度对脱色效果影响,对脱色降解机制进行初步探讨.1 实验部分1.1 试剂与仪器KMnO4(Aldrich Chemicals)、浓 HCl(Fisher Scientific)、无水乙醇(Decon Labs. Inc.)、KOH(Fisher Scientific)均为分析纯化学试剂.选取偶氮染料亚甲基蓝(MB, Aldrich Chemicals)作为脱色实验的模拟染料.实验过程全部使用去离子水(DW). 超声仪(Branson 2510,美国);X 射线衍射仪(西门子,德国);扫描电子显微镜(JSM-7400F,日本);pH计(pHS-25,中国上海虹益仪器仪表有限公司);紫外可见分光光度计(Diode Array 8452A,HP);离子色谱分析仪(Dionex DX500,美国);FT-IR红外光谱仪(Magna-IR 860,Nicolet); Zata电位测定仪(ZEN3600,Malvern Instruments);TOC分析仪(Dohrmann Apollo 9000,TEKMAR);COD分析仪(DR/2000,HACH).1.2 实验过程1.2.1 软锰矿(MWs)的合成称量 0.9g KMnO4溶于 250mL锥形瓶盛装的40mLDW中,混合均匀,滴入少量浓 HCl,摇匀.置于超声浴中(超声功率40kHz),60℃下反应 30min,得到黑褐色沉淀产物,4000r/min离心10min,多次水洗,无水乙醇洗涤,60℃真空干燥.1.2.2 脱色实验将50mLMB溶液(0.05g/L)倒入100mL烧杯中,使用0.1mol/L HCl和0.1mol/L KOH调节pH值,加入定量MWs,室温搅拌.在一定时间间隔内,取5mL反应液立即离心 10min(4000r/min)以去除溶液中的 MWs,上清液于λmax=664nm 处进行分析,MB校准曲线为 y=0.1843x+0.0272(R2=0.998).MB 分子式为C16H18ClN3S,其结构式、664nm处吸收光谱图以及校准曲线如图1所示.脱色率计算公式如下:式中:C0和Ct分别为MB初始浓度和反应时间t时的浓度,mg/L.图1 MB分子结构式、664nm处吸收光谱图及其校准曲线Fig.1 Molecular structure, absorbance spectrum at 664nm and calibration standard curve of MB2 结果与讨论2.1 MWs合成与表征MWs 的 XRD(a)、SEM(b)和 EDS(c)谱图表征如图 2所示.由图 2a可见 MWs晶型较差,于2θ=~36.7°和~65.7°处有 2 个较强的宽峰,与JCPDS卡的 MnO-MnO2-H2O(JCPDS-02-1070)相符,为软锰矿.由图2b可见,MWs呈片层堆积球形花状聚集态,直径为 400~900nm.由图 2c测定结果可知,MWs含有Mn、O和K 三种元素,隔层间含有水分子,根据其化学成分组成可推断其表达式为K0.2MnOMnO2·1.4H2O.图2 MWs的XRD、SEM和EDS谱图Fig.2 XRD pattern, SEM image and EDS of MWs2.2 MWs脱色性能研究2.2.1 溶液pH值对脱色率影响溶液pH值是染料去除的重要影响因素.为了研究pH值对MB脱色率的影响,实验pH值范围选取1.5至10.为了准确测定MB溶液在所有pH值范围内的吸收峰强度,取2mL上清液用DW稀释8倍后再进行分析.MWs投加量为 1.0g/L,搅拌反应 30min,pH值对MB脱色率的影响如图3a所示,当pH<2时脱色率达99%.在脱色过程中,MB溶液由原来的深蓝色变为紫色再变成无色,这是由于经过脱色和降解处理后的 MB最大吸收波长发生蓝移所致.MB 的脱色受pH值影响程度很大,最佳pH值为1.5,随着pH值的增加,脱色效果明显降低,MB溶液的吸收峰基本上亦没有显著降低.图3a内插图为脱色处理30min后测得的MB溶液随pH值的增加而逐渐增强的吸收峰强度示意图,表明pH值愈大则脱色效果愈差.实验测得 MWs的 pHzpc为 3.2(图3b).当溶液 pH值低于或者高于 pHzpc时,则物体颗粒表面电荷呈正电荷或者负电荷状态,颗粒将分别与带有负电荷或者正电荷的颗粒发生静电吸引作用.不过,MWs脱色实验中最佳 pH值 1.5低于其pHzpc值,表明较低pH值时MWs活性的增强是因为 Mn(IV)/Mn(II)还原势利于其电子传输,而并非正负电荷之间的静电吸引作用.另一方面,当pH>3.2时,MWs的表面电荷为负,利于Mn(IV)所还原的Mn(II)在MB脱色过程中的吸附,这反过来即抑制了MB 在MWs表面的吸附.这两种机理的谐合效应导致在更高pH值下MWs对MB氧化脱色效果的降低[19].图3 pH值对脱色率影响与MWs的pHzpc值Fig.3 Effect of pH on the decolorization raete and the pHzpc value of MWs2.2.2 MWs投加量对脱色率影响 pH=1.5、反应时间为30min时MWs投加量对50mLMB溶液(50mg/L)脱色率影响如图 4所示.随着投加量的增加,600nm处吸收峰强度明显降低,最大脱色率达98%以上,当增加到2.4g/L时,峰强降低有限.为了节约成本,MWs最佳投加量定为2.4g/L.图4 MWs投加量对脱色率影响Fig.4 Effect of the MWs dosage on the decolorization rate2.2.3 反应时间对脱色率影响图5为pH值为1.5、MWs投加量为2.4g/L和反应时间分别为1,2,5,15,30,60,90,120min时MB溶液(50mg/L)的脱色率及其 UV-Vis吸收峰强度变化(内插图).反应30min后,MB的吸收峰显著降低,说明MB分子发生了降解反应.在 664nm 处快速达到较好脱色效果,脱色率达 99%以上.不过,MB 的吸收峰强度向低波区 600nm 处发生蓝移,在此波长下呈现出不同强度的吸收峰.MB颜色随反应时间的增加而逐渐褪去,直至变为无色.由图 5可知,MB在90min内几乎完全去除.图 5a内插的谱图变化与 Zhang等[20]报道的β-MnO2纳米棒催化氧化处理MB的结果相似.MWs比其他催化剂(如 Mn3O4/H2O2于3h内最大脱色率99.7%[3]、ZnS/CdS光照6h内最大脱色率仅为73%[9]、硫改性TiO2在4h内脱色率近100%[21])具有更好的脱色效果(90min内脱色率近100%).MWs对MB的成功脱色行为还可由图5b可见,MB初始溶液颜色为深蓝色且不透明,经过脱色处理后的MB溶液(MB AT)则呈透明无色.上清液中残余的 MB 仅为10μg/L,相应的脱色率为99.8%,其无色透明度接近于DW,MB颜色的去除即为母体分子转变为无色分子的降解结果[6].图5 反应时间对脱色率影响及MB初始溶液(MB)、经MWs脱色处理后的MB溶液(MB AT)和DW颜色比较Fig.5 Effect of reaction time on the decolorization rate and the photographs of initial MB solution (MB), the suspension liquid of the MB solution treated by MWs (MB AT) and DW 2.2.4 MB初始浓度对脱色率影响图 6a为pH1.5、MWs投加量 2.4g/L时 MB 初始浓度(6.25~100mg/L)对脱色率影响.当初始浓度为6.25和12.5mg/L时,MB 仅需30min即可完全脱色,600和 664nm 处的吸收峰消失.另一方面,290nm处的峰强亦逐渐减低但并未发生波长偏移.随着初始浓度的增加,MB的脱色率明显降低.搅拌30min后,较高浓度MB溶液在600nm处的脱色效果显著降低,这是因为MWs和MB之间的表面络合物的形成抑制了MB向MWs活性中心发生电子传输的脱色过程,该变化趋势与 Zhu等[22]的报道相类似.由此可见,表面活性和活性电位数量是控制MB脱色的两个关键因素[19].较高浓度时脱色效果的降低可能是由于MWs表面活性电位达到饱和,从而抑制了其络合前体发生进一步的电子传输作用.当pH值为1.5、MWs投加量为2.4g/L、MB初始浓度为6.25,12.5,25,50,100mg/L时,测定MB脱色的动力学常数.反应遵循准一阶反应方程:ln(Ct/C0)=−kt,式中, C0和Ct分别为MB初始浓度和t时间处的浓度;k为速度常数.ln(Ct/C0)对t作图的斜率为−k,如图 6b所示.当初始浓度为6.25mg/L 时,得到较大的速度常数6.43×10−2min−1,而相同条件下初始浓度为100mg/L时,速度常数为1.35×10−2min−1,相关系数 R2 大于0.99.Zhu等[23]也报道了k值随染料初始浓度的增加而降低的结果.实验还发现脱色过程结束时所测pH值比初始值略微升高0.2,此增加值可忽略不计,这与pH值低于2时脱色效果保持不变这个结果是一致的,可见MB与MWs之间的吸附–催化降解–脱附系列过程是主要影响因素.当 MB初始浓度较高时,而 MWs表面活性点位有限,从而导致脱色较差的实验结果.