(优选)离散数学讲义
离散数学讲义(第1章)
1-2 联结词(续)
例:P:上海是一个大城市。 P:上海并不是一个大城市。 或 P:上海是一个不大的城市。
这两个命题具有相同的含义,因此用 同一个符号表示。
17
1-2 联结词(续)
P与 P的真值关系:
P
T F
PHale Waihona Puke F T否定是一个一元运算。
18
1-2 联结词(续)
(2)合取 设P,Q是两个命题,新命题“P并且Q”是 一个复合命题,称为命题P,Q的合取。记作: P∧Q 如:P:北京是中国的首都。 Q:北京是一个故都。 P∧Q:北京是中国的首都并且是一个 故都。
5
趣味逻辑数学题-巧猜围棋子
用数理逻辑学方法解题
P表示:“棋子为白色” Q表示:“甲说的是真话” 数理逻辑运算符: (非),(与),(或)
问题答案:S=(PQ)(PQ)
6
第一篇
数理逻辑
7
数理逻辑
数理逻辑是用数学方法来研究推理 过程的科学。主要是指引进一套符 号体系的方法,因此数理逻辑一般 又叫符号逻辑。 基本内容是:命题逻辑(演算)和 谓词逻辑(演算)。
22
1-2 联结词(续)
P∨Q的真值关系:
P T T F F Q T F T F P∨Q T T T F
析取是一个二元运算。
23
1-2 联结词(续)
注意:析取联结词∨与汉语中的“或”的意义不 完全相同。汉语中的“或”既可以表示“排斥 或”,也可以表示“可兼或”。
例如: P:今天晚上我在家看电视或去剧场看戏。 Q:他可能是100米或400米赛跑的冠军。
28
1-2 联结词(续)
在命题演算中,五个联结词的含义由真值表唯一确定。
离散数学(第四版)讲义1
引言Discrete Math.离散数学研究离散对象及其相互间关系的一门数学学科。
研究离散结构的数学分支。
(辞海)计算机科学、信息科学、数字化科学的数学基础离散数学的内容:数理逻辑(Mathematics Logic)集合论(Sets)代数结构(Algebra Structure)图论(Graph Theory)组合论(Combination)线性代数(Linear Algebra)概率论(Probability Theory)……与高等数学的区别教学内容:数理逻辑(Mathematics Logic)集合论(Sets)代数结构(Algebra Structure)图论(Graph Theory)离散数学的由来与发展:一、古老历史:计数:自然数发展:图论:Konigsberg七桥问题二、年青新生:计算机:二进制运算离散数学课程设置:计算机系核心课程信息类专业必修课程其它类专业的重要选修课程离散数学的后继课程:数据结构、编译技术、算法分析与设计、人工智能、数据库、……离散数学课程的学习方法:强调:逻辑性、抽象性;注重:概念、方法与应用参考教材:1、离散数学(耿素云,屈婉玲,北大版)2、离散数学(方世昌,西安电子科大版)3、离散数学结构(第三版、影印版)(Bernard Kolman、Robert C.Busby、Sharon Ross,清华版)4、离散数学提要与范例(阮传概、卢友清,北京广播学院版)第一章命题逻辑(Proposition Logic)1、命题符号化及联结词2、命题公式及分类3、等值演算4、联结词全功能集5、对偶与范式6、推理理论逻辑学:研究推理的一门学科数理逻辑:用数学方法研究推理的一门数学学科——一套符号体系+ 一组规则数理逻辑的内容:古典数理逻辑:命题逻辑、谓词逻辑现代数理逻辑:逻辑演算、公理化集合论、递归论、模型论、证明论1、命题符号化及联结词命题(Proposition):一个有确定真或假意义的语句。
离散数学讲义
A
(1)
B
A
(2) A’ ) A’ )
B
A (3)
B
因此不能说(1.2)式与(3)式总是相等的.
AB = (A
(3)
AB = (A B’ )
(B B’ ) (B
(A
B)
(1.2)
§1.6集合成员表
前面定义的集合运算的交.并.补.显然对全集U运算 是封闭的.下面对这些概念以新的形式定义,使之数量 化.能够更新,更清晰,更具理论价值.先讨论基本成员表. a.集合A的补集可如下定义: A′的成员表
元素附加一个标号,以使描述这个元素在该集合中的
相应位置.如A={a,b,c}分别是一、二、三元素,在A 的子集中,常有一些元素出现,另一些元素不出现。
我们根据这一情况来指定集合中元素的次序,用
如下方式表示.如A的各子集表为: B000=φ, B 001={c}, B010={b}, B011={b,c}, B100={a},
全集因所讨论的问题不同可相异.例如:
讨论正整数范围内U可取作N;实数讨论问题U可取
作R. 定义2: 设A.B为二集合.属于A或B的所有元素构 成的集合称为A与B的并.记为A∪B.即 A∪B={u | u∈Aoru∈B}
既属于A又属于B的所有元素构成的集合称为A与
B的交. 记为A∩B.即 A∩B={u | u∈A且u∈B} 例 ( 略)
解: 如A={a,c }
B={b,c}
有A-B={a} , 2 A-B={φ,{a}}
2A={φ,{a},{c},{a,c}}
2B= {φ,{b},{c},{b,c}}
2A-2B= {{a},{a,c}} 与2A-B互不包含. 进一步可看到:
《离散数学》讲义 - 2
注意:
①括号的约定,与命题逻辑合式公式对括号的约定 类似,但量词后的括号不能省略。 ②谓词合式公式简称为谓词公式。
离散数学
23
小结
谓词函数
谓词和客体变元 谓词函数、命题 客体变元取值范围及真值
个体域和全总个体域 量词
存在量词和全称量词(表示及判定)
谓词公式 谓词表达式表示命题或句子(带有量词)
32
小结
谓词公式翻译
量词 谓词函数 联结词
离散数学
33
2-3习题作业
P62 (3)a),c);(5);(7)
离散数学
34
2-4 变元的约束
离散数学
35
1、概念
(1)指导变元(作用变元)和作用域(辖域) 给定a为一个谓词公式,其中有一部分公式形 式为(x)P(x)或(x)P(x)。其中、后面跟的x 叫做量词的指导变元或作用变元;P(x)叫做相应量 词的作用域或辖域。 注意:括号有决定性的作用。
离散数学 28
附3:一些人对某种食物过敏。 解:设:M(x):x是人。 R(y):y是食物。 Q(x,y):x对y过敏。 (x)(M(x)(y)(R(y)Q(x,y)))
离散数学
29
附4:有且仅有一个偶数是质数。 分析:命题(有一个偶数是质数)(只有一个偶数是质 数) 解:设:P(x):x是偶数。 Q(x):x是质数。 E(x,y):x等于y。 (x)((P(x)Q(x))(y)( (P(y)Q(y))E(x,y))) 或 (x)((P(x)Q(x))(y)( (P(y)E(x,y))Q(y)))
离散数学
38
2、n元谓词的确定-约束变元的概念
根据约束变元的概念,P(x1,x2,…,xn)是n元 谓词,它有n个相互独立的自由变元。若对其中的 k个变元进行约束则成为n-k元谓词。即根据谓词 公式中所包含的自由变元的个数。 谓词公式中如果没有自由变元出现,则该公式 就成为一个命题。
《离散数学》讲义(胡盛)
小结
合式公式(命题公式)及其判定 自然语言的翻译(符号化形式)
列出原子命题,并符号化 不同的原子命题使用不同的符号,符号使用最少 选择合适的联结词,根据命题表达的真实含义,而不 拘泥于形式
