传热学第二章导热基础理论
传热学-第二章 导热基本定律及稳态导热第一讲-动力工程
液体的热导率随压力p的升高而增大 p
2-3 导热微分方程式及单值性条件
理论解析的基本思路
简化
物理问题
数学模型
求解
热流量
温度场
导热定律
控制方程 定解条件
q -grad T [W m2 ]
建立导热体内的温度分布计算模型是导热理论 的首要任务
理论基础:傅里叶定律 + 热力学第一定律
导入与导出微元体净热量:
qx dxdydz d
x
[J]
d 时间内、沿 y 轴方向
导入与导出微元体净热量:
qy dxdydz d
y
[J]
d 时间内、沿 z 轴方向导
入与导出微元体净热量:
qz dxdydz d
z
[J]
D. 导入与导出净热量:
[] ( qx qy qz )dxdydzd
[J]
dQx qx dydz d [J]
B. d 时间内、沿 x 轴方向、
经 x+dx 表面处dydz导出的热量:
dQxdx qxdx dydz d [J]
qxdx
qx
qx x
dx
C. d 时间内、沿 x 轴方向导入与导出微元体净热量:
dQx
dQxdx
qx x
dxdydz d
[J]
d 时间内、沿 x 轴方向
2、推导过程 在导热体中取一微元体,能量平衡分析 热力学第一定律:
Q U W
W 0, Q U
d 时间内微元体中:
[导入与导出净热量] + [内热源发热量] = [热力学能的增加]
数学模型建立基本思路 能量平衡分析
(1)导入与导出微元体的净热量
工程热力学与传热学 第二章 稳态热传导 基本概念
t—温度(0C);
x , y , z—直角坐标
由傅里叶定律可知,求解导热问题的关键是获 得温度场。导热微分方程式即物体导热应遵循的一 般规律,结合具体导热问题的定解条件,就可获得 所需的物体温度场。
具体推导: 傅里叶定律
能量守衡定律
导热微分方程式
假定导热物体是各向同性的,物性参数为常数。 我们从导热物体中取出一个任意的微元平行六面 体来推导导热微分方程,如下图所示。
2. 说明: 导热系数表明了物质导热能力的程度。 它是物性参数 物质的种类 热力状态(温度、压力等)。
在温度t=200C时:
纯铜λ=399 w/m0C;水λ=0.599 w/m0C;干空气0C λ(固体)大--------→(液体)---------→(气体)小
隔热材料(或保温材料)----石棉、硅藻土、矿渣棉等,它 们的导热系数通常:λ < 0.2 w/m0C。
c t ( x 2t2 y 2t2 z 2t2)q'
这是笛卡儿坐标系中三维非稳态导热微分方程的一般形式。
导热微分方程式——温度随时间和空间变化的一般关系。 它对导热问题具有普遍适用的意义。
Cp t ( x2t2 y2t2 z2t2)qv
最为简单的是一维温度场的稳定导热微分方程为:
稳态温度场:物体各点的温度不随时间变动; 非稳态(瞬态)温度场:物体的温度分布随时间改变。
2. 等温面(Isothermal surface)(线):同一时刻物体中温度 相同的点连成的面(或线)。 特点:(1)同一时刻,不同等温线(或面)不可能相交; (2)传热仅发生在不同的等温线(或面)间; (3)由等温线(或面)的疏密可直观反映出不同区域 热流密度的相对大小。
在半径r处取一厚度为dr长度为l米的薄圆筒壁。则
传热学第二章 第二节 导热微分方程式
∂t ∂z
)
+
qv
第二节 导热微分方程式
若物性参数 λ、c 和 ρ 均为常数:
∂t ∂τ
=
a(
∂2t ∂x2
+ ∂2t ∂y2
+
∂2t ∂z2
)
+
qv ; ρc
or
∂t = a∇2t + qv
∂τ
ρc
a = λ — 热扩散率(导温系数) [m2 s] ρc (Thermal diffusivity)
dxdydz ⋅ dτ
[J]
第二节 导热微分方程式
[导入与导出净热量]:
[1] = [dQ x − dQ x+ dx ] + [dQ y − dQ y + dy ] + [dQ z − dQ z + dz ]
[1] = − ( ∂ q x + ∂ q y + ∂ q z ) d x d y d z d τ
qw
=
−
λ
(
∂t ∂n
)n
−
(
∂t ∂n
)
n
=
qw λ
第二类边界条件相当于已知任何时刻物体边界面 法向的温度梯度值
稳态导热: qw = const (恒热流边界条件)
非稳态导热: q w = f (τ )
第二节 导热微分方程式 特例:绝热边界面: 绝热边界条件
qw
=
−λ
⎛ ⎜⎝
∂t ∂n
⎞ ⎟⎠w
=
对特定的导热过程:需要得到满足该过程的补充 说明条件的唯一解
单值性条件:确定唯一解的附加补充说明条件
完整数学描述:导热微分方程 + 单值性条件 单值性条件包括四项:几何、物理、时间、边界
工程热力学与传热学第二章稳态热传导基本概念
2. 常温边界
系统边界温度恒定,即 (T = T_b)
3. 周期性边界
系统边界温度呈周期性变化, 即 (T(x, y, z, t) = T(x + L, y,
z, t))
求解方法
有限差分法
将导热微分方程转化为差 分方程,通过迭代求解温 度分布。
有限元法
将导热微分方程转化为变 分形式,利用有限元离散 化求解温度分布。
在稳态热传导过程中,导热系数和热 阻共同决定了物体内部温度分布的特 性。
当材料的导热系数越大,其对应的热 阻就越小,表示热量传递越容易;反 之,导热系数越小,热阻越大,热量 传递越困难。
04 稳态热传导的实例分析
一维稳态热传导
总结词
一维稳态热传导是热传导在单一方向上的情况,常见于细长物体或薄层材料。
三维稳态热传导
要点一
总结词
三维稳态热传导涉及三个方向的热量传递,常见于球体或 立方体。
要点二
详细描述
在三维稳态热传导中,热量在三个相互垂直的方向上传递 ,常见于球体或立方体等三维物体。三维稳态热传导的温 度分布在不同方向上都是稳定的,其数学模型比一维和二 维情况更为复杂,需要考虑三个方向的热量传递。三维稳 态热传导在解决实际问题时具有重要意义,如地球内部的 热量传递、建筑物的散热分析等。
稳态热传导的重要性
01
02
03
工程应用广泛
稳态热传导在许多工程领 域都有广泛应用,如建筑、 机械、航空航天等。
基础理论支撑
稳态热传导是传热学的基 础理论之一,对于理解更 复杂的传热过程和现象至 关重要。
节能减排
通过掌握稳态热传导规律, 有助于优化能源利用,实 现节能减排。
稳态热传导的应用场景
传热学第二章-导热理论基础-2
bt
dt dx
0
对于第一类换热边界,对上式积分求解后可得:
t
1 2
b
t
w1
1 2
b
2 b
tw1
tw2
t w1
tw2
x
此时,通过平壁的热流为:
q
dt dx
t w1
tw2
0
1
b 2
t w1
tw2
2)平壁边界为第三类边界条件,即
dt dx
