AHP(层次分析法)方法、步骤
AHP(层次分析法)方法、步骤
归一化后的特征向量W= (w1, w2, …,wn) T
AW= λ W max
由此得到的特征向量W= (w1, w2, …,wn) T 就作 为对应评价单元的权重向量。 λmax和W的计算一般采用幂法、和法和方根法
2009.11
方根法
m
bn aibni i 1
2009.11
(4)评价层次总排序计 算结果的一致性
设:CI为层次总排序一致性指标: RI为层次总排序随机一致性指标。
其计算公式为:CI m aiCIi i 1
CIi为Ai相应的B层次中判断矩阵的一致性指标。 m RI ai RIi i 1
RIi为Ai相对应的B层次中判断矩阵随机一致性指标 并取 CR CI
在单层次判断矩阵A中,当
aij
aik a jk
时,称判断矩阵为一致性矩阵。
进行一致性检验的步骤如下:
(a)计算一致性指标C.I.:C.I. max n ,式中n为判断矩阵阶数。
n 1 (b)计算平均随机一致性指标R.I.
R.I.是多次重复进行随机判断矩阵特征值的计算后取算术平均数得到的 ,下表给出1~15维矩阵重复计算1000次的平均随机一致性指标:
max 4
d3 W23
d4 w24
d5 w25
C.R.=0
C1
C2
C3
d1 d2 d3 d4 d5
2009.11
(3)计算各元素的总权重
准则 权重 方案 d1 d2 d3 d4 d5
C1
0.105
0.491 0.232 0.092 0.136 0.046
C2
0.637
0 0.055 0.564 0.118 0.265
层次分析法步骤及案例分析
层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。
它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。
本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。
一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。
将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。
例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。
2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。
判断可以基于专家经验、问卷调查或实际数据。
对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。
如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。
3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。
通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。
4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。
一致性是指在两两比较中的逻辑关系的一致性。
通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。
5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。
在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。
二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。
假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。
我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。
2. 构造判断矩阵:对于每个子目标,可以进行两两比较。
层次分析法(AHP)