图6 MB初始浓度对脱色率影响以及MB不同初始浓度的脱色动力学实验Fig.6 Effect of MB initial concentration on the decolorization rate and influence of MB initial concentration on the decolorization kinetics2.2.5 MWs的重复使用性能为了验证MWs的重复使用性能,实验将处理 MB溶液之后的 MWs进行离心过滤回收,然后在最佳脱色条件下重复进行脱色实验.MWs 循环使用次数与催化脱色效果之间的关系如表1所示.如果将其重复使用1~2次,需延长反应时间方可达到较好的脱色效果.但重复多次后,即便延长反应时间其脱色效果仍然较差.由此可见,MWs的重复使用性能较差.表1 MWs循环使用次数与催化脱色效果之间的关系Table 1 The relation between the cycle usage times of MWs and the decolorization efficiencyMWs循环使用次数 1 2 3 4 5反应时间(h) 20 48 60 86 98脱色率(%) 99.05 98.72 88.82 69.98 58.98图7 MB、MWs和处理MB后过滤得到的MWs的FT-IR谱图以及处理MB之后MWs表面的EDS谱图Fig.7 FT-IR spectra of MB, MWs and MWs after treating the MB solution and EDS spectrum of MWs after treating the MB solution2.3 脱色降解机理分析图 7(A)为 MB(a),MWs(b)和处理 MB 后的MWs(c)的 FT-IR谱图.处理 MB的实验条件为50mLMB(浓度 50mg/L),pH1.5,MWs投加量2.4g/L,反应时间 120min.在谱图(A)中曲线 a中,1599和1393cm-1处吸收峰分别为MB杂环上的C=N和C—N键,而1354和1335cm-1的吸收峰则分别为与苯环连接的 C—N键和—N—CH3键[1].不过,MB的这些特征吸收峰均未出现在MWs的FT-IR 谱图中[曲线(c)].曲线(b)和(c)没有明显区别,表明脱色过程结束时MB分子并未吸附在MWs颗粒表面,而是被MWs氧化降解为无色物质.另外,由图 7(B)中处理 MB后的 MWs的EDS图谱亦可得出该结论.另外,当pH1.5、投加量为2.4g/L时MWs对MB溶液的氧化程度如图 8所示,采用离子色谱分析仪对脱色过程中MB悬浮液中和的浓度变化进行测定.和标液的标准校正曲线方程分别为 y1=472252x1+117097(R2=0.9993)和 y2=341013x2-59658(R2=0.9998),式中x1、x2 和 y1、y2 分别为和吸收强度和浓度(mg/L).50mLMB初始溶液(50mg/L)中的和的浓度分别为 2.15 和 2.38mg/L.由图8a可知,随着搅拌反应时间的增加,脱色过程中产生了和并发生了浓度变化.搅拌30min后约有 29.20%的总硫转化为 ,测得其浓度为 236.93mg/L.不过,当反应时间增加到120min时,的浓度降至 5.46mg/L,这可能是由于Mn2+的强还原电位将还原为所致[24].相同条件下,的浓度随搅拌时间的增加而增加.当反应150min时,约有34.27%的总氮转化为,测得其浓度为10.78mg/L.结果表明MB可被MWs完全脱色和部分降解.图8b为不同pH值下被MWs氧化的MB分子的碳氧化数(CON).CON计算公式[25]如下:式中:TOC和COD(mmol/L)分别为不同pH值下MWs处理后的MB溶液中TOC 和COD值.由图8b可见,随着pH值的增加,MB的CON显著降低,表明MB氧化程度的降低.当pH<2时,CON达到最大值2.2,表明溶液中MB分子在最佳的脱色条件下发生了部分氧化降解.图8 不同反应时间时MB溶液中和的浓度变化以及不同pH值时被MWs氧化的MB的CONFig.8 Variations of and concentrations in MB solution for different reaction time and CON of MB oxidized by MWs at varying pH3 结论3.1 首次采用 KMnO4与 HCl的氧化还原反应通过简便低廉的超声方法合成花状软锰矿(MWs).XRD谱图证实了产物MWs的形成.3.2 MWs对MB具有优良的脱色性能,对于初始浓度为50mg/L的50mLMB溶液,最佳脱色条件为pH 1.5、MWs最佳投加量2.4g/L、搅拌反应时间 90min,最大脱色率近 100%.从脱色实验效果可知,诸变量因素的影响大小为 pH>MB初始浓度>反应时间>MWs投加量. MB可被MWs完全脱色和部分氧化降解,约29.20%总硫转化为,约 34.27%总氮转化为.参考文献:[1]Zhang L L, Nie Y L, Hu C, et al. Decolorization of methylene blue in layered manganese oxide suspension with H2O2 [J].Journal of Hazardous Materials, 2011,190(1-3):780-785.[2]王明,李剑超,毛勇,等.海绵铁感应热固定床对染料废水脱色研究 [J]. 中国环境科学, 2014,34(2):337-344.[3]Zhang P Q, Zhan Y G, Cai B X, et al. Shape-controlled synthesis ofMn3O4 nanocrystals and their catalysis of the degradation of methylene blue [J]. Nano Research, 2010,3(4):235-243.[4]Gemeay A H, Gel-Sharkawy R, Mansour I A, et al. Application of polyaniline/manganese dioxide composites for degradation of acid blue 25by hydrogen peroxide in aqueous media [J]. Bulletin of Materials Science, 2012,35(4):585-593.[5]Gulshan F, Yanagida S, Kameshima Y, et al. Various factors affecting photodecomposition of methylene blue by iron-oxides in an oxalate solution [J]. Water Research, 2010,44(9):2876-2884.[6]Clarke C E, Kielar F, Talbot H M, et al. Oxidative decolorization of acid azo dyes by a Mn oxide containing waste [J].Environmental Science and Technology, 2010,44(3):1116-1122.[7]Kobayashi D, Honma C, Suzuki A, et al. Comparison of ultrasonic degradation rates constants of methylene blue at 22.8kHz, 127kHz, and 490kHz [J]. Ultrasonics Sonochemistry,2012,19(4):745-749.[8]Valdés H, Godoy H P, Zaror C A. Heterogeneous cataly tic ozonation of cationic dyes using volcanic sand [J]. Water Science and Technology, 2010,61(12):2973-2978.[9]Soltani N, Saion E, Hussein M Z, et al. Visible light-Induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles [J]. International Journal of Molecular Sciences,2012,13(10):12242-12258.[10]高乃云,张晏晏,马艳.UV/TiO2去除水中磺胺甲唑的动力学及影响因素分析 [J]. 中国环境科学, 2013,33(11):1958- 1964.[11]岳琳,王开红,郭建博,等.多金属氧酸盐电催化降解染料废水的研究 [J]. 中国环境科学, 2013,33(1):88-94.