南通市2019届高三第二次调研测试参考答案

合集下载

南通市2019届高三第二次调研测试语文试题

南通市2019届高三第二次调研测试语文试题

南通市2019届高三第二次调研测试语文Ⅰ一、语言文字运用(12分)1.在下面一段话的空缺处依次填入词语,最恰当的一组是(3分)科学和艺术是人类文明的两大基石。

两者有诸多相通之处——从根本上说它们都是理念和激情▲的结果。

它们是▲、密不可分的,就像一枚硬币的两面。

只是两者在呈现方式上▲。

A.催化一脉相承各有千秋B.催生相辅相成各有千秋C.催生一脉相承平分秋色D.催化相辅相成平分秋色2.下列对联中,适合悬挂在李清照故居的一组是(3分)①千秋绝唱消魂句一卷高歌漱玉词②东南形胜填词去岸柳月残煮酒来③锦书难托钗头凤青渡再遇蝶恋花④闺中苏辛传孤本词里红瘦咏海棠A.①③B.①④C.②③D.②④3.在下面一段文字横线处填入语句,衔接最恰当的一项是(3分)在中国思想史上,不止一次出现过这样的情形:不仅仅是避世的道家,就是貌似与道家严重对立、注重事功的儒家,▲,▲;▲,▲,▲。

在那种情形中人格的审美理想严重偏离道德的伦理理想,这种偏离使得道家超凡脱俗的个人修行和儒家至大至刚的“兼济天下苍生”都蜕变为“明哲保身”的犬儒哲学。

①这类人被视为高洁之士②而忧天下之患者反被视为俗人③往往被嘲讽与讥笑④也极为推崇避世风流、个人逍遥⑤他们的行为也往往被歪曲A.①④②③⑤B.②④③⑤①C.④①②③⑤D.④②③⑤①4.下列选项中,分析不.恰当..的一项是(3分)A.该社区男性居民比女性居民更喜欢借阅实用的图书。

B.该社区的居民对图书馆的科学普及类图书不太感兴趣。

C.该社区的居民喜欢借阅富有悠闲生活意味的图书。

D.该社区女性居民图书借阅量超过了男性居民借阅量。

二、文言文阅读(20分)阅读下面的文言文,完成5~8题。

焚琴子传顾天石焚琴子者,姓章氏,闽之诸生也。

为人磊落不羁,伤心善哭,类古之唐衢、谢翱,而才情过之。

为诗文,下笔累千言,皆感人心脾。

庚子乡试,文已为主司所赏。

及观五策①,指陈时事太过,至斥耿氏以为包藏叛志。

主司乃惧不敢录,遂下第。

江苏省南通市2019届高三第二次调研测试语文试卷含答案

江苏省南通市2019届高三第二次调研测试语文试卷含答案

江苏省南通市2019届高三第二次调研测试语文Ⅰ试题2019年3月28日一、语言文字运用(12分)1.在下面一段话的空缺处依次填入词语,最恰当的一组是(3分)科学和艺术是人类文明的两大基石。

两者有诸多相通之处——从根本上说它们都是理念和激情的结果。

它们是、密不可分的,就像一枚硬币的两面。

只是两者在呈现方式上。

A.催化一脉相承各有千秋B.催生相辅相成各有千秋C.催生一脉相承平分秋色D.催化相辅相成平分秋色2.在下画一段文字横线处填入语句,衔接最恰当的一项是(3分)在中国思想史上,不止一次出现过这样的情形:不仅仅是避世的道家,就是貌似与道家严重对立、注重事功的儒家,,;,,。

在这样的情形中,人格的审美理想严重偏离道德的伦理理想,这种偏离使得道家超凡脱俗的个人修行和儒家至大至刚的“兼济天下苍生”都蜕变为“明哲保身”的犬儒哲学。

①这类人被视为高洁之士②而忧天下之患者反被视为俗人③往往被嘲讽与讥笑④也极为推崇避世风流、个人逍遥⑤他们的行为也往往被歪曲A.①④②③⑤ B.②④③⑤①C.④①②③⑤ D.④②③⑤①3.下列对联中,适合悬挂在李清照故居的一组是(3分)①千秋绝唱消魂句一卷高歌漱玉词②东南形胜填词去岸柳月残煮酒来③锦书难托钗头凤青渡再遇蝶念花④闺中苏辛传孤本词里红瘦咏海棠A.①③B.①④C.②③D. ②④4.下列选项中,对图表分析不恰当的一项是(3分)A.该社区男性居民比女性居民更喜欢借阅实用性强的图书。

B.该社区的居民对图书馆的科学普及类图书不太感兴趣。

C.该社区的居民喜欢借阅休闲娱乐方面的图书。

D.该社区女性居民图书借阅量超过了男性居民借阅量。

二、文言文阅读(20分)阅读下面的文言文,完成5~8题。

焚琴子传顾彩焚琴子者,姓章氏,闽之诸生也。

为人磊落不羁,伤心善哭,类古之唐衢、谢翱,而才情过之。

为诗文,下笔累千言,皆感人心脾。

庚子乡试,文已为主司所赏。

及观五策①,指陈时事太过,至斥耿氏以为包藏叛志。

【2019南通二模】江苏省南通市2019届高三第二次调研数学试卷(解析版)

【2019南通二模】江苏省南通市2019届高三第二次调研数学试卷(解析版)

2019届江苏南通高三第二次调研测试数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合{13}=A a ,,,{45}=B ,.若A B =I {4},则实数a 的值为 ▲ . 【答案】4 2. 复数2i2i z =+(i 为虚数单位)的实部为 ▲ . 【答案】23. 某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP 平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为 49,则该单位行政人员的人数为 ▲ . 【答案】354. 从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为 ▲ . 【答案】235. 执行如图所示的伪代码,则输出的S 的值为 ▲ .【答案】306.函数y 的定义域为 ▲ .【答案】[2)+∞,7. 将函数2sin3y x =的图象向左平移π12个单位长度得到()y f x =的图象,则π3f 的值为 ▲ .【答案】8. 在平面直角坐标系xOy 中,已知双曲线22221(00)y x a b a b-=>>,的右顶点(20)A ,到渐近线的 b 的值为 ▲ . 【答案】29. 在△ABC 中,已知C = 120°,sin B = 2 sin A ,且△ABC 的面积为,则AB 的长为 ▲ .【答案】10.设P ,A ,B ,C 为球O 表面上的四个点,P A ,PB ,PC 两两垂直,且P A = 2 m ,PB = 3 m ,PC = 4 m ,则球O 的表面积为 ▲ m 2. 【答案】29π11.定义在R 上的奇函数()f x 满足(4)()f x f x +=,且在区间[)24,上,223()434x x f x x x -<⎧=⎨-<⎩≤≤,,,, 则函数5()log y f x x =-| |的零点的个数为 ▲ . 【答案】512.已知关于x 的不等式20ax bx c ++>( a ,b ,c ∈R ) 的解集为{ x | 3 < x < 4},则25c a b++的最小值为 ▲ .【答案】13.在平面直角坐标系xOy 中,已知点A ,B 在圆224x y +=上,且AB =,点P (3,-1),()16PO PA PB ⋅+=uu u r uu r uu r,设AB 的中点M 的横坐标为x 0,则x 0的所有值为 ▲ .【答案】115, 14.已知集合{|21}{|88}N N A x x k k B x x k k **==-∈==-∈,,,,从集合A 中取出m 个不同元素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若967S T +≤,则n m 2+的 最大值为 ▲ . 【答案】44二、解答题:本大题共6小题,共计90分. 15. (本小题满分14分)在平面直角坐标系中,设向量a =(cos sin )αα,,b = ()ππsin()cos()66αα++,,其中π02α<<.(1)若a ∥b ,求α的值; (2)若1tan 27α=-,求⋅a b 的值.【解】(1)因为a ∥b ,所以ππcos cos()sin sin()0αααα+-+=,……………………………………………2分所以πcos(2)06α+=. …………………………………………………………………4分。

江苏省南通市2019届高三第二次调研测试化学

江苏省南通市2019届高三第二次调研测试化学

南通市2019 届高三第二次调研测试化学说明:本试卷分为第一卷(选择题)和第二卷(非选择题)两部分,总分:120 分,答题时间:100 分钟。

可能用到的相对原子质量H 1 C 12 O 16 Na 23 S 32 Cl 35. 5 Cr 52 Cu 64 I 127选择题(共40 分)单项选择题:本题包括10 小题,每小题2 分,共计20 分。

每小题只有一个选项符合题意。

1.资源的回收和合理利用可促进社会的可持续发展。

下列说法正确的是A .利用农作物秸秆制取乙醇B.通过铝热反应回收金属铝C.回收地沟油,水解制氨基酸D .直接焚烧废旧塑料,防止白色污染2.下列有关化学用语正确的是A .NH4Cl 的电子式:B.2-戊烯的结构简式:CH3CH2CH=CHCH 3D .质子数为94、中子数为144的钚(Pu)原子:94Pu 3.常温下,下列各组离子在指定溶液中一定能大量共存的是A.与Al 反应放出H2的溶液:Mg 2+、Ca2 +、HCO 3-、NO 3--1的浓氨水:Al3+、NH4+、NO3-、I—B.10 mol· LC.0.1 mol·L-1KMnO 4溶液:Na+、Fe2+、SO42-、Cl—D.c(H+)/c(OH—)=1×10—12的溶液:K+、Na+、AlO 2—、CO 32—4.下列有关物质应用的说法不正确的是A .氯气用于制备漂白粉B.单质硅用于制造光导纤维C.硫酸铵用于蛋白质盐析 D .三氧化二铁用于生产红色颜料5.从海带中制取单质碘需要经过灼烧、溶解、过滤、氧化、萃取、分液、蒸馏等操作。

下列图示对应的装置合理、操作规范的是A .灼烧B .过滤C .分液D .蒸馏6.下表所列各组物质中,物质之间通过一步反应不能 ..实现“ 甲 乙 丙”转化的是 物质选项甲乙丙A Si SiO 2 H 2SiO 3B NO NO 2 HNO 3 CNa NaCl NaOHD CH 2=CH 2CH 3CH 2OHCH 3CHO7.设 N A 为阿伏加德罗常数的值。

江苏省七市2019届高三第二次调研测试语文试题含答案

江苏省七市2019届高三第二次调研测试语文试题含答案

江苏省南通市2019届高三第二次调研测试语文Ⅰ试题2019年3月28日一、语言文字运用(12分)1.在下面一段话的空缺处依次填入词语,最恰当的一组是(3分)科学和艺术是人类文明的两大基石。

两者有诸多相通之处——从根本上说它们都是理念和激情▲的结果。

它们是▲、密不可分的,就像一枚硬币的两面。

只是两者在呈现方式上▲。

A.催化一脉相承各有千秋B.催生相辅相成各有千秋C.催生一脉相承平分秋色D.催化相辅相成平分秋色2.在下画一段文字横线处填入语句,衔接最恰当的一项是(3分)在中国思想史上,不止一次出现过这样的情形:不仅仅是避世的道家,就是貌似与道家严重对立、注重事功的儒家,▲,▲;▲,▲,▲。

在这样的情形中,人格的审美理想严重偏离道德的伦理理想,这种偏离使得道家超凡脱俗的个人修行和儒家至大至刚的“兼济天下苍生”都蜕变为“明哲保身”的犬儒哲学。

①这类人被视为高洁之士②而忧天下之患者反被视为俗人③往往被嘲讽与讥笑④也极为推崇避世风流、个人逍遥⑤他们的行为也往往被歪曲A.①④②③⑤ B.②④③⑤①C.④①②③⑤ D.④②③⑤①3.下列对联中,适合悬挂在李清照故居的一组是(3分)①千秋绝唱消魂句一卷高歌漱玉词②东南形胜填词去岸柳月残煮酒来③锦书难托钗头凤青渡再遇蝶念花④闺中苏辛传孤本词里红瘦咏海棠A.①③B.①④C.②③D. ②④4.下列选项中,对图表分析不恰当的一项是(3分)A.该社区男性居民比女性居民更喜欢借阅实用性强的图书。

B.该社区的居民对图书馆的科学普及类图书不太感兴趣。

C.该社区的居民喜欢借阅休闲娱乐方面的图书。

D.该社区女性居民图书借阅量超过了男性居民借阅量。

二、文言文阅读(20分)阅读下面的文言文,完成5~8题。

焚琴子传顾彩焚琴子者,姓章氏,闽之诸生也。

为人磊落不羁,伤心善哭,类古之唐衢、谢翱,而才情过之。

为诗文,下笔累千言,皆感人心脾。

庚子乡试,文已为主司所赏。

及观五策①,指陈时事太过,至斥耿氏以为包藏叛志。

【精品试题】【市级联考】江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考

【精品试题】【市级联考】江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考

2019届高三第二次调研测试一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合,.若,则实数a的值为____.【答案】4【解析】【分析】由确定a值即可【详解】∵,∴a=4故答案为4【点睛】本题考查集合的交集,熟记交集的概念与运算是关键,是基础题2.复数(为虚数单位)的实部为____.【答案】【解析】【分析】由复数运算化简为z=a+bi的形式,则实部可求【详解】故实部为故答案为【点睛】本题考查复数代数形式的除法运算,熟记运算性质,准确计算是关键,是基础题3.某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为____.【答案】35【解析】【分析】由题意可得,抽取的行政人员数为7,再求得抽样的比列,再用7除以此比例,即得该学校的行政人员人数.【详解】由题意可得,抽取的行政人员数为56﹣49=7,抽样的比列为,故该学校的行政人员人数是735,故答案为 35.【点睛】本题主要考查分层抽样的定义和方法,利用数据计算抽样比例是关键,属于基础题.4.从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为____.【答案】【解析】【分析】确定基本事件的个数,即可求出概率.【详解】随机选派2人参加植树活动,有6种,甲、乙两人中恰有1人被选中有4种,∴所求概率为,故答案为.【点睛】本题考查古典概型,考查概率的计算,确定基本事件的个数是关键,是基础题5.执行如图所示的伪代码,则输出的S的值为____.【答案】30【解析】【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S的值,模拟程序的运行即可得解.【详解】模拟程序的运行,可得i=1,S=2满足条件i<7,执行循环体,S=2×1=2,i=3满足条件i<7,执行循环体,S=2× 3=6,i=5满足条件i<7,执行循环体,S=6×5=30,i=7此时,不满足条件i<7,退出循环,输出S的值为30.故答案为30【点睛】本题考查流程图,根据流程图写程序的运行结果,是算法这一模块重要的题型,其处理方法是:①分析流程图,②建立数学模型,③解模,确定何时结束流程是关键,是基础题6.函数的定义域为___.【答案】【解析】【分析】由4x﹣16≥0即可求得函数的定义域.【详解】∵4x﹣16≥0,∴4x≥16,∴x≥2,故答案为[2,+∞).【点睛】本题考查函数定义域及其求法,重点考查指数函数的性质的应用,属于基础题.7.将函数的图象向左平移个单位长度得到的图象,则的值为___.【答案】【解析】【分析】先由平移得f(x)的解析式,再将代入解析式求值即可【详解】f(x)=2sin3(x+=2sin(3x+,则故答案为【点睛】本题考查图像平移,考查三角函数值求解,熟记平移原则,准确计算是关键,是基础题8.在平面直角坐标系中,已知双曲线的右顶点到渐近线的距离为,则b的值为___.【答案】2【解析】【分析】右顶点为A( 2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,求出b,即可求出结果.【详解】右顶点为A( 2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,可得b=2故答案为2【点睛】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,熟记双曲线基本概念,准确计算点线距是关键,是基础题9.在△ABC中,已知C 120°,sinB 2 sinA,且△ABC的面积为,则AB的长为____.【答案】【解析】【分析】由sinB=2sinA,利用正弦定理可得:b=2a.可得S△ABC,解得a,b,再利用余弦定理可得AB【详解】在△ABC中,由sinB=2sinA,利用正弦定理可得:b=2a.∴S△ABC,解得a.∴b=4.∴c2=b2+a2﹣2bacosC=16+4﹣2cos120°=28,解得c,即AB=故答案为【点睛】本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.10.设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA 2 m,PB 3 m,PC4 m,则球O的表面积为____m2.【答案】【解析】【分析】由已知中P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,构造以PA,PB,PC为棱的长方体,易求出球O的半径,进而求出球O的表面积.【详解】∵P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,则球的直径等于以PA,PB,PC长为棱长的长方体的对角线长∵PA 2 m,PB 3 m,PC 4 m,∴2R=则球O的表面积S=4πR2=29π故答案为【点睛】本题考查的知识点是球的表面积,及球的内接多面体,其中根据已知条件构造长方体,计算出球O 的半径,是解答本题的关键,是基础题11.定义在R上的奇函数满足,且在区间上,则函数的零点的个数为___.【答案】5【解析】【分析】由图分析画出与在同一个坐标系的图像,即可求解【详解】由题知函数的周期为4,又函数为奇函数,∴,即故f(x)关于(2,0)中心对称,又g(x)=为偶函数,则画出f(x)与g(x)在同一个坐标系的图像如图所示:故交点有5个故答案为5【点睛】本题考查函数与方程,明确函数f(x)的周期性奇偶性,准确画出图像是关键,是基础题12.已知关于的不等式( a,b,c R ) 的解集为{ x | 3 < x < 4},则的最小值为___.【答案】【解析】【分析】由不等式解集知a<0,由根与系数的关系知,将b,c分别用a 表示代入,利用基本不等式求最小值即可【详解】由不等式解集知a<0,由根与系数的关系知则,当且仅当-24a=即取等故答案为【点睛】本题考查基本不等式的应用,二次不等式解法,根与系数的关系,求得a,b,c的关系是关键,是中档题13.在平面直角坐标系xOy中,已知点A,B在圆上,且,点P(31),,设的中点M的横坐标为x0,则x0的所有值为____.【答案】【解析】【分析】设AB中点为M由弦长公式,求出M的轨迹方程;由得,将向量坐标化得到的方程组,求解即可求出【详解】设AB中点为M由勾股三角形知OM=,即,又则,即∴, ②,将联立得故答案为【点睛】本题考查圆的轨迹方程,向量的坐标运算,圆的弦长公式,确定AB中点的轨迹是突破点,向量坐标化运算是关键,是中档题14.已知集合,从集合中取出个不同元素,其和记为;从集合中取出个不同元素,其和记为.若,则的最大值为____.【答案】44【解析】【分析】欲使m,n更大,则所取元素尽可能小,所以从最小开始取S由得到令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式得取等条件不成立,则检验t=22附近取值,只有t=21,m=22和t=23,m=20,成立,则问题得解.【详解】欲使m,n更大,则所取元素尽可能小,所以从最小开始取,S=即令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式当且仅当m=t=22时取等,∵t为奇数,∴的最大值在t=22附近取到,则t=21,m=23(舍);t=21,m=22,成立;t=23,m=21(舍); t=23,m=20,成立;故m+t的最大值为43,所以的最大值为44故答案为44【点睛】本题考查不等式的应用,数列求和问题,分析转化能力和计算求解能力,是中档题二、解答题:本大题共6小题,共计90分.15.在平面直角坐标系中,设向量 , ,其中.(1)若∥,求的值; (2)若,求的值.【答案】(1);(2)【解析】 【分析】(1)由向量共线的坐标表示可求进而求出,(2)由,求得将展开即可代入求解【详解】(1)因为∥, 所以,所以.因为,所以.于是 解得.(2)因为,所以,又,故.因为,所以,又,解得.因此,.【点睛】本题考查两角和的正弦公式,同角三角函数基本关系式,向量共线坐标运算,熟记三角基本公式,准确计算是关键,是中档题 16.如图所示,在直三棱柱ABC A 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于点D ,B 1C 与BC 1交于点E .求证:(1)DE∥平面ABB1A1;(2)BC1⊥平面A1B1C.【答案】(1)见解析;(2)见解析【解析】【分析】(1)利用三角形中位线的性质证明DE∥AB,即可证明DE∥平面ABB1A1;(2)因为三棱柱ABC A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1,进而BB1⊥A1B1,证得A1B1⊥平面BCC1B1,进而A1B1⊥BC1,又因为侧面BCC1B1为正方形,所以BC1⊥B1C.进一步证明平面BC1⊥平面A1B1C即可.【详解】(1)因为三棱柱ABC A1B1C1为直三棱柱,所以侧面ACC1 A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.又AB ABB1 A1,DE ABB1 A1,所以DE∥平面ABB1A1.(2)因为三棱柱ABC A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1A1B1C1,所以BB1⊥A1B1.又A1B1⊥B1C1,BB1,B1C1BCC1B1,BB1∩B1C1 B1,所以A1B1⊥平面BCC1B1.又因为BC1BCC1B1,所以A1B1⊥BC1.又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C B1,A1B1,B1C A1B1C,所以BC1⊥平面A1B1C.【点睛】本题考查线面平行的证明,线面垂直的判定,熟记判断定理,准确推理是关键,是基础题.17.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD 和BC上的射影分别为H,M.已知HM 5 m,BC 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH .(1)求屋顶面积S关于的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当为何值时,总造价最低?【答案】(1);(2)当为时该别墅总造价最低【解析】【分析】(1)由题知FH⊥HM,在Rt△FHM中,所以,得△FBC的面积,从而得到屋顶面积;(2)别墅总造价为=令,求导求最值即可【详解】(1)由题意FH⊥平面ABCD,FM⊥BC,又因为HM ABCD,得FH⊥HM.在Rt△FHM中,HM 5,,所以.因此△FBC的面积为.从而屋顶面积.所以S关于的函数关系式为().(2)在Rt△FHM中,,所以主体高度为.所以别墅总造价为记,,所以,令,得,又,所以.列表:所以当时,有最小值.答:当为时该别墅总造价最低.【点睛】本题考查函数的实际应用问题,将空间问题平面化,准确将S表示为函数是关键,求最值要准确,是中档题18.如图所示,在平面直角坐标系xOy中,已知椭圆C1:,椭圆C2:,C2与C1的长轴长之比为∶1,离心率相同.(1)求椭圆C2的标准方程;(2)设点为椭圆C2上一点.①射线与椭圆C1依次交于点,求证:为定值;②过点作两条斜率分别为的直线,且直线与椭圆C1均有且只有一个公共点,求证:为定值.【答案】(1);(2)①见解析,②见解析.【解析】【分析】(1)由题所求椭圆a=,离心率,由得b即可;(2)①当直线OP斜率不存在时,得当直线OP斜率存在时,设直线OP的方程为,与椭圆联立,同理,推得从而可求;②设,直线的方程为即,记,则的方程为,代入椭圆C1的方程得,由,得,再将代入得,同理,得到关于为根的方程,由韦达定理及点P在椭圆上化简即可求得为定值【详解】(1)设椭圆C2的焦距为2c,由题意,,,,解得,因此椭圆C2的标准方程为。