离散数学
30
1-3 命题公式与翻译
P12(3)(5)ad(7)
离散数学
31
第一章 数理逻辑 1-4 真值表与等价公式
(PQ) (PQ) T F F T
35
1、真值表
例题4 给出(PQ)(PQ)的真值表 公式不论命题变元做何种指派,其真值永为真, 我们把这类公式记为T。
P Q PQ (PQ) P Q PQ T T T F F T F F T F F F F T T T F F T T F T F T F T T T (PQ)( PQ) T T T T
定义1-5.1
给定一命题公式,若无论对分量作怎样的指派,其对 应的真值永为T,则称该命题公式为重言式或永真公 式。 例如:表1-4.4
明天下雨
2. 我们去看电影
房间里有十张凳子
二元运算
离散数学 17
1-2 联结词
析取(),其定义可用如下真值表表示
P T T F Q T F T PQ T T T 今天我在家看电视或去剧场看戏
她可能是100米或400米赛跑的冠军
他昨天作了二十或三十道习题 可兼或
F
F
F
排斥或
二元运算
离散数学 18
它可以是有意义的一般论证,也可以是科学理论中的数学证 明或结论。建立逻辑学的主要目的在于探索出一套完整的规 则,按照这些规则,就可以确定任何特定论证是否有效。这 些规则,通常称为推理规则。
离散数学
6
离散数学讲义(第4章)
4-4 基数的概念(续)
Peano公理:
(1)0N,(其中0=) (2)如果0N,则n+N(其中n+=n∪{n})
(3)如果一个子集S N具有性质:
(a) 0S (b)如果nS,有n+S 则S=N
注:
1)性质(3)称极小性质,指明了自然数系统的最小性。 即自然数系统是满足公理(1)(2)的最小集合。 2)自然数也可不从0开始,只需定义=1即可。
证明:令f:PS,f(x)=tg-1x/p+1/2 (- ∞ <x< ∞)
显然f的值域是S,且f是双射函数。
18
4-4 基数的概念(续)
定理:在集合族上等势关系是一个等价关系。 证明:设集合族为S a)对任意的A S,必有A A b)若A,B S,如果A B,必有B A c)若A,B,C S,如果A B,B C,则有A C 定义:如果有一个从集合{0,1,…,n-1}到A的双射函数,那 么称集合 A 是有限的;如果集合 A 不是 有限的 ,则它是 无 限的。 定理:自然数集合N是无限的。 证明:设 n 是 N 的任意元素,f 是任意的从 {0,1,…,n-1} 到 N 的函数。设k=1+max{f(0),f(1),…,f(n-1)} ,那么k N, 但对每一个x {0,1,…,n-1},有f(x) k。因此f不能是满 射函数,即f也不是双射函数。因为n和f都是任意的,故N 是无限的。
注:一般有h (g f) = (h g) f,即函数的复合是可结 合的。因此可以将括号去掉。
12
4-2 逆函数和复合函数(续)
定义:函数f:X Y称作常函数,如果存在某个y0 Y, 对于每个x X,都有f(x)=y0,即f(X)={y0}。 定义:如果Ix={〈x,x〉|xX},则称函数Ix:X X为恒 等函数。
《离散数学》总复习上课讲义
第3章 集合的基本概念和运算
3.1 集合的基本概念 3.2 集合的基本运算(重点) 3.3 集合中元素的计数(容斥原理是重点)
3.1 集合的基本概念
元素x与集合A的关系:属于xA,不属于xA 集合A与集合B的关系:习题3.2, 3.8, 3.12, 3.16
构造性二难
(AB)(AB)(AA) B 构造性二难(特殊形式)
(AB)(CD)( BD) (AC) 破坏性二难
习题1.18, 1.21, 1.17(2)。六1
注意事项1:命题
只有能确定真假(但不能可真可假)的陈述句才是 命题. 不管是正确的观点, 还是错误的观点, 都 是命题. 猜想和预言是命题, 如哥德巴赫猜想.
pq为假当且仅当 p 为真 q 为假,即 当p为假时,pq为真(不管q为真, 还是为假); 当q为真时,pq为真(不管p为真, 还是为假). 习题1.5(6)(7)
了解概念、掌握方法
真值表、命题公式类型 所有等值的含n个命题变项的公式对应同一
个n元真值函数F:{0,1}n{0,1};哑元 最小联结词组 对偶式与对偶原理 简单析取式、简单合取式 析取范式与合取范式 附加前提证明法、反证法
x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(BA(x))BxA(x)
x(A(x)B(x))xA(x)xB(x)
x(A(x)B(x))xA(x)xB(x)
注意事项1:前束范式(重点)
设A为一个一阶逻辑公式, 若A具有如下形式 Q(11xi1Qk2)x为2…或Qkx,kBB, 则为称不A含为量前词束的范公式式, 其. 中Qi
重要的推理定律 第一组 命题逻辑推理定律代换实例 第二组 由基本等值式生成(置换规则) 第三组 xA(x)xB(x)x(A(x)B(x))
离散数学讲义(第6章)
18
6-2 分配格(续)
定理:如果在一个格中交运算对并运算可分配,则并运算 对交运算一定可分配。反之亦然。
定理:每个链是分配格。
定理:设〈A, ≤ 〉为一个分配格,则对任意的a,b,c A,如果有a b = a c且a b = a c,则b=c。
19
6-2 分配格(续)
定义:设〈A,,〉是由格〈A, ≤ 〉所诱导的代数系统。 如果对任意的a,b,cA,当b ≤ a时,有: a (b c) = b (a c) 则称〈A, ≤ 〉是模格。
5
6-1 格的概念(续)
偏序集但不是格
e d f
格
c a b
6
6-1 格的概念(续)
代数系统
设〈A, ≤ 〉是一个格,如果在A上定义两个二元运 算和,使得对于任意的a,bA,ab等于a和b的最小 上界,ab等于a和b的最大下界,那么就称〈A, , 〉 为由格〈A, ≤ 〉所诱导的代数系统。二元运算, 分 别称为并运算和交运算。
定理:分配格一定是模格。
21
6-3 有补格
定义:设〈A, ≤ 〉是一个格,如果存在元素aA,对 任意的xA,都有a ≤ x, 则称a为格〈A, ≤ 〉的全下界。记作 0。 定义:设〈A, ≤ 〉是一个格,如果存在元素bA,对 任意的xA,都有x ≤ b, 则称b为格〈A, ≤ 〉的全上界。记作 1。
{a,b} {a,b} {a,b} {a,b} {a,b}
{b} {a,b}
6-4 布尔代数(续)
定理:对布尔代数中的任意两个元素a,b,有
(a ) a
ab a b
a b ab
定义:具有有限个元素的布尔代数称为有限布尔代数。
26
《离散数学》讲义笔记