x0
h1
t f1
t
x0
t f1
tf2
阻 R
B
A
C
E
D
如B、C、D的导热系数相 差不大时,把A和E相应地 划分三块,则其热阻的计 算相当于复合电路电阻的 计算。
等效热流路图:
A1
B
E1
t w1
A2
C
E2
tw2
A3
D
E3
1
1
1
1
Rt RA1 RB RE1 RA2 RC RE2 RA3 RD RE3
因实际中组成复合平壁的各向材料导热系数差别较大, 其热阻值与真实热阻值可能会有较大出入,目前一般采用 修正系数加以校正。
tf1 tf2
1
n
i
1
h1 A i1 i A h2 A
5)通过复合平壁的导热
一般而言,因各向材料的导热系数不同,复合平壁的温度场 是二维或三维的,但当各向不同材料的导热系数相差不大时, 仍可把复合平壁的导热问题近似地作一维处理,写成
Q t
R
求解复合平壁导热问题的关键仍是确定其各种形态下的总热
Rreal Rt
6)具有内热源时复合平壁的导热
《传热学》(第五版)
第一章导热理论基础2已知:10.62()W m K λ=∙、20.65()W m K λ=∙、30.024()W m K λ=∙、40.016()W m K λ=∙求:'R λ、''R λ 解:2'3124124224259210 1.1460.620.650.016m K R W λσσσλλλ-⨯⨯⨯⨯⎛⎫∙=++=++⨯= ⎪⎝⎭'"232232560.265/0.650.024R m k W λσσλλ⨯⎛⎫=+=+=⋅ ⎪⎝⎭由计算可知,双Low-e 膜双真空玻璃的导热热阻高于中空玻璃,也就是说双Low-e 膜双真空玻璃的保温性能要优于中空玻璃。
5.6.已知:50mm σ=、2t a bx =+、200a =℃、2000b =-℃/m 2、45()Wm K λ=∙求:(1)0x q =、6x q = (2)v q解:(1)00020x x x dtq bx dx λλ====-=-= 3322452(2000)5010910x x x dtW q bx m dx σσσλλ-====-=-=-⨯⨯-⨯⨯=⨯(2)由220vq d t dx λ+=2332245(2000)218010v d t W q b m dxλλ=-=-=-⨯-⨯=⨯9.取如图所示球坐标,其为无内热源一维非稳态导热 故有:22t a t r r r r τ∂∂∂⎛⎫= ⎪∂∂∂⎝⎭00,t t τ==0,0tr r∂==∂ ,()f tr R h t t rλ∂=-=-∂ 10.解:建立如图坐标,在x=x 位置取dx 长度微元体,根据能量守恒有:x dx x Q Q Q ε++= (1)x dt Q dx λ=-+()x dx d dtQ t dx dx dxλ+=-++∙ 4()b b Q EA E A T Udx εεεσ===代入式(1),合并整理得:2420b fU d t T dx εσλ-= 该问题数学描写为:2420b f U d t T dx εσλ-= 00,x t T == ,0()x ldtx l dx ===假设的 4()b e x ldtfT f dx λεσ=-=真实的 第二章稳态导热3.解:(1)温度分布为 121w w w t t t t x δ-=-(设12w w t t >)其与平壁的材料无关的根本原因在 coust λ=(即常物性假设),否则t 与平壁的材料有关 (2)由 dtq dxλ=- 知,q 与平壁的材料即物性有关5.解: 2111222()0,(),w w ww d dt r dr drr r t t t t r r t t===>==设有:12124()11w w Q t t r r πλ=-- 21214F r r R r r λπλ-=7.已知:4,3,0.25l m h m δ=== 115w t =℃, 25w t =-℃, 0.7/()W m k λ=⋅ 求:Q解: ,l h δ ,可认为该墙为无限大平壁15(5)0.7(43)6720.25tQ FW λδ∆--∴==⨯⨯⨯= 8.已知:2220,0.14,15w F m m t δ===-℃,31.28/(), 5.510W m k Q W λ=⋅=⨯ 求:1w t解: 由 tQ Fλδ∆= 得一无限平壁的稳态导热312 5.510150.141520 1.28w w Q t t F δλ⨯=+=-+⨯=⨯℃ 9.已知:12240,20mm mmδδ==,120.7/(),0.58/()W m k W m k λλ=⋅=⋅3210.06/(),0.2W m k q q λ=⋅=求:3δ解: 设两种情况下的内外面墙壁温度12w w t t 和保持不变,且12w w t t >221313由题意知:1211212w w t t q δδλλ-=+122312123w w t t q δδδλλλ-=++再由: 210.2q q =,有121231212121230.2w w w w t t t t δδδδδλλλλλ--=+++得:123312240204()40.06()90.60.70.58mm δδδλλλ=+=⨯⨯+= 10.已知:1450w t =℃,20.0940.000125,50w t t λ=+=℃,2340/q W m ≤ 求:δ 解: 412,0.094 1.25102w w t t tq m m λλδ+∆==+⨯⨯41212[0.094 1.2510]2w w w w t t t t tmq qδλ+-∆==+⨯⋅ 44505045050[0.094 1.2510]0.14742340m +-=+⨯⨯⨯= 即有 2340/147.4q W m m mδ≤≥时有 11.已知:11120,0.8/()mm W m k δλ==⋅,2250,0.12/()mm W m k δλ==⋅33250,0.6/()mm W m k δλ==⋅求:'3?δ=解: '2121'3123112313,w w w w t t t t q q δδδδδλλλλλ--==+++由题意知:'q q =212tw 1tw 2q 11λ12λ23λ322即有:2121'3123112313w w w wt t t t δδδδδλλλλλ--=+++'33322λδδδλ=+ 0.6250505000.12mm =+⨯= 12.已知:1600w t =℃,2480w t =℃,3200w t =℃,460w t =℃ 求:123,,R R R R R R λλλλλλ解:由题意知其为多层平壁的稳态导热 故有: 14122334123w w w w w w w w t t t t t t t t q R R R R λλλλ----====∴112146004800.2260060w w w w R t t R t t λλ--===-- 223144802000.5260060w w w w R t t R t t λλ--===--33414200600.2660060w w w w R t t R t t λλ--===-- 14.