江苏省南通市2019届高三第二次调研生物试卷含答案

江苏省南通市2019届高三第二次调研生物试卷含答案

A.洋葱鳞茎不同颜色是由细胞液中色素不同引起的
B.洋葱鳞茎颜色是由遵循自由组合定律的两对等位基因控制的
C.F2 的红色鳞茎洋葱中与 F1 基因型相同的个体大约占 4/9 D.从 F2 中的黄色鳞茎洋葱中任取一株进行测交,得到白色洋葱的概率为 1/4 答案:AB
23.由于甲鱼的特殊生理习性,使得甲鱼养殖水体因为大量饵料 放而污染严重。为了改善甲鱼池水质,有人设计了右图所示
物学效应,这种生理现象称为胰岛素抵抗。右图是部分Ⅱ型糖尿病患者患病与胰岛素抵抗关系。有关叙述
错误的是
A.胰岛素受体敏感性下降可能引起胰岛素抵抗
B.应激状态下血糖升高能反馈促进胰岛素分泌
C.空腹血糖升高最终导致胰岛素 A 细胞功能受损
D.胰岛素分泌不足是Ⅱ型糖尿病产生的原因之一
13.下列有关植物生长素的叙述,正确的是
A.过程①32P 标记的是噬菌体外壳的磷脂分子和内部的 DNA 分子 B.过程②应短时保温,其有利于吸附在细菌上的噬菌体与细菌分离 C.过程③离心的目的是析出噬菌体颗粒,使被感染的大肠杆菌沉淀 D.过程④沉淀物的放射性很高,说明噬菌体的 DNA 进入细菌细胞中 答案:C
1
7.一对正常夫妇,生下患某种单基因遗传病的儿子和正常女儿,则
D.用花药离体培养的方法培育矮茎抗病玉米新品种
答案:D
10.下列有关现代生物进化理论的叙述,错误的是
A.种群是生物繁衍和进化的基本单位
B.生物的变异都能为进化提供原材料
C.生物进化过程都伴随着种群基因频率的改变
D.生殖隔离的形成不一定需要经历漫长时间
答案:B
11.内环境是由细胞外液构成的液体环境,其稳态是体内细胞正常生命活动的必需。下有关内环境及其稳
南通市 2019 届高三第二次调研测试

江苏省南通市2019届高三第二次调研数学试卷与答案

江苏省南通市2019届高三第二次调研数学试卷与答案

2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合{13}=A a ,,,{45}=B ,.若A B =I {4},则实数a 的值为 ▲ .【答案】4 2. 复数2i2iz =+(i 为虚数单位)的实部为 ▲ . 【答案】253. 某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP 平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为 49,则该单位行政人员的人数为 ▲ . 【答案】354. 从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为 ▲ . 【答案】235. 执行如图所示的伪代码,则输出的S 的值为 ▲ .【答案】306.函数y =的定义域为 ▲ .【答案】[2)+∞,7. 将函数2sin3y x =的图象向左平移π12个单位长度得到()y f x =的图象,则π3f 的值为 ▲ .【答案】8. 在平面直角坐标系xOy 中,已知双曲线22221(00)y x a b a b-=>>,的右顶点(20)A ,到渐近线的 b 的值为 ▲ . 【答案】29. 在△ABC 中,已知C = 120°,sin B = 2 sin A ,且△ABC 的面积为AB 的长为 ▲ .【答案】10.设P ,A ,B ,C 为球O 表面上的四个点,P A ,PB ,PC 两两垂直,且P A = 2 m ,PB = 3 m ,PC = 4 m ,则球O 的表面积为 ▲ m 2. 【答案】29π11.定义在R 上的奇函数()f x 满足(4)()f x f x +=,且在区间[)24,上,223()434x x f x x x -<⎧=⎨-<⎩≤≤,,,,则函数5()log y f x x =-| |的零点的个数为 ▲ . 【答案】512.已知关于x 的不等式20ax bx c ++>( a ,b ,c ∈R ) 的解集为{ x | 3 < x < 4},则25c a b++的最小值为 ▲ .【答案】13.在平面直角坐标系xOy 中,已知点A ,B 在圆224x y +=上,且AB =P (3,-1),()16PO PA PB ⋅+=uu u r uu r uu r,设AB 的中点M 的横坐标为x 0,则x 0的所有值为 ▲ .【答案】115, 14.已知集合{|21}{|88}N N A x x k k B x x k k **==-∈==-∈,,,,从集合A 中取出m 个不同元 素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若967S T +≤,则n m 2+的 最大值为 ▲ . 【答案】44二、解答题:本大题共6小题,共计90分. 15. (本小题满分14分)在平面直角坐标系中,设向量a =(cos sin )αα,,b = ()ππsin()cos()66αα++,,其中π02α<<. (1)若a ∥b ,求α的值; (2)若1tan 27α=-,求⋅a b 的值.【解】(1)因为a ∥b ,所以ππcos cos()sin sin()066αααα+-+=,……………………………………………2分所以πcos(2)06α+=. …………………………………………………………………4分因为π02α<<,所以ππ7π2666α<+<.于是ππ262α+=, 解得π6α=. ………………………………………………………6分(2)因为π02α<<,所以02πα<<,又1tan 207α=-<,故π2π2α<<.因为sin 21tan 2cos 27ααα==-,所以cos27sin20αα=-<,又22sin 2cos 21αα+=,解得sin 2cos2αα=.……………………………………………………10分 因此,⋅a b πππcos sin()+sin cos()sin(2)666ααααα=++=+ …………………………12分ππsin 2cos cos 2sin 66αα=+(12=⋅= ……………………………………14分16. (本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于 点D ,B 1C 与BC 1交于点E .求证:(1)DE ∥平面ABB 1A 1;(2)BC 1⊥平面A 1B 1C .【证明】(1)因为三棱柱ABC -A 1B 1C 1为直三棱柱, 所以侧面ACC 1 A 1为平行四边形.又A 1C 与AC 1交于点D ,所以D 为AC 1的中点,同理,E 为BC 1的中点.所以DE ∥AB .………………3分 又AB ⊂平面ABB 1 A 1,DE ⊄平面ABB 1 A 1,所以DE ∥平面ABB 1A 1. ………………………………………………………………6分 (2)因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以BB 1⊥平面A 1B 1C 1.又因为A 1B 1⊂平面A 1B 1C 1,所以BB 1⊥A 1B 1. ………………………………………8分 又A 1B 1⊥B 1C 1,BB 1,B 1C 1⊂平面BCC 1B 1,BB 1∩B 1C 1 = B 1,所以A 1B 1⊥平面BCC 1B 1. ……………………………………………………………10分 又因为BC 1⊂平面BCC 1B 1,所以A 1B 1⊥BC 1.………………………………………12分 又因为侧面BCC 1B 1为正方形,所以BC 1⊥B 1C .ABCA 1B 1C 1ED(第16题)又A 1B 1∩B 1C = B 1,A 1B 1,B 1C ⊂平面A 1B 1C ,所以BC 1⊥平面A 1B 1C .………………………………………………………………14分 17. (本小题满分14分)图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构 成,其中前后两坡屋面ABFE 和CDEF 是全等的等腰梯形,左右两坡屋面EAD 和FBC 是全 等的三角形.点F 在平面ABCD 和BC 上的射影分别为H ,M .已知HM = 5 m ,BC = 10 m , 梯形ABFE 的面积是△FBC 面积的2.2倍.设∠FMH = θπ(0)4θ<<.(1)求屋顶面积S 关于θ的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k (k 为正的常数),下部主体造价与其 高度成正比,比例系数为16 k .现欲造一栋上、下总高度为6 m 的别墅,试问:当θ为 何值时,总造价最低?【解】(1)由题意FH ⊥平面ABCD ,FM ⊥BC , 又因为HM ⊂平面ABCD ,得FH ⊥HM . …………2分 在Rt △FHM 中,HM = 5,FMH θ∠=, 所以5cos FM θ=.……………………………………4分因此△FBC 的面积为1525102cos cos θθ⨯⨯=.从而屋顶面积22=+V 梯形FBC ABFE S S S 252516022 2.2cos cos cos θθθ=⨯+⨯⨯=.所以S 关于θ的函数关系式为160cos S θ=(π04θ<<). ………………………………6分 (2)在Rt △FHM 中,5tan =FH θ,所以主体高度为65tan =-h θ. ……………8分 所以别墅总造价为16=⋅+⋅y S k h k160(65tan )16cos =⋅+-⋅k k θθ①(第17题)②ABC DE F HMθ A BC DE F HMθ16080sin 96cos cos =-+k k k θθθ()2sin 8096cos -=⋅+k k θθ…………………………………………10分记2sin ()cos -=f θθθ,π04θ<<,所以2sin 1()cos f θθθ-'=2, 令()0'=f θ,得1sin 2=θ,又π04θ<<,所以π6=θ.………………………………12分列表:所以当π6=θ时,()f θ有最小值.答:当θ为π6时该别墅总造价最低. …………………………………………………14分18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆C 1:2214x y +=,椭圆C 2:22221(0)y x a b a b+=>>,C 2与C 11,离心率相同. (1)求椭圆C 2的标准方程;(2)设点P 为椭圆C 2上一点.① 射线PO 与椭圆C 1依次交于点A B ,,求证:PA PB为定值;② 过点P 作两条斜率分别为12k k ,的直线12l l ,,且直线12l l ,与椭圆C 1均有且只有一个公共点,求证:12k k ⋅为定值.【解】(1)设椭圆C 2的焦距为2c,由题意,a =,c a =,222a b c =+,解得b =,因此椭圆C 2的标准方程为22182y x +=. ……………………………3分(2)①1°当直线OP 斜率不存在时,1PA =,1PB =,则3PA PB =- ……………………………4分2°当直线OP 斜率存在时,设直线OP 的方程为y kx =,y代入椭圆C 1的方程,消去y ,得22(41)4k x +=, 所以22441A x k =+,同理22841P x k =+.………6分所以222P A x x =,由题意,P A x x 与同号,所以P A x =,从而||||3||||P A P A P B P A x x x x PA PB x x x x --====--+所以3PA PB =- ……………………………………………………………8分 ②设00()P x y ,,所以直线1l 的方程为010()y y k x x -=-,即1100y k x k y x =+-, 记100t k y x =-,则1l 的方程为1y k x t =+,代入椭圆C 1的方程,消去y ,得22211(41)8440k x k tx t +++-=, 因为直线1l 与椭圆C 1有且只有一个公共点,所以22211(8)4(41)(44)0k t k t =-+-=V ,即221410k t -+=,将100t k y x =-代入上式,整理得,222010010(4)210x k x y k y --+-=, ……………12分 同理可得,222020020(4)210x k x y k y --+-=,所以12k k ,为关于k 的方程2220000(4)210x k x y k y --+-=的两根,从而20122014y k k x -⋅=-.……………………………………………………………………14分又点在00()P x y ,椭圆C 2:22182y x +=上,所以2200124y x =-,所以2012201211444x k k x --⋅==--为定值. ………………………………………………16分 19.(本小题满分16分)已知函数21()2ln 2f x x x ax a =+-∈,R . (1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上的单调增函数,求0x 的值;(3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由.【解】(1)当3a =时,函数21()2ln 32f x x x x =+-的定义域为()0+∞,.则2232()3x x f x x x x-+'=+-=,令()f x '0=得,1x =或2x =. ………………………………………………………2分 列表:所以函数()f x 的极大值为5(1)2f =-;极小值为(2)2ln 24f =-. ………………4分(2)依题意,切线方程为0000()()()(0)y f x x x f x x '=-+>, 从而0000()()()()(0)g x f x x x f x x '=-+>, 记()()()p x f x g x =-,则000()()()()()p x f x f x f x x x '=---在()0+∞,上为单调增函数, 所以0()()()0p x f x f x '''=-≥在()0+∞,上恒成立,即0022()0p x x x x x '=-+-≥在()0+∞,上恒成立. …………………………………8分法一:变形得()002()0x x x x --≥在()0+∞,上恒成立 ,所以002x x =,又00x >,所以0x =. ………………………………………………10分法二:变形得0022x x x x ++≥在()0+∞,上恒成立 ,因为2x x+=≥x =时,等号成立),所以002x x +,从而(200x ≤,所以0x =.……………………………10分(3)假设存在一条直线与函数()f x 的图象有两个不同的切点111()T x y ,,222()T x y ,, 不妨120x x <<,则1T 处切线1l 的方程为:111()()()y f x f x x x '-=-,2T 处切线2l 的方程为:222()()()y f x f x x x '-=-.因为1l ,2l 为同一直线,所以12111222()()()()()().f x f x f x x f x f x x f x ''=⎧⎨''-=-⎩,……………………12分即()()11212221111122222122212122ln 2ln .22x a x a x x x x ax x x a x x ax x x a x x ⎧+-=+-⎪⎪⎨⎪+--+-=+--+-⎪⎩,整理得,122211222112ln 2ln .22x x x x x x =⎧⎪⎨-=-⎪⎩, ………………………………………………14分 消去2x 得,22112122ln022x x x +-=.① 令212x t =,由120x x <<与122x x =,得(01)t ∈,,记1()2ln p t t t t =+-,则222(1)21()10t p t t t t -'=--=-<,所以()p t 为(01),上的单调减函数,所以()(1)0p t p >=.从而①式不可能成立,所以假设不成立,从而不存在一条直线与函数()f x 的图象有两个 不同的切点. ……………………………………………………………………………16分20.(本小题满分16分)已知数列{}n a 的各项均不为零.设数列{}n a 的前n 项和为S n ,数列{}2n a 的前n 项和为T n , 且2340n n n S S T -+=,n *∈N .(1)求12a a ,的值;(2)证明:数列{}n a 是等比数列;(3)若1()()0n n na na λλ+--<对任意的n *∈N 恒成立,求实数λ的所有值. 【解】(1)因为2340n n n S S T -+=,*n ∈N .令1n =,得22111340a a a -+=,因为10a ≠,所以11a =. 令2n =,得()()()22222314110a a a +-+++=,即22220a a +=,因为20a ≠,所以212a =-.……………………………………………………………3分(2)因为2340n n n S S T -+=, ①所以2111340n n n S S T +++-+=, ② ②-①得,()21111340n n n n n S S a a a +++++-+=,因为10n a +≠,所以()11340n n n S S a +++-+=,③ …………………………………5分 所以()1340(2)n n n S S a n -+-+=≥, ④当2n ≥时,③-④得,()1130n n n n a a a a ++++-=,即112n n a a +=-,因为0n a ≠,所以112n n a a +=-. 又由(1)知,11a =,212a =-,所以2112aa =-,所以数列{}n a 是以1为首项,12-为公比的等比数列. ……………………………8分 (3)由(2)知,()112n n a -=-.因为对任意的*n ∈N ,()()10n n na na λλ+--<恒成立,所以λ的值介于()112n n --和()12nn -之间.因为()()111022n nn n --⋅-<对任意的*n ∈N 恒成立,所以0λ=适合. ……………10分若0λ>,当n 为奇数时,()()11122n n n n λ--<<-恒成立,从而有12n n λ-<恒成立.记2()(4)2n n p n n =≥,因为22211(1)21(1)()0222n n n n n n n p n p n +++-+++-=-=<, 所以()(4)1p n p =≤,即212n n ≤,所以12n n n ≤(*),从而当25n n λ≥且≥时,有122n n n λ-≥≥,所以0λ>不符. ………………………13分若0λ<,当n 为奇数时,()()11122nn n n λ--<<-恒成立,从而有2n n λ-<恒成立.由(*)式知,当15n n λ≥且≥-时,有12n n n λ-≥≥,所以0λ<不符.综上,实数λ的所有值为0. ………………………………………………………………16分 21.【选做题】A .[选修4-2:矩阵与变换](本小题满分10分)已知m ,n ∈R ,向量11⎡⎤=⎢⎥⎣⎦α是矩阵12m n ⎡⎤=⎢⎥⎣⎦M 的属于特征值3的一个特征向量,求矩阵M及另一个特征值.【解】由题意得,3=,M αα即11132123m m n n +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦, 所以2 1.m n ==,即矩阵1221⎡⎤⎢⎥⎣⎦=M . …………………………………………………5分 矩阵M 的特征多项式()212()14021f λλλλ--==--=--, 解得矩阵M 的另一个特征值为1λ-=.…………………………………………………10分 B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为1x t y t =+⎧⎨=⎩,( t 为参数),椭圆C 的参数方程为)(sin cos 2为参数,θθθ⎪⎩⎪⎨⎧==y x .设直线l 与椭圆C 交于A ,B 两点,求线段AB 的长. 【解】由题意得,直线l 的普通方程为10x y --=.①椭圆C 的普通方程为2212x y +=.② …………………………………………………4分 由①②联立,解得A (01),-,B ()4133,, ……………………………………………8分所以AB =.…………………………………………………10分C .[选修4-5:不等式选讲](本小题满分10分)已知x ,y ,z 均是正实数,且,164222=++z y x 求证:6x y z ++≤. 【证】由柯西不等式得,()()()222222212112x y z x y z ⎡⎤⎡⎤++++++⎢⎥⎣⎦⎣⎦≥ ……………5分因为222416x y z ++=,所以()2916364x y z ++⨯=≤, 所以,6x y z ++≤,当且仅当“2x y z ==”时取等号.…………………………10分 【必做题】第22题、第23题,每小题10分,共计20分. 22.(本小题满分10分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 平面ABCD ,AB = 1,AP = AD = 2. (1)求直线PB 与平面PCD 所成角的正弦值;(2)若点M ,N 分别在AB ,PC 上,且⊥MN 平面PCD ,试确定点M ,N 的位置.【解】(1)由题意知,AB ,AD ,AP 两两垂直. 以{}AB AD AP uu u r uuu r uu u r,,为正交基底,建立如图所示的空间 直角坐标系A xyz -,则(100)(120)(020)(002)B C D P ,,,,,,,,,,,. 从而(102)(122)(022)PB PC PD =-=-=-,,,,,,,,uu r uu u r uu u r设平面PCD 的法向量()x y z =n ,,, 则00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n uu u ruu u r,,即220220x y z y z +-=⎧⎨-=⎩,, 不妨取1y =,则01x z ==,.所以平面PCD 的一个法向量为(011)=n ,,. ………………………………………3分 设直线PB 与平面PCD 所成角为θ,所以sin cos PB PB PB θ⋅=〈〉==⋅n n nuu ruu ruu r, 即直线PB 与平面PCD .……………………………………5分(2)设(00)M a ,,,则(00)MA a =-,,,uuu r设PN PC λ=,uuu r uu u r 则()22PN λλλ=,,-,uuu r而(002)AP =,,,uu u r 所以(222)MN MA AP PN a λλλ=++=--uuu r uuu r uu u r uuu r,,. ……………………………………8分 由(1)知,平面PCD 的一个法向量为(011)=n ,,, 因为MN ⊥平面PCD ,所以MN uuu r∥n .所以0222a λλλ-=⎧⎨=-⎩,,解得,1122a λ==,.所以M 为AB 的中点,N 为PC 的中点. …………………………………………10分 23.(本小题满分10分)已知*12(4)n a a a n n ∈N L ≥,,,,均为非负实数,且122n a a a +++=L . 证明:(1)当4n =时,12233441+++1a a a a a a a a ≤;(2)对于任意的*4n n ∈N ≥,,122311++++1n n n a a a a a a a a -≤L .(第22题)证明:(1)当4n =时,因为1a ,2a ,…,4a 均为非负实数,且12342a a a a +++=, 所以122334412134313124+++=(+)+(+)(+)(+)a a a a a a a a a a a a a a a a a a =………………………2分 23124(+)+(+)=12a a a a ⎡⎤⎢⎥⎣⎦≤.………………………………………………………………4分 (2)①当4n =时,由(1)可知,命题成立; ②假设当(4)n k k =≥时,命题成立,即对于任意的4k ≥,若1x ,2x ,…,k x 均为非负实数,且12+++2k x x x =L , 则122311++++1k k k x x x x x x x x -≤L .则当+1n k =时,设12+1++++2k k a a a a =…,并不妨设{}+112+1max k k k a a a a a =,,…,,. 令()1122311+k k k k x a a x a x a x a -+====,,,,则12+++2k x x x =….由归纳假设,知122311++++1k k k x x x x x x x x -L ≤.………………………………………8分 因为123a a a ,,均为非负实数,且+11k a a ≥, 所以121123112+()()k k x x x x a a a a a a +=+++23111312122311k k k a a a a a a a a a a a a a a +++=+++++≥.所以1212311223113411(+)+(++)()()k k k k k k x x x x x x x x a a a a a a a a a a -+++++++L L ≥≥, 即1223+1+11++++1k k k a a a a a a a a L ≤, 也就是说,当+1n k =时命题也成立.所以,由①②可知,对于任意的4n ≥,122311++++1n n n a a a a a a a a -…≤.…………10分。