《离散数学》课时一 命题逻辑的基本概念1. 命题判定给定句子是否为命题,应该分两步:① 首先判定它是否为陈述句. ② 其次判断它是否有唯一真值.题1.下列语句中,下面哪一个选项是命题?( )你今天有空吗? 请勿随地吐痰! 我正在说谎.是偶数.答案:考点重要程度 分值题型 1.命题 ★★★ 选择、填空2.命题联结词 ★★★★★ 填空3.命题公式及其赋值★★★★解答1) 命题:能判断其真值的陈述句. 2) 真值:真、假. (1、0) 3) 真命题:真值为真的命题. 4) 假命题:真值为假的命题.5) 原子命题(简单命题):不能再被分解成更简单的命题. 6) 复合命题:由简单命题通过联结词联结而成的命题.2.命题联结词联结词符号化真值表否定0 11 0合取0 0 00 1 01 0 01 1 1析取0 0 00 1 11 0 11 1 1蕴涵0 0 10 1 11 0 01 1 1等价0 0 10 1 01 0 01 1 1 优先顺序:题1.将下列命题符号化. 1.4不是素数. 2.小智和小红是学生. 3.小智和小红是同学. 4.小智是江苏人或者江西人. 5.小红喜欢唱歌或跳舞.6.①只要能被4整除,则一定能被2整除. ②只有能被4整除,则才能被2整除. ③能被4整除,仅当能被2整除.7.的充要条件是是无理数.答案:1.是素数.符号化为2.小智是学生.小红是学生.符号化为3.小智和小红是同学.符号化为4.小智是江苏人. 小智是江西人.符号化为5.小红喜欢唱歌. 小红喜欢跳舞.符号化为6.能被整除. 能被整除. 符号化为符号化为7.是无理数. 符号化为:自然语言中的“既……,又……”“不但……,而且……”“虽然……,但是……” “一面……,一面……”等.:“只要,就”,“因为,所以”,“仅当”,“只有才”,“除非才”,“除非,否则非”等等,符号化为.:“当且仅当”,“……充要条件”等.3. 命题公式及其赋值题1.写出下列公式的真值表,并求它们的成真赋值和成假赋值.的真值表1) 命题变元:取值1(真)或0(假)的变元.2) 合式公式:将命题变元用联结词或圆括号按一定逻辑关系联结起来的符号串. 3) 设是出现在公式中的全部命题变元,给各指定一个真值,称为对的一个赋值,若指定的一组值使为1,则称这组值为的成真赋值;若使为0,则称这组值的成假赋值.设为任一命题公式1) 若在它的各种赋值下取值均为真,则称为重言式或永真式. 2) 若在它的各种赋值下取值均为假,则称为矛盾式或永假式. 3) 若不是矛盾式,则称为可满足式.课时一练习题1.指出下列语句哪些是命题,哪些不是.如果是命题,指出它的真值.(1)计算机有视觉吗?(2)明天我去看球赛.(3)请勿大声喧哗!(4)不存在最大的质数.2.下列语句是命题的有().明天下午开会吗?2014年元旦是星期六.. 请保持安静!3.下列句子中有()个命题.(1)我是老师. (2)禁止吸烟! (3)蚊子是鸟类动物.(4)我正在说谎. (5)月亮比地球大.4.将下列命题符号化.(1)王强身体很好,成绩也很好.(2)小静只能挑选或房间.(3)如果和是偶数,则是偶数.5.(判断题)记:小李今天18岁,:小李今年19岁,则“小李今年18岁或19岁”可以翻译成. ()6.设:我听课,:我做课堂笔记.命题“我一边听课,一边做课堂笔记”符号化为____.7.设表示“天下大雨”,表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为().8.个命题变元组成的命题公式共有__________种不同真值指派情况.9.命题公式中成真赋值的个数为().10.下列命题公式中,哪个是永真式().11.求命题公式的真值表.课时二命题逻辑等值演算考点重要程度分值常见题型1.等值式★★★★★证明、解答2.析取范式与合取范式★★★★解答3.主析取范式与主合取范式必考填空、解答4.联结词的完备集★★判断、选择1.等值式设是两个命题公式,若构成的等价式为重言式,则称与是等值的,记作.常见等值式:1)双重否定律2)幂等律3)交换律4)结合律5)分配律(对的分配律)(对的分配律)6)德摩根律7)吸收律8)零律9)同一律10)排中律题1.推断公式类型.因此,该公式是一个重言式或者永真式.题2.用等值演算法证明. 得证.11) 矛盾律12)蕴涵等值式13)等价等值式14)假言易位15)等价否定等值式16)归谬论证明:证明:2.析取范式与合取范式题1:用等值演算法求取求下列公式:的合取范式和析取范式.解:(1)先求合取范式(2)再求析取范式1)文字:命题变元及其否定.2)简单析取式:仅由有限个文字构成的析取式.3)简单合取式:仅由有限个文字构成的合取式.4)析取范式:由有限个简单合取式的析取构成的命题式.,其中是简单合取式.5)合取范式:由有限个简单析取式的合取构成的命题式.,其中是简单析取式.3.主析取范式与主合取范式设与是命题变元含的极小项和极大项,则所有简单合取式都是极小项的析取范式称为主析取范式.所有简单析取式都是极大项的合取范式称为主合取范式.在含有个命题变元的简单合取式(简单析取式)中,若每个命题变元和它的否定式恰好出现一个且仅出现一次,而且命题变元或它的否定式按照下标从小到大顺序排列,称这样的简单合取式(简单析取式)为极小项(极大项).表1 含的极小项与极大项极小项极大项公式成真赋值名称公式成假赋值名称表2 含的极小项与极大项极小项极大项公式成真赋值名称公式成假赋值名称题1.利用真值表法,按顺序求命题公式:的主析取范式. 解:因此,该命题公式的主析取范式是.题2.含个命题变项的命题公式的主合取范式为,则它的主析取范式为___________(表示成的形式).答案:题3.求命题公式的主析取范式和主合取范式.因此,该命题公式的主析取范式是,解:主合取范式是.4. 联结词的完备集题1.(判断)命题联结词集是联结词完备集. ( ) 答案:正确.设是一个联结词集合,如果一个命题公式都可以由仅含中的联结词构成的公式表示,则称是一个联结词完备集. 设是两个命题,复合命题“与的否定式”称作的与非式,记作.即,“”称作与非联结词.复合命题“或的否定式”称作的或非式,记作.即,“”称作或非联结词.以下都是联结词完备集课时二练习题1.下列哪个公式是永假式().2.下列是重言式的为().3.求解的公式类型?(永真、永假、可满足)4.给定命题公式:,与之逻辑等价的是().5.用等值演算法证明等值式.6.任意两个不同大项的析取为________式,全体大项的合取式为________式.7.合式公式的主合取范式为().8.含个命题变项的命题公式的主析取范式为,则它的主合取范式________.9.构造命题公式的真值表,并由此写出它的主析取范式和主合取范式.10.已知命题公式,求主析取范式(要求通过等值演算推出).11.某电路中有个灯泡和个开关、、.已知在且仅在下述种情况下灯亮:1)的扳键向上,、的扳键向下;2)的扳键向上,、的扳键向下;3)、的扳键向上,的扳键向下;4)、的扳键向上,的扳键向下.设表示灯亮,分别表示、、扳键向上,求的主析取和主合取范式.12.下面的联结词集合不是完备集的是________.(表示与非)13.联结词组中,下面哪一个选项是命题公式的最小联结词组().课时三 命题逻辑的推理理论考点重要程度 分值常见题型 1.推理的相关公式 ★★★★★选择、填空2.自然推理系统必考证明1. 推理的相关公式1) 设和是两个命题公式,当且仅当是重言式时,称从可推出或是前提的有效结论,记为.2) 命题公式推出的推理正确当且仅当为重言式.3) 推理的形式结构:前提: 结论:① 附加律②化简律③ 假言推理④拒取式 ⑤ 析取三段论⑥ 假言三段论 ⑦等价三段论⑧ 构造性二难构造性二难(特殊形式)⑨破坏性二难题1.求函数命题公式推的推理正确当且仅当__________为重言式. 答案:题2.下面不正确的是________.答案:2.自然推理系统题1:构造下面推理的证明.前提:结论:证明:①前提引入②前提引入③①②拒取式④前提引入⑤③④假言推理⑥前提引入⑦⑤⑥拒取式⑧前提引入⑨⑦⑧析取三段论得证是有效结论.