功率谱估计模型法.
第6讲功率谱估计的现代方法
![第6讲功率谱估计的现代方法](https://img.taocdn.com/s3/m/e52bac66f5335a8102d22001.png)
第6讲:功率谱估计的现代方法§6.1 AR 模型法谱估计假设一个随机过程可以由AR(p)刻画-=)(n x ∑=+-⋅pk n v k n x k a 1)()()(它的功率谱为2222)()1(1)(fpj fj AR ep a ea f P ππσ--+++=这里]|)([|22n v E =σ给出一组观测数据)}1(),1(),0({-N x x x 得到估计的参数集}ˆ),(ˆ),2(ˆ),1(ˆ{2σp a a a,得到一个估计的功率谱密度PSD 。
2122)(ˆ1ˆ)(ˆ∑=-+=pk fkj ARe k af P πσ§6.1.1最大熵谱估计(MESE )假设已知)}(),1(),0({p r r r ,为了确定PSD ,外推 )2(),1(++p r p r ,有无穷多外推方法,一种原则是使信号熵最大,即有最大随机性。
对于高斯过程,熵可以表示成:⎰-⋅2121)(lndf f P C xx(1)(1)是熵表达式,C 是常数,由已知p+1个自相关值构成如下约束方程:p k k r df ef P fkj xx ,1,0)()(21212==⎰-π且知:∑+∞-∞=-⋅=k fkj xx ek r f P π2)()(用Lagrangian 乘积法构成目标函数。
⎰⎰∑--=+=2121212120)()(ln df ef P df f P S fkj xx pk ixx πλ并且求:0)(=∂∂k r S ,2,1||++=p p k经计算的得:1||0)(2+≥=⎰--p k df f P exx fmj πππ这隐含着:∑-=-=ppk fkj k xx ef P πλ2)(1和k k -=λλ*以确保)(f p xx 是实的。
即求得:∑-=-=ppk fkj k xx ef P πλ21)(上式带回p+1个约束方程,经过整理, 最后求得:2122)(1)(∑=-⋅+=pk fkj xx ek a f P πσ这里2σ和)(k a 必须满足:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅)(*)2(*)1(*)()2()1(p r r r p a a a R和:∑=+⋅+=pk k r k a r 12)()()0(σ这正是Yule-Walker 方程,由此得到结论:在Gaussian 随机过程情况下,最大熵估计和AR谱估计是一致的,在非Gaussian 情况下,这一结论并不成立。
功率谱估计方法的比较
![功率谱估计方法的比较](https://img.taocdn.com/s3/m/89a12f63bdd126fff705cc1755270722192e593e.png)
功率谱估计方法的比较1.周期图法周期图法是最简单直观的功率谱估计方法之一,通过将信号分成多个长为N的区间,计算每个区间内信号的一维傅里叶变换,然后将这些变换结果平方并取平均得到功率谱。
该方法简单快速,但由于其需要使用多个区间的数据进行平均,因此对信号长度有较高的要求,且在信号存在非平稳性时,该方法不适用。
2.自相关法自相关法是一种经典的功率谱估计方法,通过计算信号的自相关函数来估计功率谱。
具体步骤是将信号与其自身的延迟序列进行点乘,并取平均得到自相关函数。
然后对自相关函数进行傅里叶变换,得到功率谱估计值。
该方法计算简单,但精度一般,且在信号长度较长时计算复杂度较高。
3.傅里叶变换法傅里叶变换法是一种经典的功率谱估计方法,通过对信号直接进行傅里叶变换得到功率谱。
该方法计算简单,精确度高,但对信号的长度存在要求,较长的信号长度能提供更高的分辨率。
此外,傅里叶变换法只适用于周期性信号。
4.平均周期图法平均周期图法是一种对周期图法的改进。
它将信号分为多段,并对每一段进行周期图计算,然后将计算结果平均得到平均周期图。