层次分析法(AHP)层次分析法(AHP)对于草地农业生态系统这个涉及复杂的社会、经济、生态问题的系统,过去的系统分析与设计常常凭经验,靠主观判断进行,缺乏应有的科学性,因而往往造成重大失误。
层次分析法是一种新的定性分析与定量分析相结合的系统分析方法,是将人的主观判断用数量形式表达和处理的方法,简称AHP(The Analytic Hierarchy Process)法。
近年来,层次分析法在草地农业生态系统的系统分析、设计与决策中日益受到重视。
1层次分析法的基本方法和步骤层次分析法是把复杂问题分解成各个组成因素,又将这些因素按支配关系分组形成递阶层次结构。
通过两两比较的方式确定各个因素相对重要性,然后综合决策者的判断,确定决策方案相对重要性的总排序。
运用层次分析法进行系统分析、设计、决策时,可分为4个步骤进行;(1)分析系统中各因素之间的关系,建立系统的递阶层次结构;(2)对同一层次的各元素关于上一层中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;(3)由判断矩阵计算被比较元素对于该准则的相对权重;(4)计算各层元素对系统目标的合成权重,并进行排序,2递阶层次结构的建立首先把系统问题条理化、层次化,构造出一个层次分析的结构模型。
在模型中,复杂问题被分解,分解后各组成部分称为元素,这些元素又按属性分成若干组,形成不同层次。
同一层次的元素作为准则对下一层的某些元素起支配作用,同时它又受上面层次元素的支配。
层次可分为三类;(1)最高层:这一层次中只有一个元素,它是问题的预定目标或理想结果,因此也叫目标层;(2)中间层:这一层次包括要实现目标所涉及的中间环节中需要考虑的准则。
该层可由若干层次组成,因而有准则和子准则之分,这一层也叫准则层;(3)最底层:这一层次包括为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
上层元素对下层元素的支配关系所形成的层次结构被称为递阶层次结构。
当然,上一层元素可以支配下层的所有元素,但也可只支配其中部分元素。
层次分析法(AHP法
判断矩阵元素a 判断矩阵元素 ij的标度方法
标度 1 3 5 7 9 2 , 4 , 6, 8 倒数 含义 表示两个因素相比, 表示两个因素相比,具有同样重要性 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素极端重要 上述两相邻判断的中值
层次分析法是一种定性与定量分析相结合的多目标决策分 析方法,能够将决策者的经验判断给予量化, 析方法,能够将决策者的经验判断给予量化,广泛应用于 目标结构复杂且缺乏必要数据的情况下的分析与决策。 目标结构复杂且缺乏必要数据的情况下的分析与决策。尤 其对于一些难以全部量化处理的复杂问题, 其对于一些难以全部量化处理的复杂问题,能得到比较满 意的决策结构。 意的决策结构。 层次分析法的主要思想就是首先根据问题的性质和要达到 的总目标,将问题按层次分解成不同的因素, 的总目标,将问题按层次分解成不同的因素,然后再将同 一层次内各个不同因素进行相对重要性的相互比较得出判 断矩阵的基础上, 断矩阵的基础上,求出各层次因素相对于上一层的单权重 和组合权重。 和组合权重。
2
构造判断(成对比较) 构造判断(成对比较)矩阵
在建立递阶层次结构以后, 在建立递阶层次结构以后 , 上下层次之 间元素的隶属关系就被确定了。 间元素的隶属关系就被确定了 。 假定上一层 次 的 元 素 Ck 作 为 准 则 , 对 下 一 层 次 的 元 素 A1, …, An 有支配关系,我们的目的是在准则 有支配关系, Ck 之下按它们相对重要性赋予 A1, …, An 相 应的权重。 应的权重。 比较同一层次中每个因素关于上一层次 同一个因素的相对重要性 的同一个因素的相对重要性
层次分析法(AHP法)
因素i与j比较的判断aij,则因素j与i比较的判断aji=1/aij
目标层
O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
设要比较各准则C1,C2,… , Cn对目标O的重要性