2019南通二模语文试卷(含答案)

2019南通二模语文试卷(含答案)

南通市2019届高三第二次调研测试语文Ⅰ一、语言文字运用(12分)1.在下面一段话的空缺处依次填入词语,最恰当的一组是(3分)科学和艺术是人类文明的两大基石。

两者有诸多相通之处——从根本上说它们都是理念和激情▲的结果。

它们是▲、密不可分的,就像一枚硬币的两面。

只是两者在呈现方式上▲。

A.催化一脉相承各有千秋B.催生相辅相成各有千秋C.催生一脉相承平分秋色D.催化相辅相成平分秋色2.下列对联中,适合悬挂在李清照故居的一组是(3分)①千秋绝唱消魂句一卷高歌漱玉词②东南形胜填词去岸柳月残煮酒来③锦书难托钗头凤青渡再遇蝶恋花④闺中苏辛传孤本词里红瘦咏海棠A.①③B.①④C.②③D.②④3.在下面一段文字横线处填入语句,衔接最恰当的一项是(3分)在中国思想史上,不止一次出现过这样的情形:不仅仅是避世的道家,就是貌似与道家严重对立、注重事功的儒家,▲,▲;▲,▲,▲。

在那种情形中人格的审美理想严重偏离道德的伦理理想,这种偏离使得道家超凡脱俗的个人修行和儒家至大至刚的“兼济天下苍生”都蜕变为“明哲保身”的犬儒哲学。

①这类人被视为高洁之士②而忧天下之患者反被视为俗人③往往被嘲讽与讥笑④也极为推崇避世风流、个人逍遥⑤他们的行为也往往被歪曲A.①④②③⑤B.②④③⑤①C.④①②③⑤D.④②③⑤①4.下列选项中,分析不.恰当..的一项是(3分)—1 —A.该社区男性居民比女性居民更喜欢借阅实用的图书。

B.该社区的居民对图书馆的科学普及类图书不太感兴趣。

C.该社区的居民喜欢借阅富有悠闲生活意味的图书。

D.该社区女性居民图书借阅量超过了男性居民借阅量。

二、文言文阅读(20分)阅读下面的文言文,完成5~8题。

焚琴子传顾天石焚琴子者,姓章氏,闽之诸生也。

为人磊落不羁,伤心善哭,类古之唐衢、谢翱,而才情过之。

为诗文,下笔累千言,皆感人心脾。

庚子乡试,文已为主司所赏。

及观五策①,指陈时事太过,至斥耿氏以为包藏叛志。

主司乃惧不敢录,遂下第。

2019江苏省南通市高三二模数学试卷含答案

2019江苏省南通市高三二模数学试卷含答案

南通市2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 已知集合{}{}31A x x x x =<-≥,则A =R ð ▲ .【答案】{}13x x -<≤.2. 某学校有8个社团,甲、乙两位同学各自参加其中一个社团,且他俩参加各个社团的可能性相同,则这两位同学参加同一个社团的概率为 ▲ . 【答案】18.3. 复数i z =(其中i 为虚数单位)的模为 ▲ ..4.从编号为0,1,2,…,79的80件产品中,采用系统抽样的 方法抽取容量是5的样本,若编号为28的产品在样本中,则 该样本中产品的最大编号为 ▲ . 【答案】76.5. 根据如图所示的伪代码,最后输出的a 的值为 ▲ .【答案】48.6. 若12log 11a a <-,则a 的取值范围是 ▲ .【答案】()4+∞,. 7. 若函数32()f x x ax bx =++为奇函数,其图象的一条切线方程为3y x =-则b 的值为 ▲ . 【答案】3-.8. 设l ,m 表示直线,m 是平面α内的任意一条直线.则“l m ⊥”是“l α⊥”成立的 ▲ 条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个) 【答案】充要.9. 在平面直角坐标系xOy 中,设A 是半圆O :222x y +=(0x ≥)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是 ▲.(第5题)10y +=.10.在△ABC 中,D 是BC 的中点,AD =8,BC =20,则AB AC ⋅的值为 ▲ . 【答案】-36.11.设x ,y ,z 是实数,9x ,12y ,15z 成等比数列,且1x ,1y ,1成等差数列,则x z z x +的值是 ▲ .【答案】3415.12.设π6是函数()()sin 2f x x ϕ=+的一个零点,则函数()f x 在区间()02π,内所有极值点之和为▲ . 【答案】14π313. 若不等式(mx -1)[3m 2-( x + 1)m -1]≥0对任意(0)m ∈+∞,恒成立,则实数x 的值为 ▲ .【答案】114.设实数a ,b ,c 满足a 2+b 2 ≤c ≤1,则a +b +c 的最小值为 ▲ . 【答案】12-.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,已知916AB AC AB BC ⋅=⋅=-,.求: (1)AB 的值; (2)sin()sin A B C-的值.【解】(1)(方法1)因为916AB AC AB BC ⋅=⋅=-,, …………………………… 4分 所以91625AB AC AB BC ⋅-⋅=+=,即()25AB AC CB +=,亦即225AB =,故5AB =. …………………………… 7分 (方法2)设A ,B ,C 的对边依次为a ,b ,c ,则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 两式相加得(cos cos )91625c b A a B +=+=,即225c =,故5AB c ==. ……………… 7分 (方法3)设A ,B ,C 的对边依次为a ,b ,c ,PABCDE (第16题)PABCDE(第16题)FM 则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 由余弦定理得()()2222221191622b c a c a b +-=+-=,,两式相加得225c =,故5AB c ==. …………………………… 7分 (2)sin()sin cos cos sin sin sin A B A B A BC C--=………………………… 10分 由正弦定理得sin()cos cos sin A B a B b A C c--=22cos cos 169725ac B bc A c c --===. ………… 14分16.(本小题满分14分)在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面P AD , PD =AD ,AB =2DC ,E 是PB 的中点. 求证:(1)CE ∥平面P AD ;(2)平面PBC ⊥平面P AB .【证】(1)(方法1)取P A 的中点F ,连EF ,DF .…… 2分 因为E 是PB 的中点,所以EF // AB ,且12EF AB =.因为AB ∥CD ,AB =2DC ,所以EF ∥CD ,……………… 4分 EF CD =,于是四边形DCEF 是平行四边形,从而CE ∥DF ,而CE ⊄平面P AD ,DF ⊂平面P AD , 故CE ∥平面P AD . …………………… 7分 (方法2)取AB 的中点M ,连EM ,CM . ……………… 2分 因为E 是PB 的中点,所以EM // P A .因为AB ∥CD ,AB =2DC ,所以CM // AD .……………… 4分 因为EM ⊄平面P AD ,PA ⊂平面P AD , 所以EM ∥平面P AD .同理,CM ∥平面P AD . 因为EMCM M =,EM CM ⊂,平面CEM ,所以平面CEM ∥平面P AD .而CE ⊂平面P AD ,故CE ∥平面P AD .……………………… 7分 (2)(接(1)中方法1)因为PD =AD ,且F 是P A 的中点,所以DF PA ⊥.因为AB ⊥平面P AD ,DF ⊂平面P AD ,所以DF AB ⊥. ……………………… 10分 因为CE ∥DF ,所以CE PA ⊥,CE AB ⊥. 因为PA AB ⊂,平面P AB ,PAAB A =,所以CE ⊥平面P AB .因为CE ⊂平面PBC ,所以平面PBC ⊥平面P AB . ………………………… 14分17.(本小题满分14分)为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中 释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161048154102x xy x x ⎧-⎪-=⎨⎪-<⎩,≤≤,,≤. 若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之 和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用. (1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a (14a ≤≤)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a 的最小值(精确到0.11.4). 【解】(1)因为一次喷洒4个单位的净化剂, 所以浓度644048()4202410x x f x y x x ⎧-⎪-==⎨⎪-<⎩,≤≤,,≤.则当04x ≤≤时,由64448x--≥,解得0x ≥,所以此时04x ≤≤.…………………… 3分 当410x <≤时,由2024x -≥解得8x ≤,所以此时48x <≤.综合得08x ≤≤,若一次投放4个单位的制剂,则有效净化时间可达8天. …………… 7分 (2)设从第一次喷洒起,经x (610x ≤≤)天,浓度()1161616()25110(14)428(6)1414a a g x x a x a x a x x x ⎡⎤=-+-=-+-=-+--⎢⎥----⎣⎦.…… 10分因为14[48]x -∈,,而14a ≤≤,所以[48],,故当且仅当14x -=y有最小值为4a -.令44a -≥,解得244a -≤,所以a的最小值为24 1.6-.……… 14分18.(本小题满分16分)在平面直角坐标系xOy 中,设曲线C 1:1(0)x ya b a b+=>>所围成的封闭图形的面积为曲线C 1上的点到原点O.以曲线C 1与坐标轴的交点为顶点的椭圆记为C 2.(1)求椭圆C 2的标准方程;(2)设AB 是过椭圆C 2中心O 的任意弦,l 是线段AB 的垂直平分线.M 是l 上的点(与O 不重合).①若MO =2OA ,当点A 在椭圆C 2上运动时,求点M 的轨迹方程; ②若M 是l 与椭圆C 2的交点,求△AMB 的面积的最小值.【解】(1)由题意得2ab ⎧=⎪= 又0a b >>,解得28a =,21b =.因此所求椭圆的标准方程为2218x y +=. ………………………… 4分(2)①设()M x y ,,()A m n ,,则由题设知:2OM OA =,0OA OM ⋅=.即22224()0x y m n mx ny ⎧+=+⎨+=⎩,, 解得22221414m y n x ⎧=⎪⎨⎪=⎩,. ………………………8分因为点()A m n ,在椭圆C 2上,所以2218m n +=,即()()222182y x+=,亦即221432x y +=.所以点M 的轨迹方程为221432x y +=. ………………………10分②(方法1)设()M x y ,,则()(0)A y x λλλλ-∈≠R ,,, 因为点A 在椭圆C 2上,所以222(8)8y x λ+=,即22288y x λ+= (i )又2288x y += (ii )(i )+(ii )得()2228119x y λ+=+, ………………………13分所以()228116||()||99AMB S OM OA x y λλλ∆=⋅=+=+≥.当且仅当1λ=±(即1AB k =±)时,()min 169AMB S ∆=. ………………………16分 (方法2)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为y =kx (k ≠0). 解方程组2218x y y kx ⎧+=⎪⎨⎪=⎩,,得22818A x k =+,222818A k y k =+,所以22222222888(1)181818A Ak k OA x y k k k +=+=+=+++,222232(1)418k AB OA k+==+. 又22181x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2228+8M k x k =,228+8M y k =,所以2228(1)+8k OM k +=.…………… 12分(解法1)由于22214AMBS AB OM =⋅△2222132(1)8(1)418+8k k k k ++=⨯⨯+222264(1)(18)(+8)k k k +=+ ()2222264(1)18+82k k k +++≥222264(1)2568181(1)4k k +==+, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立,此时△AMB 面积的最小值是S △AMB =169. …………… 15分当k =0,S △AMB 1161=⨯=;当k 不存在时,S △AMB 116229=⨯=>.综上所述,△AMB 面积的最小值为169. …………… 16分(解法2)因为22222211118(1)8(1)18+8k k OA OMk k +=++++22218+898(1)8k k k ++==+, 又22112OA OM OA OM +⋅≥,于是169OA OM ⋅≥, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立.(后同方法1)19.(本小题满分16分)设数列{a n }的首项不为零,前n 项和为S n ,且对任意的r ,t ∈N *,都有()2r t SrS t=.(1)求数列{a n }的通项公式(用a 1表示);(2)设a 1=1,b 1=3,()1*2n n b b S n n -=∈N ≥,,求证:数列{}3log n b 为等比数列; (3)在(2)的条件下,求121nk n k k b T b -==-∑. 【解】(1)因为110a S =≠,令1t =,r n =,则()2r t SrS t=,得21nSn S=,即21n S a n =.… 2分当2n ≥时,11(21)n n n a S S a n -=-=-,且当1n =时,此式也成立.故数列{a n }的通项公式为1(21)n a a n =-. …………… 5分(2)当11a =时,由(1)知1(21)21n a a n n =-=-,S n =n 2.依题意,2n ≥时,121n n b n b S b --==, ……… 7分 于是233131log log 2log (2)n n n b b b n n --==∈N ≥,,且31log 1b =,故数列{}3log n b 是首项为1,公比为2的等比数列. …………… 10分 (3)由(2)得113log 122n n n b --=⨯=,所以12*3()n n b n -=∈N . ……… 12分 于是()()()22121222212222231131113131313+131k k k k k k k k k b b --------+-===------. ……… 15分 所以()211122222111112313131k k n nnk n k k k b T b ----====-=-----∑∑. ……… 16分20.(本小题满分16分)设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且x 1<x 2.(1)求a 的取值范围; (2)证明:0f '<(()f x '为函数()f x 的导函数);(3)设点C 在函数()y f x =的图象上,且△ABC 为等腰直角三角形,t ,求(1)(1)a t -- 的值.【解】(1)()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾.……………………… 2分 所以0a >,令()0f x '=,则ln x a =.当ln x a <时,()0f x '<,()f x 是单调减函数;ln x a >时,()0f x '>,()f x 是单调增函数; 于是当ln x a =时,()f x 取得极小值. ……………………… 4分 因为函数()e ()x f x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2),所以(ln )(2ln )0f a a a =-<,即2e a >.. 此时,存在1ln (1)e 0a f <=>,;存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>,又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断,可知2e a >为所求取值范围. ……………………………… 6分(2)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,, 两式相减得2121e e x x a x x -=-.记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s s x xf s x x s++-+-'⎡⎤=-=--⎣⎦-,…………… 8分 设()2(e e )s s g s s -=--,则()2(e e )0s s g s -'=-+<,所以()g s 是单调减函数, 则有()(0)0g s g <=,而12e02x x s+>,所以()1202x x f +'<. 又()e x f x a '=-是单调增函数,且122x x +>所以0f '<. ………………………………………… 11分(3)依题意有e 0i x i ax a -+=,则(1)e 0i x i a x -=>⇒112i x i >=(,).于是122ex x +=ABC 中,显然C = 90°,…………………… 13分所以12012()2x x x x x +=∈,,即00()0y f x =<, 由直角三角形斜边的中线性质,可知2102x x y -=-, 所以2100x x y -+=,即122112e ()022x x x xa x x a +--+++=,所以2112()022x x a x x a -+++=,即2112(1)(1)[(1)(1)]022x x a x x ----+-+=.因为110x -≠,则()2211111110212x x x a x ----++=-,t ,所以221(1)(1)022a at t t -++-=, …………………………………… 15分即211a t =+-,所以(1)(1) 2.a t --= …………………………………… 16分南通市2019届高三第二次调研测试数学Ⅱ(附加题)(第21—A 题)21A .选修4—1:几何证明选讲如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△P AE ∽△BDE .【证明】因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB . 因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE .又∠PEA =∠BED ,故△P AE ∽△BDE .…………………… 10分21B .选修4—2:矩阵与变换已知二阶矩阵M 有特征值1λ=及对应的一个特征向量111⎡⎤=⎢⎥-⎣⎦e ,且M 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦.求矩阵M .【解】设a b c d ⎡⎤=⎢⎥⎣⎦M ,则由 1 111ab cd ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11a b c d -=⎧⎨-=-⎩,. 再由1311⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦a b c d ,得31a b c d +=⎧⎨+=⎩.,联立以上方程组解得a =2,b =1,c =0,d =1,故2101⎡⎤=⎢⎥⎣⎦M .……………………… 10分 21C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,设动点P ,Q 都在曲线C :12cos 2sin x y θθ=+⎧⎨=⎩,(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A (1,0)间的距离为d , 求d 的取值范围.【解】由题设可知P ( 1 + 2cos α,2sin α ),Q ( 1 + 2cos2α,sin2α ),………………………… 2分 于是PQ 的中点M ()1cos cos2sin sin 2αααα+++,. ………………………… 4分 从而()()2222cos cos2sin sin222cos d MA ααααα==+++=+ ………………………… 6分 因为0<α<2π,所以-1≤cos α<1, ………………………… 8分 于是0≤d 2<4,故d 的取值范围是[)02,. ………………………… 10分21D .选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3. 证明:因为|m|+|n|≥|m -n|,所以|1|||1()21|x a x a x a x a a -++--+---≥||=|.………………………………………… 8分ABCDD 1A 1B 1C 1E(第22题)又a ≥2,故21|a -|≥3.所以|1|||3x a x a -++-≥.…………………………………………………………………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域......内作答,解答时应 写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在长方体ABCD —A 1B 1C 1D 1中,112AD AA AB ==,点E 是棱AB 上一点.且AE EB λ=.(1)证明:11D E A D ⊥;(2)若二面角D 1—EC —D 的大小为π4,求λ的值.【证】(1)以D 为原点,DA 为x 轴,DC 为y 轴, DD 1为z 轴建立空间直角坐标系. 不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以()2101E λλ+,,,于是()112111D E A D λλ=-=+,,,(-1,0,-1). 所以()11211(101)01D E A D λλ⋅=-⋅--=+,,,,.故D 1E ⊥A 1D . ……… 5分 (2)因为D 1D ⊥平面ABCD ,所以平面DEC 的法向量为n 1=(0,0,1). 又()21201CE λλ=+,-,,1CD =(0,-2,1).设平面D 1CE 的法向量为n 2=(x ,y ,z ),则n 2·()220CE x y λλ=+-=,n 2·120CD y z =-+=,所以向量n 2的一个解为()22121λλ-+,.因为二面角D 1—EC —D 的大小为π4,则1212⋅=n n.解得λ=±233-1. 又因E 是棱AB 上的一点,所以λ>0,故所求的λ值为233-1. ……… 10分23.(本小题满分10分)数学试卷设数列{a n }共有n (3n n ∈N ≥,)项,且11n a a ==,对每个i (1≤i ≤1n -,i ∈N ),均有 {}11122i i a a +∈,,. (1)当3n =时,写出满足条件的所有数列{a n }(不必写出过程);(2)当8n =时,求满足条件的数列{a n }的个数.【解】(1)当3n =时,131a a ==. 因为{}211122a a ∈,,,{}321122a a ∈,,,即{}21122a ∈,,,{}211122a ∈,,, 所以212a =或21a =或22a =. 故此时满足条件的数列{a n }共有3个:1112,,; 1,1,1; 1,2,1. ……… 3分 (2)令b i =a i +1a i(1≤i ≤7),则对每个符合条件的数列{a n },满足条件: 77181111i ii i i a a b a a +=====∏∏,且b i ∈{}1122,, (1≤i ≤7). 反之,由符合上述条件的7项数列{b n }可唯一确定一个符合条件的8项数列{a n }.………7分记符合条件的数列{b n }的个数为N . 显然,b i (1≤i ≤7)中有k 个2;从而有k 个12,7-2k 个1. 当k 给定时,{b n }的取法有77C C k k k -种,易得k 的可能值只有0,1,2,3,故1122337675741C C C C C C 393N =+++=.因此,符合条件的数列{a n }的个数为393. ……… 10分。