与周期图法相比,平均周期图法可以降低误差,提高估计精度。
然而,该方法仍然对信号长度有一定要求,并且计算复杂度较高。
5.移动平均法移动平均法是一种基于滑动窗口的功率谱估计方法,其基本思想是通过对信号进行多次滑动窗口处理,将窗口内信号的傅里叶变换结果平方并取平均得到功率谱估计值。
该方法在计算复杂度上较低,适用于非平稳信号的功率谱估计。
但是,由于窗口大小的选择存在权衡,需要根据实际情况进行合理设置。
总结起来,各种功率谱估计方法各有优劣。
周期图法和自相关法计算简单,但方法的精度较低,受信号长度限制且无法处理非平稳信号。
傅里叶变换法具有较高的计算精度,但对信号的长度和周期性要求较高。
平均周期图法和移动平均法对周期图法进行了改进,在精度上有所提高,但计算复杂度较高。
因此,在实际应用中,需要根据具体的信号特点和处理要求选取合适的功率谱估计方法。
第三章功率谱估计_1_
![第三章功率谱估计_1_](https://img.taocdn.com/s3/m/7d3b6167ddccda38376baf1a.png)
1 N −1 ˆ 样本的自相关函数: Rx (k ) = ∑ x(n) x* (n + k ) k = 0,1,..., M 1 N n =0 周期图间接法: 功率谱:Px (ω ) =
k =− M
M<N
∑
M
ˆ Rx (k )e− jωk
周期图的不足之处
当观测数据数量N趋于无穷时,估计方差仍不趋于零,是非一 致估计。 分辨率和窗长N有关,是低分辨率估计,无法完成功率谱的高 分辨。
周期图法
数据窗
有偏估计,平滑性差 加窗函数
Px (ω ) =
1 N
N −1 k =0
x ( n ) c ( n ) e − jnT ω ∑
n=0
N −1
2
谱窗
功率谱曲线平滑, 但分辨率下降
Px (ω ) = ∑ R x ( k ) w ( k ) e − jkT ω
要提高分辨率,使用参数化的谱估计! 经典谱估计:使用FFT的谱估计 现代谱估计:参数化谱估计
周期图及其改进方法
由N个离散随机数据样本x(0), x(1),..., x( N − 1), 估计信号的功率谱。 频谱: X N (ω ) = ∑ x(n)e− jωn
n =0 N −1
周期图直接法: 功率谱:Px (ω ) = 1 1 2 X N (ω ) = N N x(n)e− jωn ∑
n =0 N −1 2
第3章 平稳过程的线性模型
3.2 平稳随机信号通过线性系统
y (n) = x(n) ∗ h(n) =
m = −∞
∑
∞
x(m )h(n − m )
如果x(n)为确定性信号
Y (e ) = X (e ) H (e )
经典功率谱估计
![经典功率谱估计](https://img.taocdn.com/s3/m/2fb11a4fcd1755270722192e453610661ed95ac9.png)
雷达和声呐系统
目标检测
在雷达和声呐系统中,经典功率谱估计常被用于目标检测。通过对接收到的信号进行功率 谱分析,可以判断是否存在目标以及目标的位置和速度等信息。
距离和速度测量
在雷达和声呐系统中,经典功率谱估计还可以用于距离和速度测量。通过对接收到的信号 进行功率谱分析,可以估计出目标与系统之间的距离和相对速度。
信号分类
在雷达和声呐系统中,经典功率谱估计还可以用于信号分类。通过对接收到的信号进行功 率谱分析,可以判断目标的类型,例如区分飞机、船舶或车辆等不同类型目标。
05 经典功率谱估计的改进方 法
基于小波变换的功率谱估计
1
小波变换能够将信号分解成不同频率和时间尺度 的分量,从而更好地揭示信号的内在结构和特征。
然而,这些方法通常需要较长 的数据长度和较为复杂的计算 过程,对于短数据和实时处理 的应用场景具有一定的局限性 。
研究展望
01
随着信号处理技术的发展,经典功率谱估计方法仍有进一步优化的空 间。
02
针对短数据和实时处理的应用场景,研究更为快速、准确的功率谱估 计方法具有重要的实际意义。