Ci : C j aij A (aij )nn , aij 0, a ji
最高层:决策的目的、要解决的问题。 最低层:决策时的备选方案。 中间层:考虑的因素、决策的准则。 对于相邻的两层,称高层为目标层,低层为因
素层。 下面举例说明。
例. 选择旅游地
目标层
如何在3个目的地中按照景色、 费用、居住条件等因素选择.
O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
1
2 500
500
n
500
n 1
Saaty的结果如下
随机一致性指标 RI
n 1 2 3 4 5 6 7 8 9 10 11 RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
定义一致性比率 : CR CI
RI
一般,当一致性比率
CR
CI RI
素相互比较的困难,以提高准确度。
判断矩阵是表示本层所有因素针对上一层某一个因素的 相对重要性的比较。判断矩阵的元素aij用Santy的1—9标 度方法给出。
心理学家认为成对比较的因素不宜超过9个,即每层 不要超过9个因素。
判断矩阵元素aij的标度方法
标度 1 3 5 7 9
2,4,6,8 倒数
含义 表示两个因素相比,具有同样重要性 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比,一个因素比另一个因素极端重要
AHP层次分析法步骤讲解
AHP层次分析法AHP层次分析法是一种解决多目标复杂问题的定性和定量相结合进行计算决策权重的研究方法。
层次分析法基本原理AHP层次分析法是将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。
AHP层次分析法的操作步骤完整的AHP层次分析法通常包括五个步骤:第一步:建立层次结构模型在深入分析问题的基础上,将决策的目标、考虑的因素和决策对象按相关关系分为最高层、中间层和最低层。
●最高层:决策的目的、要解决的问题●中间层(若干层):考虑的因素、决策的准则●最底层:决策时的备选方案比如现在想选择一个最佳旅游景点,当前有三个选择标准(分别是景色,门票和交通),并且对应有三种选择方案。
现通过旅游专家打分,希望结合三个选择标准,选出最佳方案,层次模型大致如下图:第二步:标度确定和构造判断矩阵通过各因素之间的两两比较确定合适的标度。
在建立层次结构之后,需要比较因子及下属指标的各个比重,为实现定性向定量转化需要有定量的标度,此过程需要结合专家打分最终得到判断矩阵表格。
比如对旅游景点选择的4个影响因素(分别是景色,门票,交通和拥挤度)进行评价(即专家评价),最终得出四个影响因素的权重。
采用1-5分标度法(也或者1-9标度法),即比如门票相对景色更加重要,此时门票打3分,那么景色相对于门票就是取其倒数1/3即0.3333分。
交通相对于景色来更重要为2分,景色相对于交通就是0.5分等。
如果A因素相对B因素非常重要,此时打5分(最高5分),那么B因素相对于A因素就是1/5即0.2分如果使用SPSSAU进行分析,操作此步骤时,需要设置【判断矩阵阶数】,可以理解为需要评价权重的因素个数,并且在白色单元格处输入各项分别的名字以及专家打分,蓝色底纹处会自动变化,不需要输入。
AHP层次分析法算法流程
AHP层次分析法算法流程AHP(Analytic Hierarchy Process)层次分析法是一种用于决策问题的数学模型和方法,它通过对问题进行分析和层次化处理,准确地确定各影响因素的权重,从而帮助决策者做出最佳选择。
下面是AHP层次分析法的算法流程:1.确定决策的目标:明确待解决问题的最终目标。
例如,选择供应商、评估项目风险等。
2.建立层次结构:将问题分解成若干个层次,从最终目标开始逐级向下,形成一个层次结构。
最终目标位于最顶层,中间层次为各个子目标,最底层是各个可选方案或决策因素。
3.构建判断矩阵:对于每个相邻的层次,评价它们之间的相对重要性。
在层次结构矩阵中,将每一对子目标之间的相对重要性填入,构建一个判断矩阵。
判断矩阵的大小等于层次中的层数的平方。
4.设置标准化比较尺度:由于决策者往往无法准确比较不同层次之间的重要性,AHP引入了一套标准化比较尺度来帮助决策者进行判断。