已知:1)11012,40/(),3,250f mm W m k mm t δλδ==⋅==℃,60f t =℃ 220112,75/(),50/()h W m k h W m k λλ==⋅=⋅ 2)223,320/()mm W m k δλ==⋅ 3)2'23030,,70/()h W m k δδλλ===⋅求:123123,,,,,q q q k k k ∆∆∆ 解:未变前的122030102250605687.2/1113101754050f f t t q W m h h δλ---===⨯++++tw 1tw 4tw 2tw 3R 1R2R3R =R 1+R 2R3+t αt f221)21311121129.96/()1112101754050k W m k h h δλ-===⋅⨯++++ 21129.96(25060)5692.4/q k t W m =∆=⨯-= 21105692.45687.2 5.2/q q q W m ∆=-=-= 2)22321221129.99/()11131017532050k W m k h h δλ-===⋅⨯++++ 22229.99(25060)5698.4/q k t W m =∆=⨯-= 22205698.45687.211.2/q q q W m ∆=-=-= 3) 22330'101136.11/()131********k W m k h h δλ-===⋅⨯++++ 23336.11(25060)6860.7/q k t W m =∆=⨯-= 23306860.75687.21173.5/q q q W m ∆=-=-= 321q q q ∴∆∆>∆ ,第三种方案的强化换热效果最好 15.已知:35,130A C B mm mm δδδ===,其余尺寸如下图所示,1.53/(),0.742/()A C B W m k W m k λλλ==⋅=⋅求:R λ解:该空斗墙由对称性可取虚线部分,成为三个并联的部分R 1R 1R 1R2R3R 2R 2R3R311113222,A B C A B C R R R R RR R R R =++==++ 3321111311135101301020.1307()/1.53 1.53C A B A B C R R m k W δδδλλλ--⨯⨯∴=++=⨯+==⋅332322222335101301020.221()/1.530.742C A B A B C R m k W δδδλλλ--⨯⨯=++=⨯+=⋅2212115.0410()/1111220.13070.221R m k W R R λ-∴===⨯⋅⨯+⨯+16.已知:121160,170,58/()d mm d mm W m k λ===⋅,2230,0.093/()mm W m k δλ==⋅33140,0.17/(),300w mm W m k t δλ==⋅=℃,450w t =℃求:1)123,,R R R λλλ; 2) l q : 3) 23,w w t t . 解:1)4211111170lnln 1.66410()/2258160d R m k W d λπλπ-===⨯⋅⨯2222221117060lnln 0.517()/220.093170d R m k W d λδπλπ++===⋅⨯ 223332222111706080lnln 0.279()/2220.1717060d R m k W d λδδπλδπ++++===⋅+⨯+tw 1112323tw 4132R R R λλλ∴< 2) 2330050314.1/0.5170.279l i t t q W m R R R λλλ∆∆-====++∑ 3)由 121w w l t t q R λ-=得 4211300314.1 1.66410299.95w w l t t q R λ-=-=-⨯⨯=℃ 同理:34350314.10.279137.63w w l t t q R λ=+=+⨯=℃ 17.已知:1221211,,22m m d d δδλλ=== 求:'ll q q 解:忽略管壁热阻010121020122211ln ln 222d d R d d λδδδπλπλδ+++=++ '010122010122211ln ln 222d d R d d λδδδπλπλδ+++=++ '',l l t tq q R R λλ∆∆== (管内外壁温13,w w t t 不变)01012'20101'010*******22211lnln 22222211ln ln 222l l d d q R d d d d q R d d λλδδδπλπλδδδδπλπλδ+++++∴==+++++01010010101001241lnln 22241ln ln 22d d d d d d d d δδδδδδ++++=++++由题意知: 1001011[(2)]2m d d d d δδ=++=+ 2112011[(2)]32mm m d d d d δδ=++=+ 即:21010101232()m m d d d d d δδδ=⇒+=+⇒= (代入上式)3''15ln 3ln23 1.277ln 3ln 23l l q R q R λλ+∴===+ 即: '0.783l l q q ='21.7%l llq q q -∆==即热损失比原来减小21.7%。
传热学第二章-导热理论基础-3[精]
假定:
宽度 l >> 且沿
肋片长度方向温度均匀
1
Qs
大、 << H,认为
温度沿厚度方向均匀。
δ
0
Qx
Qx+dx
x
dx H
因此, / << 1/h,温度仅沿x变化,于是可以把通
过肋片的导热问题视为沿肋片方向上的一维导热问题 。
c1em xc2emx
1
s
应用边界条件可得:
l P 2 l
1
记 AL=H 为肋片纵剖面积。
Qs
1
mH 2h H H32 2h AL2H2 3
δ 0 Qx
Qx+dx
x
可见,mH与参量
1
h
2
H
3 2
AL
dx H
有关,其关系曲
线如图所示。这样,矩形直肋的散热量可以不用公
式计算,而直接用图查出,然后,散热量
传热系数h不是均匀一致的 ——数值计算
2-4-2 通过环肋及三角形截面直肋的导热
为了减轻肋片重量、节省材料,并保持散热量基本不 变,需要采用变截面肋片,环肋及三角形截面直肋是 其中的两种。
y
r 0
0 x
矩形环肋片
三角形肋片
对于三角形和抛物线形肋
对于环肋:
f
Q Q0
Q Qmax
其中 : Qmax hUH cb ,
增加了多少?