03
结合机器学习和人工智能技术,探索基于数据驱动的功率谱估计方法 是一个值得关注的方向。
优点
能够提供较高的频率分辨率和较低的估计误差。
原理
格莱姆-梅尔谱估计利用了信号的模型参数,通过 构造一个模型函数来描述信号的频率响应特性, 并求解该函数的极值问题得到信号的功率谱。
缺点
需要预先设定模型函数的形式和参数,且计算复 杂度较高。
03 经典功率谱估计的优缺点
优点
01
02
03
算法成熟
经典功率谱估计方法经过 多年的研究和发展,已经 相当成熟,具有较高的稳 定性和可靠性。
第3章功率谱估计和信号频率估计方法
![第3章功率谱估计和信号频率估计方法](https://img.taocdn.com/s3/m/a5e0befac67da26925c52cc58bd63186bceb923c.png)
第3章功率谱估计和信号频率估计方法在信号处理和通信系统设计中,功率谱估计和信号频率估计是非常重要的技术。
功率谱估计可以用来研究信号的频域特性和频率分量的强度分布,信号频率估计可以用来确定信号的频率成分。
本章将介绍功率谱估计和信号频率估计的常用方法。
3.1功率谱估计功率谱是描述信号功率随频率变化的函数。
常用的功率谱估计方法有非参数法和参数法。
非参数法是一类基于信号的样本序列进行计算的方法,不依赖于对信号的概率模型的先验假设。
常见的非参数法有周期图法、半周期图法等。
周期图法是一种基于时域序列的离散傅里叶变换的方法。
它将信号分成多个时段,对每个时段进行傅里叶变换,然后求得功率谱密度。
周期图法具有快速计算和较好的频率分辨能力的特点,适用于信号周期性较强的情况。
半周期图法是周期图法的一种改进方法。
它首先将信号分成两个连续的时段,计算各自的功率谱密度,然后取两个时段的平均值作为最终的功率谱估计。
半周期图法减少了周期图法中窗函数的影响,提高了估计的准确性。
参数法是一种基于对信号进行参数建模的方法。
常见的参数法有自回归(AR)模型、线性预测(ARMA)模型等。
自回归模型是一种用于描述信号随机过程的自回归线性滤波模型。
它通过自回归系数描述信号当前样本值与过去样本值的线性关系。
自回归模型估计功率谱的方法主要有Burg方法、 Yule-Walker方法等。
自回归模型具有较好的频率分辨能力和较高的准确性,适用于信号具有较长时间相关性的情况。
线性预测模型是将信号分解成预测误差和线性组合的方式。
它通过选择适当的线性预测滤波器系数来最小化预测误差的均方差,从而得到功率谱的估计。
线性预测模型估计功率谱的方法主要有Levinson-Durbin算法和Burg算法等。
线性预测模型具有较好的频率分辨能力和较高的估计准确性,适用于信号具有较强的谱峰特性的情况。
3.2信号频率估计信号频率估计是通过对信号进行时域分析来确定信号的频率成分。
功率谱密度估计
![功率谱密度估计](https://img.taocdn.com/s3/m/c8e1122953d380eb6294dd88d0d233d4b14e3f97.png)
功率谱密度估计
功率谱密度估计是一种用于估计信号的功率谱密度的方法。
功率谱密度指的是一个信号在频域上的能量分布情况。
常见的功率谱密度估计方法有:
1. 周期图法:将信号分成一系列周期为N的子段,对每个子
段进行傅里叶变换,然后求平均得到估计的功率谱密度。
2. 平均势谱法:将信号分成若干个重叠的子段,对每个子段进行傅里叶变换,然后对各个子段的功率谱密度进行平均得到估计的功率谱密度。
3. Welch方法:在平均势谱法的基础上,将信号分成多个子段,并对每个子段进行窗函数加权处理,然后对加权后的子段功率谱密度进行平均得到估计的功率谱密度。
4. 自相关法:通过计算信号的自相关函数来估计功率谱密度。
自相关函数表示信号的不同时间点之间的相关性。
这些方法在实际应用中有各自的优缺点,选择合适的方法需要考虑信号的特点以及其他要求,例如信号的长度、频率分辨率等。
第四章 功率谱估计