江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考试数学试题(解析版)

江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考试数学试题(解析版)

2019届高三第二次调研测试一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合,.若,则实数a的值为____.【答案】4【解析】【分析】由确定a值即可【详解】∵,∴a=4故答案为4【点睛】本题考查集合的交集,熟记交集的概念与运算是关键,是基础题2.复数(为虚数单位)的实部为____.【答案】【解析】【分析】由复数运算化简为z=a+bi的形式,则实部可求【详解】故实部为故答案为【点睛】本题考查复数代数形式的除法运算,熟记运算性质,准确计算是关键,是基础题3.某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为____.【答案】35【解析】【分析】由题意可得,抽取的行政人员数为7,再求得抽样的比列,再用7除以此比例,即得该学校的行政人员人数.【详解】由题意可得,抽取的行政人员数为56﹣49=7,抽样的比列为,故该学校的行政人员人数是735,故答案为35.【点睛】本题主要考查分层抽样的定义和方法,利用数据计算抽样比例是关键,属于基础题.4.从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为____.【答案】【解析】【分析】确定基本事件的个数,即可求出概率.【详解】随机选派2人参加植树活动,有6种,甲、乙两人中恰有1人被选中有4种,∴所求概率为,故答案为.【点睛】本题考查古典概型,考查概率的计算,确定基本事件的个数是关键,是基础题5.执行如图所示的伪代码,则输出的S的值为____.【答案】30【解析】【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S的值,模拟程序的运行即可得解.【详解】模拟程序的运行,可得i=1,S=2满足条件i<7,执行循环体,S=2×1=2,i=3满足条件i<7,执行循环体,S=2× 3=6,i=5满足条件i<7,执行循环体,S=6×5=30,i=7此时,不满足条件i<7,退出循环,输出S的值为30.故答案为30【点睛】本题考查流程图,根据流程图写程序的运行结果,是算法这一模块重要的题型,其处理方法是:①分析流程图,②建立数学模型,③解模,确定何时结束流程是关键,是基础题6.函数的定义域为___.【答案】【解析】【分析】由4x﹣16≥0即可求得函数的定义域.【详解】∵4x﹣16≥0,∴4x≥16,∴x≥2,故答案为[2,+∞).【点睛】本题考查函数定义域及其求法,重点考查指数函数的性质的应用,属于基础题.7.将函数的图象向左平移个单位长度得到的图象,则的值为___.【答案】【解析】【分析】先由平移得f(x)的解析式,再将代入解析式求值即可【详解】f(x)=2sin3(x+=2sin(3x+,则故答案为【点睛】本题考查图像平移,考查三角函数值求解,熟记平移原则,准确计算是关键,是基础题8.在平面直角坐标系中,已知双曲线的右顶点到渐近线的距离为,则b的值为___.【答案】2【解析】【分析】右顶点为A(2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,求出b,即可求出结果.【详解】右顶点为A(2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,可得b=2故答案为2【点睛】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,熟记双曲线基本概念,准确计算点线距是关键,是基础题9.在△ABC中,已知C = 120°,sinB = 2 sinA,且△ABC的面积为,则AB的长为____.【答案】【解析】【分析】由sinB=2sinA,利用正弦定理可得:b=2a.可得S△ABC,解得a,b,再利用余弦定理可得AB【详解】在△ABC中,由sinB=2sinA,利用正弦定理可得:b=2a.∴S△ABC,解得a.∴b=4.∴c2=b2+a2﹣2bacosC=16+4﹣2cos120°=28,解得c,即AB=故答案为【点睛】本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.10.设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA = 2 m,PB = 3 m,PC = 4 m,则球O 的表面积为____m2.【答案】【解析】【分析】由已知中P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,构造以PA,PB,PC为棱的长方体,易求出球O的半径,进而求出球O的表面积.【详解】∵P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,则球的直径等于以PA,PB,PC长为棱长的长方体的对角线长∵PA = 2 m,PB = 3 m,PC = 4 m,∴2R=则球O的表面积S=4πR2=29π故答案为【点睛】本题考查的知识点是球的表面积,及球的内接多面体,其中根据已知条件构造长方体,计算出球O的半径,是解答本题的关键,是基础题11.定义在R上的奇函数满足,且在区间上,则函数的零点的个数为___.【答案】5【解析】【分析】由图分析画出与在同一个坐标系的图像,即可求解【详解】由题知函数的周期为4,又函数为奇函数,∴,即故f(x)关于(2,0)中心对称,又g(x)=为偶函数,则画出f(x)与g(x)在同一个坐标系的图像如图所示:故交点有5个故答案为5【点睛】本题考查函数与方程,明确函数f(x)的周期性奇偶性,准确画出图像是关键,是基础题12.已知关于的不等式( a,b,c R ) 的解集为{ x | 3 < x < 4},则的最小值为___.【答案】【解析】【分析】由不等式解集知a<0,由根与系数的关系知,将b,c分别用a 表示代入,利用基本不等式求最小值即可【详解】由不等式解集知a<0,由根与系数的关系知则,当且仅当-24a=即取等故答案为【点睛】本题考查基本不等式的应用,二次不等式解法,根与系数的关系,求得a,b,c的关系是关键,是中档题13.在平面直角坐标系xOy中,已知点A,B在圆上,且,点P(3, 1),,设的中点M的横坐标为x0,则x0的所有值为____.【答案】【解析】【分析】设AB中点为M由弦长公式,求出M的轨迹方程;由得,将向量坐标化得到的方程组,求解即可求出【详解】设AB中点为M由勾股三角形知OM=,即,又则,即∴, ②,将联立得故答案为【点睛】本题考查圆的轨迹方程,向量的坐标运算,圆的弦长公式,确定AB中点的轨迹是突破点,向量坐标化运算是关键,是中档题14.已知集合,从集合中取出个不同元素,其和记为;从集合中取出个不同元素,其和记为.若,则的最大值为____.【答案】44【解析】【分析】欲使m,n更大,则所取元素尽可能小,所以从最小开始取S由得到令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式得取等条件不成立,则检验t=22附近取值,只有t=21,m=22和t=23,m=20,成立,则问题得解.【详解】欲使m,n更大,则所取元素尽可能小,所以从最小开始取,S=即令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式当且仅当m=t=22时取等,∵t为奇数,∴的最大值在t=22附近取到,则t=21,m=23(舍);t=21,m=22,成立;t=23,m=21(舍); t=23,m=20,成立;故m+t的最大值为43,所以的最大值为44故答案为44【点睛】本题考查不等式的应用,数列求和问题,分析转化能力和计算求解能力,是中档题二、解答题:本大题共6小题,共计90分.15.在平面直角坐标系中,设向量=,= ,其中.(1)若∥,求的值;(2)若,求的值.【答案】(1);(2)【解析】【分析】(1)由向量共线的坐标表示可求进而求出,(2)由,求得将展开即可代入求解【详解】(1)因为∥,所以,所以.因为,所以.于是解得.(2)因为,所以,又,故.因为,所以,又,解得.因此,.【点睛】本题考查两角和的正弦公式,同角三角函数基本关系式,向量共线坐标运算,熟记三角基本公式,准确计算是关键,是中档题16.如图所示,在直三棱柱ABC-A1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.求证:(1)DE∥平面ABB1A1;(2)BC1⊥平面A1B1C.【答案】(1)见解析;(2)见解析【解析】【分析】(1)利用三角形中位线的性质证明DE∥AB,即可证明DE∥平面ABB1A1;(2)证明A1B1⊥平面BCC1B1,进而A1B1⊥BC1,进一步证明平面BC1⊥平面A1B1C即可.【详解】(1)因为三棱柱ABC-A1B1C1为直三棱柱,所以侧面ACC1 A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.又AB⊂平面ABB1 A1,DE⊄平面ABB1 A1,所以DE∥平面ABB1A1.(2)因为三棱柱ABC-A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1⊂平面A1B1C1,所以BB1⊥A1B1.又A1B1⊥B1C1,BB1,B1C1⊂平面BCC1B1,BB1∩B1C1 = B1,所以A1B1⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以A1B1⊥BC1.又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C = B1,A1B1,B1C ⊂平面A1B1C,所以BC1⊥平面A1B1C.17.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM = 5 m,BC = 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH =.(1)求屋顶面积S关于的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当为何值时,总造价最低?【答案】(1);(2)当为时该别墅总造价最低【解析】【分析】(1)由题知FH⊥HM,在Rt△FHM中,所以,得△FBC的面积,从而得到屋顶面积;(2)别墅总造价为=令,求导求最值即可【详解】(1)由题意FH⊥平面ABCD,FM⊥BC,又因为HM ⊂平面ABCD,得FH⊥HM.在Rt△FHM中,HM = 5,,所以.因此△FBC的面积为.从而屋顶面积.所以S关于的函数关系式为().(2)在Rt△FHM中,,所以主体高度为.所以别墅总造价为记,,所以,令,得,又,所以.列表:所以当时,有最小值.答:当为时该别墅总造价最低.【点睛】本题考查函数的实际应用问题,将空间问题平面化,准确将S表示为函数是关键,求最值要准确,是中档题18.如图所示,在平面直角坐标系xOy中,已知椭圆C1:,椭圆C2:,C2与C1的长轴长之比为∶1,离心率相同.(1)求椭圆C2的标准方程;(2)设点为椭圆C2上一点.① 射线与椭圆C1依次交于点,求证:为定值;② 过点作两条斜率分别为的直线,且直线与椭圆C1均有且只有一个公共点,求证:为定值.【答案】(1);(2)①见解析,②见解析.【解析】【分析】(1)由题所求椭圆a=,离心率,由得b即可;(2)①当直线OP斜率不存在时,得当直线OP斜率存在时,设直线OP的方程为,与椭圆联立,同理,推得从而可求;②设,直线的方程为即,记,则的方程为,代入椭圆C1的方程得,由,得,再将代入得,同理,得到关于为根的方程,由韦达定理及点P在椭圆上化简即可求得为定值【详解】(1)设椭圆C2的焦距为2c,由题意,,,,解得,因此椭圆C2的标准方程为。

南通市2019届高三第二次调研数学试卷与答案(word)

南通市2019届高三第二次调研数学试卷与答案(word)