题2.在自然推理系统中,构造并证明下列推理.(命题逻辑推理证明)如果小王是理科生,则他的数学成绩一定很好.如果小王不是文科生,则他一定是理科生.小王的数学成绩不好.所以,小王是文科生.解:设简单命题:小王是理科生.:小王的数学成绩很好.:小王是文科生.前提:结论:证明:①前提引入②前提引入③①②拒取式④前提引入⑤③④拒取式得证是有效结论.题3.用推理的形式结构证明:前提:结论:证明:①附加前提引入②①附加律③前提引入④②③假言推理⑤④化简律⑥⑤附加律⑦前提引入⑧⑥⑦假言推理得证是有效结论.题4.在自然推理系统中构造下面推理的证明.如果小张守第一垒并且小李向队投球,则队取胜;或者队未取胜,或者队成为联赛第一名;队没有成为联赛的第一名;小张守第一垒.因此,小李没向队投球.解:设简单命题:小张守第一垒.:小李向队投球.:队取胜.:队成为联赛第一名.前提:结论:证明:用归谬法①结论的否定引入②前提引入③前提引入④前提引入⑤④⑤拒取式⑥⑥置换⑦前提引入⑧⑦⑧析取三段论⑨①⑨合取由于最后一步,即,所以推理正确.课时三练习题1.若推理正确,则推理的结论一定是正确的.()判断2.判断以下结论是否有效:前提是::,结论是:.________(填“是”或“否”)3.下列个推理中,不正确的是().4.在自然推理系统中,用构造法证明下面推理.前提:结论:5.如果小张去看电影,则当小王去看电影时,小李也去.小赵不去看电影或小张去看电影.小王去看电影.所以当小赵去看电影时,小李也去.6.使用命题逻辑中的推理理论构造下面推理的证明:前提:结论:7.构造下面推理的证明:前提:,结论:.8.公安机关正在调查一宗盗窃案,现获得事实如下:(1)或盗窃了文物;(2)若盗窃了文物,则作案时间不可能在午夜前;(3)若证词正确,则在午夜前屋里灯光未灭;(4)若证词不正确,则作案时间发生在午夜前;(5)午夜时屋里灯光灭了.试问谁是盗窃犯?试写出推导过程.设:“盗窃了文物”,:“盗窃了文物”,:“作案时间发生在午夜前”,:“午夜前屋里灯光灭了”,:“证词正确”.课时四 谓词逻辑基本概念考点重要程度 分值常见题型 1.谓词逻辑命题符号化 ★★★★ 选择、填空2.谓词逻辑公式及其解释 ★★★选择1. 谓词逻辑命题符号化题1.将下列命题在谓词逻辑中用谓词符号化,并讨论它们的真值. (1) 只有是素数,才是素数. (2) 如果大于,则大于. 解:(1)设元谓词:是素数,命题可符号化为由于此蕴涵式的前件为假,所以命题为真. (2)设元谓词:,命题可符号化为由于为真,而为假,所以命题为假.个体词、谓词和量词是谓词逻辑命题符号化的个基本要素. 1) 个体词个体词是指所研究对象中可以独立存在的具体的或抽象的客体.将表示具体或特定的客体的个体词称作个体常项.而将表示抽象或泛指的个体词称作个体变项.并称个体变项的取值范围为个体域(或称作论域).全总个体域:由宇宙间一切事物组成的个体域. 2) 谓词:刻画个体词性质及个体词之间相互关系的词.题2:命题“所有的人都长着黑头发”,令:是人;:长着黑头发.则该命题符号化为().答案:.题3.令:是人;:登上过月球.则命题“有的人登上过月球.”符号化().答案:题4.设有命题:是火车,:是汽车,:跑得比快,那么命题“有的汽车比一些火车跑得快”的逻辑表达式是__________.答案:.题5.设:是运动员,:是大学生,命题“不是所有的运动员都是大学生.”谓词符号化为__________.答案:或注:当多个量词出现时,它们的顺序一般不能随意调换.3)量词:表示个体之间数量关系的词全称量词:符号,表示个体域中“所有的”.“一切的”“所有的”“每一个”“任意的”“凡”“都”等.存在量词:符号,表示个体域中有一个个体.“存在”“有一个”“有的”“至少有一个”等.2.谓词逻辑公式及其解释题 1.指出下列各公式中的指导变元,各量词的辖域,自由出现以及约束出现的个体变项.解:是指导变元,量词的辖域.在中,是约束出现,而且约束出现两次,和均为自由出现,各自由出现一次.公式中含个量词,前件上的量词的指导变元为,的辖域,其中是约束出现,是自由出现.后件中的量词的指导变元为,的辖域为,其中是约束出现,均为自由出现.在整个公式中,约束出现一次,自由出现两次,自由出现一次,约束出现一次,自由出现一次.题2.设论域,与公式等价的命题公式是().答案:在公式和中,称为指导变元,为量词的辖域.在和的辖域中,的所有出现都称作约束出现,中不是约束出现的其他变项均称作自由出现.设为一公式,若在任何情况下的任何赋值下均为真,则称为永真式或逻辑有效式;若在任何情况下的任何赋值下均为假,则称为矛盾式或永假式.若至少存在一个情况下的一个赋值使为真,则称是可满足式.课时四练习题1.命题的意义是().对任何均存在使得;对任何均存在使得;存在对任何均使得;存在对任何均使得;2.设:是学生;:喜欢英语.则命题“有些学生喜欢英语”的符号化为_____.3.设:是人,:犯错误,命题“没有不犯错误的人”符号化为().4.令:是人,:是花,:喜欢,则命题“有些人喜欢所有的花”可符号化为_________.5.令:是火车,:是汽车,:比快,则命题“每列火车都比某些汽车快”在谓词逻辑中命题符号化为_________.6.试把下列语句翻译为谓词演算公式.(1)某些人喜欢所有明星; (2)并非“所有人均喜欢某些某些电脑游戏”.7.设个体域,消去公式中的量词为:___________.8.谓词公式中量词的辖域为(),量词的辖域为().课时五 谓词逻辑等值演算与推理考点重要程度 分值常见题型 1.谓词逻辑等值式与置换规则 ★★★选择、填空 2.谓词逻辑前束范式 ★★★★ 选择、解答3.谓词逻辑推理理论 必考证明1. 谓词逻辑等值式与置换规则设是谓词逻辑中任意两个公式,若是永真式,则称与等值,记作,称是等值式.下面给出谓词逻辑中的基本等值式. 1) 量词否定等值式 设公式含自由出现的个体变项,则2) 量词辖域收缩与扩张等值式 设公式含自由出现的个体变项,不含的自由出现,则题1.设个体域,将下列公式的量词消去.解:消去量词,得先缩小量词辖域,再消去量词,得3)量词分配等值式设公式含自由出现的个体变项,则4)命题逻辑中的重言式的代换实例都是谓词逻辑中的永真式.例如:先消去,得再消去,得题2.设是不含变元的公式,谓词公式等价于().答案:.题3.谓词公式的真值为,其中,:,定义域:. 答案:先消去,得再消去,得因此,的真值为1.2.谓词逻辑前束范式(前束范式存在定理)谓词逻辑中的任何公式都存在等值的前束范式.具有如下形式的谓词逻辑公式称作前束范式,其中为或,为不含量词的公式. 例,是前束范式不是前束范式题1:下列哪项为前束范式().答案:题2.求下列各式的前束范式.解:转化方法:1)把条件或双条件联结词转化;2)利用量词否定公式,把否定深入到命题变元和谓词公式的前面;3)换名;4)利用量词作用域的扩张和收缩等价式,把量词提到前面.3.谓词逻辑的推理理论在谓词逻辑中,从前提出发推出结论的推理的形式结构,依然采用如下的蕴涵式形式若上式为永真式,则推理正确,否则称推理不正确.①命题逻辑推理定律的代换实例.例如:②由基本等值式生成的推理实例.例如:由双重否定律可生成由量词否定等值式可以生成③一些常用的重要推理定律.④4条消去量词和引入量词的规则.