![第四章 功率谱估计](https://img.taocdn.com/s3/m/170268c19b89680203d825c4.png)
8
可以证明,
1 ˆ var[rxx (m)] ( N m )2
N m 1 k 1 m N
2 [rxx (k ) rxx (k m)rxx (k m)][ N m k ]
一般观测数据量N很大, N
mk
mk N m k N (1 )N N
ˆ (e j ) P ˆ (e j ) P xx BT
等价
16
2.周期图法谱估计质量分析
1)周期图的偏移
已知自相关函数的估计值 r ˆxx (m),( N 1) m N 1,求功率 谱的统计平均值,
ˆ (e ) P xx
j
N 1 m ( N 1) N 1 m ( N 1)
按照Weiner-Khintchine定理,信号的功率谱和其自相 关函数服从一对傅里叶变换关系,称为功率谱的定义。
Pxx (e ) rxx (m)e jm
j m
(4.1.1) (4.1.2) (4.1.3)
1 j j m rxx (m) P ( e ) e d xx 2
(4.1.4)
2
将(4.1.4)式代入(4.1.1)式,得到
Pxx (e ) rxx (m)e jm
j m
N 1 * j m lim x ( n ) x ( n m ) e N m 2 N 1 n N N 1 * j n j ( n m ) lim [ x ( n ) e ][ x ( n m ) e ] N m 2 N 1 n N
忽略上式中求统计平均的运算,观测数据为 x(n)(0 n N 1) , 便得到周期图法的定义:
《功率谱估计》课件
![《功率谱估计》课件](https://img.taocdn.com/s3/m/befd859ed05abe23482fb4daa58da0116c171f92.png)
实验数据展示 功率谱估计结果对比 误差分析 实验结论与展望
结果分析:对比不同方法的结果,分析优缺点 实验误差来源:讨论实验误差的来源,如设备、环境等因素 改进方向:提出针对实验误差的改进措施,提高实验精度 未来展望:探讨功率谱估计在未来的应用和发展趋势
功率谱估计的应用 案例
语音信号处理:用于语音分析和编码,提高语音质量 图像和视频信号处理:用于图像和视频的压缩和传输,降低带宽需求 雷达和声呐信号处理:用于目标检测和跟踪,提高定位精度
通信领域:用于调制解调、频 谱管理、频谱监测等
生物医学工程:用于心电图信 号处理、脑电图信号处理等
总结与展望
介绍了功率谱估计的基本概念和原理 分析了功率谱估计的常用方法 探讨了功率谱估计在实际应用中的优势和局限性 总结了本次PPT的主要内容和知识点
功率谱估计技术的进一步优化 拓展应用领域,如语音、图像等 结合深度学习等先进技术,提高估计精度 探索与其他领域的交叉研究,如信号处理、通信等
信号的分类
信号的时域和频域 表示
功率谱估计的基本 概念
功率谱估计的应用 场景
功率谱估计的方法
FFT算法原理 FFT算法优缺点分析
FFT算法实现步骤
FFT算法在功率谱估计中的应 用
最小二乘法的基本 原理
功率谱估计的数学 模型
基于最小二乘法的 实现过程
算法的优缺点及改 进方向
卡尔曼滤波原理
功率谱估计与卡尔 曼滤波结合
《功率谱估计》PPT 课件
汇报人:PPT
目录
添加目录标题
功率谱估计的基本 概念
功率谱估计的方法
功率谱估计的原理 与步骤
功率谱估计的实验 与分析
功率谱估计的应用 案例
添加章节标题
功率谱估计
![功率谱估计](https://img.taocdn.com/s3/m/1c76630a6c85ec3a87c2c54a.png)
W(n)为零均值方差为1的AWGN,n=1,2,3……,128
1.1周期图法:
我们知道随机信号的功率谱和自相关函数是一对傅式变换对:
而自相关函数定义为:
对于平稳随机过程,并由功率谱的偶函数特性得:
实际得到的随机信号只能是它的一个样本的片断,因此只能用有限长的样本序列来估计功率谱,这相当于用一个有限宽度(N)的窗函数 去乘样本序列,于是有(用离散频率K代替ω):