2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合{13}=A a ,,,{45}=B ,.若A B =I {4},则实数a 的值为 ▲ . 【答案】4 2. 复数2i2i z =+(i 为虚数单位)的实部为 ▲ . 【答案】253. 某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP 平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为 49,则该单位行政人员的人数为 ▲ . 【答案】354. 从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为 ▲ . 【答案】235. 执行如图所示的伪代码,则输出的S 的值为 ▲ .【答案】306.函数y 的定义域为 ▲ .【答案】[2)+∞,7. 将函数2sin3y x =的图象向左平移π12个单位长度得到()y f x =的图象,则π3f 的值为 ▲ .【答案】8. 在平面直角坐标系xOy 中,已知双曲线22221(00)y x a b a b-=>>,的右顶点(20)A ,到渐近线的 b 的值为 ▲ . 【答案】29. 在△ABC 中,已知C = 120°,sin B = 2 sin A ,且△ABC 的面积为,则AB 的长为 ▲ .【答案】10.设P ,A ,B ,C 为球O 表面上的四个点,P A ,PB ,PC 两两垂直,且P A = 2 m ,PB = 3 m ,PC = 4 m ,则球O 的表面积为 ▲ m 2. 【答案】29π11.定义在R 上的奇函数()f x 满足(4)()f x f x +=,且在区间[)24,上,223()434x x f x x x -<⎧=⎨-<⎩≤≤,,,, 则函数5()log y f x x =-| |的零点的个数为 ▲ . 【答案】512.已知关于x 的不等式20ax bx c ++>( a ,b ,c ∈R ) 的解集为{ x | 3 < x < 4},则25c a b++的最小值为 ▲ .【答案】13.在平面直角坐标系xOy 中,已知点A ,B 在圆224x y +=上,且AB =,点P (3,-1),()16PO PA PB ⋅+=uu u r uu r uu r,设AB 的中点M 的横坐标为x 0,则x 0的所有值为 ▲ .【答案】115, 14.已知集合{|21}{|88}N N A x x k k B x x k k **==-∈==-∈,,,,从集合A 中取出m 个不同元素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若967S T +≤,则n m 2+的 最大值为 ▲ . 【答案】44二、解答题:本大题共6小题,共计90分. 15. (本小题满分14分)在平面直角坐标系中,设向量a =(cos sin )αα,,b = ()ππsin()cos()66αα++,,其中π02α<<.(1)若a ∥b ,求α的值; (2)若1tan 27α=-,求⋅a b 的值.【解】(1)因为a ∥b ,所以ππcos cos()sin sin()066αααα+-+=,……………………………………………2分所以πcos(2)06α+=. …………………………………………………………………4分 因为π02α<<,所以ππ7π2666α<+<.于是ππ262α+=, 解得π6α=. ………………………………………………………6分 (2)因为π0α<<,所以02πα<<,又1tan 20α=-<,故π2πα<<.因为sin 21tan 2cos 27ααα==-,所以cos 27sin 20αα=-<, 又22sin 2cos 21αα+=,解得sin 2cos2αα=.……………………………………………………10分 因此,⋅a b πππcos sin()+sin cos()sin(2)666ααααα=++=+ …………………………12分ππsin 2cos cos2sin 66αα=+(12⋅. ……………………………………14分16. (本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于 点D ,B 1C 与BC 1交于点E .求证:(1)DE ∥平面ABB 1A 1;(2)BC 1⊥平面A 1B 1C .【证明】(1)因为三棱柱ABC -A 1B 1C 1为直三棱柱, 所以侧面ACC 1 A 1为平行四边形.又A 1C 与AC 1交于点D ,所以D 为AC 1的中点,同理,E 为BC 1的中点.所以DE ∥AB .………………3分 又AB ⊂平面ABB 1 A 1,DE ⊄平面ABB 1 A 1,所以DE ∥平面ABB 1A 1. ………………………………………………………………6分 (2)因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以BB 1⊥平面A 1B 1C 1.ABCA 1B 1C 1ED(第16题)又因为A 1B 1⊂平面A 1B 1C 1,所以BB 1⊥A 1B 1. ………………………………………8分 又A 1B 1⊥B 1C 1,BB 1,B 1C 1⊂平面BCC 1B 1,BB 1∩B 1C 1 = B 1,所以A 1B 1⊥平面BCC 1B 1. ……………………………………………………………10分 又因为BC 1⊂平面BCC 1B 1,所以A 1B 1⊥BC 1.………………………………………12分 又因为侧面BCC 1B 1为正方形,所以BC 1⊥B 1C . 又A 1B 1∩B 1C = B 1,A 1B 1,B 1C ⊂平面A 1B 1C ,所以BC 1⊥平面A 1B 1C .………………………………………………………………14分 17. (本小题满分14分)图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构 成,其中前后两坡屋面ABFE 和CDEF 是全等的等腰梯形,左右两坡屋面EAD 和FBC 是全 等的三角形.点F 在平面ABCD 和BC 上的射影分别为H ,M .已知HM = 5 m ,BC = 10 m , 梯形ABFE 的面积是△FBC 面积的2.2倍.设∠FMH = θπ(0)4θ<<.(1)求屋顶面积S 关于θ的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k (k 为正的常数),下部主体造价与其 高度成正比,比例系数为16 k .现欲造一栋上、下总高度为6 m 的别墅,试问:当θ为 何值时,总造价最低?【解】(1)由题意FH ⊥平面ABCD ,FM ⊥BC , 又因为HM ⊂平面ABCD ,得FH ⊥HM . …………2分 在Rt △FHM 中,HM = 5,FMH θ∠=, 所以5cos FM θ=.……………………………………4分因此△FBC 的面积为1525102cos cos θθ⨯⨯=.①(第17题)②ABC DE F HMθ A BC DE F HMθ从而屋顶面积22=+V 梯形FBC ABFE S S S 252516022 2.2cos cos cos θθθ=⨯+⨯⨯=.所以S 关于θ的函数关系式为160cos S θ=(π04θ<<). ………………………………6分(2)在Rt △FHM 中,5tan =FH θ,所以主体高度为65tan =-h θ. ……………8分 所以别墅总造价为16=⋅+⋅y S k h k160(65tan )16cos =⋅+-⋅k k θθ16080sin 96cos cos =-+k k k θθθ()2sin 8096cos -=⋅+k k θθ…………………………………………10分记2sin ()-=f θθθ,π0θ<<,所以2sin 1()cos f θθθ-'=2, 令()0'=f θ,得1sin 2=θ,又π04θ<<,所以π6=θ.………………………………12分列表:所以当π6=θ时,()f θ有最小值.答:当θ为π6时该别墅总造价最低. …………………………………………………14分18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆C 1:2214x y +=,椭圆C 2:22221(0)y x a b a b+=>>,C 2与C 11,离心率相同. (1)求椭圆C 2的标准方程;(2)设点P 为椭圆C 2上一点.① 射线PO 与椭圆C 1依次交于点A B ,,求证:PA PB为定值;② 过点P 作两条斜率分别为12k k ,的直线12l l ,,且直线12l l ,与椭圆C 1均有且只有一个公共点,求证:12k k ⋅为定值.【解】(1)设椭圆C 2的焦距为2c,由题意,a =,c a =,222a b c =+,解得b =,因此椭圆C 2的标准方程为221y x +=. ……………………………3分(2)①1°当直线OP 斜率不存在时,1PA,1PB,则3PA PB ==- ……………………………4分2°当直线OP 斜率存在时,设直线OP 的方程为y=代入椭圆C 1的方程,消去y ,得22(41)4k x +=, 所以22441A x k =+,同理22841P x k =+.………6分所以222P A x x =,由题意,P A x x 与同号,所以P x 从而||||3||||PA P A PB P A x x x x PA PB x x x x --====--+所以3PA PB =- ……………………………………………………………8分②设00()P x y ,,所以直线1l 的方程为010()y y k x x -=-,即1100y k x k y x =+-, 记100t k y x =-,则1l 的方程为1y k x t =+,代入椭圆C 1的方程,消去y ,得22211(41)8440k x k tx t +++-=, 因为直线1l 与椭圆C 1有且只有一个公共点,所以22211(8)4(41)(44)0k t k t =-+-=V ,即221410k t -+=,将100t k y x =-代入上式,整理得,222010010(4)210x k x y k y --+-=, ……………12分 同理可得,222020020(4)210x k x y k y --+-=,所以12k k ,为关于k 的方程2220000(4)210x k x y k y --+-=的两根, 从而20122014y k k x -⋅=-.……………………………………………………………………14分(第18题)又点在00()P x y ,椭圆C 2:22182y x +=上,所以220012y x =-,所以2012201211444x k k x --⋅==--为定值. ………………………………………………16分 19.(本小题满分16分)已知函数21()2ln 2f x x x ax a =+-∈,R . (1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上的单调增函数,求0x 的值;(3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由. 【解】(1)当3a =时,函数21()2ln 32f x x x x =+-的定义域为()0+∞,.则2232()3x x f x x x x-+'=+-=, 令()f x '0=得,1x =或2x =. ………………………………………………………2分 列表:所以函数()f x 的极大值为5(1)2f =-;极小值为(2)2ln 24f =-. ………………4分(2)依题意,切线方程为0000()()()(0)y f x x x f x x '=-+>, 从而0000()()()()(0)g x f x x x f x x '=-+>, 记()()()p x f x g x =-,则000()()()()()p x f x f x f x x x '=---在()0+∞,上为单调增函数, 所以0()()()0p x f x f x '''=-≥在()0+∞,上恒成立, 即0022()0p x x x x x '=-+-≥在()0+∞,上恒成立. …………………………………8分法一:变形得()002()0x x x x --≥在()0+∞,上恒成立 ,所以002x x =,又00x >,所以0x = ………………………………………………10分法二:变形得0022x x ++≥在()0+∞,上恒成立 ,因为2x x +=≥x =,所以002x x +,从而(200x ≤,所以0x =10分(3)假设存在一条直线与函数()f x 的图象有两个不同的切点111()T x y ,,222()T x y ,, 不妨120x x <<,则1T 处切线1l 的方程为:111()()()y f x f x x x '-=-,2T 处切线2l 的方程为:222()()()y f x f x x x '-=-.因为1l ,2l 为同一直线,所以12111222()()()()()().f x f x f x x f x f x x f x ''=⎧⎨''-=-⎩,……………………12分即()()11212221111122222122212122ln 2ln .x a x a x x x x ax x x a x x ax x x a ⎧+-=+-⎪⎪⎨⎪+--+-=+--+-⎪⎩,整理得,122211222112ln 2ln .22x x x x x x =⎧⎪⎨-=-⎪⎩, ………………………………………………14分 消去2x 得,22112122ln022x x x +-=.① 令212x t =,由120x x <<与122x x =,得(01)t ∈,, 记1()2ln p t t t t =+-,则222(1)21()10t p t t t -'=--=-<, 所以()p t 为(01),上的单调减函数,所以()(1)0p t p >=. 从而①式不可能成立,所以假设不成立,从而不存在一条直线与函数()f x 的图象有两个 不同的切点. ……………………………………………………………………………16分20.(本小题满分16分)已知数列{}n a 的各项均不为零.设数列{}n a 的前n 项和为S n ,数列{}2n a 的前n 项和为T n ,且2340n n n S S T -+=,n *∈N . (1)求12a a ,的值;(2)证明:数列{}n a 是等比数列;(3)若1()()0n n na na λλ+--<对任意的n *∈N 恒成立,求实数λ的所有值. 【解】(1)因为2340n n n S S T -+=,*n ∈N .令1n =,得22111340a a a -+=,因为10a ≠,所以11a =. 令2n =,得()()()22222314110a a a +-+++=,即22220a a +=,因为20a ≠,所以212a =-.……………………………………………………………3分 (2)因为2340n n n S S T -+=, ① 所以2111340n n n S S T +++-+=, ② ②-①得,()21111340n n n n n S S a a a +++++-+=,因为10n a +≠,所以()11340n n n S S a +++-+=,③ …………………………………5分 所以()1340(2)n n n S S a n -+-+=≥, ④当2n ≥时,③-④得,()1130n n n n a a a a ++++-=,即112n n a a +=-,因为0n a ≠,所以112n n a a +=-. 又由(1)知,11a =,212a =-,所以2112aa =-,所以数列{}n a 是以1为首项,12-为公比的等比数列. ……………………………8分 (3)由(2)知,()112n n a -=-.因为对任意的*n ∈N ,()()10n n na na λλ+--<恒成立, 所以λ的值介于()112n n --和()12nn -之间.因为()()111022n nn n --⋅-<对任意的*n ∈N 恒成立,所以0λ=适合. ……………10分 若0λ>,当n 为奇数时,()()11122n n n n λ--<<-恒成立,从而有12n n λ-<恒成立.记2()(4)2n n p n n =≥,因为22211(1)21(1)()0222n n n n n n n p n p n +++-+++-=-=<, 所以()(4)1p n p =≤,即212n n ≤,所以12nn n ≤(*), 从而当25n n λ≥且≥时,有122n n n λ-≥≥,所以0λ>不符. ………………………13分若0λ<,当n 为奇数时,()()11122nn n n λ--<<-恒成立,从而有2nn λ-<恒成立.由(*)式知,当15n n λ≥且≥-时,有12nn n λ-≥≥,所以0λ<不符.综上,实数λ的所有值为0. ………………………………………………………………16分 21.【选做题】A .[选修4-2:矩阵与变换](本小题满分10分)已知m ,n ∈R ,向量11⎡⎤=⎢⎥⎣⎦α是矩阵12m n ⎡⎤=⎢⎥⎣⎦M 的属于特征值3的一个特征向量,求矩阵M 及另一个特征值.【解】由题意得,3=,M αα即11132123m m n n +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦, 所以2 1.m n ==,即矩阵1221⎡⎤⎢⎥⎣⎦=M . …………………………………………………5分 矩阵M 的特征多项式()212()14021f λλλλ--==--=--, 解得矩阵M 的另一个特征值为1λ-=.…………………………………………………10分 B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为1x t y t=+⎧⎨=⎩,( t 为参数),椭圆C 的参数方程为)(sin cos 2为参数,θθθ⎪⎩⎪⎨⎧==y x .设直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.【解】由题意得,直线l 的普通方程为10x y --=.①椭圆C 的普通方程为2212x y +=.② …………………………………………………4分由①②联立,解得A (01),-,B ()4133,, ……………………………………………8分 所以AB =10分 C .[选修4-5:不等式选讲](本小题满分10分)已知x ,y ,z 均是正实数,且,164222=++z y x 求证:6x y z ++≤. 【证】由柯西不等式得,()()()222222212112x y z x y z ⎡⎤⎡⎤++++++⎢⎥⎣⎦⎣⎦≥ ……………5分因为222416x y z ++=,所以()2916364x y z ++⨯=≤, 所以,6x y z ++≤,当且仅当“2x y z ==”时取等号.…………………………10分 【必做题】第22题、第23题,每小题10分,共计20分. 22.(本小题满分10分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 平面ABCD ,AB = 1,AP = AD = 2. (1)求直线PB 与平面PCD 所成角的正弦值;(2)若点M ,N 分别在AB ,PC 上,且⊥MN 平面PCD ,试确定点M ,N 的位置. 【解】(1)由题意知,AB ,AD ,AP 两两垂直.以{}AB AD AP u u u r u u u r u u u r ,,为正交基底,建立如图所示的空间 直角坐标系A xyz -,则(100)(120)(020)(002)B C D P ,,,,,,,,,,,.从而(102)(122)(022)PB PC PD =-=-=-,,,,,,,,u u r u u u r u u u r 设平面PCD 的法向量()x y z =n ,,,则00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n uu u r uu u r,,即220220x y z y z +-=⎧⎨-=⎩,, 不妨取1y =,则01x z ==,. 所以平面PCD 的一个法向量为(011)=n ,,. ………………………………………3分 (第22题)设直线PB 与平面PCD 所成角为θ,所以sin cos PB PB PB θ⋅=〈〉=⋅n n nuu ruu ruu r, 即直线PB 与平面PCD.……………………………………5分(2)设(00)M a ,,,则(00)MA a =-,,,u u u r设PN PC λ=,u u u r u u u r 则()22PN λλλ=,,-,u u u r而(002)AP =,,,u u u r 所以(222)MN MA AP PN a λλλ=++=--u u u r u u u r u u u r u u u r,,. ……………………………………8分 由(1)知,平面PCD 的一个法向量为(011)=n ,,, 因为MN ⊥平面PCD ,所以MN uuu r∥n .所以0222a λλλ-=⎧⎨=-⎩,,解得,1122a λ==,.所以M 为AB 的中点,N 为PC 的中点. …………………………………………10分 23.(本小题满分10分)已知*12(4)n a a a n n ∈N ≥,,,,均为非负实数,且122n a a a +++=.证明:(1)当4n =时,12233441+++1a a a a a a a a ≤;(2)对于任意的*4n n ∈N ≥,,122311++++1n n n a a a a a a a a -≤L .证明:(1)当4n =时,因为1a ,2a ,…,4a 均为非负实数,且12342a a a a +++=, 所以122334412134313124+++=(+)+(+)(+)(+)a a a a a a a a a a a a a a a a a a =………………………2分 23124(+)+(+)=12a a a a ⎡⎤⎢⎥⎣⎦≤.………………………………………………………………4分 (2)①当4n =时,由(1)可知,命题成立; ②假设当(4)n k k =≥时,命题成立,即对于任意的4k ≥,若1x ,2x ,…,k x 均为非负实数,且12+++2k x x x =L ,则122311++++1k k k x x x x x x x x -≤L .则当+1n k =时,设12+1++++2k k a a a a =…,并不妨设{}+112+1max k k k a a a a a =,,…,,. 令()1122311+k k k k x a a x a x a x a -+====,,,,则12+++2k x x x =…. 由归纳假设,知122311++++1k k k x x x x x x x x -≤.………………………………………8分因为123a a a ,,均为非负实数,且+11k a a ≥, 所以121123112+()()k k x x x x a a a a a a +=+++23111312122311k k k a a a a a a a a a a a a a a +++=+++++≥.所以1212311223113411(+)+(++)()()k k k k k k x x x x x x x x a a a a a a a a a a -+++++++≥≥,即1223+1+11++++1k k k a a a a a a a a ≤,也就是说,当+1n k =时命题也成立.所以,由①②可知,对于任意的4n ≥,122311++++1n n n a a a a a a a a -…≤.…………10分。

江苏省南通市通州区2019届高三语文第二次教学质量调研试题(含解析)

江苏省南通市通州区2019届高三语文第二次教学质量调研试题(含解析)

南通市通州区2019届高三第二次教学质量调研语文试题一、语言文字运用(15分)1.在下面一段话的空缺处依次填入词语,最恰当的一组是( )对一个国家而言,开放如同,虽会经历一时阵痛,但将换来新生。

这一规律不仅仅适用于中国。

美国在20世纪不断走强,一个重要原因就是在一战、二战后的大多数时间里,坚持推动贸易自由化和经济全球化,才了经济繁荣与技术飞跃,而选择,将国际贸易视为零和博弈,则往往带来经济萧条和收缩。

