常见的数量关系1

合集下载

常见的数量关系

常见的数量关系

常见的数量关系

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和一个加数=和+另一个加数

被减数-减数=差减数=被减数-差被减数=减数+差

因数×因数=积一个因数=积÷另一个因数

被除数÷除数=商除数=被除数÷商被除数=商×除数

有余数的除法:被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变.例:90÷5÷6=90÷(5×6)

6、1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。 1亩=666.666平方米。

1升=1立方分米=1000毫升 1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也

就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

常见的数量关系

常见的数量关系

常见的数量关系

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和一个加数=和+另一个加数

被减数-减数=差减数=被减数-差被减数=减数+差

因数×因数=积一个因数=积÷另一个因数

被除数÷除数=商除数=被除数÷商被除数=商×除数

有余数的除法:被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、1公里=1千米1千米=1000米

1米=10分米1分米=10厘米1厘米=10毫米

1平方米=100平方分米1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

常见的数量关系1

常见的数量关系1

常见的数量关系
这两个问题有什么共同点?
数量关系: 单价×数量=总价 总价÷数量=单价 总价÷单价=数量
乐乐说:我上学走了6分钟。 洋洋说:我上学走了8分钟。
乐乐说:我家里学校360米。 洋洋说:我家离学校560米。
数量关系: 路程÷速度=时间 路程÷时间=速度 速度×时间=路程
9米/秒
1800米/分
Biblioteka Baidu
这节课你有什么 新的收获?

常见的数量关系

常见的数量关系

常见的数量关系

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和一个加数=和+另一个加数

被减数-减数=差减数=被减数-差被减数=减数+差

因数×因数=积一个因数=积÷另一个因数

被除数÷除数=商除数=被除数÷商被除数=商×除数

有余数的除法:被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、1公里=1千米1千米=1000米

1米=10分米1分米=10厘米1厘米=10毫米

1平方米=100平方分米1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。1亩=平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

常见的数量关系

常见的数量关系

常见的数量关系

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=与一个加数=与+另一个加数

被减数-减数=差减数=被减数-差被减数=减数+差

因数×因数=积一个因数=积÷另一个因数

被除数÷除数=商除数=被除数÷商被除数=商×除数

有余数的除法: 被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、1公里=1千米1千米=1000米

1米=10分米1分米=10厘米1厘米=10毫米

1平方米=100平方分米1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。1亩=666、666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项与后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

常见数量关系

常见数量关系

常见数量关系

每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

速度×时间=路程路程÷速度=时间路程÷时间=速度

单价×数量=总价总价÷单价=数量总价÷数量=单价

工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

加数+加数=和和-加数=另一个加数

被减数-减数=差被减数-差=减数差+减数=被减数

因数×因数=积积÷一个因数=另一个因数

被除数÷除数=商被除数÷商=除数商×除数=被除数

树问题中的主要数量关系是:

间隔数×每个间隔的米数=一共的米数;

锯木头问题的主要数量关系是:

锯的次数×锯一次用的时间=一共要的时间;

爬楼梯问题中的数量关系式是:

楼梯的级数÷每两层楼之间楼梯的级数=楼梯的段数

常用单位换算

长度单位换算

1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米

面积单位换算

1平方千米=100公顷1公顷=10000平方米

1平方米=100平方分米1平方分米=100平方厘米

1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米1立方分米=1000立方厘米

1立方分米=1升1立方厘米=1毫升

1立方米=1000升

重量单位换算

1吨=1000 千克1千克=1000克1千克=1公斤

人民币单位换算

1元=10角1角=10分1元=100分

时间单位换算

1世纪=100年1年=12月

大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月

平年2月28天, 闰年2月29天

平年全年365天, 闰年全年366天

1日=24小时1时=60分1分=60秒1时=3600秒

常见的数量关系

常见的数量关系

常见的数量关系 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

常见的数量关系

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和一个加数=和+另一个加数

被减数-减数=差减数=被减数-差被减数=减数+差

因数×因数=积一个因数=积÷另一个因数

被除数÷除数=商除数=被除数÷商被除数=商×除数

有余数的除法:被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。 1亩=平方米。

1升=1立方分米=1000毫升 1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

常见的数量关系

常见的数量关系

常见的数量关系

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和一个加数=和+另一个加数

被减数-减数=差减数=被减数-差被减数=减数+差

因数×因数=积一个因数=积÷另一个因数

被除数÷除数=商除数=被除数÷商被除数=商×除数

有余数的除法:被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、1公里=1千米1千米=1000米

1米=10分米1分米=10厘米1厘米=10毫米

1平方米=100平方分米1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

小学数学各种常见的数量关系式

小学数学各种常见的数量关系式

小学数学各种常见的数量关系式1、每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

2、一倍数×倍数=几倍数

几倍数÷一倍数=倍数

几倍数÷倍数=一倍数

3、速度×时间=路程

路程÷速度=时间

路程÷时间=速度

4、单价×数量=总价

总价÷单价=数量

总价÷数量=单价

5 、工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6、加数+加数=和

和-一个加数=另一个加数

7 、被减数-减数=差

被减数-差=减数

差+减数=被减数

8、因数×因数=积

积÷一个因数=另一个因数

9、被除数÷除数=商

被除数÷商=除数

商×除数=被除数

小学数学图形计算公式

1、正方形

C周长 S面积 a边长

周长=边长×4

C=4a

面积=边长×边长

S=a×a

2、正方体

V:体积 a:棱长

表面积=棱长×棱长×6

S表=a×a×6

体积=棱长×棱长×棱长

V=a×a×a

3、长方形

C周长 S面积 a边长

周长=(长+宽)×2

C=2(a+b)