常用的标准化比较尺度包括9级尺度和4级尺度。
5.一致性检验:在判断矩阵中填入各个单元格后,需要进行一致性检验,判断矩阵是否满足一致性。
一致性是指判断矩阵的矩阵元素之间的相互关系是否合理。
6.层次单排序:利用判断矩阵计算每个子目标的权重向量,通过对判断矩阵的特征向量进行归一化来获得权重向量。
7.一致性检验:再次进行一致性检验,验证计算得到的权重向量的一致性。
8.综合决策:将各个子目标的权重向量与它们对应的可选方案或决策因素进行综合,得出最终的决策。
9.灵敏度分析:根据实际情况进行灵敏度分析,检验得出的权重向量对最终决策的影响,以及各个决策因素的敏感程度。
10.结果分析与解释:对最终决策进行分析和解释,确保决策的科学性和合理性,为问题的解决和决策的执行提供支持。
AHP层次分析法通过逐层比较,将问题分解为易于理解和处理的小块,通过判断矩阵和权重向量计算,确定各个子目标的重要性和最终的决策。
它能够提供量化的决策依据,并具有一定的灵活性和可解释性。
层次分析法的基本原理和步骤
层次分析法的基本原理和步骤层次分析法(Analytic Hierarchy Process, AHP)是一种定量分析方法,用于多准则决策问题的分析和决策。
它的基本原理是将复杂的决策问题层次化,通过对准则和方案的比较与评价,得出优先级权重,进而得到最佳方案。
1.确定决策目标:确定决策问题的目标,明确要达到的结果。
2.构建层次结构:将决策问题分解成一个层次结构,包括目标层、准则层和方案层。
目标层表示最终要达到的目标,准则层表示影响目标实现的准则因素,方案层表示可供选择的决策方案。
3.构建判断矩阵:在准则层和方案层中,两两比较各个准则或方案之间的重要性或优劣程度。
根据专家判断或个人主观意见,使用尺度(1-9)对两两比较进行评分,构建判断矩阵。
4.计算准则权重:根据判断矩阵的评分,使用特征值法或最大特征向量法计算准则权重。
首先对判断矩阵的列向量进行归一化处理,然后计算归一化后的特征向量,最后将特征向量的元素相加,并按比例得到准则的权重。
5.一致性检验:通过计算一致性指标和一致性比率来检验判断矩阵的一致性。
一致性指标表示判断矩阵与一致性判断矩阵之间的差异程度,一致性比率表示判断矩阵的一致性程度。
如果一致性指标小于一定阈值,且一致性比率接近1,则认为判断矩阵具有满足一致性的权重。
6.计算方案权重:将计算得到的准则权重与判断矩阵相乘,计算每个方案的权重。
权重值越大,表示方案的优先级越高。
7.一致性检验:对方案权重进行一致性检验,与准则权重的一致性检验类似。
8.敏感性分析:通过增加或减少一些因素的权重,分析结果的稳定性和可靠性。
敏感性分析可以帮助决策者了解权重对决策结果的影响程度。
9.最终决策:根据方案的权重和准则的权重,对各个方案的优先级进行排序,选择权重最高的方案作为最终决策。
层次分析法的基本原理是将决策问题逐层分解,通过两两比较和权重计算,理性地确定各个因素的优先级和权重。
通过分析和评价不同方案,辅助决策者做出最佳选择。
层次分析法步骤
层次分析法步骤层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于多准则决策的定量分析工具,可以帮助决策者以一种系统化的方法比较和评估不同准则和选择之间的重要性。
它由美国数学家托马斯·L·塞蒂(Thomas L. Saaty)于20世纪70年代初提出,并逐渐得到广泛应用。
层次分析法的基本思想是将复杂的决策问题分解为多个层次,并在每个层次上进行比较和评估,最后得出一个综合的决策方案。
整个分析过程包括以下几个步骤:1.确定目标和准则:首先需要明确决策的目标以及与之相关的准则。
目标是决策问题的总体要求,而准则则是用来评估和比较不同选择的标准。
2.建立层次结构:将决策问题分解为层次结构,利用层次结构可以清晰地表示不同层次之间的关系。
层次结构由目标层、准则层和选择层组成。
目标层位于最高层,准则层位于中间层,选择层位于最底层。
3.构建判断矩阵:通过对不同层次的元素两两进行比较,构建判断矩阵。
判断矩阵中的每个元素表示一些准则或选择相对于其他准则或选择的重要性。