A. 破茧化蝶催生以邻为壑B. 脱胎换骨产生独善其身C. 脱胎换骨催生以邻为壑D. 破茧化蝶产生独善其身【答案】A【解析】【详解】试题分析:本题考核正确使用词语(包括熟语)的能力。

这类题目解答时应首先明确成语的意思,然后结合语境辨析正误。

破茧化蝶:经由撕心裂肺的挣扎过程,从原有的束缚状态解脱出来,在某方面上升到了新的高度,脱胎换骨。

脱胎换骨:比喻重新做人。

文段中强调的是奋斗过程的艰难,用“破茧化蝶”正确。

产生:由已有事物中生出新的事物,出现。

催生:催产。

文段中强调“坚持推动贸易自由化和经济全球化”与“经济繁荣与技术飞跃”之间的关系,用“催生”恰当。

独善其身:意思是做不上官,就搞好自身的修养。

现在也指只顾自己,缺乏集体精神。

以邻为壑:比喻只图自己一方的利益,而把困难或祸害转嫁给别人。

文段中说的是美国把困难转嫁给别人,用“以邻为壑”恰当。

故选A项。

2.下列各句中,没有语病的一项是( )A. 印尼狮航空难导致162人丧生,当中不少是印度尼西亚华裔。

当局最初认为恶劣天气是肇事主因,但事发一年后发表的调查报告把事故原因归咎于机件故障的问题。

B. 最受外界关注的APEC领导人非正式会议于2018年11月12日在巴布亚新几内亚召开,APEC 会议已经成为当今国际交流的平台。

C. 射击决赛还有最后一枪,埃蒙斯深吸一口气,这是最关键的一枪,功败垂成在此一举了。

D. 最高人民法院7日发布关于为实施乡村振兴战略提供司法服务和保障的意见,要求坚决依法从严从快惩处黑恶势力“保护伞”,推进“法治乡村”“平安乡村”建设的力度。

2019江苏省南通市高三二模数学试卷含答案

2019江苏省南通市高三二模数学试卷含答案

南通市2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 已知集合{}{}31A x x x x =<-≥,则A =R ð ▲ .【答案】{}13x x -<≤.2. 某学校有8个社团,甲、乙两位同学各自参加其中一个社团,且他俩参加各个社团的可能性相同,则这两位同学参加同一个社团的概率为 ▲ . 【答案】18.3. 复数i z =(其中i 为虚数单位)的模为 ▲ ..4.从编号为0,1,2,…,79的80件产品中,采用系统抽样的 方法抽取容量是5的样本,若编号为28的产品在样本中,则 该样本中产品的最大编号为 ▲ . 【答案】76.5. 根据如图所示的伪代码,最后输出的a 的值为 ▲ .【答案】48.6. 若12log 11a a <-,则a 的取值范围是 ▲ .【答案】()4+∞,. 7. 若函数32()f x x ax bx =++为奇函数,其图象的一条切线方程为3y x =-则b 的值为 ▲ . 【答案】3-.8. 设l ,m 表示直线,m 是平面α内的任意一条直线.则“l m ⊥”是“l α⊥”成立的 ▲ 条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个) 【答案】充要.9. 在平面直角坐标系xOy 中,设A 是半圆O :222x y +=(0x ≥)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是 ▲.(第5题)10y +=.10.在△ABC 中,D 是BC 的中点,AD =8,BC =20,则AB AC ⋅的值为 ▲ . 【答案】-36.11.设x ,y ,z 是实数,9x ,12y ,15z 成等比数列,且1x ,1y ,1成等差数列,则x z z x +的值是 ▲ .【答案】3415.12.设π6是函数()()sin 2f x x ϕ=+的一个零点,则函数()f x 在区间()02π,内所有极值点之和为▲ . 【答案】14π313. 若不等式(mx -1)[3m 2-( x + 1)m -1]≥0对任意(0)m ∈+∞,恒成立,则实数x 的值为 ▲ .【答案】114.设实数a ,b ,c 满足a 2+b 2 ≤c ≤1,则a +b +c 的最小值为 ▲ . 【答案】12-.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,已知916AB AC AB BC ⋅=⋅=-,.求: (1)AB 的值; (2)sin()sin A B C-的值.【解】(1)(方法1)因为916AB AC AB BC ⋅=⋅=-,, …………………………… 4分 所以91625AB AC AB BC ⋅-⋅=+=,即()25AB AC CB +=,亦即225AB =,故5AB =. …………………………… 7分 (方法2)设A ,B ,C 的对边依次为a ,b ,c ,则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 两式相加得(cos cos )91625c b A a B +=+=,即225c =,故5AB c ==. ……………… 7分 (方法3)设A ,B ,C 的对边依次为a ,b ,c ,PABCDE (第16题)PABCDE(第16题)FM 则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 由余弦定理得()()2222221191622b c a c a b +-=+-=,,两式相加得225c =,故5AB c ==. …………………………… 7分 (2)sin()sin cos cos sin sin sin A B A B A BC C--=………………………… 10分 由正弦定理得sin()cos cos sin A B a B b A C c--=22cos cos 169725ac B bc A c c --===. ………… 14分16.(本小题满分14分)在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面P AD , PD =AD ,AB =2DC ,E 是PB 的中点. 求证:(1)CE ∥平面P AD ;(2)平面PBC ⊥平面P AB .【证】(1)(方法1)取P A 的中点F ,连EF ,DF .…… 2分 因为E 是PB 的中点,所以EF // AB ,且12EF AB =.因为AB ∥CD ,AB =2DC ,所以EF ∥CD ,……………… 4分 EF CD =,于是四边形DCEF 是平行四边形,从而CE ∥DF ,而CE ⊄平面P AD ,DF ⊂平面P AD , 故CE ∥平面P AD . …………………… 7分 (方法2)取AB 的中点M ,连EM ,CM . ……………… 2分 因为E 是PB 的中点,所以EM // P A .因为AB ∥CD ,AB =2DC ,所以CM // AD .……………… 4分 因为EM ⊄平面P AD ,PA ⊂平面P AD , 所以EM ∥平面P AD .同理,CM ∥平面P AD . 因为EMCM M =,EM CM ⊂,平面CEM ,所以平面CEM ∥平面P AD .而CE ⊂平面P AD ,故CE ∥平面P AD .……………………… 7分 (2)(接(1)中方法1)因为PD =AD ,且F 是P A 的中点,所以DF PA ⊥.因为AB ⊥平面P AD ,DF ⊂平面P AD ,所以DF AB ⊥. ……………………… 10分 因为CE ∥DF ,所以CE PA ⊥,CE AB ⊥. 因为PA AB ⊂,平面P AB ,PAAB A =,所以CE ⊥平面P AB .因为CE ⊂平面PBC ,所以平面PBC ⊥平面P AB . ………………………… 14分17.(本小题满分14分)为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中 释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161048154102x xy x x ⎧-⎪-=⎨⎪-<⎩,≤≤,,≤. 若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之 和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用. (1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a (14a ≤≤)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a 的最小值(精确到0.11.4). 【解】(1)因为一次喷洒4个单位的净化剂, 所以浓度644048()4202410x x f x y x x ⎧-⎪-==⎨⎪-<⎩,≤≤,,≤.则当04x ≤≤时,由64448x--≥,解得0x ≥,所以此时04x ≤≤.…………………… 3分 当410x <≤时,由2024x -≥解得8x ≤,所以此时48x <≤.综合得08x ≤≤,若一次投放4个单位的制剂,则有效净化时间可达8天. …………… 7分 (2)设从第一次喷洒起,经x (610x ≤≤)天,浓度()1161616()25110(14)428(6)1414a a g x x a x a x a x x x ⎡⎤=-+-=-+-=-+--⎢⎥----⎣⎦.…… 10分因为14[48]x -∈,,而14a ≤≤,所以[48],,故当且仅当14x -=y有最小值为4a -.令44a -≥,解得244a -≤,所以a的最小值为24 1.6-.……… 14分18.(本小题满分16分)在平面直角坐标系xOy 中,设曲线C 1:1(0)x ya b a b+=>>所围成的封闭图形的面积为曲线C 1上的点到原点O.以曲线C 1与坐标轴的交点为顶点的椭圆记为C 2.(1)求椭圆C 2的标准方程;(2)设AB 是过椭圆C 2中心O 的任意弦,l 是线段AB 的垂直平分线.M 是l 上的点(与O 不重合).①若MO =2OA ,当点A 在椭圆C 2上运动时,求点M 的轨迹方程; ②若M 是l 与椭圆C 2的交点,求△AMB 的面积的最小值.【解】(1)由题意得2ab ⎧=⎪= 又0a b >>,解得28a =,21b =.因此所求椭圆的标准方程为2218x y +=. ………………………… 4分(2)①设()M x y ,,()A m n ,,则由题设知:2OM OA =,0OA OM ⋅=.即22224()0x y m n mx ny ⎧+=+⎨+=⎩,, 解得22221414m y n x ⎧=⎪⎨⎪=⎩,. ………………………8分因为点()A m n ,在椭圆C 2上,所以2218m n +=,即()()222182y x+=,亦即221432x y +=.所以点M 的轨迹方程为221432x y +=. ………………………10分②(方法1)设()M x y ,,则()(0)A y x λλλλ-∈≠R ,,, 因为点A 在椭圆C 2上,所以222(8)8y x λ+=,即22288y x λ+= (i )又2288x y += (ii )(i )+(ii )得()2228119x y λ+=+, ………………………13分所以()228116||()||99AMB S OM OA x y λλλ∆=⋅=+=+≥.当且仅当1λ=±(即1AB k =±)时,()min 169AMB S ∆=. ………………………16分 (方法2)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为y =kx (k ≠0). 解方程组2218x y y kx ⎧+=⎪⎨⎪=⎩,,得22818A x k =+,222818A k y k =+,所以22222222888(1)181818A Ak k OA x y k k k +=+=+=+++,222232(1)418k AB OA k+==+. 又22181x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2228+8M k x k =,228+8M y k =,所以2228(1)+8k OM k +=.…………… 12分(解法1)由于22214AMBS AB OM =⋅△2222132(1)8(1)418+8k k k k ++=⨯⨯+222264(1)(18)(+8)k k k +=+ ()2222264(1)18+82k k k +++≥222264(1)2568181(1)4k k +==+, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立,此时△AMB 面积的最小值是S △AMB =169. …………… 15分当k =0,S △AMB 1161=⨯=;当k 不存在时,S △AMB 116229=⨯=>.综上所述,△AMB 面积的最小值为169. …………… 16分(解法2)因为22222211118(1)8(1)18+8k k OA OMk k +=++++22218+898(1)8k k k ++==+, 又22112OA OM OA OM +⋅≥,于是169OA OM ⋅≥, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立.(后同方法1)19.(本小题满分16分)设数列{a n }的首项不为零,前n 项和为S n ,且对任意的r ,t ∈N *,都有()2r t SrS t=.(1)求数列{a n }的通项公式(用a 1表示);(2)设a 1=1,b 1=3,()1*2n n b b S n n -=∈N ≥,,求证:数列{}3log n b 为等比数列; (3)在(2)的条件下,求121nk n k k b T b -==-∑. 【解】(1)因为110a S =≠,令1t =,r n =,则()2r t SrS t=,得21nSn S=,即21n S a n =.… 2分当2n ≥时,11(21)n n n a S S a n -=-=-,且当1n =时,此式也成立.故数列{a n }的通项公式为1(21)n a a n =-. …………… 5分(2)当11a =时,由(1)知1(21)21n a a n n =-=-,S n =n 2.依题意,2n ≥时,121n n b n b S b --==, ……… 7分 于是233131log log 2log (2)n n n b b b n n --==∈N ≥,,且31log 1b =,故数列{}3log n b 是首项为1,公比为2的等比数列. …………… 10分 (3)由(2)得113log 122n n n b --=⨯=,所以12*3()n n b n -=∈N . ……… 12分 于是()()()22121222212222231131113131313+131k k k k k k k k k b b --------+-===------. ……… 15分 所以()211122222111112313131k k n nnk n k k k b T b ----====-=-----∑∑. ……… 16分20.(本小题满分16分)设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且x 1<x 2.(1)求a 的取值范围; (2)证明:0f '<(()f x '为函数()f x 的导函数);(3)设点C 在函数()y f x =的图象上,且△ABC 为等腰直角三角形,t ,求(1)(1)a t -- 的值.【解】(1)()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾.……………………… 2分 所以0a >,令()0f x '=,则ln x a =.当ln x a <时,()0f x '<,()f x 是单调减函数;ln x a >时,()0f x '>,()f x 是单调增函数; 于是当ln x a =时,()f x 取得极小值. ……………………… 4分 因为函数()e ()x f x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2),所以(ln )(2ln )0f a a a =-<,即2e a >.. 此时,存在1ln (1)e 0a f <=>,;存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>,又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断,可知2e a >为所求取值范围. ……………………………… 6分(2)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,, 两式相减得2121e e x x a x x -=-.记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s s x xf s x x s++-+-'⎡⎤=-=--⎣⎦-,…………… 8分 设()2(e e )s s g s s -=--,则()2(e e )0s s g s -'=-+<,所以()g s 是单调减函数, 则有()(0)0g s g <=,而12e02x x s+>,所以()1202x x f +'<. 又()e x f x a '=-是单调增函数,且122x x +>所以0f '<. ………………………………………… 11分(3)依题意有e 0i x i ax a -+=,则(1)e 0i x i a x -=>⇒112i x i >=(,).于是122ex x +=ABC 中,显然C = 90°,…………………… 13分所以12012()2x x x x x +=∈,,即00()0y f x =<, 由直角三角形斜边的中线性质,可知2102x x y -=-, 所以2100x x y -+=,即122112e ()022x x x xa x x a +--+++=,所以2112()022x x a x x a -+++=,即2112(1)(1)[(1)(1)]022x x a x x ----+-+=.因为110x -≠,则()2211111110212x x x a x ----++=-,t ,所以221(1)(1)022a at t t -++-=, …………………………………… 15分即211a t =+-,所以(1)(1) 2.a t --= …………………………………… 16分南通市2019届高三第二次调研测试数学Ⅱ(附加题)(第21—A 题)21A .选修4—1:几何证明选讲如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△P AE ∽△BDE .【证明】因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB . 因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE .又∠PEA =∠BED ,故△P AE ∽△BDE .…………………… 10分21B .选修4—2:矩阵与变换已知二阶矩阵M 有特征值1λ=及对应的一个特征向量111⎡⎤=⎢⎥-⎣⎦e ,且M 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦.求矩阵M .【解】设a b c d ⎡⎤=⎢⎥⎣⎦M ,则由 1 111ab cd ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11a b c d -=⎧⎨-=-⎩,. 再由1311⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦a b c d ,得31a b c d +=⎧⎨+=⎩.,联立以上方程组解得a =2,b =1,c =0,d =1,故2101⎡⎤=⎢⎥⎣⎦M .……………………… 10分 21C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,设动点P ,Q 都在曲线C :12cos 2sin x y θθ=+⎧⎨=⎩,(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A (1,0)间的距离为d , 求d 的取值范围.【解】由题设可知P ( 1 + 2cos α,2sin α ),Q ( 1 + 2cos2α,sin2α ),………………………… 2分 于是PQ 的中点M ()1cos cos2sin sin 2αααα+++,. ………………………… 4分 从而()()2222cos cos2sin sin222cos d MA ααααα==+++=+ ………………………… 6分 因为0<α<2π,所以-1≤cos α<1, ………………………… 8分 于是0≤d 2<4,故d 的取值范围是[)02,. ………………………… 10分21D .选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3. 证明:因为|m|+|n|≥|m -n|,所以|1|||1()21|x a x a x a x a a -++--+---≥||=|.………………………………………… 8分ABCDD 1A 1B 1C 1E(第22题)又a ≥2,故21|a -|≥3.所以|1|||3x a x a -++-≥.…………………………………………………………………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域......内作答,解答时应 写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在长方体ABCD —A 1B 1C 1D 1中,112AD AA AB ==,点E 是棱AB 上一点.且AE EB λ=.(1)证明:11D E A D ⊥;(2)若二面角D 1—EC —D 的大小为π4,求λ的值.【证】(1)以D 为原点,DA 为x 轴,DC 为y 轴, DD 1为z 轴建立空间直角坐标系. 不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以()2101E λλ+,,,于是()112111D E A D λλ=-=+,,,(-1,0,-1). 所以()11211(101)01D E A D λλ⋅=-⋅--=+,,,,.故D 1E ⊥A 1D . ……… 5分 (2)因为D 1D ⊥平面ABCD ,所以平面DEC 的法向量为n 1=(0,0,1). 又()21201CE λλ=+,-,,1CD =(0,-2,1).设平面D 1CE 的法向量为n 2=(x ,y ,z ),则n 2·()220CE x y λλ=+-=,n 2·120CD y z =-+=,所以向量n 2的一个解为()22121λλ-+,.因为二面角D 1—EC —D 的大小为π4,则1212⋅=n n.解得λ=±233-1. 又因E 是棱AB 上的一点,所以λ>0,故所求的λ值为233-1. ……… 10分23.(本小题满分10分)数学试卷设数列{a n }共有n (3n n ∈N ≥,)项,且11n a a ==,对每个i (1≤i ≤1n -,i ∈N ),均有 {}11122i i a a +∈,,. (1)当3n =时,写出满足条件的所有数列{a n }(不必写出过程);(2)当8n =时,求满足条件的数列{a n }的个数.【解】(1)当3n =时,131a a ==. 因为{}211122a a ∈,,,{}321122a a ∈,,,即{}21122a ∈,,,{}211122a ∈,,, 所以212a =或21a =或22a =. 故此时满足条件的数列{a n }共有3个:1112,,; 1,1,1; 1,2,1. ……… 3分 (2)令b i =a i +1a i(1≤i ≤7),则对每个符合条件的数列{a n },满足条件: 77181111i ii i i a a b a a +=====∏∏,且b i ∈{}1122,, (1≤i ≤7). 反之,由符合上述条件的7项数列{b n }可唯一确定一个符合条件的8项数列{a n }.………7分记符合条件的数列{b n }的个数为N . 显然,b i (1≤i ≤7)中有k 个2;从而有k 个12,7-2k 个1. 当k 给定时,{b n }的取法有77C C k k k -种,易得k 的可能值只有0,1,2,3,故1122337675741C C C C C C 393N =+++=.因此,符合条件的数列{a n }的个数为393. ……… 10分。

【市级联考】江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次调研考试(含听力)

【市级联考】江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次调研考试(含听力)

2019届南通市高三第二次调研联考英语试卷注意事项考生在答题前请认真阅读本注意事项及各题答题要求考试时间120分钟。

考试结束后,只要将答题纸交回。

1.本试卷共14页,包含第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分。

2.答题前,请您务必将自己的姓名、学校、考试号用书写黑色字迹的0.5毫米签字笔填写在答题纸上,并用2B铅笔把答题纸上考试号对应数字框涂黑,如需改动,请用橡皮擦干净后,再正确涂写。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、考试证号与你本人的是否相符。

4.答题时,必须用书写黑色字迹的0.5毫米签字笔写在答题纸上的指定位置,在其它位置作答一律无效。

第I卷 (三部分,共85分)第一部分听力(共两节,满分20分)第一节听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.【此处有音频,请去附件查看】What color is the sofa?A. Brown.B. White.C. Blue.【答案】B【解析】【分析】M: We need a new sofa. This one is starting to sink in the middle and it looks shabby.W: Yes. White wasn’t a good choice of color. The next one should be darker. Brown or blue maybe. 【详解】此题为听力题,解析略。

2.【此处有音频,请去附件查看】What meal are the speakers about to eat?A. Breakfast.B. LunchC. Dinner.【答案】C【解析】【分析】M: When will the pizza be ready? I haven’t eaten since this morning. What about you?W: I skipped breakfast, but I had a pretty big lunch, so you can have most of the pizza.【详解】此题为听力题,解析略。