[12]Ge J T, Qu J H. Ultrasonic irradiation enhanced degradation of azo dye on MnO2 [J]. Applied Catalysis B: Environmental, 2004,47(2):133-140. [13]王鹍,夏平平,刘凡,等.模拟环境条件下δ-MnO2氧化As(III)的搅拌流动动力学特征 [J]. 中国环境科学, 2014,34(4):966-975.[14]Hou Y, Cheng Y W, Hobson T, et al. Design and Synthesis of Hierarchical MnO2Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes [J]. Nano Letters, 2010,10(7):2727-2733.[15]Xu C, Li B, Du H, et al. Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method [J]. Journal of Power Sources, 2008,180(1):664-670.[16]Qiu G, Huang H, Dharmarathna S, et al. Hydrothermal synthesis of manganese oxide nanomaterials and their catalytic and electrochemical properties [J]. Chemistry of Materials, 2011,23(17):3892-3901.[17]Yang L, Hu C, Nie Y, et al. Catalytic ozonation of selected pharmaceuticals over mesoporous aluminum-supported manganeseoxide [J]. Environmental Science and Technology,2009,43(7):2525-2529. [18]Zhang L, Nie Y, Hu C, et al. Decolorization of methylene blue in layered manganese oxide suspension with H2O2 [J]. Journal of Hazardous Materials, 2011,190(1-3):780-785.[19]Satapathy P K, Randhawa N S, Das N N. Oxidative decolorization of methylene blue by leached sea-nodule residues generated by the reduction-roasting ammoniacal leaching process[J]. Environmental Technology, 2012,33(4-6):515-522.[20]Zhang W, Yang Z, Wang X, et al. Large-scale synthesis of β-MnO2nanorods and their rapid and efficient catalytic oxidation of methylene blue dye [J]. Catalysis Communications, 2006,7(6):408-412. [21]Mohapatra P, Parida K M. Photocatalytic activity of sulfate modified titania 3: Decolorization of methylene blue in aqueous solution [J]. Journal of Molecular Catalysis A: Chemical, 2006,258(1/2):118-123.[22]Zhu M X, Wang Z, Zhou L Y. Oxidative decolourisation of methylene blue using pelagite [J]. Journal of Hazardous Materials,2008,150(1):37-45.[23]Zhu H Y, Jiang R, Xiao L, et al. Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation [J]. Journal of Hazardous Materials, 2009,169(1-3):933-940.[24]杨春维,王栋. Fenton试剂对亚甲基蓝氧化褪色的反应动力学实验研究 [J]. 环境技术, 2004,22(6):24-29.[25]Stumm W, Morgan J J. Aquatic chemistry [M]. Second ed.Wiley-Interscience, 1981.。
MnO2催化剂用于催化氧化含氯芳香烃的形貌效应与反应机制研究
a Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China b Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310058, Zhejiang, China c State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China d Environmental and climate Research institute, Jinan University, Guangzhou 511443, Guangdong, China
Article (Special Issue on Environmental and Energy Catalysis for Sustainable Development)
四氢环戊二烯三聚体的合成及应用进展
第49卷第8期2021年4月广州化工Guangzhou Chemical IndustryVol.49No.8Apr.2021四氢环戊二烯三聚体的合成及应用进展陈春玉,王少楠,胡迎(西南化工研究设计院有限公司,四川成都610225)扌商要:四氢环戊二烯三聚体是一种合成类高密度姪燃料,由于其较高的密度和体积热值,能为飞行器提供更多的能量,因此受到越来越多的关注。
四氢环戊二烯三聚体的合成方法,是先通过双环戊二烯和环戊二烯的Diels-Alder加成后生成环戊二烯三聚体,再双键全部加氢生成四氢环戊二烯三聚体。
本文分析了四氢环戊二烯三聚体合成过程中的优缺点,综述了四氢环戊二烯三聚体的应用领域的研究进展,并对其发展趋势和应用前景作了展望。
关键词:四氢环戊二烯三聚体;合成;应用中图分类号:0624.1文献标志码:A文章编号:1001-9677(2021)08-0001-03Research Progress on Synthesis and Application ofTetrahydratricyclopentadiene TrimerCHEN Chun-yu,WANG Shao-nan,HU Ying(Southwest Research&Design Institute of the Chemical Industry Co.,Ltd.,Sichuan Chengdu610225,China)Abstract:Tetrahydrocyclopentadienetrimer is a kind of synthetic high-density hydrocarbon fuel.Because of its high density and volumetric calorific value,it can provide more energy for aircraft,so it has been attracted more and more attention.The synthesis method of tetrahydrocyclopentadienetrimeris as follows:firstly dicyclopentadiene and cyclopentadiene are added by Diels-Alder to form cyclopentadienetrimer,and then all double bonds are hydrogenated to form tetrahydrocyclopentadienetrimer.The advantages and disadvantages in the synthesis of tetrahydrocyclopentadienetrimerwere analyzed,the research progress on the application field of tetrahydrocyclopentadienetrimerwas summarized,and its development trend and application prospect