解题思路:
1、假设:
(1)略去上、下底面的散热量;
(2)一维稳态导热,肋片按等截面直肋看待,肋片顶端按 绝热考虑,采用增加半个肋片厚度的方法来计算导热量;
(3)不计辐射换热。
传热学 第2章 稳态导热
t t t t c Φ x x y y z z
3、常物性且稳态:
2t 2t 2t Φ a 2 2 2 0 x y z c
如果边界面上的热流密度保持为常数,则 q | w 常数 当边界上的热流密度为零时,称为绝热边界条件
t t qw 0 0 n w n w
18
(3)第三类边界条件 给出了物体在边界上与和它直接接触的流体之 间的换热状况。 根据能量守恒,有:
返回
2.1.1 各类物体的导热机理
气体:气体分子不规则热运动时相互碰撞的结果,高温的气体分子运 动的动能更大 固体:自由电子和晶格振动 对于导电固体,自由电子的运动在导热中起着重要的作用,电的良导 体也是热的良导体 对于非导电固体,导热是通过晶格结构的振动,即原子、分子在其平 衡位置附近的振动来实现的
返回
2.2.2 定解条件
导热微分方程式是能量守恒定律在导热过程中的应用,是一切导热 过程的共性,是通用表达式。 完整数学描述:导热微分方程 + 定解条件 定解条件包括初始条件和边界条件两大类,稳态问题无初始条件 初始条件:初始时刻的状态表示为: =0,t =f (x,y,z)
边界条件: 给出了物体在边界上与外界环境之间在换热上的联系或相互作用
2、推导基本方法:傅里叶定律 + 能量守恒定律 在导热体中取一微元体
进入微元体的总能量+微元体内热源产生的能量-离开微元体的总能量= 微元体内储存能的增加
11
Ein Eg Eout Es
d 时间段内:
Ein Φx Φy Φz d Eiout Φxdx Φy dy Φz dz d
精品课程 第2章-导热理论基础以及稳态导热
1、重点内容:①傅立叶定律及其应用;
②导热系数及其影响因素;
③导热问题的数学模型。
2、掌握内容:一维稳态导热问题的分析解法
3、了解内容:多维导热问题
第一章介绍传热学中热量传递的三种基本方式:导热、对流、热辐射。根据这三个基本方式,以后各章节深入讨论其热量传递的规律,理解研究其物理过程机理,从而达到以下工程应用上目的:
1)规定了边界上的温度值,称第一类边界条件,即tw=C。对于非稳态导热这类边界条件要求给出以下关系,τ>0时,tw=f1(τ);
2)规定了边界上的热流密度值,称为第二类边界条件;
对于非稳态导热这类边界条件要求给出以下关系式:
当τ>0时,
式中n——为表面A的法线方向
3)规定了边界上物体与周围流体间的表面传热系数h以及周围流体的温度 ,称为第三类边界条件。
最后,对多维导热及有内热源的导热进行讨论。
§2—1导热基本定律
一、温度场
1、概念
温度场是指在各个时刻物体内各点温度分布的总称。
由傅立叶定律知:物体导热热流量与温度变化率有关,所以研究物体导热必涉及到物体的温度分布。一般地,物体的温度分布是坐标和时间的函数。
即:
其中 为空间坐标, 为时间坐标。
2、温度场分类
§2-3通过平壁、圆筒壁、球壳和其他变截面物体的导热
一、通过平壁的导热
1、单层平壁
已知:单层平壁两侧恒温且为t1、t2,壁厚δ m,如图2-6所示,建立坐标系,边界条件为:x=0时t=t1;x=δ时t=t2。温度只在x方向变化属一维温度场。
试求:温度分布并确定q=f(t1,t2,λ,δ)。
1)温度分布
二、定解条件
1、定义:是指使导热微分方程获得适合某一特定导热问题的求解的附加条件。
传热学课件第二章导热基础理论
也称导温系数,
单位为m2/s。
其大小反映物体被瞬态加热或冷却时温度变化的快慢。
导热微分方程式的简化
(1) 物体无内热源:V = 0 t a2t
(2) 稳态导热: t 0 a2t V 0 c
(3)稳态导热、无内热源:
2t 2t 2t 2t = 0,即 x2 y2 z2 0
(4)热流密度
q d
dA
nt dA
热流密度的大小和方向可 以用热流密度矢量q 表示
q
d
q d n
dA
热流密度矢量的方向指向温度降低的方向。
在直角坐标系中,热流密度矢量可表示为
q qxi qy j qzk
qx、qy、qz分别表示q在三个坐标方向的分量的大小。
2. 2 导热的基本定律—傅里叶定律
第二章 导热基础理论
例内重基 题容点本 赏精难要 析粹点求
基本要求
1. 理解温度场、等温面(线)、温度梯 度、热流密度等概念。
2. 掌握傅立叶定律及其应用。 3. 掌握热导率和热扩散率的定义、意
义、影响因素和确定方法。 4. 能写出典型简单几何形状物体导热问
题的数学描述表达式。
重点与难点
重点: 1. 傅里叶定律与热导率。 2. 导热微分方程及单值性条件。 难点: 1. 傅里叶定律的矢量表达式。 2. 导热微分方程及单值性条件。
标量形式的付里叶定律表达式为
q t
n
对于各向同性材料, 各方向上的导热系数相等,
q qxi qy j qzk
gradt t i t j t k x y z
q
t x
传热学--导热理论基础--ppt课件精选全文