全称量词消去规则:,不在中约束出现或,为任意个体常量.存在量词消去规则:,为使得为真的特定的个体常量.全称量词引入规则:,中无变元.前提:结论:证明:①前提引入②①③②化简律④②化简律⑤前提引入⑥⑤⑦③⑥假言推理⑧④⑦合取⑨⑧得证是有效结论.前提:结论:证明:①附加前提引入②置换③②④前提引入⑤④⑥③⑤析取三段论⑦⑥得证是有效结论.题3.证明下列各式.(简明注明使用等值式名称或推理定理名称)所有北极熊都是白色的,没有棕熊是白色的,所以北极熊不是棕熊.解:命题符号化:是北极熊. :是白色的. :是棕熊.前提:结论:证明:用归谬法①结论的否定引入②①置换③②④③化简律⑤③化简律⑥前提引入⑦⑥⑧④⑦假言推理⑨⑤⑧合取⑩⑨由于最后一步与前提中矛盾,所以推理正确.课时五练习题1.下列四个公式正确的有().2.在个体域中,若,,谓词有,,,,求的真值.3.下列等价关系正确的是().4.设个体域,消去公式中的量词.①②5.下列谓词公式中是前束范式的是().6.的前束范式为_________.7.求合式公式的前束范式____________.8.求谓词公式的前束范式.9.设个体域为,并对设定为,,,,其真值为的公式为__________.10.证明题前提:;结论:11.在自然推理系统中构造下面推理再证明.前提:,结论:12.先将下列推理符号化,再利用推理规则证明推理的正确性.所有的大一学生都要学习英语;并非所有的大一学生都要学习离散数学;故有些学习英语的不学习离散数学.假设谓词如下::是大一学生;:要学习英语;:要学习离散数学.课时六 集合代数考点重要程度 分值常见题型 1.集合的基本概念 ★★ 选择、填空2.集合的运算 ★★★ 选择、填空3.有穷集的计数 ★★★ 解答4.集合恒等式 ★★★证明1. 集合的基本概念题1.,将的子集分类.元子集,也就是空集:; 元子集:; 元子集:; 元子集:;1) 把一些事物汇集到一起组成一个整体就称作集合,而这些事物就是这个集合的元素或成员.元素和集合之间的关系是隶属关系,即属于或不属于,属于记作,不属于记作.例:,2) 设为集合,如果中的每个元素都是中的元素,则称是的子集,记作,如果不被包含,记作.3) 设为集合,如果且,则称与相等,记作.4) 设为集合,如果且,则称是的真子集,记作.5) 不含任何元素的集合称作空集,记作.空集是一切集合的子集.6) 含有个元素的集合简称为元集,它的含有个元素的子集称作它的元子集.题2.设,则下列正确的是().答案:.题3.已知集合,则的幂集合___________.元子集:元子集:元子集:元子集:答案:.2.集合的运算8)若是元集,则有个元素.9)在一个具体问题中,如果所涉及的集合都是某个集合的子集,则称这个集合为全集,记作.7)设为集合,把的全体子集构成的集合称作的幂集,记作.1)并运算:2)交运算:3)差运算:4)对称差:5)的绝对补集定义如下:题1:设,,则差集 ,而对称差.答案:.题2.设全集的子集为,,,. 答案:,.3. 有穷集的计数题1.对名会外语的科技人员进行掌握外语情况的调查.其统计结果如下:会英、日、德和法语的人分别是和人,其中同时会英语和日语的有人,会英、德、和法语中任两种语言的都是人.已知会日语的人既不懂法语也不懂德语,分别求只会一种语言(英、德、法、日)的人数和会种语言的人数. 解:令分别表示会英、法、德、日语的人的集合,根据题意画出文氏图如下图所示.设同时会种语言的有人,只会英、法或德语一种语言的分别为和人.将和填入图中相应的区域,然后依次填入其他区域的人数.根据已知条件列出方程组解,得.因此,只会英语、德语、法语、日语的人数 为,会种语言的人数为.包含排斥原理:题2.请用集合计数的包含排斥原理,计算之间既不能被和,也不能被整除的数的个数.解:设可被整除可被整除可被整除用表示有穷集的元素数,表示小于等于的最大整数,则有4. 集合恒等式下面的恒等式给出了集合运算的主要算律,其中代表任意的集合.幂等律结合律交换律分配律同一律零律排中律矛盾律吸收律德摩根律题1.证明.证:除了以上算律以外,还有一些关于集合运算性质的重要结果.例如:课时六练习题1.下面是真命题的是().2.若集合的元素个数,则其幂集的元素个数___________.3.设集合,则__________.4.设是集合,若,则().5.设集合被整除,,被整除,,则__________,___________.6.,求__________.7.计算机班的名学生中,有人在第一次考试中得,人在第次考试中得,已知有人两次考试均未得,则两次考试都得的学生人数为__________人.8.某班有个学生,会语言的人,会语言的人,会语言的人,以上三门都会的人,都不会的没有,请问仅会两门的有几人?(要求写出求解过程)9.某大学计算机专业名学生中,语言课有人优秀,数据结构课有人优秀,离散数学课有人优秀.并且语言和数据结构两门课都优秀的有人;语言和离散数学两门课都优秀的有人;数据结构和离散数学两门课都优秀的有人.此外,还有人一门优秀都没得到.如果获得门优秀者可得奖学金元,获得门优秀者可得奖学金元,仅获得一门优秀者可得奖学金元,问为该专业学生发奖学金需多少元?10.设是三集合,已知,则一定有.()11.集合的运算满足结合律,吸收律.()12.证明.13.设是任意集合,证明等式.课时七 二元关系(1)考点重要程度 分值常见题型 1.有序对与笛卡尔积 ★★★ 填空、解答2.二元关系 ★★★★★ 选择、填空3.关系的运算 ★★★★填空、解答1. 有序对与笛卡尔积题1.设,求.若,则.由两个元素和按照一定顺序排列而成的二元组称作一个有序对或序偶,记作,其中是它的第一元素,是它的第二元素.设为集合,用中元素为第一元素,中元素为第二元素构成有序对,所有这样的有序对组成的集合称作和的笛卡尔积,记作,符号化表示为笛卡尔积运算具有以下性质:1) 对任意集合,根据定义有.2) 一般地说,笛卡尔积运算不满足交换律,即(当时)3) 笛卡尔积运算不满足结合律,即 (当时)4)笛卡尔积运算对并和交运算满足分配律,即2.二元关系1)如果一个集合满足以下条件之一:a)集合非空,且它的元素都是有序对;b)集合是空集.则称该集合为一个二元关系,记作,二元关系也可简称为关系.对于二元关系,如果,则记作.2)设为集合,的任何子集所定义的二元关系称作从到的二元关系,特别当时称作上的二元关系.3)若,那么,的子集就有个,每一个子集代表一个上的二元关系,因此上有个不同的二元关系.题1.设集合,设关系为上的小于关系,则 .答案:.题2.设为集合,且,则上最多可定义个不同的二元关系.答案:.题1.,则的关系矩阵是 .答案:.题5.已知集合上的二元关系的关系矩阵,那么 .答案:.上的特殊关系:空关系,全域关系,恒等关系.空关系:空集全域关系:恒等关系:给出一个关系的方法有种:集合表达式、关系矩阵和关系图.设,是上的关系,的关系图记作,有个顶点,若,在中就有一条从到的有向边.3.关系的运算设是二元关系1)中所有有序对的第一元素构成的集合称作的定义域,记作,形式化表示为2)中所有有序对的第二元素构成的集合称作的值域,记作,形式化表示为3)的定义域和值域的并集称作的域,记作,形式化表示为题1.,求.4)设是二元关系,的逆关系,简称为的逆,记作,其中5)设为二元关系,对的右复合记作,其中题2.设,,求.。