were prospected.Key words:tetrahydrocyclopentadienetrimer;synthetic processes;application20世纪80年代以后,欧美国家除致力于已有高密度姪燃料的改性及应用外,开始向研制密度更高、能量更高的桂类燃料发展,其中四氢环戊二烯三聚体因具有高密度、高热值、可储热、高稳定性、良好的低温性能等优点,既可单独用作燃料,也可作为高粘度、高熔点的导弹燃料的稀释剂,被广泛应用于巡航导弹、飞行器和鱼雷等先进武器,在一定程度上推动了航空航天的快速和安全发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Electrochimica Acta53(2007)752–757Interfacial synthesis of porous MnO2and its applicationin electrochemical capacitorXin-hui Yang,Yong-gang Wang,Huan-ming Xiong,Yong-yao Xia∗Chemistry Department and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,Fudan University,Shanghai200433,ChinaReceived30March2007;received in revised form21July2007;accepted22July2007Available online26July2007AbstractIn this paper,the porous manganese dioxide(MnO2)was prepared by an interfacial reaction of potassium permanganate in water/ferrocene in chloroform.The surface area and pore distribution of MnO2can be controlled by simply adjusting the reaction time and the content of surfactant in the aqueous phase.The electrochemical performance of the prepared MnO2was evaluated as an electrode material for supercapacitors by the means of cyclic voltammetry and galvanostatic charge–discharge tests.Electrochemical tests results indicated that the pore size plays an important role at high charge–discharge rate,the sample with a large pore size shows a better rate capability,while the sample with a small pore size but large surface area delivers a large capacitance at low current rate.©2007Elsevier Ltd.All rights reserved.Keywords:Porous MnO2;Interfacial synthesis;Supercapacitor1.IntroductionIn recent years,the growing interest in supercapacitors has been stimulated by their potential application as electrical stor-age devices operating in parallel with the battery in an electric vehicle to transiently provide high power[1,2].Electrochem-ical supercapacitors(ECs)fill the gap between batteries and conventional capacitors in terms of their specific energy and spe-cific power[3–5].Supercapacitors have been used as small-scale energy storage devices in stationary electronics,such as mem-ory back-up devices and solar batteries with semi-permanent charge–discharge cycle life[6,7].Depending on the charge storage mechanism,ECs are cat-egorized as electrochemical double layer capacitor(EDLC) and pseudocapacitors.In electrochemical double layer capac-itors,the charge is separated across the interface between the electrode and the electrolyte.Various carbonaceous materials ranging from amorphous carbons to carbon nanotubes have been used as electrode materials in EDLCs.In the case of pseudocapacitors,the Faradic charge transfer occurs between ∗Corresponding author.Tel.:+862155664177;fax:+862155664177.E-mail address:yyxia@(Y.-y.Xia).electrolyte and electrode.Various noble and transition metal oxides such as RuO2,IrO2,NiO2,CoO x,SnO2,and MnO2 were used as electrode materials[8–12].Among these materials, amorphous hydrated ruthenium oxide exhibits ideal pseudoca-pacitive behavior,remarkably high specific capacitance as high as700–1000F/g[8],and excellent reversibility.However,the high cost and the toxicity to environment have limited its prac-tical application.Therefore,some cheap and environmentally friendly materials have got more and more attention.MnO2 is the most promising candidate because of its low cost and environmentally benign nature[13].Manganese oxides as pseudocapacitor electrode materials were synthesized using different technique such as simple reduction,coprecipitation,thermal decomposition and sol–gel processes,etc.Also,various thinfilm electrodes of MnO2 were synthesized via electrochemical and chemical routes [14–16].Organic-aqueous interfacial synthesis is an alterna-tive useful approach to conventional homogeneous synthesis.A liquid/liquid interface offers potential for the chemical manipu-lation of nanoparticles.At a liquid/liquid interface,the particles are highly mobile and rapidly achieve an equilibrium assembly. Interfaces between immisciblefluids have been shown to be ideal for the assembly of nanometer-sized colloidal particles[17]. For nanoparticles,thermal energy,which causes spatialfluctu-0013-4686/$–see front matter©2007Elsevier Ltd.All rights reserved. doi:10.1016/j.electacta.2007.07.043X.