面积=长×宽

S=ab

4、长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2

(2)体积=长×宽×高

V=abh

5、三角形

s面积 a底 h高

面积=底×高÷2

s=ah÷2

三角形高=面积×2÷底

三角形底=面积×2÷高6、平行四边形

s面积 a底 h高

面积=底×高

s=ah

7、梯形

s面积 a上底 b下底 h高面积=(上底+下底)×高÷2

8、圆形

S面积 C周长∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径

C=∏d=2∏r

(2)面积=半径×半径×∏

9、圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

常见的数量关系1

常见的数量关系1
比单价: 27÷9=3(元)
3元﹤4元 36元﹥27元
比总价:
Βιβλιοθήκη Baidu
4×9=36(元)
答:小丁丁买9支一盒包装的合算。
我来试试
1、买7个单价为58元的足球,一共用去了多少钱?
数量关系: 单价 算式: 7 数量关系: 算式:
×
数量=总价 58 = 406(元)
×
2、一盒铅笔芯的单价为3元,81元一共可以买多少盒这样的铅笔芯?
总价÷ 单价=数量 81 ÷3=27(盒)
3、学校图书室买了6本同样的故事书,一共用去108元,每本故事 书多少元?
现在谁说说速度、时间和路程之 间的数量关系。
• 速度 × • 路程 ÷ • 路程 ÷
时间=路程 时间=速度 速度=时间
• 通过上面的学习,你有 什么收获?
作业:P30 第6、7、8题
选择其中两个条件,提一个问题,编 一道应用题。
一双儿童鞋25元 共花2元 共花100元 买4支铅笔 买3千克糖 一支铅笔5角
数量关系: 总价÷ 数量 = 单价 算式: 108 ÷ 6 = 18(元)
每件商品的价钱叫做 ---单价 购买商品的多少叫做 ---数量 一共花的钱数叫做 ---总价
单价×数量=总价
总价÷ 数量=单价
总价÷ 单价=数量
自学P28-29例3
路程问题

常见的数量关系

常见的数量关系

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和一个加数=和+另一个加数

被减数-减数=差减数=被减数-差被减数=减数+差

因数×因数=积一个因数=积÷另一个因数

被除数÷除数=商除数=被除数÷商被除数=商×除数

有余数的除法:被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。 1亩=平方米。

1升=1立方分米=1000毫升 1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

小学数学常见数量关系

小学数学常见数量关系

小学数学公式汇总

单位换算

(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米

1厘米=10毫米

(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米(4)1吨=1000千克1

千克=1000克=1公斤=1市斤

(5)1公顷=10000平方米1亩=666.666平方米

(6)1升=1立方分米=1000毫升1毫升=1立方厘米

1,每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2,1倍数×倍数=

几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

3,速度×时间=路程路程÷速度=时间路程÷时间=速度

4,单价×数量=总价总价÷单价=数量总价÷数量=单价

5,工作效率×工作时间=工作总量工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6,加数+加数=和和-一个加数=另一个加数

7,被减数-减数=差被减数-差=减数差+减数=被减数

8,因数×因数=积积÷一个因数=另一个因数

9,被除数÷除数=商被除数÷商=除数商×除数=被除数

小学数学图形计算公式

1正方形C周长S面积a边长

周长=边长×4C=4a

面积=边长×边长S=a×a

2正方体V:体积a:棱长

表面积=棱长×棱长×6S表=a×a×6

体积=棱长×棱长×棱长V=a×a×a

3长方形C周长S面积a边长

周长=(长+宽)×2C=2(a+b)

面积=长×宽S=ab

4长方体V:体积s:面积a:长b:宽h:高

(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)

常见的数量关系(1)_教学设计

常见的数量关系(1)_教学设计

常见的数量关系(1)_教学设计

◆您现在正在阅读的常见的数量关系(1)文章内容由收集!常见的数量关系(1)教学内容:江苏教育出版社小学数学第7册,教材第58~60页例1、例2和“练一练”,练习十二第1题。

教学要求:

1.使学生初步认识单价、数量和总价,速度、时间和路程的含义,理解、掌握这两组数量关系。

2.初步培养学生运用数学术语的能力,以及综合、抽象、概括等思维能力,并渗透事物之间相互联系的观点。

教学过程:

一、复习旧知

1.口答列式。

(1)每个文具盒10元,5个文具盒多少钱?

(2)50元钱买文具盒,每个10元,可以买多少个?

(3)50元钱买了5个同样的文具盒,每个多少钱?

指名学生口答,老师板书。

2.学生列式。

(1)一辆汽车每小时行50千米,3小时行多少千米?