判断矩阵需要满足一致性要求,即矩阵的特征向量要满足一致性指标。
4.计算权重向量:通过对判断矩阵进行特征值分解,可以得到特征向量。
特征向量表示各个准则或选择的重要性权重,可以用于比较和评估不同准则和选择之间的优先级关系。
5.一致性检验:对于判断矩阵的一致性要求需要进行检验,通常使用一致性指标和一致性比率来评估判断矩阵的一致性程度。
如果判断矩阵的一致性指标超过了一些阈值,就需要重新调整判断矩阵,直到满足一致性要求为止。
6.综合评估和决策:根据权重向量可以对不同准则和选择进行综合评估,计算出每个选择的得分。
最终选择具有最高得分的方案作为决策方案。
7.灵敏度分析:对比不同决策方案的得分,可以进行灵敏度分析,评估权重向量的变动对决策结果的影响程度。
层次分析法兼容主观和客观因素,能够定量评估和比较不同准则和选择之间的重要性,提高决策的科学性和准确性。
层次研究分析法(AHP)
层次分析法(AHP)————————————————————————————————作者:————————————————————————————————日期:层次分析法(AHP)对于草地农业生态系统这个涉及复杂的社会、经济、生态问题的系统,过去的系统分析与设计常常凭经验,靠主观判断进行,缺乏应有的科学性,因而往往造成重大失误。
层次分析法是一种新的定性分析与定量分析相结合的系统分析方法,是将人的主观判断用数量形式表达和处理的方法,简称AHP(The Analytic Hierarchy Process)法。
近年来,层次分析法在草地农业生态系统的系统分析、设计与决策中日益受到重视。
1层次分析法的基本方法和步骤层次分析法是把复杂问题分解成各个组成因素,又将这些因素按支配关系分组形成递阶层次结构。
通过两两比较的方式确定各个因素相对重要性,然后综合决策者的判断,确定决策方案相对重要性的总排序。
运用层次分析法进行系统分析、设计、决策时,可分为4个步骤进行;(1)分析系统中各因素之间的关系,建立系统的递阶层次结构;(2)对同一层次的各元素关于上一层中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;(3)由判断矩阵计算被比较元素对于该准则的相对权重;(4)计算各层元素对系统目标的合成权重,并进行排序,2递阶层次结构的建立首先把系统问题条理化、层次化,构造出一个层次分析的结构模型。
在模型中,复杂问题被分解,分解后各组成部分称为元素,这些元素又按属性分成若干组,形成不同层次。
同一层次的元素作为准则对下一层的某些元素起支配作用,同时它又受上面层次元素的支配。
层次可分为三类;(1)最高层:这一层次中只有一个元素,它是问题的预定目标或理想结果,因此也叫目标层;(2)中间层:这一层次包括要实现目标所涉及的中间环节中需要考虑的准则。
该层可由若干层次组成,因而有准则和子准则之分,这一层也叫准则层;(3)最底层:这一层次包括为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
层次分析法分析(AHP)及实例教程
设定评价标准
根据问题背景和目标,设定合理的评价标准,如 成本、效益、风险等。
识别关键因素和指标
关键因素识别
分析影响决策目标的关键因素,如市 场需求、技术水平、资源条件等。
指标选取
针对每个关键因素,选取具体的评价 指标,如市场份额、创新能力、资源 利用率等。
构建递阶层次结构图
目标层
准则层
将决策目标作为最高层, 表示解决问题的总体目标。
层次分析法分析 (AHP)及实例教程
目录
• 层次分析法(AHP)概述 • 构建层次结构模型 • 构造判断矩阵与权重计算 • 实例教程:以某企业投资决策为例 • AHP优缺点及改进方向 • 总结与展望
01
层次分析法(AHP)概述
AHP定义与发展历程
定义
层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的、系统化、 层次化的分析方法。它通过将复杂问题分解为若干层次和因素,对各因素进行两两比较,构造 判断矩阵,进而计算各因素的权重,为决策问题提供定量依据。
对计算得到的权重进行一致性检 验,确保结果的合理性和准确性。
一致性检验与调整策略