第二章 导热理论基础
第三节 热导率
3、隔热层必须采取防潮措施
(1) 湿材料 干材料或水
因多孔材料很容易吸收水分,吸水后,由于热导率较大的水
代替了热导率较小的介质,加之在温度梯度的推动下引起水分
迁移,使多孔材料的表观热导率增加很多。
0.35
0.599
第二章 导热理论基础
※导热是在温度差作用下依靠物质微粒(分子、原子和 自由电子等)的运动(移动、振动和转动)进行的能 量传递。因此,导热与物体内的温度分布密切相关。 ※本章将从温度场、温度梯度等基本概念出发 阐述导热过程的基本规律 讨论描述物体导热的导热微分方程和定解条件
第二章 导热理论基础
第一节 温度场和温度梯度 一、温度场(P13)
第二章 导热理论基础
第三节 热导率
4、几点说明
(1)保温材料的λ值界定值随时间和行业的不同有所变化。 保温材料热导率的界定值大小反映了一个国家保温材料的生
产及节能的水平。
20世纪50年代我国沿用前苏联标准为0.23W/(m·K); 20世纪80年代,GB4272-84规定为0.14W/(m·K), GB4272-92《设备及管道保温技术通则》中则降低到 (0.122)W对/(于m各·K向) 异性材料,其热导率还与方向有关。
1、等温面:同一瞬间,温度场中温度相同的点所连成的面。 2、等温线:等温面与其他任一平面的交线。
3、立体的等温面常用等温线的平面图来表示。
为了在平面内清晰地表示一组等温面,常用这些等温面与一 平面垂直相交所得的一簇等温线来表示。 图2-1是用等温线表示的内燃机活塞和水冷燃气轮机叶片的温度场
第二章 导热理论基础
三、温度梯度(P13-14)
传热学-第2章-导热的理论基础
4
2.1 基本概念和导热基本定律
2.1.1 温度场
从不同的角度对温度场进行分类: 按温度场是否随时间变化,可分为:
稳定(Steady-state)温度场:物体内各点温度不随时间 变化——稳态导热
t f (x, y, z)
稳态温度场、定常温度场
5
2.1 基本概念和导热基本定律
提出的, 傅里叶是导热理论的奠基人,他通过实验, 分析和总结了物体内的导热规律,建立了傅立叶导热 定律。
19
2.1 基本概念和导热基本定律
2.1.3 导热的基本定律
Fourier定律的表述: 在任意时刻,各向同性连续介质内任意位置处的热
流密度在数值上与该点的温度梯度成正比,但方向相反
q gradt t n
❖ 实验表明,除了甘油和0~120℃范围内的水以外,其他 液体的导热系数值随温度升高而减小
❖ 压力变化对液体导热系数的影响很小,通常可以忽略
43
2.2 物质的导热特性
液体中液态金属和电解液是一类特殊的液体 ——依靠原子的运动和自由电子的迁移来传递热量,导热
系数要比一般非金属液体大10~1000倍
44
q gradt t n
n
❖ 热流密度是一个矢量 与温度梯度位于等温线同一的法线上 方向相反,永远指向温度降低的方向
❖ 在直角坐标系下,热流密度矢量可表示为
q qxi qyj qzk 22
2.1 基本概念和导热基本定律
2.1.3 导热的基本定律
温度梯度和热流密度矢量、等温线和热流线间的关系
湿量等 ❖ 有些材料,如木材、结构体、胶合板等还与方向有关
(各向异性材料)有关
30
2.2 物质的导热特性
传热学第二章--稳态导热精选全文
t
无内热源,λ为常数,并已知平 t1
壁的壁厚为,两个表面温度分别 维持均匀而恒定的温度t1和t2
t2
c t ( t ) Φ x x
d 2t dx2
0
o
x 0,
x ,
t t
t1 t2
x
直接积分,得:
dt dx
c1
t c1x c2
2024/11/6
35
带入边界条件:
c1
t2
t1
c t
1 r2
r 2
r
t r
1
r 2 sin
sin
t
r2
1
sin 2
t
Φ
2024/11/6
26
6 定解条件 导热微分方程式的理论基础:傅里叶定律+能 量守恒。 它描写物体的温度随时间和空间变化的关系; 没有涉及具体、特定的导热过程。通用表达式。
完整数学描述:导热微分方程 + 单值性条件
4
2 等温面与等温线
①定义
等温面:温度场中同一瞬间同温度各点连成的 面。 等温线:在二维情况下等温面为一等温曲线。
t+Δt t
t-Δt
2024/11/6
5
②特点
t+Δt t
t-Δt
a) 温度不同的等温面或等温线彼此不能相交
b)在连续的温度场中,等温面或等温线不会中
止,它们或者是物体中完全封闭的曲面(曲
它反映了物质微观粒子传递热量的特性。
不同物质的导热性能不同:
固体 液体 气体
金属 非金属
金属 12~418 W (m C) 非金属 0.025 ~ 3W/(mC)
合金 纯金属
传热学第二章
△n
Δn0 Δn n
温度梯度和热流密度
•温度梯度是向量,垂直于等温面, 正向朝着温度增加的方向;
•温度梯度的方向是温度变化率最大的方向。
t t n m
温度梯度的解析定义:
温度场 t f (x, y, z) 中点(x, y, z) 处的温度梯度:
gradt t i t j t k x y z
温度梯度垂直于等温面吗?