title('周期图法');
xlabel('Hz');
ylabel('dB/Hz');
window1=hamming(128);
noverlap=20; %数据20%的重叠
[Pxx1,f]=pwelch(xn,window1,noverlap,nfft,Fs,'onesided');
plot_Pxx1=10*log10(Pxx1);
仿真结果:
2.现代功率谱估计
现代功率谱估计即参数谱估计方法是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱。主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的。主要方法有最大熵谱分析法(AR模型法)、Pisarenko谐波分解法、Prony提取计点法、Prony谱分解法以及Carpon最大似然法。其中AR模型应用较多,具有代表性。常用的模型有ARMA模型、AR模型、MA模型。
这就是用样本序列片断的DFT来估计功率谱的式子。由于加了矩形窗,使得这种直接的周期图估计平滑性、一致性和分辨率不能满足实际要求,因此有必要对上式作一些修改,这些修改主要有两种方法:
1.分段平均:即将长度为N的数据分成L段(允许有重叠),分别求出每一段的功率谱,然后即以平均。这样L个平均的方插笔每个随机变量的单独方差小L倍。
功率谱估计报告范文
![功率谱估计报告范文](https://img.taocdn.com/s3/m/473b9d60ae45b307e87101f69e3143323968f5c4.png)
功率谱估计报告范文
一、功率谱估计的原理
功率谱估计是用来估计信号的功率谱密度(PSD)。
功率谱密度是描述信号在不同频率上的功率分布情况,是信号频谱特征的重要指标之一、功率谱估计的目标是通过有限长的信号序列来估计信号的功率谱密度,从而得到信号的频谱特征。
二、功率谱估计的常用方法
1.周期图法
周期图法是通过信号的周期性来估计功率谱密度。
该方法将有限长的信号序列进行周期延拓,然后通过傅里叶变换或卷积运算得到功率谱密度估计。
2.自相关法
自相关法是通过信号的自相关函数来估计功率谱密度。
该方法先计算信号序列的自相关函数,然后通过傅里叶变换得到功率谱密度估计。
3.平均功率谱法
平均功率谱法是通过将信号序列分段并求取每段的功率谱密度,然后对各段的功率谱密度进行均值运算来估计信号的功率谱密度。
常用的平均功率谱法有Welch法和Bartlett法。
三、功率谱估计的实际应用案例
1.语音信号处理
2.无线通信
3.振动信号分析
总之,功率谱估计是分析信号频谱特征的常用方法,通过对有限长的信号序列进行处理,估计信号的功率谱密度。
功率谱估计可以应用于语音信号处理、无线通信以及振动信号分析等多个领域。
在实际应用中,根据信号特点和需求选择合适的功率谱估计方法,并结合其他信号处理技术进行综合分析。
功率谱估计模型法汇总
![功率谱估计模型法汇总](https://img.taocdn.com/s3/m/c9190e0955270722192ef73e.png)
--参数估计方法
周期图法的不足
估计方法的方差性能差
在功率谱密度计算中没有实现求均值的运算
分辨率低
样本数据x(n)是有限长的,相当于在无限长样本数据 中加载了窗函数(矩形窗、Hanning等)
参数模型功率谱估计
MA数模型
FFT谱 LPC谱
0 0.5 1 1.5 2 2.5 3 3.5
AR模型与线性预测的关系
线性预测系数aj构成的全极点滤波器H(z):
其逆过程为:
S(n) G(z) E(n)
AR模型与线性预测的关系
AR模型:
H ( z)
1 1 ai z
i 1 p i
对应的输入、输出关系:
如果一个宽平稳随机信号x(n)通过一个线性时不 变系统(LSI)h(n),则系统输出y(n)也是宽平稳随 机过程,并且y(n)的功率谱密度和x(n)的功率谱 密度满足下式:
Pyy ( w) Pxx ( w) | H h ( w) |
2
其中Pyy、Pxx分别为系统输出、输入的功率谱密 度,而H(w)为系统脉冲响应的傅立叶变换。
0
1000
2000
3000
4000
5000
6000
7000
1
加窗时域信号
0.5
0
-0.5
-1
0
50
100
150
200
250
300
50
FFT谱 LPC谱
0
-50
0
0.5
1
1.5
2
2.5
3
3.5
1
清音
时域信号
0.5
0
功率谱估计模型法汇总
![功率谱估计模型法汇总](https://img.taocdn.com/s3/m/f7ea3d770a4c2e3f5727a5e9856a561253d32167.png)
功率谱估计模型法汇总1.短时傅里叶变换(STFT)短时傅里叶变换是一种常见的功率谱估计方法,它将信号分成若干小段,并分别对每一小段进行傅里叶变换。
通过将时域信号转换为频域信号,可以得到信号在不同频率上的能量分布。
然后,对每一小段的频谱进行平均,得到整个信号的频谱估计结果。
2.自相关法自相关法是一种通过计算信号与其自身的相关性来估计功率谱的方法。
自相关函数表示信号在不同时刻的相似程度,通过对自相关函数进行傅里叶变换,可以得到信号的功率谱估计结果。
自相关法适用于平稳信号的功率谱估计。
3.平均周期图法(APM)平均周期图法是一种通过信号的周期平均来估计功率谱的方法。
该方法将信号分成若干个周期,并对每个周期的波形进行傅里叶变换。
然后,对每个周期的频谱进行平均,得到整个信号的频谱估计结果。
平均周期图法适用于具有明显周期性的信号,如正弦信号或周期性脉冲信号。
4.基于模型的方法基于模型的方法是一种通过对信号进行建模来估计功率谱的方法。
常见的模型包括自回归模型(AR)和最大似然估计(MLE)模型。
通过拟合信号模型,可以得到模型参数,进而估计信号的功率谱。
基于模型的方法适用于非平稳信号的功率谱估计。
5.基于窗函数的方法基于窗函数的方法是一种通过对信号进行加窗来估计功率谱的方法。
常见的窗函数包括矩形窗、汉明窗和凯泽窗等。
通过对信号进行加窗,可以抑制信号的频谱泄漏效应,提高功率谱估计的精度。
除了以上列举的几种方法,还存在其他一些功率谱估计模型,如周期图法、周期图平均法、波尔兹曼机等。
每种方法都有其适用的场景和优缺点。
在实际应用中,根据信号特性和需求选择合适的功率谱估计模型非常重要。
总而言之,功率谱估计模型是信号处理领域中常用的方法,用于分析信号的频谱特征。
不同的模型适用于不同的信号特性,根据实际需求选择合适的估计方法可以提高功率谱估计的准确性和可靠性。
对功率谱估计常用方法的探讨及应用分析
![对功率谱估计常用方法的探讨及应用分析](https://img.taocdn.com/s3/m/f9204c08e55c3b3567ec102de2bd960590c6d9c3.png)
对功率谱估计常用方法的探讨及应用分析功率谱估计是信号处理中常用的一种方法,它可以将信号的频率特性展示出来,对于信号的分析和处理具有重要意义。
常用的功率谱估计方法包括周期图法、解析法、Welch方法、Bartlett方法和Burg方法等。
本文将对这些方法进行探讨并分析其应用。
周期图法是一种基本的功率谱估计方法,它基于傅里叶变换的思想,通过将信号分解为不同频率的正弦波分量,然后计算每个分量的功率,从而得到信号的频谱特性。
该方法的优点是计算简单,但对于非平稳信号或信号中存在窗函数时会引入谱漏,导致估计结果不准确。
解析法是一种使用解析信号估计功率谱的方法。
解析信号是通过原始信号与希尔伯特变换得到的,它具有正频谱和负频谱的特点。
该方法的优点是可以避免频谱漏失的问题,但计算量较大。
应用方面,解析法常用于振动信号的分析和故障诊断中。
Welch方法是一种常用的频谱估计方法,它通过对信号进行分段处理,然后对每个片段进行傅里叶变换,最后将各个片段的功率谱进行平均得到最终的估计结果。