-h.Yang et al./Electrochimica Acta 53(2007)752–757753ations of the particles,is comparable to the interfacial energy.This energy balance results in a weak interfacial aggregation of nanoparticles.The liquid/liquid interface provide easy access to the nanoparticles for their self-assembly by the reaction of the attached ligands.It has been employed to obtain nanoparticles such as Au,Ag,Pd,Cu,CuS,CuSe,CuO and Cu(OH)2in the literatures [18–24].In this paper,we for the first time report the synthesis of porous MnO 2employed organic/aqueous interface.The size of MnO 2was achieved by simply tuning the concentration of the surfactant in the aqueous phase.The effects of the particle size,pore size,and the surface area on the capacitance performance of the MnO 2were studied extensively.2.Experimental2.1.Synthesis and characterization of MnO 2MnO 2were prepared at the interface between organic phase and aqueous phase at room temperature.The aqueous phase contains a mixture of potassium permanganate (KMnO 4)and sodium dodecylsulfate (SDS)which serves as surfactant in water.The concentration KMnO 4was 0.01M and the SDS concentration is 3,8,16,40,80,120,160and 320mM,respec-tively.25ml above solution was added on the 25ml,0.03M ferrocene/CHCl 3solution.A static organic/aqueous interface was formed.After a short introduction period,some puce prod-ucts appeared at the interface.As the puce products were produced continuously,the color of the aqueous phase turned lighter and lighter until a puce precipitate layer was formed at the liquid/liquid interface.The organic phase was removed by the pipette in a given time varying from 3.5to 24h.The puce pre-cipitates and the aqueous phase were collected and centrifuged at 6000rpm for 6min.The precipitates were settled down to the bottom of the container under centrifugation then washed with distilled water and ethanol repeatedly until the liquid phase was colorless after centrifugation.The product was dried at 70◦C in a vacuum for 10h.The product prepared from the different SDS contents mentioned above are denoted as sample A,B,C,D,E,F,G and H.The prepared MnO 2was characterized by theX-ray diffraction (XRD,Bruker D8),scanning electronic micro-scope (SEM,Philip XL30)and BET surface area measurement (Micromeritics Tristar).2.2.Electrochemical testsThe electrode of MnO 2was prepared according to the follow-ing steps.The mixture containing 80wt.%MnO 2and 15wt.%acetylene black and 5wt.%polytetrafluoroethylene (PTFE)was well mixed,and then was pressed onto nickel foam grid (1.2×107Pa)that served as a current collector (surface is 1cm 2).The typical mass load of electrode material is 5mg.The used electrolyte was 0.5M potassium sulfate.The electrochem-ical behavior of MnO 2was characterized by cyclic voltammetry and charge–discharge tests.The experiments were carried out in a three-electrode glass cell.Platinum foil was used as a counter electrode,and SCE as a reference electrode.The electrochemical measurements were performed using a Solartron Instru-ment Model 1287electrochemical interface controlled by a computer.3.Results and discussion 3.1.Characterization of materialsA series of MnO 2were prepared by the interfacial reaction of potassium permanganate (KMnO 4)/sodium dodecylsulfate (SDS)/ferrocene containing various concentration of SDS vary-ing from 3,8,16,40,80,120and 160to 320mM.The schematic graph of the formation of MnO 2can be described in Fig.1.At the present of SDS,the micelles were formed and acted as col-loid nanoreactors.The micelles containing permanganate salt arranged at the aqueous/organic interface,ferrocene molecule contacted the permanganate at the core of the micelles,redox took place at the interface and the MnO 2particles were formed in the micelles.All samples show the very similar XRD patterns.Fig.2shows the selected XRD patterns of MnO 2prepared at different concentrations of SDS,from 3,80to 320mM (sam-ples A,E and H).All three samples present broad XRD peaks,indicating the amorphousnature.Fig.1.Schematic graph of the formation of MnO 2at interface of potassium permanganate in water/ferrocene in chloroform.754X.