一致性检验方法
通过计算一致性指标CI和随机一 致性指标RI,判断判断矩阵的一 致性。
调整策略
当判断矩阵不满足一致性要求时, 需要对判断矩阵进行调整,包括 调整元素值、重新构造判断矩阵 等方法,直至满足一致性要求。
注意事项
针对缺点提出改进措施
1 2
提高数据质量和数量
通过改进数据采集和处理方法,提高数据的质量 和数量,减少数据不准确和不完整对决策结果的 影响。
引入客观标准
在构建判断矩阵时,可以引入客观标准和量化指 标,减少主观判断对决策结果的影响。
层次分析法(AHP)
aij
n
aij
i 1
i,j 1,2,, n
2 ) 再按行相加得和
n
wi aij j 1
3)再规范化,得权重系数:
wi
wi
n
wi
i 1
方根法
这种方法的步骤是:
1) 按行元素求积,再求1/n次幂,得
n
wi
aij i,j 1,2,, n
j 1
2)规范化,即得权重系数
wi
wi
n
wi
用ANP进行决策的基本步骤
▪ (1) 构造ANP的典型结构: A:首先是构造控制层次.将决策目标界定,将决策准则界 定,这是问题的基本,各个准则决策目标的权重用AHP方法 得到. B:再则是构造网络层次.要归类确定每一个元素,分析其 网络结构和相互影响关系,分析元素之间的关系可用多种 方法进行. 一种是内部独立的递阶层次结构,即层次之间相 互独立;一种是内部独立,元素之间存在者循环的ANP 网络层次结构;另一种是内部依存,即元素内部存在循环 的ANP网络层次结果,这几种情况都是ANP的特例情况。 在实际决策问题中面临的基本都是元素间不存在内部独立, 既有内部依存,又有循环的ANP网络层次结构。
P4:建 图书馆
P5:引进 新设备
C1对p1 p2 p3 p4 p5的权重计算
c1 P1
p2
p3
p4
p5 w
p1 1
3
5
4
7 0.491
p2 1/3 1
3
2
5 o.232
p3 1/5 1/3 1
½
3 0.092
p4 ¼ ½
2
1
3 0.138
p5 1/7 1/5 1/3 1/3 1 0.046
层次分析法的计算步骤
层次分析法的计算步骤层次分析法(Analytic Hierarchy Process, AHP)是一种用于多准则决策的定量分析方法,由美国学者Thomas L. Saaty于1970年代提出。
它通过将一个复杂的多准则问题分解为一系列的层次结构,然后利用专家判断来确定每个层次的权重以及相对优先级,最终得出最佳决策。
下面将详细介绍层次分析法的计算步骤。
1.确定决策的目标和准则:首先明确决策的目标,以及实现这一目标所需的准则。
例如,如果我们要决定购买一台新的汽车,目标可能是选择性价比最高的汽车,准则可能包括价格、燃油经济性、安全性、舒适性等。
3.构建判断矩阵:为了确定每个层次之间的重要性比较,需要构建判断矩阵。
判断矩阵是一种由专家根据经验、知识或直觉所得到的关于准则之间相对重要性的矩阵。
对于每个层次,需要构建一个判断矩阵。
例如,在准则层次,专家需要判断每个准则与其他准则之间的相对重要性。
4.对判断矩阵进行标准化:将判断矩阵进行标准化是为了消除专家主观性的影响。
标准化的方法可以有多种,最常用的方法是将每列元素除以该列元素之和,使每列元素之和等于15.计算权重向量:通过对标准化的判断矩阵进行特征值分解,可以得到特征值和对应的特征向量。
特征向量的元素表示各个准则相对于目标的权重。
为了保证权重之和等于1,需要将特征向量进行归一化。
归一化的方法是将每个元素除以所有元素之和。
6.一致性检验:进行一致性检验是为了评估专家的判断是否一致和合理。
一致性指标(Consistency Index, CI)是用来度量判断矩阵的一致性程度的指标,其计算方法为CI=(λmax-n)/(n-1),其中λmax为最大特征值,n为准则数目。
为了验证判断矩阵的一致性,还需要计算一个随机一致性指标(Random Index, RI)作为对照。
如果CI<0.1,则认为判断矩阵是一致的。
7.一致性修正:如果判断矩阵不一致,可以通过进行一致性修正来提高一致性。
层次分析法步骤及案例分析
层次分析法步骤及案例分析层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决决策问题的定性与定量相结合的方法。