这样做的好处是可以减小谱漏的影响,并且可以根据需要进行频谱分辨率和频率平滑的调整。
Welch方法在信号处理中应用广泛,如语音和音频处理、通信系统等。
Bartlett方法是Welch方法的特例,它将信号分成互不重叠的窗函数片段,然后进行傅里叶变换并对功率谱进行平均。
这种方法的优点是计算简单,但对于非平稳信号可能会引入谱漏现象,导致估计结果不准确。
Bartlett方法在多传感器信号处理和谱估计的实时应用中常用。
Burg方法是一种利用自回归(AR)模型估计功率谱的方法。
AR模型假设信号的当前值与过去若干个值相关,通过建立AR模型并对其参数进行估计,可以得到信号的频谱特性。
该方法的优点是可以很好地处理非平稳信号,并且对信号中的噪声具有较好的抑制效果。
Burg方法在信号处理中广泛应用于信号的谱分析和预测等领域。
综上所述,功率谱估计方法在信号处理中具有重要的应用价值。
功率谱估计的经典方法
![功率谱估计的经典方法](https://img.taocdn.com/s3/m/fa14bb4317fc700abb68a98271fe910ef12dae21.png)
功率谱估计的经典方法周期图法是最早被提出的功率谱估计方法之一、它基于信号的周期性,将信号分解成一系列频率分量,然后计算每个频率分量的功率谱密度。
周期图法主要分为周期自相关法和周期平均法两种。
周期自相关法通过计算信号的自相关函数,然后进行傅里叶变换得到功率谱估计结果。
周期平均法则是通过对多个信号周期进行平均得到功率谱估计结果。
平均法是功率谱估计的另一种常用方法。
它通过对信号进行多次采样,然后计算采样信号的傅里叶变换得到频谱,再对多个频谱进行平均得到功率谱估计结果。
平均法的优点是抗噪声能力强,可以提高功率谱估计的准确性。
自相关法是一种基于信号自身特性的功率谱估计方法。
它通过计算信号的自相关函数,然后进行傅里叶变换得到功率谱估计结果。
自相关法的优点是计算简单,但是对信号的平稳性要求较高。
递归方法是一种实时性较好的功率谱估计方法。
它通过对信号进行递推计算,每次计算结果作为下一次计算的输入,以此来估计信号的功率谱。
递归方法通常会使用窗函数来平滑信号,减小频谱分辨率。
递归方法的优点是计算效率高,可以用于实时信号处理。
除了这些经典方法,还有一些其他的功率谱估计方法,如Yule-Walker方法、Burg方法、最大熵方法等。
每种方法都有其适用的场景和特点,选择合适的方法需要根据具体需求和信号特性进行判断。
在实际应用中,功率谱估计可以用于信号处理、通信系统设计、频谱分析等领域。
它可以帮助我们了解信号的频谱分布特性,对信号进行分析和处理,从而实现更好的信号传输和处理效果。
无论是音频信号、图像信号还是通信信号,功率谱估计都具有重要的意义。
因此,掌握功率谱估计的经典方法是进行信号处理和频谱分析的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H ( z)
1 1 ai z
i 1 p i
AR模型估计功率谱密度
根据输入、输出、系统脉冲响应的关系
功率谱估计
--参数估计方法
周期图法的不足
估计方法的方差性能差
在功率谱密度计算中没有实现求均值的运算
分辨低
样本数据x(n)是有限长的,相当于在无限长样本数据 中加载了窗函数(矩形窗、Hanning等)
参数模型功率谱估计
MA模型 AR模型 ARMA模型
平稳随机信号的参数模型
如果一个宽平稳随机信号x(n)通过一个线性时不 变系统(LSI)h(n),则系统输出y(n)也是宽平稳随 机过程,并且y(n)的功率谱密度和x(n)的功率谱 密度满足下式:
Pyy ( w) Pxx ( w) | H h ( w) |
2
其中Pyy、Pxx分别为系统输出、输入的功率谱密 度,而H(w)为系统脉冲响应的傅立叶变换。
平稳随机信号的参数模型
H(z)的模型:
AR模型:auto-Regressive
H ( z)
1 1 ai z i
i 1 p
此模型只有极点,没有零点,对应其幅度谱结构存 在谱峰