设等温面方程: t f (x, y, z) c 在点 (x, y, z)处,等温面的法线向量n n ( t , t , t ) x y z gradt 平行于 n
梯度方向垂直于等温面。
两个定义一致,解析定义便于计算
(4) 热流密度
热流密度是指单位时间经过单位面积所传递的热量,用 q 表示,单位为 W / m2。
根据上面的条件可得:
x
(
t ) x
y
(
t ) y
z
(
t z
)
qv
(cp t)
d 2t dx2
0
第一类边界条件:
x 0,t t1
x ,t t2
直接积分:
dt dx
c1
带入边界条件:
t c1x c2
c1
t2
t1
c2 t1
t
t2
t1
x
t1
dt t2 t1
dx
带入傅里叶定律得
t y
qz
t z
对于一维导热问题:
q dt
dx
3 导热系数
导热系数的定义式可由傅立叶定律的表达式得出
q t n
n
(1)物理意义:
表示了物质导热能力的大小,是在单位温度梯度作用下 的热流密度。工程计算采用的各种物质的导热系数值都是由 专门实验测定出来的。
传热学基础(第二版)第二章教学课件 导热基本原理
除非压力很低或很高,在2.67*10-3MPa ~ 2.0*103MPa范围内, 气体的导热系数基本不随压力变化
气体的温度升高时:气体分子运动速度和定容比热随T升高 而增大。 气体的导热系数随温度升高而增大
混合气体导热系数不能用部分求和的方法求;只能靠实验测定
16/40
分子质量小的气体(H2、He)导热系数较大 — 分子运动速度高
气体的导热:由于分子的热运动和相互碰撞时发生的能量 传递
15/40
气体分子运动理论:常温常压下气体导热系数可表示为:
1 3
ulcv
u :气体分子运动的均方根速度 l :气体分子在两次碰撞间平均自由行程 :气体的密度; cv :气体的定容比热
气体的压力升高时:气体的密度增大、平均自由行程 减小、而两者的乘积保持不变。
、湿度
保温材料:国家标准规定,温度低于350度时导热系数小 于 0.12W/(mK) 的材料(绝热材料)
23/40
24/40
2-2
导热微分方程
(Heat Diffusion Equation)
傅里叶定律: q gradt
建立导热微分方程,可以揭示连续温度场随空 间坐标和时间变化的内在联系。
36/40
Hale Waihona Puke t f ( y, z, )
x
x1
x
(3)第三类边界条件:该 条件是第一类和第二类边 界条件的线性组合,常为 给定系统边界面与流体间 的换热系数和流体的温度, 这两个量可以是时间和空 0 间的函数,也可以为给定 不变的常数值
t x
h(tw
tf
)
x1
x
导热微分方程+单值性条件+求解方法 温度场
37/40
传热学-第2章
在导热体中取一微元体 热力学第一定律:
Q U W
W 0, Q U
d 时间内微元体中: [导入与导出净热量]+ [内热源发热量] = [热力学能的增加]
1、导入与导出微元体的净热量 d 时间内、沿 x 轴方向、经 x 表面导入的热量:
dQx qx dydz d
t t1
n i
x
i 1
t tn1
t1 t2 t3 t4
热阻:
r1
1 , , rn n 1 n
第二章 稳态热传导
三层平壁的稳态导热
30
q
t1 t n 1
由热阻分析法:
ri
i 1
n
t1 t n 1
i i 1 i
n
问:现在已经知道了q,如何计算其中第 i 层的右侧壁温?
第一章复习
(1) 导热
傅里叶定律:
(2) 对流换热 牛顿冷却公式: (3) 热辐射
斯忒藩-玻耳兹曼定律 :
dt Φ A dx
Aht
A T 4
(4) 传热过程
(t f 1 t f 2 ) (t f 1 t f 2 ) Φ 1 1 Rh1 R Rh 2 Ah1 A Ah2
多层、第三类边条
tf1
q
tf1 tf 2 1 n i 1 h1 i 1 i h2
h1 t2 t3
h2 tf2
W 单位: 2 m
传热系数? tf1
?
t1 t2 t3 t2
? tf2
32
三层平壁的稳态导热
第二章 稳态热传导
一台锅炉的炉墙由三层材料叠合而成.最里面的是耐火黏土砖,厚 115MM;中间是B级硅藻土砖,厚125MM;最外层为石棉板,厚 70MM.已知炉墙内外表面温度分别为485℃ 和60 ℃ , 试求每平方 米炉墙的热损失及耐火黏土砖和硅藻土砖分界面上的温度。 解:各层的导热系数可根据估计的平均温度从手册中查出。第一 次估计的平均温度不一定正确,待算得分界面温度时,如发现不 对,可重新假定每层的平均温度。经几次试算,逐步逼近,可得 合理的数值。这里列出的是几次试算后的结果: W 3 0.116 /(m K ) W 1 1.12W /(m K ) 2 0.116 /(m K )
传热学课件第二章导热基础理论精选全文
对于大多数工程材料,热导率都是温度的
函数。在日常生活和工业应用的温度范围内,
可近似地认为热导率随温度线性变化,并表示
为: ( 0 1 bt)
(2-5)
λ0—按公式计算的0℃时的热导率
b—实验测定的系数,b>0或b≤0
常取t=(t1+t2)/2 一般材料生产厂家都会随材料提供其热导
率的数值,工程中的常用材料在特定温度下的热 导率值可参看附录,查取热导率数值时,应注意 材料的确切名称、密度、使用温度范围等。
内容精粹
§1 导热的基本概念 §2 导热的基本定律 §3 热导率 §4 导热微分方程和单值性条件
第一节 导热的基本概念
一、温度场
1.概念
在某一时刻τ,物体内所有各点温度分 布的总称,称为该物体在τ时刻的温度场。
一般,温度场是空间坐标和时间的函数,在 直角坐标系中可表示为:
t=f (x,y,z,τ)
作为热工技术人员应掌握一些常用材 料的热导率数据。
第四节 导热微分方程式及单值性条件
目的:求解温度场 t f x, y, z,
一、 导热微分方程式的导出
依据:能量守恒和傅里叶定律。 假设:1)物体由各向同性的连续介质组成;
2)有内热源,强度为 ,V 表示单位时间、单位
体积内的生成热,单位为W/m3 。
第二节 导热基本定律
法国数学家傅立叶(J.B.J.Fourier)在 对导热过程进行实验研究的基础上,发现了导 热热流密度与温度梯度之间的关系,于1822年 提出了著名的傅立叶定律即导热基本定律。