(2)一辆汽车行了150千米,每小时行50千米,行了多少小时?

(3)一辆汽车3小时行了150千米,平均每小时行多少千米?

学生在练习本上列算式,然后口答、校对。

二、教学新课

1.引入新课。

我们已经学习过许多应用题,知道在工农业生产和日常生活里,有各种数量关系,并且已接触了许多数量关系。像上面做的题里有哪些数量呢,这些数量之间有怎样的关系呢,今天,我们就一起来学习一些常见的数量关系(板书课题)。

2.教学例1。

(1)出示例1,学生读题。

让学生在课本上列式解答。

学生口答算式和得数,老师板书。

(2)教学单价、数量和总价的含义。

提问:这两道题都是说的哪一方面的事?

这两道题的条件有什么共同的特点?都是求怎样的问题?

说明:这两道题都是讲的买商品的价钱的事,这里的每枝铅笔2角、每个排球55元,这样的每一件商品的价钱是单价,(板书:单价)3枝、4个这样买的件数是数量,(板书:数量)一共用的钱是总价(板书:总价)。

常见的数量关系

常见的数量关系

常见的数量关系

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和一个加数=和+另一个加数

被减数-减数=差减数=被减数-差被减数=减数+差

因数×因数=积一个因数=积÷另一个因数

被除数÷除数=商除数=被除数÷商被除数=商×除数

有余数的除法:被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、1公里=1千米1千米=1000米

1米=10分米1分米=10厘米1厘米=10毫米

1平方米=100平方分米1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

常见的数量关系

常见的数量关系

常见的数量关系

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和一个加数=和+另一个加数

被减数-减数=差减数=被减数-差被减数=减数+差

因数×因数=积一个因数=积÷另一个因数

被除数÷除数=商除数=被除数÷商被除数=商×除数

有余数的除法:被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。 1亩=666.666平方米。

1升=1立方分米=1000毫升 1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

常见的数量关系

常见的数量关系

常见的数量关系

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和一个加数=和+另一个加数

被减数-减数=差减数=被减数-差被减数=减数+差

因数×因数=积一个因数=积÷另一个因数

被除数÷除数=商除数=被除数÷商被除数=商×除数

有余数的除法:被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。 1亩=666.666平方米。

1升=1立方分米=1000毫升 1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、先说出每道题里的数量关系,再解答。
(1)小华每分走65米,他从家到学校走了12分。 他家离学校有多少米?
(2)小华家离学校有780米,他每分走65米。他 从家到学校走了多少分?
(3)小华家wenku.baidu.com学校有780米,他从家到学校走了 12分。小华平均每分走了多少米?
2、先说出每道题里的数量关系,再解答。 (1)小华每分走65米,他从家到学校走了12分。
每个茶杯多少元? 80 ÷20 = 4(元)
答:每个茶杯 4 元。
总价 ÷ 数量= 单价
例2(1)一辆汽车每小时行45千米,2小时行多少千米? 45 × 2 = 90(千米)
答:2小时行多少 90千米。
(2)小东每分步行70米,6分步行多少米? 70 × 6 = 420(米)
答: 6分步行420米 。
例1 (1)每枝铅笔 2角钱,买 3 枝铅笔用了多少钱? 2 × 3 = 6(角)
答:买 3 枝铅笔用了 6 角钱。
(2)每个排球55元,买 4 个排球用了多少元? 55 × 4 = 220(元)
答:买4个排球用了220元。
如果知道总价和单价,可以求什么?怎样求? 如果知道总价和数量,可以求什么?怎样求?
1、解答下面各题,并写出每道题里的数量关系。 (1)学校买了20个茶杯,每个4元。一共用了多 少元?
( 2 ) 学校买了20个茶杯一共用了80元。每个茶 杯4元,买了多少个茶杯? (3)学校买了20个茶杯,一共用了80元。每个 茶杯多少元?
1、解答下面各题,并写出每道题里的数量关系。 (1)学校买了20个茶杯,每个4元。一共用了多
2、先说出每道题里的数量关系,再解答。 (3)小华他家离学校有780米,他从家到学校
走了12分。小华平均每分走多少米? 780 ÷ 12 = 65 (米)
答:小华平均每分走65米。 路程 ÷ 时间 = 速度
他家离学校有多少米? 65 × 12 = 780(米)
答:他家离学校有780米。
速度 × 时间 = 路程
2、先说出每道题里的数量关系,再解答。 (2)小华家离学校有780米,他每分走65米。
他从家到学校走了多少分? 780 ÷ 65 = 12(分)
答:他从家到学校走了12分。 路程 ÷ 速度 = 时间
少元? 4 ×20 = 80(元)
答:一共用了80元。
单价 × 数量 = 总价
1、解答下面各题,并写出每道题里的数量关系。 (2)学校买茶杯一共用80元。每个茶杯4元,
买了多少个茶杯? 80 ÷4 = 20(个)
答:买了20个茶杯。
总价 ÷ 单价 = 数量
1、解答下面各题,并写出每道题里的数量关系。 (3)学校买了20个茶杯,一共用了80元。
相关文档
最新文档