该方法通过建立分层结构模型,对各个因素进行比较和权重分配,从而帮助决策者做出较为科学的决策。
本文将介绍层次分析法的步骤,并通过一个实际案例进行分析。
一、层次分析法的步骤层次分析法的步骤主要包括问题定义、建立层次结构模型、构建判断矩阵、计算权重和一致性检验等。
下面将详细介绍每个步骤。
1. 问题定义在使用层次分析法前,首先需要明确要解决的问题。
通过明确问题的目标和约束条件,可以确定出适合使用层次分析法的决策问题。
2. 建立层次结构模型在问题定义的基础上,需要建立层次结构模型,将整个问题分解为若干层次,并确定各个层次之间的关系。
通常,层次结构包括目标层、准则层和方案层。
目标层表示要达到的最终目标,准则层表示实现目标所需的评价因素,方案层表示可供选择的备选方案。
3. 构建判断矩阵构建判断矩阵是层次分析法的核心步骤。
判断矩阵用于比较和评价不同层次的因素,确定它们之间的重要性。
通过专家判断或问卷调查等方式,将各个因素两两进行比较,并赋予相应的重要性权值。
根据专家判断或调查结果,可以构建出一个全排列的判断矩阵。
4. 计算权重通过计算判断矩阵,可以获取各个因素的权重值。
常用的计算方法包括特征向量法、层次递推法和最大特征值法等。
根据计算结果,可以得到每个因素的相对权重值,从而进行比较和排序。
5. 一致性检验为了确保判断矩阵的一致性,需要进行一致性检验。
一致性指标主要包括一致性比率和一致性指数。
一致性比率用于评估判断矩阵的不一致程度,一致性指数用于判断判断矩阵是否满足一致性要求。
如果一致性比率超过一定阈值,表明判断矩阵存在较大的不一致性,需要重新调整判断矩阵。
二、案例分析为了更好地理解层次分析法的应用,下面以选择旅游目的地为例进行案例分析。
假设你准备进行一次旅行,有三个备选目的地:A、B和C。
层次分析法(AHP)
(3)构造判断矩阵
判断矩阵元素的值反映了评估人员对各因素相 对重要性(或优劣)的经验认识,一般采用经典1-9 及其倒数的标度法。如下表所示。
图2 AHP层次结构示意图
表1 1-9 标度及其含义
(4)层次单排序及其一致性检验。
A.层次单排序就是求某一层次上各指标对其上层指标 相对重要性的权重。一般计算方法采用方根法, 设判断 矩体阵计为算B步=骤[b如ij],下阶:数为n,bij为矩阵中第i行第j列元素, 具
选择1-9比率标度法是基于下述的一些事实和科学依据
类似的,当RI<0.10时,认为层次总排序结果具有满
意的一致性,否则需要重新调整判断矩阵的元素取值。
案例:用方根法判断矩阵的最大特征根及其对应 的特征向量
1 5 3
1
5 1 1
3
1
3 3
1
(1)计算判断矩阵每一行元素的乘积
M1
1
1 5
1 3
1 15
0.067
n
Wj 0.405 2.466 1 3.871
j 1
W1
W1
n
Wj
0.405 0.105 3.871
j 1
W2
W2
n
Wj
2.466 0.637 3.871
j 1
W3
W3
n
Wj
1 0.258 3.871
j 1
正规化
层次分析法模糊综合评价法操作流程
层次分析法模糊综合评价法操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!层次分析法与模糊综合评价法的操作流程详解在决策分析领域,层次分析法(Analytic Hierarchy Process,AHP)和模糊综合评价法(Fuzzy Comprehensive Evaluation,FCE)是两种常用且有效的工具。
AHP方法步骤
AHP方法步骤层次分析法(Analytic Hierarchy Process,AHP)是一种定量分析方法,用于解决复杂的多准则决策问题。
它的核心思想是将问题分解为层次结构,然后对不同层次的准则进行比较和权重分配,最终得出最优的决策。
AHP方法的步骤如下:1.确定问题:首先,明确问题的目标和准则。
确定需要进行决策的问题,并明确各个准则的重要性。
2.构建层次结构:将问题分解为层次结构。
将问题的目标作为最高层次,然后将准则和子准则分别作为下一层次,逐级划分,直到最底层为可选方案。