离散数学讲义 第二章命题逻辑PPT课件
解 令P:我得到这本小说;Q:我今夜就读完它。
于是上述命题可表示为P→Q。
7
5.等值“”
定义2.2.5 设P和Q是两个命题,则它们的等值命
题是一个复合命题,称为等值式复合命题,记作“P Q” (读作“P当且仅当Q”)。
当P和Q的真值相同时,PQ取真,否则取假。
例10
P
Q
P Q
0
0
1
0
1
0
1
0
0
德.摩根定律
E11
PQP∨Q
E12
P Q (P∧Q)∨(P∧Q)
E13
P (QR) (P∧Q) R
E14
P Q (PQ)∧(QP)
E15
PQQP
23
三、等价式的判别
有两种方法:真值表方法,命题演算方法
1、真值表方法
例1 用真值表方法证明 E10: (PQ) PQ
解 令:A= (PQ),B= PQ,构造A,B
一个复合命题,记作“P→Q”(读作“如果P,则Q”)。
当P为真,Q为假时,P→Q为假,否则 P→Q为真。
P
Q
P→Q
0
0
1
0
1
1
1
0
0
1
1
1
例8 若P:雪是黑色的;Q:太阳从西边升起;
R:太阳从东边升起。则P→Q和P→R所表示的命题都是真的.
例9 将命题“如果我得到这本小说,那么我今夜
就读完它。”符号化。
对于上述五种联结词,应注意到: 复合命题的真值只取决于构成它的各原子命题的真 值,而与这些原子命题的内容含义无关。
9
命题符号化
利用联结词可以把许多日常语句符号化。基本步骤如下:
离散数学讲稿
• 谓词逻辑: 一、基本概念 为什么研究谓词逻辑 . 例: 1、李华是大学生 H(l) 2、王芳是大学生 H(w) 3、松树是植物 谓词:描述个体性质的部分. 个体:被描述的对象 . 命题逻辑最小单位是原子命题 (大写字母表谓词)… 谓词字母 谓词逻辑可以分为谓词和个体 (大写字母表个体)…客体 谓词:①命题的逻辑形式 H(w) H—谓词 w—客体 ②复合命题的谓词形式 “a是P且b是Q” ——P(a)∧Q(b) “若a是P则b是Q“——P(a)Q(b) “a是P当且仅当b为Q”——P(a)Q(b)
5、间接证明法:(反证法) 相容(一致性):若H1、H2 …… Hm皆为前提且存在一组真值 指派使得H1、H2 …… Hm皆为T,则称H1、H2 …… Hm为相容的 或一致的,否则不相容的或非一致. 定理 : 设前提集合 {H1、H2 …… Hm}是相容并且设C是一个公式, 若前提集合{H1、H2 …… Hm、 C }是不相容的,即它蕴含着一个 永假式 , 则可从前提集合{H1、H2 …… Hm}推出来. 证明:≧ H1∧H2∧……∧Hm∧ C R∧ R ≨ H1∧H2∧……∧Hm∧ C为永假式 又≧前提集合{H1、H2 …… Hm}是相容 . ≨使得H1∧H2∧……∧Hm为T的那些真值指派 , 使得 C为F , 则C为T, 因此 , H1∧H2∧……∧Hm C
例: Q (PQ) 证明: Q (PQ) Q ( P∨Q) Q∨ P∨Q T ≨ Q P Q 推理的方法证明:前提蕴含结论的正确性. 推理的规则 : Ⅰ、前提引用规则:P在任何推理步骤上皆可引用前提. Ⅱ、结论引用规则:T在任何推理步骤所得到结论在后续推理 步骤中皆可引用. Ⅲ、臵换规则:E1~E24 Ⅳ、代入规则; Ⅴ、推理的定理(CP): 若H1∧H2∧……∧Hm∧Q R 则有 H1∧H2∧……∧Hm QR Ⅵ、基本蕴含式可使用:I1 ~ I14 例(略)
离散数学讲义(第7章)
15
7-1 图的基本概念(续)
术语 孤立点(isolated vertex) :图中不与任 何结点相邻接的结点。 零图:仅由孤立点组成的图。(E=, Nn) 平凡图:仅由一个孤立点构成的图。(1 阶零图, N1) 环(自回路loop):关联于同一结点的一 条边。(环的方向无意义)。
16
7-1 图的基本概念(续)
31
7-1 图的基本概念(续)
有向图
D1
D2
D3
D1D2, D2D3
32
7-1 图的基本概念(续)
33
7-2 路与回路
在无向图(或有向图)的研究中,常常 考虑从一个结点出发,沿着一些边(或弧) 连续移动而达到另一个指定结点,这种依 次由结点和边(或弧)组成的序列,便形成 了链(或路)的概念。
25
7-1 图的基本概念(续)
图的同构
定义:设G=〈V,E 〉和G’=〈V’,E’ 〉是两个图, 若存在一双射函数: g: V V’,当且仅当 e’= {g(vi), g(vj)}是G’中的一条边,才能使e={vi, vj} 是 G 中的一条边,则称 G’ 和 G 同构 。 记作 G1G2
26
5
图论(续)
哥尼斯堡七桥问题(Seven bridges of Königsberg problem): River Pregel, Kaliningrad, Russia
18世纪时,欧洲有一个风景秀丽的小城哥尼 斯堡,那里有七座桥。如图1所示:河中的小岛A 与河的左岸B、右岸C各有两座桥相连结,河中两 支流间的陆地D与A、B、C各有一座桥相连结。 当时哥尼斯堡的居民中流传着一道难题:一个人 怎样才能一次走遍七座桥,每座桥只走过一次, 最后回到出发点?大家都试图找出问题的答案, 但是谁也解决不了这个问题………… 这个问题无 解
《离散数学》讲义 - 3
离散数学
2
1、集合概念及表示
(1)集合 ①概念 一般地说,把具有相同性质的一些东西,汇集成 一个整体,就形成一个集合。 例如:教室内的桌子;全国的高等学校;自然数的 全体;直线上的点。 ②分类 有限集:集合的元素个数是限的。 无限集:集合的元素个数是无限的。
离散数学 3
(2)表示
①集合:A~Z;元素(集合中的事物):a~z。 ② I 元素a属于集合A, 记作:aA II 元素a不属于集合A, 记作:aA
离散数学
8
(2)应用
定理3-1.1 集合A和B相等的充分必要条件是这两 个集合互为子集。
离散数学
9
4、真子集
定义3-1.3 如果集合A的每一个元素都属于B,但 集合B中至少有一个元素不属于A,则称A为B的真 子集。 记作:AB。 即:AB(AB)(AB) AB(x)(xAxB)(x)(xBxA)
离散数学 46
(2)相等
定义3-4.1 两个序偶相等, <x,y>=<u,v>,iff x=u,y=v。 注意: ①序偶<a,b>中的两个元素可以属于不同的集合, 可代表不同类型的事物。 ②在序偶<a,b>中,a称第一元素,b称第二元素。
离散数学
47
(3)推广
三元组是一个序偶,其第一元素也是一个序偶。 形如: <<x,y>,z> <<x,y>,z>=<<u,v>,w>,iff<x,y>=<u,v>,z=w 即:x=u,y=v,z=w。 约定:三元组<<x,y>,z>记作<x,y,z> 注意: 当xy时,<x,y,z><y,x,z> <<x,y>,z><x,<y,z>> 其中:<x,<y,z>>不是三元组。 同理:四元组第一元素是三元组 四元组:<<x,y,z>,w> 四元组相等: <<x,y,z>,w>=<<p,q,r>,s> (x=p)(y=q)(z=r)(w=s)
《离散数学讲义》课件
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
离散数学集合论基础讲课文档
集合论基础
关系的闭包运算
• 自反闭包: 把原关系R扩充成包含R的最小 的自反的关系, 记作r(R).