一、数学q表达式g:rad
t
t
n
W/m2
n
式中“-”号表示
q
与gradt二者方向相
传热学第二章
刘彦丰华北电力大学工程应用的两个基本目的:•能准确地预测所研究系统中的温度分布;•能准确地计算所研究问题中传递的热流。
要解决的问题:温度分布如何描述和表示?温度分布和导热的热流存在什么关系?如何得到导热体内部的温度分布?第二章导热基本定律及稳态导热刘彦丰华北电力大学本章内容简介2-1 导热基本定律2-2 导热微分方程式及定解条件2-3 通过平壁、圆筒壁、球壳和其它变截面物体的导热(一维稳态导热)2-4 通过肋片的导热分析2-5 具有内热源的导热及多维导热回答问题1和2回答问题3具体的稳态导热问题刘彦丰传热学Heat Transfer 华北电力大学一、温度分布的描述和表示像重力场、速度场等一样,物体中的温度分布称为温度场。
1、温度分布的文字描述和数学表示,如:在直角坐标系中非稳态温度场),,,(τz y x f t =稳态温度场),,(z y x f t =一维温度场二维温度场三维温度场)(x f t =),(τx f t =),(y x f t =),,(τy x f t =),,(z y x f t =),,,(τz y x f t =2-1 导热基本定律刘彦丰传热学Heat Transfer华北电力大学2、温度分布的图示法传热学Heat Transfer 2、温度分布的图示法等温线传热学Heat Transfer二、导热基本定律(傅立叶定律)1822年,法国数学家傅里叶(Fourier )在实验研究基础上,发现导热基本规律——傅里叶定律.法国数学家Fourier: 法国拿破仑时代的高级官员。
曾于1798-1801追随拿破仑去埃及。
后期致力于传热理论,1807年提交了234页的论文,但直到1822年才出版。
刘彦丰华北电力大学在导热现象中,单位时间内通过给定截面的热量,正比于垂直于该截面方向上的温度梯度和截面面积,方向与温度梯度相反。
1、导热基本定律的文字表达:nntgradt q ∂∂−=−=λλ2、导热基本定律的数学表达:t+Δt tt-Δt刘彦丰华北电力大学3、意义已知物体内部的温度分布后,则由该定律求得各点的热流密度或热流量。
传热学 课件2-2 第二章 导热基本定律及稳态导热
是一物性参数,表征温度传递速度的快慢,即物 体在加热或冷却中,温度趋于均匀一致的能力。
二、热扩散率(导温系数) 长江大学机械工程学院 School of Mechanical Engineering
热扩散率(导温系数)与热导率(导热系数)的比较:
q
grad t
m2 / s c
热扩散率与热导率本质不同。热扩散率表征温度传递 速度的快慢,热导率表征物质导热能力大小;热扩散 率对稳态导热没有影响,只对非稳态导热有影响。
长江大学机械工程学院
School of Mechanical Engineering
如20℃时: 水: λ=0.6W/(m·K) α=1.43×10-7m2·s-1 ,
School of Mechanical Engineering
2 1 3 0
1 A(c x)ddxt
d
(
A(c x)ddxt dx
)
dx
hdA(
x)(t
t
)
2 0
3
1 hdA(
1 x
x)(t
dx t
)
h
dA( x) dx
(t
t
)
d dx
(
A(c x)ddxt
)
0
长江大学机械工程学院
三、定解条件
长江大学机械工程学院
School of Mechanical Engineering
(2)给定物体边界上任何时刻的热流密度分布, 称为第二类边界条件。
qw
(
t n
)w
(
t n
)w
qw
• 稳态导热: qw const
qw
• 非稳态导热: qw f ( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-9-10
第二章 导热基础理论
34
a的物理意义
1.由定义:a↑导热能力↑蓄热能力↓
非稳态导热过程中物体的热量扩散能力↑
称为热扩散率。
2.由方程:非稳态导热过程中,相同的 加热或冷却条件下,a↑物体内各部分温度 趋于均匀的能力↑。即a值大的材料其温度变 化传播得快a反映非稳态导热过程中物体的 “导温”能力称为导温系数。
2013-9-10 第二章 导热基础理论 36
注意:热扩散率与导热系数的联系 与区别! 导热系数只表明材料的导热能力, 而热扩散率综合考虑了材料的导热能力和 蓄热能力,因而能准确反映物体中温度变 化的快慢。
2013-9-10
第二章 导热基础理论
37
对于非稳态导热过程,由于物体本身
不断吸收或放出热量决定物体内温度分
导热微分方程式,实质是导热过程的能量方程
导热微分方程建立了导热过程中物体 内的温度随时间和空间变化的函数关系。
2013-9-10 第二章 导热基础理论 33
令 a c
m2/s
热扩散率 (导温系数)
则导热微分方程式写成
2t 2t 2t t a( 2 2 2 ) c x y z
对一维稳态导热可写为:
W/m2
dt q x i dx
W/m2
2013-9-10
第二章 导热基础理论
14
傅里叶定律的适用范围:
对各向同性的连续体普遍适用(不论
任何形态、任何形状、是否变物性、是否
有内热源、是否稳态)。
对于非稳态导热过程,式中参数为瞬
时值。
2013-9-10
第二章 导热基础理论
2013-9-10 第二章 导热基础理论 2
第一节 导热的基本概念 一、温度场 二、等温面与等温线
三、温度梯度(gradt)
2013-9-10
第二章 导热基础理论
3
一、温度场 1.概念 在某一时刻τ ,物体内所有各点 温度分布的总称,称为该物体在τ 时 刻的温度场。
一般,温度场是空间坐标和时间 的函数,在直角坐标系中可表示为: t f(x,y,z,)
2013-9-10 第二章 导热基础理论
返回
11
第二节 导热基本定律
傅里叶在对导热过程进行实验研 究的基础上, 于1822年提出了著名的
傅里叶定律—导热基本定律。
一、傅里叶定律的数学表达式 二、傅里叶定律的应用
2013-9-10 第二章 导热基础理论 12
一、傅里叶定律的数学表达式
t q gradt n n
2t 2t 2t ( 2 2 2 )dxdydz x y z