-h.Yang et al./Electrochimica Acta53(2007)752–757Fig.2.X-ray diffraction patterns of MnO2synthesized at the interface between organic/aqueous interface for different concentrations of SDS in aqueous phase.(a)3mM(sample A);(b)80mM(sample E)and(c)320mM(sample H).In order to optimize the reaction parameters,the reaction time is investigated.Fig.3gives the SEM image of the sample E pre-pared at the different times,3.5,4.5,6.5and24h,respectively. The particle size of MnO2increases with increasing of the reac-tion time.As demonstrated later,the sample prepared at4.5h delivers the highest specific capacitance of260F/g.The reaction time isfixed at4.5h.The effect of the added SDS concentration on the morphology was investigated.Fig.4presents the SEM image of the MnO2.The images reveal the MnO2is aggregated spherical particle.The particle sizes decrease from300to30nm when the concentrations of SDS increase from3to320mM.The samples prepared in low concentration of SDS have much more compact morphologies.N2adsorption–desorption studies were performed to determine the specific surface area of the MnO2 prepared at different concentrations of SDS.The BET surface area(Fig.5)decreases gradually from264m2/g of sample A to 173m2/g of sample H.The adsorption average pore diameter is 7.4,13.1and16.7nm for the samples A,E and H,respectively. This is the reason why sample A has the largest surface area even it has the largest particle size as the SEM images shown in Fig.4.It is clear that the surface area mainly contributes from the pore in the MnO2particle.The detailed pore size distribution is presented in Fig.6.Sample A has a narrow pore size distri-bution around5nm;sample E shows the pore size distribution with an average pore size of5and15nm,while sample H has a pore size around5and30nm.The amount of micelles increases and micelle size decreases when the concentration of surfactant SDS increases,thus leads to smaller particle size.On the other hand,the distance between the micelles increases when the con-centrations of SDS increase because of the increasing charge repulsion.Therefore,the particle size depends on the micelle size while the pore size is associated with the distance between the micelles.3.2.Electrochemical testsFig.7shows the CV curves of sample E at different scan rates from2,5,to10mV/s over the voltage range of0.0–0.8V versus SCE in0.5M K2SO4solution.The Y-axis of capacitance was calculated by the formula C=i/v where C is the differen-tial capacitance,i is the current density,v is the scan rate.As shown in Fig.6,the typical quasi-rectangular curves indicate good EDLC behaviors.Moreover,the good rectangularsym-Fig.3.SEM images of MnO2prepared at different reaction times:(a)3.5h;(b)4.5h;(c)6.5h;and(d)24h.X.-h.Yang et al./Electrochimica Acta 53(2007)752–757755Fig.4.SEM of images of the MnO 2materials obtained at room temperature and 4.5h.Panels a,b,c,d,e,f correspond to the samples synthesized from 3,8,40,80,160and 320mM SDS in aqueous phase,respectively.Fig.5.Surface areas of MnO 2materials synthesized at the presence of 3,8,16,40,80,120,160and 320mM SDS in the aqueous phase.metry of CV curves can be surely maintained in the 0–0.8V region when the scan rate is increased from 2to 10mV/s,which indicates the excellent capacitive ability of MnO 2even at high current density.The galvanostatic charge–discharge behavior of