• 对称闭包: 把原关系R扩充成包含R的最小 的对称的关系, 记作s(R).
• 传递闭包: 把原关系R扩充成包含R的最小 的传递的关系, 记作t(R).
第四十一页,共70页。
集合论基础
(序偶也称为有序集)
• 注意: 可以推广到n元情形.
第二十六页,共70页。
集合论基础
笛卡尔积
• 给定集合A和集合B, 定义这样的序偶,其第 一个元素属于A, 第二个元素属于B.
• 上述序偶组成的集合称为集合A和B的笛 卡尔积. 记作A X B.
• 也就是说, A X B={<x, y>| (x∈A) ∧(y∈B)}
第二十七页,共70页。
集合论基础
笛卡尔积的性质
• AXB ≠ BXA • 若A=Φ或B=Φ, 则AXB=Φ. • (AXB)XC ≠AX(BXC) • AX(B∪C)=(AXB)∪(AXC) • AX(B∩C)=(AXB)∩(AXC) • (A∪B)XC=(AXC)∪(BXC) • (A∩B)XC=(AXC)∩(BXC)
第十五页,共70页。
集合论基础
集合并运算的性质
• 幂等律: A∪A=A • 同一律: A∪Φ=A • 零一律: A∪E=E • 交换律: A∪B=B∪A • 结合律: (A∪B)∪C=A∪(B∪C)
第十六页,共70页。
集合论基础
集合的补
• E是全集, A是一个集合,属于E而不属于A 的元素所组成的集合.记作~A.
第二十二页,共70页。
集合论基础
集合运算的其它性质
分配律: • A∩(B∪C)= (A∩B)∪(A∩C)
离散数学课件第一章
图的连通性
04
CHAPTER
逻辑基础
命题逻辑中的基本概念包括命题、真值和逻辑运算,通过这些基本概念可以表达和推理复杂的命题关系。
命题逻辑在计算机科学、人工智能、自动化等领域有广泛应用,是形式化方法的重要基础。
命题逻辑是研究命题之间关系的逻辑分支,主要涉及命题的否定、合取、析取、蕴含等基本运算。
命题逻辑
详细描述
集合的运算包括并集、交集、差集等。并集是指两个或多个集合合并为一个新的集合,包含所有元素;交集是指两个或多个集合中共有的元素组成的集合;差集是指从一个集合中去掉另一个集合中的元素后剩余的元素组成的集合。这些运算在离散数学中有着广泛的应用。
总结词
集合的运算
集合的基数是指集合中元素的个数,通常用大写字母表示。
鸽巢原理
THANKS
感谢您的观看。
集合论
图论是研究图(由节点和边构成的结构)的数学分支,它广泛应用于计算机科学和工程学科。
图论
逻辑是离散数学的另一个重要分支,它研究推理的形式和规则,是计算机科学和人工智能的基础。
逻辑
组合数学是研究计数、排列和组合问题的数学分支,它在计算机科学和统计学中有重要的应用。
组合数学
离散数学的研究内容
02
CHAPTER
离散数学课件第一章
目录
绪论 集合论基础 图论基础 逻辑基础 组合数学基础
01
CHAPTER
绪论
离散数学是研究离散对象(如集合、图、树等)的数学分支,它不涉及连续的量或函数。
离散数学的定义
离散数学的起源
离散数学的特点
离散数学的起源可以追溯到古代数学,如欧几里得几何和数论。
离散数学强调结构、关系和组合,而不是连续性和微积分。
【精选文档】离散数学图论课件PPT资料
若V1 V,E1 E,则称G1是G的子图,记为G1 G;
deg(v3)=5,deg+(v3)=2,deg-(v3)=3;
无自回路的线图称为简单图。
于是|V1|为偶数(因为V1中的结点v之deg(v)都为奇数),即奇度数的结点个数为偶数。
(o)
(p)
二、度数
定义 在无向图G=<V,E>中,与结点v(vV)关联的边的条 数,称为该结点的度数,记为deg(v);
3) 在一个图中,关联结点vi和vj的边e,无论是有向的还是无 向的,均称边e与结点vi和vj相关联,而vi和vj称为邻接点, 否则称为不邻接的;
4) 关联于同一个结点的两条边称为邻接边; 5) 图中关联同一个结点的边称为自回路(或环); 6) 图中不与任何结点相邻接的结点称为孤立结点; 7) 仅由孤立结点组成的图称为零图; 8) 仅含一个结点的零图称为平凡图;
离散数学图论课件
(优选)离散数学图论课件
离散数学
2
图的术语
1) 若边e与结点无序偶(u,v)相对应,则称边e为无向边,记为 e=(u,v),这时称u,v是边e的两个端点;
2) 若边e与结点有序偶<u,v>相对应,则称边e为有向边(或 弧),记为e=<u,v>,这时称u是边e的始点(或弧尾),v是 边e的终点(或弧头),统称为e的端点;
δ(G)最小度,Δ(G)最大度
定义 在图G=<V,E>中,对任意结点vV,若度数deg(v)为 奇数,则称此结点为奇度数结点,若度数deg(v)为偶数, 则称此结点为偶度数结点。
例:
例:
deg(v )=3,deg (v )=2,deg (v )=1; 例:如下图所示,图(a)、图(b)、图(c)和图+ (d)所表示的图形实际上都是-一样的。
离散数学精简讲义
第一编数理逻辑命题逻辑1.1命题符号化否定词┑,合取词∧,析取词∨,蕴含词→,等值词↔若一个命题是一个简单陈述句,则称之为简单命题;由简单命题通过┑、∧、∨、→、↔这些联结词组成的命题称为复合命题;P→Q是条件命题;P↔Q是双条件命题。
这个字母表可记为∑(P₁,P₂,…),如不引起混淆,也可简记为∑。
∑(P₁,P₂,…)表示字母表∑(P₁,P₂,…)上的所有字符串,包括空串ɛ;用∑⁺表示∑上的所有非空符号串的集合。
● 合式公式:(1)命题常元或命题变元是合式公式;(2)若A,B是合式公式,则(┑A),(A∧),(A∨B),(A→B),(A↔B)是合式公式;(3)只有通过有限次使用(1),(2)所得到的符号串才是合式公式。
代入和替换:替换只要求对该子公式的某一出现或某几个出现进行替换,而不是对每一处出现都进行替换。
1.3永真公式解释:设是含有这n 个命题变元的合式公式,对的一组真值赋值,称为对A的一个解释,记作I= ,其中取0或1,I( )= 。
合式公式可分为:永真式,永假式,可满足式。
逻辑恒等式:永真蕴含式:1.4范式文字:命题变元或命题变元的否定称为文字,并称命题变元为正文字,命题变元的否定为负文字。
基本和的归纳定义是:①文字是基本和;②若A,B是基本和,则A∨B是基本和。
合取范式的归纳定义如下:①基本和是合取范式;②若A,B是合取范式,则(A∧B)是合取范式。
主合取范式的归纳定义是:①极大项是主合取范式;②若A,B是主合取范式,则(A∧B)是主合取范式。