单位时间内,微元体内热源的生成热量为:
d V dxdydz
单位时间内,微元体的热力学能变化量为:
t dU c dxdydz
2013-9-10 第二章 导热基础理论 32
将各项能量表达式代入微元体的热平 衡式整理得: 2 2 2 t t t t ( 2 2 2) c x y z c
2013-9-10 第二章 导热基础理论
返回
16
第三节 导热系数
一、定义 二、物理意义 三、影响因素及确定
2013-9-10
第二章 导热基础理论
17
一、定义 导热系数的定义式由傅里叶定律给出
q t n n
W/(m· K)
二、物理意义
由定义式知,导热系数在数值上等于单 位温度梯度时通过物体的热流密度的模值。
2013-9-10 第二章 导热基础理论 24
物质的导热系数在数值的特点:
(1) 对于同一种物质:λ固态>λ液态>λ气态
(2)一般 (3)一般 λ λ
金属>λ 非金属 纯金属>λ 其金属合金
异性物
(4)对于各向异性物体,λ
与方向有关
2013-9-10
第二章 导热基础理论
25
2013-9-10
第二章 导热基础理论
2013-9-10 第二章 导热基础理论 35
不同材料的a相差很大,一般导热系数 大的材料a也大。 例如,木材的a约为1.5×10-7 铝的a约为9.45×10-5 m2/s 。 m2/s,
不锈钢的a大约是瓷的几十倍 把形状、 尺寸相同的瓷勺和不锈钢勺同时放在同一杯 开水中(勺柄漏在外面),过一会儿,不锈 钢勺柄已经烫手了而瓷勺柄还感觉不到温度 有什么变化说明不锈钢比瓷传播温度变化 的能力大得多。
15
二、傅里叶定律的应用
1.傅里叶定律建立了 q 与gradt之间的
关系,是求解导热问题的依据。若已知物体 的温度场,便可由傅里叶定律求得各点的热 流密度。 2.对一维稳态无内热源的导热问题,可 用傅里叶定律表达式直接积分求解且较方便。 3.用傅里叶定律与能量守恒定律一起可 建立描述导热问题的导热微分方程式。 4.傅里叶定律提供了热导率的定义式。
2013-9-10
d x d x d x dx
2t 2 dxdydz x
31
第二章 导热基础理论
2t 同理:d y 2 dxdydz y 2t d z 2 dxdydz z d d x d y d z
2013-9-10 第二章 导热基础理论 28
二、导热微分方程式
对所研究的物体作下列简化假设:
1.导热体为各向同性均匀的连续体。 2.导热体的ρ 、c和λ 都是常量。 3.导热体有均匀的内热源,内热源强 度(单位时间单位体积内的内热源生成 热)为 (W/m3)
2013-9-10 第二章 导热基础理论 29
返回
26
第四节 导热微分方程式及单值性条件
一、建立导热数学模型的目的 二、导热微分方程式 三、单值性条件
2013-9-10
第二章 导热基础理论
27
一、建立导热数学模型的目的
建立导热数学模型 求解导热体的温
度场t=f (x,y,z,τ ) 计算通过导热体的 导热热流量等。 导热数学模型的组成: 导热微分方程式+单值性条件
导热系数表征物体导热能力的大小,λ越 大表示物体导热能力越强。它是热力工程设 计中合理选用材料的重要依据。
2013-9-10 第二章 导热基础理论 18
三、影响因素及确定
导热系数的影响因素:主要是物质的
种类、物态以及温度、密度、含水率等。 一般同种物质三态中, λ
固态>λ 液态>λ 气态
对于同一种物质,温度的影响最大。 大多数材料的导热系数都是通过专门的实 验测定的。 为了工程计算方便,常绘成图表以供查取。
t
t
2
(3)稳态无内热源时简化为 2 t 0 (4)一维稳态无内热源时简化为
d 2t 0 2 dx
2013-9-10 第二章 导热基础理论 39
0
圆柱坐标系中的微元体
球坐标系中的微元体
2013-9-10
第二章 导热基础理论
40
圆柱坐标导热微分方程式:
t 1 t 1 t t t a( 2 2 2) 2 r r r c r z
布的是热扩散率
对于稳态导热过程,物体只进行热量
的传递,各点的温度不随时间而变导热
系数是决定稳态导热过程热传递的重要热
物性参数。
2013-9-10 第二章 导热基础理论 38
几种特殊情况的导热微分方程简化形式 (1) 物体无内热源( 0 )时简化为
a 2t
(2)
t 稳态( 0 )有内热源时简化为
t t gradt lim n n n 0 n n
℃/m
2013-9-10
第二章 导热基础理论
10
温度梯度是矢量,
其方向垂直于该点的等
温面(线)且指向温度
n
dA
gradt
t
d q n dA
d
升高的方向(与热流的
方向相反)。
在直角坐标系中的表示: t t t gradt i j k x y z
y
z
x
30
导入微元体的净导热量为 d d x d y d z
根据傅里叶定律,单位时间内,在x方向经 x=x面导入dV的热量及经x+dx面导出dV的热量
分别为: t d x dydz x
d x dx
t (t dx)dydz x x
2013-9-10 第二章 导热基础理论 水冷的燃气轮机叶片的温度场 (b)墙角内的温度场
2013-9-10 第二章 导热基础理论 9
三、温度梯度(gradt) 采用数学上梯度的定义,把等温面 (线)某点法线方向的温度变化率称为该 点的温度梯度。 如图,则温度梯度可表示为:
第二章 导热基础理论
§2-1 导热的基本概念 §2-2 导热的基本定律 §2-3 导热系数
§2-4 导热微分方程和单值性条件
2013-9-10
第二章 导热基础理论
1
基本要求
1.理解温度场、等温面(线)、温度 梯度等概念。 2.掌握傅里叶定律及其应用。 3. 掌握导热系数和热扩散率的定义、 意义、影响因素。 4.能写出典型简单几何形状物体导热 问题的数学描述表达式。
时,其等温面就是一系列平行于平壁表面
的平面。
2013-9-10 第二章 导热基础理论 7
(2) 在等温面(或等温线)的法线方 向上,温度变化率最大。 由于温差是热量传递的动力,故沿等 温面(线)无热流,热量传递只能在穿过 等温面的方向上进行。 等温面(线)的疏密可直观地反映出 物体内不同区域热流密度的相对大小。
22
各向异性材料:在结构上有方向性的
材料称为各向异性材料。如木材、石墨、