MnO 2was investigated within potential range 0.0–0.8V versus SCE in 0.5M K 2SO4solution at different currents.The current density varied from 40to 0.5mA/cm 2.The specific capacitance (C m )can be calculated as follows:C m =C m =It Vmwhere I is the current of charge–discharge,t the time of dis-charge, V is 0.8V ,and m the mass of active materials in the working electrode.Table 1shows the specific capacitance of the eight samples at different charge–discharge current densities.Broadly speaking,the specific capacitance increases with the decrease of current density for all eight samples,while the increase tendency varies from sample to sample.The difference can be more clearly observed in Fig.8for the three selected samples,samples A,E and H.For sample A,the capacitance756X.-h.Yang et al./Electrochimica Acta53(2007)752–757Fig.6.Pore size distribution(a)for sample A,(b)for sample E and(c)for sample H.rapidly decrease from229to151F/g when the current density increase from0.5to5mA/cm2,then decrease slowly when the current rate further increases.The capacitance at40mA/cm2is only98F/g,only40%of the capacitance at0.5mA/cm2.Sam-ple E shows the highest capacitance among all eight samples. The capacitance decreases slowly from261to151F/g when the current rate increase from0.5to40mA/cm2;for sample H,the capacitance decrease very slowly from219to200F/g when the current rate increases from0.5to5mA/cm2.It keeps80%of the capacitance at0.5mA/cm2,even at40mA/cm2.Fig.7.CV curves of MnO2in0.5M K2SO4electrolyte at(a)2mV/s,(b)5mV/s and(c)10mV/s scan rate.Table1Specific capacitance of MnO2prepared at different concentrations of SDS in different current densitiesCurrent density(mA/cm2)Specific capacitance(F/g)A B C D E F G H 4098122125146155155158176 30108132135150165165168184 20129134148163184176182184 10134139150184196193191189 8141146151198225205195193 5151157159201240215202200 2182178184216252236221215 1210222238238256255226216 0.5229245241240261256228219Sample H behaves the best rate capability among eight samples.It is easy to be envisaged that difference in the capacitance behavior is associated with the pore size and its distribution. There have been two mechanisms proposed for the charge stor-age in MnO2-based electrodes.Thefirst one is base on the concept of intercalation of H+or alkali metal cations such as K+in the electrode during reduction and deintercalation upon oxidation[16,25].MnO2+H++e− MnOOHorMnO2+C++e− MnOOC(MnO2)surface+C++e− (MnO2−C+)surfaceThe second mechanism is based on the surface adsorption of electrolyte cations(C+)on MnO2[14].Where C+=Na+,K+,Li+.Despite of the inconsistent pro-posed mechanism,it has been demonstrated that the capacitance of the MnO2results from its surface reaction.Only a limited frac-tion of the MnO2is electrochemically active,the charge storage might only involve the surface atoms of the MnO2crystallites or a very thin layer.Therefore,the pseudocapacitance iscriticallyFig.8.Specific capacitance of samples A,E and H in different current densities.X.-h.Yang et al./Electrochimica Acta 53(2007)752–757757Table 2Pore volume proportions at the range of 7nm below,7–20and 20nm above,for samples A,E and H Pore volume proportion (%)Sample Pore size range (nm)A E H <77020107–20205530>20103540dependent on the effective surface area which is associated the particle size and pore distribution.Generally,the specific capacitance increases with the increase of surface area.Sample A with the largest surface area has lower capacitance than sample H at high charge–discharge rate.Sim-ilar results of systems showing lower capacitance for a larger surface area material have been reported in the literature [26–29].This indicates the specific capacitance does not depend on the surface area.Pore size distribution may be a deciding parameter in determining the specific capacitance.The pore volume pro-portions of samples A,E and H at different ranges are shown