江苏省南通市2019届高三第二次调研测试-数学

江苏省南通市2019届高三第二次调研测试-数学

·1·(第4题)南通市2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 命题“x ∃∈R ,20x >”的否定是“ ▲ ”.【答案】x ∀∈R ,20x ≤2. 设1i i 1ia b +=+-(i 为虚数单位,a ,b ∈R ),则ab 的值为 ▲ .【答案】03. 设集合{}11 0 3 2A =-,,,,{}2 1B x x =≥,则A B = ▲ .【答案】{}1 3-,4. 执行如图所示的伪代码,则输出的结果为 ▲ .【答案】115. 一种水稻试验品种连续5年的平均单位面积产量(单位:t/hm 2) 如下:9.8,9.9,10.1,10,10.2,则该组数据的方差为 ▲ .【答案】0.026. 若函数()π()2sin 3f x x ω=+(0)ω>的图象与x 轴相邻两个交点间的距离为2,则实数ω的值为 ▲ .【答案】π27. 在平面直角坐标系xOy 中,若曲线ln y x =在e x =(e 为自然对数的底数)处的切线与直线 30ax y -+=垂直,则实数a 的值为 ▲ .【答案】e -8. 如图,在长方体1111ABCD A B C D -中,AB =3 cm ,AD =2 cm ,1AA =1 cm ,则三棱锥11B ABD - 的体积为 ▲ cm 3.【答案】19. 已知等差数列{}n a 的首项为4,公差为2,前n 项和为n S . 若544k k S a +-=(k *∈N ),则k 的值为 ▲ .【答案】7AA 1 B不CB 1不C 1不D 1不D不(第8题)·2·BDC(第12题)AA B CDMNQ(第15题) 10.设32()4(3)f x x mx m x n =++-+(m n ∈R ,)是R 上的单调增函数,则m 的值为 ▲ .【答案】611.在平行四边形ABCD 中,AC AD AC BD ⋅=⋅3=,则线段AC 的长为 ▲ .12.如图,在△ABC 中,3AB =,2AC =,4BC =,点D 在边BC 上,BAD ∠=45°,则tan CAD ∠的值为 ▲ .13.设x ,y ,z 均为大于1的实数,且z 为x 和y 的等比中项,则lg lg 4lg lg z zx y+的最小值为 ▲ . 【答案】9814.在平面直角坐标系xOy 中,圆1C :22(1)(6)25x y ++-=,圆2C :222(17)(30)x y r -+-=.若圆2C 上存在一点P ,使得过点P 可作一条射线与圆1C 依次交于点A ,B ,满足2PA AB =, 则半径r 的取值范围是 ▲ . 【答案】[]5 55,二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证 明过程或演算步骤. 15.(本小题满分14分)如图,在四面体ABCD 中,平面BAD ⊥平面CAD ,BAD ∠=90°.M ,N ,Q 分别为棱AD ,BD ,AC 的中点.(1)求证://CD 平面MNQ ; (2)求证:平面MNQ ⊥平面CAD .证明:(1)因为M ,Q 分别为棱AD ,AC 的中点,所以//MQ CD , …… 2分 又CD ⊄平面MNQ ,MQ ⊂平面MNQ ,故//CD 平面MNQ . …… 6分 (2)因为M ,N 分别为棱AD ,BD 的中点,所以//MN AB ,又90BAD ∠=°,故MN AD ⊥. …… 8分 因为平面BAD ⊥平面CAD ,平面BAD平面CAD AD =, 且MN ⊂平面ABD ,·3·所以MN ⊥平面ACD . …… 11分又MN ⊂平面MNQ ,平面MNQ ⊥平面CAD . …… 14分(注:若使用真命题“如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面”证明“MN ⊥平面ACD ”,扣1分.)16.(本小题满分14分)体育测试成绩分为四个等级:优、良、中、不及格.某班50名学生参加测试的结果如下: (1)从该班任意抽取1名学生,求这名学生的测试成绩为“良”或“中”的概率;(2)测试成绩为“优”的3名男生记为1a ,2a ,3a ,2名女生记为1b ,2b .现从这5人中 任选2人参加学校的某项体育比赛. ① 写出所有等可能的基本事件; ② 求参赛学生中恰有1名女生的概率.解:(1)记“测试成绩为良或中”为事件A ,“测试成绩为良”为事件1A ,“测试成绩为中” 为事件2A ,事件1A ,2A 是互斥的. …… 2分 由已知,有121923()()5050P A P A ==,. …… 4分因为当事件1A ,2A 之一发生时,事件A 发生, 所以由互斥事件的概率公式,得1212192321()()()()505025P A P A A P A P A =+=+=+=. …… 6分(2)① 有10个基本事件:12()a a ,,13()a a ,,11()a b ,,12()a b ,,23()a a ,,21()a b ,,22()a b ,,31()a b ,,32()a b ,,12()b b ,. …… 9分 ② 记“参赛学生中恰好有1名女生”为事件B .在上述等可能的10个基本事件中,事件B 包含了11()a b ,,12()a b ,,21()a b ,,22()a b ,,31()a b ,,32()a b ,. 故所求的概率为63()105P B ==.答:(1)这名学生的测试成绩为“良”或“中”的概率为2125;(2)参赛学生中恰有1名女生的概率为35. ……14分(注:不指明互斥事件扣1分;不记事件扣1分,不重复扣分;不答扣1分.事件B 包含的6种基本事件不枚举、运算结果未化简本次阅卷不扣分.)17.(本小题满分14分)在平面直角坐标系xOy 中,已知向量=a (1,0),=b (0,2).设向量=+x a (1cos θ-)b , k =-y a 1sin θ+b ,其中0πθ<<.(1)若4k =,π6θ=,求x ⋅y 的值;(2)若x //y ,求实数k 的最大值,并求取最大值时θ的值.解:(1)(方法1)当4k =,π6θ=时,(12=,x ,=y (44-,), …… 2分则⋅=x y (1(4)244⨯-+⨯=- …… 6分(方法2)依题意,0⋅=a b , …… 2分则⋅=x y (()(22142421⎡⎤+⋅-+=-+⨯⎢⎥⎣⎦a b a b a b(421443=-+⨯⨯= . …… 6分(2)依题意,()122cos θ=-,x ,()2sin k θ=-,y , 因为x //y ,所以2(22cos )sin k θθ=--,整理得,()1sin cos 1kθθ=-, …… 9分令()()sin cos 1f θθθ=-,则()()cos cos 1sin (sin )f θθθθθ'=-+-()()2cos 1cos 1θθ=+-. …… 11分令()0f θ'=,得1cos 2θ=-或cos 1θ=,又0πθ<<,故2π3θ=.列表:故当θ=…… 14分·5·(注:第(2)小问中,得到()122cos θ=-,x ,()2sin k θ=-,y ,及k 与θ的等式,各1分.)18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222 1 ( 0 )y x a b a b+=>>的左顶点为A ,右焦点为(0)F c ,.00( )P x y ,为椭圆上一点,且PA PF ⊥.(1)若3a =,b =0x 的值; (2)若00x =,求椭圆的离心率;(3)求证:以F 为圆心,FP 为半径的圆与椭圆的右准线2a x c=相切.解:(1)因为3a =,b =2224c a b =-=,即2c =, 由PA PF ⊥得,0000132y y x x ⋅=-+-,即22006y x x =--+, …… 3分 又2200195x y +=,所以204990x x +-=,解得034x =或03x =-(舍去) . …… 5分 (2)当00x =时,220y b =, 由PA PF ⊥得,001y y a c⋅=--,即2b ac =,故22a c ac -=, …… 8分 所以210e e +-=,解得e =. …… 10分 (3)依题意,椭圆右焦点到直线2a x c =的距离为2a c c -,且2200221x y a b+=,① 由PA PF ⊥得,00001y y x a x c⋅=-+-,即2200()y x c a x ca =-+-+, ② 由①②得,()2002()0a b ac x a x c ⎡⎤-⎢⎥++=⎢⎥⎣⎦, 解得()2202a a ac c x c --=-或0x a =-(舍去). …… 13分所以PF ==0c a x a=-()222a a ac c c a a c --=+⋅2a c c =-,(第18题)·6·所以以F 为圆心,FP 为半径的圆与右准线2a x c=相切. …… 16分(注:第(2)小问中,得到椭圆右焦点到直线2a x c =的距离为2a c c-,得1分;直接使用焦半 径公式扣1分.) 19.(本小题满分16分)设a ∈R ,函数()f x x x a a =--. (1)若()f x 为奇函数,求a 的值;(2)若对任意的[2 3]x ∈,,()0f x ≥恒成立,求a 的取值范围; (3)当4a >时,求函数()()y f f x a =+零点的个数.解:(1)若()f x 为奇函数,则()()f x f x -=-, 令0x =得,(0)(0)f f =-,即(0)0f =,所以0a =,此时()f x x x =为奇函数. …… 4分(2)因为对任意的[2 3]x ∈,,()0f x ≥恒成立,所以min ()0f x ≥.当0a ≤时,对任意的[2 3]x ∈,,()0f x x x a a =--≥恒成立,所以0a ≤; …… 6分 当0a >时,易得22 () x ax a x a f x x ax a x a ⎧-+-<⎪=⎨--⎪⎩,,,≥在(2a ⎤-∞⎥⎦,上是单调增函数,在 2a a ⎡⎤⎢⎥⎣⎦,上 是单调减函数,在[) a +∞,上是单调增函数, 当02a <<时,min ()(2)2(2)0f x f a a ==--≥,解得43a ≤,所以43a ≤;当23a ≤≤时,min ()()0f x f a a ==-≥,解得0a ≤,所以a 不存在;当3a >时,{}{}min ()min (2)(3)min 2(2)3(3)0f x f f a a a a =----,=,≥,解得92a ≥, 所以92a ≥;综上得,43a ≤或92a ≥. …… 10分(3)设[]()()F x f f x a =+, 令()t f x a x x a =+=-则()y f t ==t t a a --,4a >,·7·第一步,令()0f t =t t a a ⇔-=,所以,当t a <时,20t at a -+=,判别式(4)0a a ∆=->,解得1t =2t =; 当t a ≥时,由()0f t =得,即()t t a a -=,解得3t =第二步,易得12302a t t a t <<<<<,且24a a <,① 若1x x a t -=,其中2104a t <<, 当x a <时,210x ax t -+=,记21()p x x ax t =-+,因为对称轴2a x a =<,1()0p a t =>,且21140a t ∆=->,所以方程210t at t -+=有2个不同的实根; 当x a ≥时,210x ax t --=,记21()q x x ax t =--,因为对称轴2a x a =<,1()0q a t =-<,且22140a t ∆=+>,所以方程210x ax t --=有1个实根, 从而方程1x x a t -=有3个不同的实根;② 若2x x a t -=,其中2204a t <<,由①知,方程2x x a t -=有3个不同的实根;③ 若3x x a t -=,当x a >时,230x ax t --=,记23()r x x ax t =--,因为对称轴2a x a =<,3()0r a t =-<,且23340a t ∆=+>,所以方程230x ax t --=有1个实根; 当x a ≤时,230x ax t -+=,记23()s x x ax t =--,因为对称轴2a x a =<,3()0s a t =>,且2334a t ∆=-,2340a t ->⇔324160a a --<, …… 14分记32()416m a a a =--,则()(38)0m a a a '=->,故()m a 为(4 )+∞,上增函数,且(4)160m =-<,(5)90m =>, 所以()0m a =有唯一解,不妨记为0a ,且0(45)a ∈,,·8·若04a a <<,即30∆<,方程230x ax t -+=有0个实根; 若0a a =,即30∆=,方程230x ax t -+=有1个实根; 若0a a >,即30∆>,方程230x ax t -+=有2个实根,所以,当04a a <<时,方程3x x a t -=有1个实根; 当0a a =时,方程3x x a t -=有2个实根; 当0a a >时,方程3x x a t -=有3个实根.综上,当04a a <<时,函数[]()y f f x a =+的零点个数为7; 当0a a =时,函数[]()y f f x a =+的零点个数为8;当0a a >时,函数[]()y f f x a =+的零点个数为9. …… 16分(注:第(1)小问中,求得0a =后不验证()f x 为奇函数,不扣分;第(2)小问中利用分离参数法参照参考答案给分;第(3)小问中使用数形结合,但缺少代数过程的只给结果分.)20.(本小题满分16分)设{}n a 是公差为d 的等差数列,{}n b 是公比为q (1q ≠)的等比数列.记n n n c a b =+. (1)求证:数列{}1n n c c d +--为等比数列; (2)已知数列{}n c 的前4项分别为4,10,19,34. ① 求数列{}n a 和{}n b 的通项公式;② 是否存在元素均为正整数的集合A ={1n ,2n ,…,} k n (4k ≥,k *∈N ),使得数列 1n c ,2n c ,…,k n c 为等差数列?证明你的结论. 解:(1)证明:依题意,()()111n n n n n n c c d a b a b d +++--=+-+-(1)0n b q =-≠, …… 3分 从而2111(1)(1)n n n n n n c c d b q q c c d b q ++++---==---,又211(1)0c c d b q --=-≠,所以{}1n n c c d +--是首项为1(1)b q -,公比为q 的等比数列. …… 5分(2)① 法1:由(1)得,等比数列{}1n n c c d +--的前3项为6d -,9d -,15d -, 则()29d -=()()615d d --,·9·解得3d =,从而2q =, …… 7分 且11114 3210 a b a b +=⎧⎨++=⎩,,解得11a =,13b =,所以32n a n =-,132n n b -=⋅. …… 10分法2:依题意,得1111211311410219334a b a d b q a d b q a d b q +=⎧⎪++=⎪⎨++=⎪⎪++=⎩,,,, …… 7分 消去1a ,得1121132116915d b q b d b q b q d b q b q +-=⎧⎪+-=⎨⎪+-=⎩,,,消去d ,得2111321112326b q b q b b q b q b q ⎧-+=⎪⎨-+=⎪⎩,,消去1b ,得2q =,从而可解得,11a =,13b =,3d =,所以32n a n =-,132n n b -=⋅. …… 10分 ② 假设存在满足题意的集合A ,不妨设l ,m ,p ,r A ∈()l m p r <<<,且l c ,m c , p c ,r c 成等差数列, 则2m p l c c c =+,因为0l c >,所以2m p c c >, ① 若1p m >+,则2p m +≥,结合①得,112(32)32(32)32m p m p --⎡⎤-+⋅>-+⋅⎣⎦13(2)232m m ++-+⋅≥, 化简得,8203m m -<-<, ②因为2m ≥,m *∈N ,不难知20m m ->,这与②矛盾, 所以只能1p m =+, 同理,1r p =+,所以m c ,p c ,r c 为数列{}n c 的连续三项,从而122m m m c c c ++=+, 即()11222m m m m m m a b a b a b +++++=+++,故122m m m b b b ++=+,只能1q =,这与1q ≠矛盾,所以假设不成立,从而不存在满足题意的集合A . …… 16分·10·(注:第(2)小问②中,在正确解答①的基础上,写出结论“不存在”,就给1分.)南通市2019届高三第二次调研测试数学Ⅱ(附加题)A .[选修4-1:几何证明选讲](本小题满分10分)如图,从圆O 外一点P 引圆的切线PC 及割线PAB ,C 为切点. 求证:AP BC AC CP ⋅=⋅. 证明:因为PC 为圆O 的切线,所以PCA CBP ∠=∠,3分 又CPA CPB ∠=∠,故△CAP ∽△BCP , …… 7分 所以AC AP BC PC=,即AP BC AC CP ⋅=⋅. …… 10分 B .[选修4-2:矩阵与变换](本小题满分10分)设23⎡⎤⎢⎥⎣⎦是矩阵232a ⎡⎤=⎢⎥⎣⎦M 的一个特征向量,求实数a 的值. 解:设23⎡⎤⎢⎥⎣⎦是矩阵M 属于特征值λ的一个特征向量,则232a ⎡⎤⎢⎥⎣⎦23λ⎡⎤=⎢⎥⎣⎦23⎡⎤⎢⎥⎣⎦, …… 5分 故262 123 a λλ+=⎧⎨=⎩,,解得4 1. a λ⎧⎨=⎩=,…… 10分C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,设直线π3θ=与曲线210cos 40ρρθ-+=相交于A ,B 两点,求线段AB 中点的极坐标.解:(方法1)将直线π3θ=化为普通方程得,y =,将曲线210cos 40ρρθ-+=化为普通方程得,221040x y x +-+=, …… 4分 联立221040y x y x ⎧=⎪⎨+-+=⎪⎩,并消去y 得,22520x x -+=, P(第21 - A 题)·11·解得112x =,22x =,所以AB 中点的横坐标为12524x x +=…… 8分 化为极坐标为()5π 23,. …… 10分 (方法2)联立直线l 与曲线C 的方程组2π310cos 40θρρθ⎧=⎪⎨⎪-+=⎩,, …… 2分 消去θ,得2540ρρ-+=,解得11ρ=,24ρ=, …… 6分 所以线段AB 中点的极坐标为()12π 23ρρ+,,即()5π 23,. …… 10分 (注:将线段AB 中点的极坐标写成()5π 2π ()23k k +∈Z ,的不扣分.) D .[选修4-5:不等式选讲](本小题满分10分)设实数a ,b ,c 满足234a b c ++=,求证:22287a b c ++≥.证明:由柯西不等式,得()()222222123a b c ++++≥()223a b c ++, …… 6分 因为234a b c ++=,故22287a b c ++≥, …… 8分当且仅当123a b c ==,即27a =,47b =,67c =时取“=”. …… 10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在平面直角坐标系xOy 中,点(84)A -,,(2)P t ,(0)t <在抛物线22y px =(0)p >上. (1)求p ,t 的值;(2)过点P 作PM 垂直于x 轴,M 为垂足,直线AM 与抛物线的另一交点为B ,点C 在直线 AM 上.若PA ,PB ,PC 的斜率分别为1k ,2k ,3k ,且1232k k k +=,求点C 的坐标. 解:(1)将点(84)A -,代入22y px =,得1p =, …… 2分 将点(2)P t ,代入22y x =,得2t =±,(第22题)·12·因为0t <,所以2t =-. …… 4分 (2)依题意,M 的坐标为(20),, 直线AM 的方程为2433y x =-+,联立224332y x y x⎧=-+⎪⎨⎪=⎩,并解得B ()112,, …… 6分 所以113k =-,22k =-,代入1232k k k +=得,376k =-, …… 8分从而直线PC 的方程为7163y x =-+,联立24337163y x y x ⎧=-+⎪⎨⎪=-+⎩,并解得C ()823-,. …… 10分23.(本小题满分10分)设A ,B 均为非空集合,且AB =∅,AB ={ 123,,,…,}n (n ≥3,n *∈N ).记A ,B 中元素的个数分别为a ,b ,所有满足“a ∈B ,且b A ∈”的集合对(A ,B )的个数为n a . (1)求a 3,a 4的值; (2)求n a .