平稳随机信号的参数模型
MA模型:Moving-Average
q
H ( z ) 1 bi z
系统模型
极点位置在[0 π/2]内时
系统模型
极点位置在[π/2 π]内时
系统模型
对于二阶的全零点系统
H ( z ) 1 az bz
1
2
零点的位置没有限定要求,那么其幅度响应
当零点在[0 π/2]内时
在零点在[π/2 π]内时
AR模型估计功率谱密度
平稳随机信号的参数模型
如果系统输入为白噪声信号u(n),其功率谱密度 为常数σ2,则输出信号功率谱密度Pxx(w)完全由 系统传递函数|H(w)|2决定,因此我们通过对H(w) 进行建模,从而得到输出信号的功率谱密度。
u(n)
H(z)
x(n)
平稳随机信号的参数模型
在上图中,输入u(n)为白噪声信号,其方差为 σ2 ,则系统输出x(n)的功率谱密度Pxx(w)为:
1 1 ai z
i 1 p i
因此有h(0)=1
AR模型估计功率谱密度
rxx (m) ak rxx (m k ) rxu (m)
k 1 p
根据上式以及rxu(m)的求解:
p ak rxx (m k ) k 1 rxx (m) p a r (k ) 2 k xx k 1
i 1
i
此模型只有零点,没有极点,对应幅度谱结构中存 在谱谷点。
平稳随机信号的参数模型
ARMA模型:
H ( z)
1 bi z i 1 ai z i
i 1 i 1 p
q
此模型同时有零点、极点,对应幅度谱结构中存在 谱峰、谱谷
系统模型
对于一阶全极点传递函数
m 1 m0
AR模型估计功率谱密度
将等式右侧的累加项移到等式左侧,这样上式 就可以写成方程组的形式:
p rxx (m) ak rxx (m k )=0 k 1 p r (0) a r (k ) 2 xx k xx k 1
Pxx (w) | H (w) |
2
2
平稳随机信号的参数模型
因此我们利用确定性系统传递函数H(z)的特性 去表征随机信号x(n)的功率谱密度,称为参数模 型功率谱估计。 参数模型功率谱估计的步骤:
对H(z)选择合适的模型:MA模型、AR模型、ARMA 模型 根据已知样本数据x(n),或者x(n)的自相关函数,确 定H(z)的参数 利用H(z)估计x(n)的功率谱。
1 H ( z) 1 1 az
传递函数所对应的幅度响应实际上是:
|z| 1 | H ( z ) | | z a | | z a |
当a>0
当a<0
系统模型
对于二阶的全极点传递函数
H ( z)
1 1 az 1 bz 2
其对应的幅度响应? 由于传递函数中,a、b均为实数,且要求极点在单位 圆内,因此传递函数的极点应该是共轭对称的。
k 1
p
AR模型估计功率谱密度
rxx (m) ak rxx (m k ) rxu (m)
k 1 p
这里首先考虑rxu(m)的求解
rxu (m) E[ x(n)u (n m)] E{[ h(k )u (n k )]u (n m)}
k 0
这里h(k)为H(z)的无限长脉冲响应
x(n) u (n) ak x(n k )
k 1 p
等式两边同乘以x(n-m),同时取期望运算
E[ x(n) x(n m)] E{[u (n) ak x (n k )] x (n m)}
k 1 p
rxx (m) ak E[ x( n k ) x( n m)] E[u ( n) x( n m)]
AR模型估计功率谱密度
由于系统输入u(n)为白噪声信号,因此:
2 ruu (m) E[u (n)u (n m)] 0 m0 else
这样rxu(m)为:
rxu (m) 2 h(k ) (k m)
k 0
2 h ( m)
AR模型估计功率谱密度
而h(m)为系统H(z)的脉冲响应,由于H(z)为因 果系统,因此:
h(0) h(m) 0 m0 m 1
这样,互相关函数rxu(m)为:
2 h(0) rxu (m) 0 m0 m 1
AR模型估计功率谱密度
由于h(0)为系统H(z)的脉冲响应,而:
H ( z)