in Table 2.Sample A has 70%of the pore volume under 7nm,compared to sample H with 10%.It leads to the sharp perfor-mance difference at high rate charge–discharge process because the pores under 7nm are adverse for the fast intercalation and deintercalation of K +.As the charge–discharge rate decreases to 0.5mA/cm 2,sample A has larger capacitance than sample H because of larger surface area.Sample E has average distribu-tion at the range of 3–40nm.It keeps the active surface area and performs well at different charge–discharge rates.Sample H has the best rate capability for the contribution of 40%pore volume in the form of mesopores with diameter >20nm but poor performance for at low rate for the limitation of surface area.Fig.9gives the charge–discharge cycling test of sample E synthesized at the present of 80mM SDS at current density of 40mA/cm 2between 0and 0.8V versus SCE.As shown in Fig.9,the MnO 2exhibits good cycle profile,the capacitance slightly decreases 3%of initial capacity over 1300cycles with a coulomb efficiency approximately100%.Fig.9.Cycle performance of MnO 2sample prepared in 80mM SDS in aqueous solution,(a)ratio of retained capacitance and (b)coulomb efficiency.4.ConclusionIn this paper,we successfully synthesized the porous MnO 2with various pore sizes,varying from 5to 30nm by organic-aqueous interfacial method.The surface area and pore diameter of MnO 2can be easily tuned by the content of SDS at aque-ous phase.The pore diameter is the primary factor to affect the capacitance at high charge–discharge rate,while surface area becomes the primary factor at low charge–discharge rate.The MnO 2synthesized under optimum conditions shows a capaci-tance of 261F/g,and exhibits good cycle profile,keeping the 97%of initial capacity over 1300cycles with a coulomb effi-ciency approximately 100%.AcknowledgmentsThis work was partially supported by the National Natural Science Foundation of China (No.20633040),the 863pro-gram of China (No.2006AA05Z218),and the State Key Basic Research Program of PRC (2007CB9700).References[1]B.E.Conway,J.Electrochem.Soc.138(1991)1539.[2]C.Arbizzani,M.Mastragostino,F.Soavi,J.Power Sources 100(2001)164.[3]S.T.Mayer,R.W.Pekala,J.L.Kaschmitter,J.Electrochem.Soc.140(1993)446.[4]A.Yoshida,S.Nonaka,I.Aoki,A.Nishino,J.Power Sources 60(1996)213.[5]Y .Kibi,T.Saito,M.Kurata,J.Tabuchi,A.Ochi,J.Power Sources 60(1996)225.[6]Y .G.Wang,Y .Y .Xia,mun.7(2005)1138.[7]M.Endo,T.Maeda,T.Takeda,Y .J.Kim,K.Koshiba,H.Hara,M.S.Dresselhaus,J.Electrochem.Soc.148(2001)A910.[8]J.P.Zheng,P.J.Cygan,T.R.Jow,J.Electrochem.Soc.142(2001)2699.[9]K.C.Liu,M.A.Anderson,J.Electrochem.Soc.143(1996)124.[10]Y .S.Yoon,W.I.Cho,J.H.Lim,D.J.Choi,J.Power Sources 101(2001)126.[11]B.E.Conway,V .Briss,J.Wojtowicz,J.Power Sources 66(1997)1.[12]C.Lin,J.Ritter,B.N.Popov,J.Electrochem.Soc.145(1998)4097.[13]H.Y .Lee,S.W.King,Electrochem.Solid-State Lett.4(2001)A19.[14]H.Y .Lee,J.B.Goodenough,J.Solid State Chem.144(1999)220.[15]H.Y .Lee,V .Manivannan,J.B.Goodenough,C.R.Chim.2(1999)565.[16]S.Pang,M.A.Anderson,T.W.Chapman,J.Electrochem.Soc.147(2000)444.[17]Y .Lin,H.Skaff,T.Emrick,A.D.Dinsmore,T.P.Russell,Nature 299(2003)226.[18]L.L.Dai,R.Sharma,C.Y .Wu,Langmuir.21(2005)2641.[19]J.K.Sakata,A.D.Dwoskin,J.L.Vigorita,E.M.Spain,J.Phys.Chem.B109(2005)138.[20]F.Reincke,S.G.Hickey,W.K.Kegel,D.Vanmaekelbergh,Angew.Chem.116(2004)464.[21]A.W.Dryfe,A.O.Simm,B.Kralj,J.Am.Chem.Soc.125(2003)13014.[22]U.K.Gautam,M.Ghosh,C.N.R.Rao,Chem.Phys.Lett.381(2003)1.[23]U.K.Gautam,M.Ghosh,C.N.R.Rao,Langmuir 20(2004)10776.[24]X.Y .Song,S.X.Sun,W.M.Zhang,H.Y .Yu,W.L.Fan,J.Phys.Chem.B108(2004)5200.[25]M.Toupin,T.Brousse,D.Belanger,Chem.Mater.16(2004)3184.[26]Y .U.Jeong,A.Manthiram,J.Electrochem.Soc.149(2002)A1419.[27]R.N.Reddy,R.G.Reddy,J.Power Sources 124(2003)330.[28]R.N.Reddy,R.G.Reddy,J.Power Sources 132(2004)315.[29]V .Subramanian,H.W.Zhu,R.Vajtai,P.M.Ajayan,B.Q.Wei,J.Phys.Chem.B 109(2005)20207.。