解:(1)当n =3时,AB ={1,2,3},且AB =∅,若a =1,b =2,则1B ∈,2A ∈,共01C 种;若a =2,b =1,则2B ∈,1A ∈,共11C 种,所以a 3=01C 11+ C 2=;…… 2分 当n =4时,A B ={1,2,3,4},且A B =∅,若a =1,b =3,则1B ∈,3A ∈,共02C 种; 若a =2,b =2,则2B ∈,2A ∈,这与AB =∅矛盾;若a =3,b =1,则3B ∈,1A ∈,共22C 种,所以a 4=02C 22+ C 2=. …… 4分(2)当n 为偶数时,A B ={1,2,3,…,n },且A B =∅,·13·若a =1,b 1n =-,则1B ∈,1n -A ∈,共02C n -(考虑A )种; 若a =2,b 2n =-,则2B ∈,2n -A ∈,共12C n -(考虑A )种; ……若a =12n -,b 12n =+,则12n -B ∈,12n +A ∈,共222C n n --(考虑A )种; 若a =2n ,b 2n =,则2n B ∈,2n A ∈,这与A B =∅矛盾;若a 12n =+,b 12n =-,则12n +B ∈,12n -A ∈,共22C nn -(考虑A )种; ……若a =1n -,b 1=,则1n -B ∈,1A ∈,共(考虑A )22C n n --种,所以a n =02C n -+12C n -+…+222C n n --+22C nn -+…+122222C 2C n n n n n -----=-; …… 8分当n 为奇数时,同理得,a n =02C n -+12C n -+…+222C 2n n n ---=, 综上得,122222C 2 .n n n n n n a n ----⎧⎪-=⎨⎪⎩,为偶数,,为奇数 …… 10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南通市2019届高三第二次调研测试参考答案及评分建议数学I一、填空题:本大题共14小题,每小题5分,共70分. 1. 曲线32y x x =-在点(1,-1)处的切线方程是 ▲ . 2. 若15ii 3ia b +=+-(a b ∈,R ,i 为虚数单位),则ab = ▲ . 3.命题“若实数a 满足2a ≤,则24a <”的否命题是 ▲ 命题(填“真”、“假”之一). 4. 把一个体积为27cm 3的正方体木块表面涂上红漆,然后锯成体积为1 cm 3的27个小正方体,现从中任取一块,则这一块至少有一面涂有红漆的概率为 ▲ .5. 某教师出了一份三道题的测试卷,每道题1分,全班得3分、2分、1分和0分的学生所占比例分别为30%、50%、10%和10%,则全班学生的平均分为 ▲ 分.6.设{}(20)(01)M m m ==+∈R ,,,a a 和{}(11)(11)N n n ==+-∈R ,,,b b 都是元素为向量的集合,则M ∩N = ▲ .7. 在如图所示的算法流程图中,若输入m = 4,n = 3,则输出的a = ▲ .8.设等差数列{}n a 的公差为正数,若1231231580a a a a a a ++==,,则111213a a a ++= ▲ .9. 设αβ,是空间两个不同的平面,m ,n 是平面α及β外的两条不同直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α. 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题: ▲ (用序号表示). 10.定义在R 上的偶函数()f x 满足()(2)f x f x =+,当[]35x ∈,时,()24f x x =--. 给出下列不等式:①()()sin cos 6π6πf f <;②(sin1)(cos1)f f >;③()()cos sin 332π2πf f <;④(cos2)(sin 2)f f >.其中正确的是 ▲ (用序号表示).11.在平面直角坐标系xOy 中,已知A 、B 分别是双曲线2213y x -=的左、右焦点,△ABC 的顶点C 在双曲线的右支上,则sin sin sin A BC-的值是 ▲ .12.在平面直角坐标系xOy中,设()11P x y ,、()22Q x y ,,定义:1212()d P Q x x y y =-+-,. 已知()10B ,,点M 为直线220x y -+=上动点,则使()d B M ,取最小值时点M 的坐标是 ▲ .13.若实数x ,y ,z ,t 满足110000x y z t ≤≤≤≤≤,则x z y t +的最小值为 ▲ .14.在平面直角坐标系xOy 中,设A 、B 、C 是圆x 2+y 2=1上相异三点,若存在正实数λμ,,使得OC =OA OB λμ+,则()223λμ+-的取值范围是 ▲ . 【填空题答案】1. x -y -2=02. 825-3. 真4. 26275. 26.(){}20, 7. 12 8. 1059. ①③④⇒②或②③④⇒① 10. ④ 11. 21- 12. ()312, 13. 15014. ()2+∞,二、解答题:本大题共6小题,共计90分,解答时应写出文字说明,证明或演算步骤. 15.(本小题满分14分)如图,平面PAC ⊥平面ABC ,点E 、F 、O 分别为边P A 、PB 、AC 的中点,点G 是线段CO 的中点,4AB BC AC ===,PA PC ==.求证: (1)PA ⊥平面EBO ; (2)FG ∥平面EBO .【证明】由题意可知,PAC ∆为等腰直角三角形,ABC ∆为等边三角形. …………………2分(1)因为O 为边AC 的中点,所以BO AC ⊥, 因为平面PAC ⊥平面ABC ,平面PAC平面ABC AC =,PABCOEFG(第15题)BO ⊂平面ABC ,所以BO ⊥面PAC . …………………5分因为PA ⊂平面PAC ,所以BO PA ⊥,在等腰三角形PAC 内,O ,E 为所在边的中点,所以OE PA ⊥, 又BO OE O =,所以PA ⊥平面EBO ;…………………8分 (2)连AF 交BE 于Q ,连QO .因为E 、F 、O 分别为边P A 、PB 、PC 的中点,所以2AO OG =,且Q 是△P AB 的重心,…………………10分于是2AQAO QF OG==,所以FG //QO . …………………12分 因为FG ⊄平面EBO ,QO ⊂平面EBO ,所以FG ∥平面EBO . …………………14分【注】第(2)小题亦可通过取PE 中点,作过FG 且与平面EBO 平行的平面证得. 16.(本小题满分14分)已知函数)()2cos sin 222xx x f x =-.(1)设ππ22θ⎡⎤∈-⎢⎥⎣⎦,,且()1f θ=,求θ的值; (2)在△ABC 中,AB =1,()1f C =,且△ABC ,求sin A +sin B 的值.【解】(1)2()2sin cos 222x x xf x =-cos )sin x x +-=()π2cos 6x + (3)分由()π2cos 16x ++=,得()π1co s 62x +=, ………………5分 于是ππ2π()63x k k +=±∈Z ,因为ππ22x ⎡⎤∈-⎢⎥⎣⎦,,所以ππ26x =-或. ………………7分(2)因为(0π)C ∈,,由(1)知π6C =. ………………9分因为△ABC 1πsin 26ab =,于是ab =. ① 在△ABC 中,设内角A 、B 的对边分别是a ,b .PACOE FGQ由余弦定理得2222π12cos66a b ab a b =+-=+-,所以227a b +=. ② 由①②可得2a b =⎧⎪⎨=⎪⎩,或2.a b ⎧=⎪⎨=⎪⎩ 于是2a b +=. ………………12分由正弦定理得sin sin sin 112A B C a b ===,所以()1s i 2A B a b +=+=+. ………………14分 17.(本小题满分14分)在平面直角坐标系xOy 中,如图,已知椭圆E :22221(0)y x a b a b+=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B .设直线11A B 的倾斜角的正弦值为13,圆C 与以2OA 为直径的圆关于直线11A B 对称.(1)求椭圆E 的离心率;(2)试判断直线11A B 与圆C 的位置关系; (3)若圆C 的面积为π,求圆C 的方程. 【解】(1)设椭圆E 的焦距为2c (c >0),因为直线11A B 的倾斜角的正弦为1313=,于是228a b =,即228()a a c =-,所以椭圆E 的离心率e == …………4分 (2)由e =可设()40a k k =>,c,则b =, 于是11A B的方程为:40x k -+=, 故2OA 的中点()20k ,到11A B 的距离d =242k kk +=, …………………………6分 又以2OA 为直径的圆的半径2r k =,即有d r =,所以直线11A B 与圆C 相切. …………………………8分 (3)由圆C 的面积为π知圆半径为1,从而12k =, …………………………10分设2OA 的中点()10,关于直线11A B:20x -+=的对称点为()m n , ,则1,112022n m m n ⎧=-⎪-⎨+⎪-+=⎩. …………………………12分解得13m n ==, 所以,圆C 的方程为()(22113x y -+=. …………………………14分18.(本小题满分16分)如图,实线部分的月牙形公园是由分别在半径都是2km 的圆P 上的一段优弧和圆Q 上的一段劣弧构成,点P 在圆Q 上,点Q 在圆P 上,现在要在公园里建一块顶点都在圆P 上的多边形活动场地.(1)如图甲,要建的活动场地为△RST ,求场地的最大面积;(2)如图乙,要建的活动场地为等腰梯形ABCD ,求场地的最大面积.【解】(1)如右图,过S 作SH ⊥RT 于H , S △RST =RT SH ⋅21. ……………………2分(第17题甲)(第17题乙)TQPNMSR甲乙由题意,△RST 在月牙形花园里, RT与圆Q只能相切或相离; ……………………4分RT 左边的部分是一个大小不超过半圆的弓形, 则有RT ≤4,SH ≤2,当且仅当RT 切圆Q 于P 时(如下左图),上面两个不等式中等号同时成立.此时,场地面积的最大值为S △RST =1422⨯⨯=4(km 2). (6)分(2)同(1)的分析,要使得场地面积最大,AD 左边的部分是一个大小不超过半圆的弓形,AD 必须切圆Q 于P ,再设∠BP A =θ,则有()11π22sin 222sin(π2)4(sin sin cos )0222ABCD S =⨯⨯⨯⨯+⨯⨯⨯-=+<<四边形θθθθθθ.……………………8分令θθθcos sin sin +=y ,则)sin (sin cos cos cos θθθθθ-++='y 1cos cos 22-+=θθ. ………………… 11分若0='y ,1πcos 23θθ==,,又()π03θ∈,时,0>'y ,()ππ32θ∈,时,0<'y , …………………14分函数θθθcos sin sin +=y 在π3θ=处取到极大值也是最大值,故π3θ=时,场地面积的最大值为36(km 2). …………………16分 19. (本小题满分16分)设定义在区间[x 1, x 2]上的函数y =f (x )的图象为C ,M 是C 上的任意一点,O 为坐标原点,设向量OA =()()11x f x ,,()()22OB x f x =,,OM =(x ,y ),当实数λ满足x =λ x 1+(1-λ) x 2时,记向量ON =λOA +(1-λ)OB .定义“函数y =f (x )在区间[x 1,x 2]上可在标准k 下线性近似”是指“MN ≤k 恒成立”,其中k 是一个确定的正数.(1)设函数 f (x )=x 2在区间[0,1]上可在标准k 下线性近似,求k 的取值范围;(2)求证:函数()ln g x x =在区间1e e ()m m m +⎡⎤∈⎣⎦R ,上可在标准k=18下线性近似.(参考数据:e=2.718,ln(e -1)=0.541). 【解】(1)由ON =λOA +(1-λ)OB 得到BN =λBA , 所以B,N,A三点在一条直线上, ……………………2分又由x =λ x 1+(1-λ) x 2与向量ON =λOA +(1-λ)OB ,得N 与M 的横坐标相同. ……………4分对于 [0,1]上的函数y=x 2,A (0,0),B (1,1), 则有()221124MN x x x =-=--+,故|104MN ⎡⎤∈⎢⎥⎣⎦,; 所以k 的取值范围是)14⎡+∞⎢⎣,. ……………………6分(2)对于1e e m m +⎡⎤⎣⎦,上的函数ln y x =,A (e m m ,),B (1e 1m m ++,), ……………………8分则直线AB 的方程11(e )ee mm my m x +-=--, ……………………10分令11()ln (e )eem m mh x x m x +=----,其中()1e e m m x m +⎡⎤∈∈⎣⎦R ,, 于是111()e em m h x x +'=--, ……………………13分列表如下: MN =(h x 又()1e 2(e e )ln e 1e 1m m h +--=--≈-0.12318<,从而命题成立. ……………………16分 20.(本小题满分16分)已知数列{}n a 满足2*12()n a a a n n +++=∈N .(1)求数列{}n a 的通项公式;(2)对任意给定的*k ∈N ,是否存在*p r ∈N ,(k p r <<)使111k p ra a a ,,成等差数列?若存在,用k 分别表示p 和r ;若不存在,请说明理由;(3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为123,,n n n a a a . 【解】(1)当1n =时,11a =; 当*2n n ∈N ≥,时,2121(1)n a a a n -+++=-,所以22(1)21n a n n n =--=-;综上所述,*21()n a n n =-∈N . ……………………3分 (2)当1k =时,若存在p ,r 使111k p r a a a ,,成等差数列,则1213221r p k pa a a p -=-=-,因为2p ≥,所以0r a <,与数列{}n a 为正数相矛盾,因此,当1k =时不存在; …………5分当2k ≥时,设k p r a x a y a z ===,,,则112x z y+=,所以2xyz x y=-, ……………………7分令21y x =-得(21)z xy x x ==-,此时21k a x k ==-,212(21)1p a y x k ==-=--, 所以21p k =-,2(21)(43)2(452)1r a z k k k k ==--=-+-, 所以2452r k k =-+;综上所述,当1k =时,不存在p ,r ;当2k ≥时,存在221,452p k r k k =-=-+满足题设.……………………10分(3)作如下构造:12322(23)(23)(25)(25)n n n a k a k k a k =+=++=+,,,其中*k ∈N , 它们依次为数列{}n a 中的第2265k k ++项,第2288k k ++项,第221013k k ++项, ……12分显然它们成等比数列,且123n n n a a a <<,123n n n a a a +>,所以他们能组成三角形.由*k ∈N 的任意性,这样的三角形有无穷多个. ……………………14分下面用反证法证明其中任意两个三角形111A B C 和222A B C 不相似: 若三角形111A B C 和222A B C 相似,且12k k ≠,则11222212(23)(25)(23)(25)(23)(23)k k k k k k ++++=++, 整理得121225252323k k k k ++=++,所以12k k =,这与条件12k k ≠相矛盾, 因此,任意两个三角形不相似.故命题成立. ……………………16分 【注】1.第(2)小题当a k 不是质数时,p ,r 的解不唯一;2. 第(3)小题构造的依据如下:不妨设123n n n <<,且123n n n a a a ,,符合题意,则公比q >1,因123n n n a a a <<,又123n n n a a a +>,则21q q +>,所以1q <因为三项均为整数,所以q为1⎛ ⎝内的既约分数且1n a 含平方因子,经验证,仅含21或23时不合,所以12*(23)()n a k p k p =+∈N ,;3.第(3)小题的构造形式不唯一.数学II (附加题)21.【选做题】本题包括A ,B ,C ,D 四小题中,请选定其中.....两题..作答..,每小题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.A .选修4—1:几何证明选讲自圆O 外一点P 引圆的一条切线,切点为A ,M 为P A 的中点, 过M 引圆的割线交圆于B ,C 两点,且∠BMP =100°,∠BPC =40°, 试求∠MPB 的大小.【解】因为MA 为圆O 的切线,所以2MA MB MC =⋅. 又M 为P A 的中点,所以2MP MB MC =⋅. 因为B M ∠=∠,所以B M∆∆. ………………5分 于是MPB MCP ∠=∠. 在△MCP中,由180MPB MCP BPC BMP ∠+∠+∠+∠=︒得,∠MPB =20°. ………………10分 B .选修4—2:矩阵与变换已知二阶矩阵A a b c d ⎡⎤=⎢⎥⎣⎦,矩阵A 属于特征值11λ=-的一个特征向量为111 ⎡⎤=⎢⎥-⎣⎦α,属于特征值24λ=的一个特征向量为232⎡⎤=⎢⎥⎣⎦α.求矩阵A .【解】由特征值、特征向量定义可知,A 1α1λ=1α, 即11111 a b c d ⎡⎤⎡⎤⎡⎤=-⨯⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11.a b c d -=-⎧⎨-=⎩,……………………5分 同理可得3212328a b c d +=⎧⎨+=⎩,, 解得232, ,, a b c d ====.因此矩阵A 2321 ⎡⎤=⎢⎥⎣⎦. …………10分 C .选修4—4:坐标系与参数方程(第21—A 题)在平面直角坐标系xOy 中,已知曲线C 的参数方程为()2cos sin ,为参数x y ααα=⎧⎨=⎩.以直角坐标系原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为()πc o s 24ρθ-=P为曲线C 上的一个动点,求点P 到直线l 距离的最小值.【解】()πcos 4ρθ-=cos sin 4ρθρθ+=,则直线l的直角坐标方程为4x y +=. …………………4分设点P 的坐标为()2cos sin ,αα,得P 到直线l 的距离d =,即d =,其中cos sinϕϕ=…………………8分当()sin 1αϕ+=时,m i n d = ………………10分 D .选修4—5:不等式选讲若正数a ,b ,c 满足a +b +c =1,求111323232a b c +++++的最小值. 【解】因为正数a ,b ,c 满足a +b +c =1, 所以,()()()()()2111323232111323232a b c a b c +++++++++⎡⎤⎣⎦+++≥,………………5分即1111323232≥a b c +++++, 当且仅当323232a b c +=+=+,即13a b c ===时,原式取最小值1. (10)分【必做题】第22题、第23题,每题10分,共计20分. 解答时应写出文字说明,证明过程或演算步骤.22.在正方体1111ABCD A B C D -中,O 是BD 的中点,E 是D 1O 上一点,且D 1E =λEO .ABDO(第22题)EB 1A 1CC 1D 1(1)若λ=1,求异面直线DE 与CD 1所成角的余弦值; (2)若平面CDE ⊥平面CD 1O .求λ的值.【解】(1)不妨设正方体的棱长为1,以1,,DA DC DD 为单位正交基底建立如图所示的空间直角坐标系D xyz -. 则A (1,0,0),()11022O ,,()010C ,,,D 1(0,0,1), E ()111442,,, 于是()111442DE =,,,()1011CD =-,,. 由cos 1DE CD 〈〉,=11||||DE CD DE CD ⋅⋅=. 所以异面直线AE 与CD 1所成角的余弦值为. ……………………5分 (2)设平面CD 1O 的向量为m =(x 1,y 1,z 1),由m ·CO =0,m ·1CD =0得 1111110220x y y z ⎧-=⎪⎨⎪-+=⎩,, 取x 1=1,得y 1=z 1=1,即m =(1,1,1) . (7)分由D 1E =λEO ,则E 12(1)2(1)1λλλλλ⎛⎫ ⎪+++⎝⎭,,,DE =12(1)2(1)1λλλλλ⎛⎫ ⎪+++⎝⎭,,.又设平面CDE 的法向量为n =(x 2,y 2,z 2),由n ·CD =0,n ·DE =0. 得 2222002(1)2(1)1y x y z λλλλλ=⎧⎪⎨++=⎪+++⎩,, 取x 2=2,得z 2=-λ,即n =(-2,0,λ) . 因为平面CDE ⊥平面CD 1F ,所以m ·n =0,得λ=2. ……………………10分23.一种抛硬币游戏,规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为ξ,求ξ的分布列和期望E ξ; (2)求恰好得到n 分的概率. 【解】(1)所抛5次得分ξ的分布列为(或P (ξ=i )= ()5551C 2i - (i =5,6,7,8,9,10) . Eξ=()5105551C2i i i -=⋅∑=152(分) . ……………………5分 (2)令p n 表示恰好得到n 分的概率. 不出现n 分的唯一情况是得到n -1分以后再掷出一次反面. 因为“不出现n 分”的概率是1-p n ,“恰好得到n -1分”的概率是p n -1, 因为“掷一次出现反面”的概率是12,所以有1-p n =12p n -1,……………………7分即p n -23=-12()123n p --. 于是{}23n p -是以p 1-23=12-23=-16为首项,以-12为公比的等比数列.所以p n -23=-16()112n --,即p n =()11232n⎡⎤+-⎢⎥⎣⎦. 答:恰好得到n 分的概率是()11232n⎡⎤+-⎢⎥⎣⎦. ……………………10分。

相关文档
最新文档