3.构造判断矩阵:对每一层次的准则进行两两比较,构造判断矩阵。
判断矩阵是一个方阵,其中的元素代表了不同准则之间的相对重要性。
根据专家的主观判断,使用1到9的尺度对准则进行比较,其中1表示两个准则具有相同的重要性,9表示一个准则比另一个准则重要性更高。
4.计算权重向量:通过对判断矩阵进行一致性检验,计算出每个准则的权重向量。
一致性检验可以评估专家的一致性程度,如果一致性比率超过一定的阈值,则需要重新进行判断。
5.计算一致性指标:通过计算判断矩阵的最大特征值和一致性指标,判断判断矩阵是否满足一致性条件。
如果一致性指标小于0.1,则认为判断矩阵满足一致性条件。
6.计算权重:通过对判断矩阵进行特征向量的计算,得到每个准则的权重。
将判断矩阵的每一列除以列向量的和,得到归一化的权重向量。
7.一致性检验:对于每一层次的判断矩阵,都需要进行一致性检验。
如果一致性指标小于0.1,则认为判断矩阵满足一致性条件。
8.综合评估:将各个层次的权重乘以相应的准则值,得到最终的综合评估结果。
根据综合评估结果,可以进行最优方案的选择。
9.敏感性分析:对于判断矩阵中的一些值进行敏感性分析,可以评估这些值对最终结果的影响。
如果一些值的改变导致最终结果发生较大的变化,说明这些值对决策结果具有较大的影响。
AHP方法可以帮助决策者在面对复杂的多准则决策问题时做出科学的决策。
简述ahp法的基本步骤
简述ahp法的基本步骤
AHP(层次分析法)是一种用于决策分析的定量方法。
其基本步骤如下:
1. 构建层次结构:首先确定需要做出决策的问题,并将其分解成不同的层次结构。
层次结构由目标、准则和方案组成,其中目标是最高层,准则是中间层,方案是最低层。
2. 确定准则的重要性:通过两两比较,确定准则之间的相对重要性。
使用1-9的尺度,其中1表示相同重要性,9表示绝对重要性。
3. 构建判断矩阵:将准则两两比较的结果填入判断矩阵,矩阵的行表示比较的准则,列表示被比较的准则。
4. 计算权重向量:通过对判断矩阵进行特征向量的计算,得到每个准则的权重向量。
5. 一致性检验:通过计算一致性指标确定判断矩阵的一致性。
如果一致性指标超过某个阈值,则需要对比较矩阵进行调整。
6. 计算方案的权重:将方案与准则进行两两比较,并构建对应的判断矩阵。
然后使用准则的权重向量,计算方案的权重向量。
7. 敏感度分析:对结果进行敏感性分析,以评估决策的稳定性和鲁棒性。
8. 综合分析:根据权重向量,对方案进行综合分析,选出最优的方案。
总之,AHP法的基本步骤包括构建层次结构、确定准则的重要性、构建判断矩阵、计算权重向量、一致性检验、计算方案的权重、敏感度分析和综合分析。
AHP(层次分析法)方法、步骤
2、基本模型—单层次模型
(1) 单层次模型结构
C
A1 C—目标
A2
…… An
Ai—隶属C的n个评价元素
决策者:由决策者在这个目标意义下对这n 个元素进行评 价,对他们进行优劣排序并作出相对重要性的权量。
2009.11
2、基本模型—单层次模型
(2) 思想:
❖整体判断
n个元素的两两比较。
2009.11
AHP方法计算原理
实际评价时,并不知道这权重向量 比较Ai与Aj重要性时,通过询问决策者只能得到近
似的比值aij aij~wi/wj
得到的判断矩阵是近似的判断矩阵A. A~A
精确判断矩阵A 的最大特征值的向量 W= (w1, w2, …,wn) T
是完全精确的权重向量 近似判断矩阵A最大特征值的向量
AW= λ W max
由此得到的特征向量W= (w1, w2, …,wn) T 就作 为对应评价单元的权重向量。 λmax和W的计算一般采用幂法、和法和方根法
2009.11
方根法
1 1/ 5 1/ 3
A 5 1
3
3 1/ 3 1
计算Mi 的n次方根
M1
111 53
1 0.067 15
M2 15, M3 1
W= (w1, w2, …,wn) T 可以作为近似的权重向量
2009.11
(3)计算步骤
❖iii. 单层次判断矩阵A的一致性检验
在单层次判断矩阵A中,当 a ij 进行一致性检验的步骤如下:
a ik a jk
时,称判断矩阵为一致性矩阵。
(a)计算一致性指标C.I.:C.I. maxn ,式中n为判断矩阵阶数。