基本积的归纳定义是:①文字是基本积;②若A,B是基本积,则A∧B是基本积。
析取范式的归纳定义如下:①基本积是析取范式;②若A,B是析取范式,则(A∨B)是析取范式。
主析取范式的归纳定义是:①极小项是主析取范式;②若A,B是主析取范式,则(A∨B)是主析取范式。
▲ 1.5推理理论推理规则:⑴附加规则⑵化简规则⑶MP规则⑷拒取式⑸析取三段论⑹假言三段论⑺合取引入⑻构造二性难▲ 证明方法:⑴前件假证明法⑵后件真证明法⑶直接证明法⑷间接证明法⑸分情况证明法⑹附加前提证明法⑺反证法▲ 公理系统一般由下列几部分组成:⑴初始符号:它们是不经定义而直接使用的符号;⑵形成规则:确定定义在初始符号上的哪些符号串是合式公式;⑶公理集:它们是不经证明而被认为是恒真的命题;⑷推理规则:规定如何从公理和前面已经推导出的合式公式经过符号变形而推出其它公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
置换规则:若AB, 则(B)(A)
等值演算的基础: (1) 等值关系的性质:自反、对称、传递 (2) 基本的等值式 (3) 置换规则
应用举例——证明两个公式等值
例1 证明 p(qr) (pq)r 证 p(qr)
p(qr) (蕴涵等值式,置换规则) (pq)r (结合律,置换规则) (pq)r (德摩根律,置换规则) (pq) r (蕴涵等值式,置换规则)
(优选)离散数学讲 义
1
等值式
定义 若等价式AB是重言式,则称A与B等值, 记作AB,并称AB是等值式 说明:定义中,A,B,均为元语言符号, A或B中 可能有哑元出现. 例如,在 (pq) ((pq) (rr))中,r为左边 公式的哑元. 用真值表可验证两个公式是否等值 请验证:p(qr) (pq) r
pqpq, 所以,为冗余的联结词; 类似地,也是冗余的 联结词. 又在{, , }中,由于
pq(pq), 所以,是冗余的联结词. 类似地,也是冗余的联 结词.
联结词的全功能集(续)
定义 设S是一个联结词集合,如果任何n(n1) 元 真值函数都可以由仅含S中的联结词构成的公式表 示,则称S是联结词全功能集. 说明:
p(qr) (pq) r
基本等值式
双重否定律 : AA
等幂律: AAA, AAA
交换律:
ABBA, ABBA
结合律:
(AB)CA(BC)
(AB)CA(BC)
分配律:
A(BC)(AB)(AC)
A(BC) (AB)(AC)
基本等值式(续)
德·摩根律 : (AB)AB
(AB)AB
吸收律: A(AB)A, A(AB)A
几个500强面试题
★为什么下水道的井盖是圆的?
★一个屋子有一个门(门是关闭的)和3 盏 电灯。屋外有3 个开关,分别与这3 盏灯相 连。你可以随意操纵这些开关,可一旦你 将门打开,就不能变换开关了。确定每个 开关具体管哪盏灯。
★假设时钟到了12 点。注意时针和分针重 叠在一起。在一天之中,时针和分针共重 叠多少次?你知道它们重叠时的具体时间 吗?
若S是联结词全功能集,则任何命题公式都可用S 中的联结词表示.
若S1, S2是两个联结词集合,且S1 S2. 若S1是全
功能集,则S2也是全功能集.
1.4 联结词全功能集
▪ 复合联结词
排斥或 与非式 或非式
▪ 真值函数 ▪ 联结词全功能集
复合联结词
排斥或: pq(pq)(pq) 与非式: pq(pq) 或非式: pq(pq)
真值函數
问题:含n个命题变项的所有公式共产生多少个互 不相同的真值表?
答案为 22n个,为什么? 定义 称定义域为{00…0, 00…1, …, 11…1},值域 为{0,1}的函数是n元真值函数,定义域中的元素是 长为n的0,1串. 常用F:{0,1}n{0,1} 表示F是n元真值 函数.
共有 22n个n元真值函数. 例如 F:{0,1}2{0,1},且F(00)=F(01)=F(11)=0, F(01)=1,则F为一个确定的2元真值函数.
命题公式与真值函数
对于任何一个含n个命题变项的命题公式A,都存在 惟一的一个n元真值函数F为A的真值表. 等值的公式对应的真值函数相同. 下表给出所有2元真值函数对应的真值表, 每一个含 2个命题变项的公式的真值表都可以在下表中找到.
例如:pq, pq, (pq)((pq)q) 等都对应
表中的
F (2 13
)
2元真值函数对应的真值表
pq
00 01 01 11 pq
00 01 01 11
F F F F F F F F (2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
0
1
2
3
4
5
6
7
00000000
00001111
00110011
01010101
F (2) 8
F (2) 9
F (2) 10
F (2) 11
F (2) 12
F (2) 13
F (2) 14
F (2) 15
11111111
00001111
00110011
01010101
联结词的全功能集
定义 在一个联结词的集合中,如果一个联结词可 由集合中的其他联结词定义,则称此联结词为冗余 的联结词,否则称为独立的联结词. 例如,在联结词集{, , , , }中,由于
说明:也可以从右边开始演算(请做一遍) 因为每一步都用置换规则,故可不写出 熟练后,基本等值式也可以不写出
应用举例——证明两个公式不等值
例2 证明: p(qr) (pq) r 用等值演算不能直接证明两个公式不等值,证明两
个公式不等值的基本思想是找到一个赋值使一个成 真,另一个成假.
方法一 真值表法(自己证) 方法二 观察赋值法. 容易看出000, 010等是左边的 成真赋值,是右边的成假赋值. 方法三 用等值演算先化简两个公式,再观察.
应用举例——判断公式类型
例3 用等值演算法判断下列公式的类型
( (蕴涵等值式)
q(pq) (德摩根律)
p(qq) (交换律,结合律)
p0
(矛盾律)
0
(零律)
由最后一步可知,该式为矛盾式.
例3 (续)
(2) (pq)(qp) 解 (pq)(qp)
(pq)(qp) (蕴涵等值式) (pq)(pq) (交换律) 1 由最后一步可知,该式为重言式. 问:最后一步为什么等值于1?
例3 (续)
(3) ((pq)(pq))r)
解 ((pq)(pq))r)
(p(qq))r (分配律)
p1r
(排中律)
pr
(同一律)
这不是矛盾式,也不是重言式,而是非重言式的可
满足式.如101是它的成真赋值,000是它的成假赋值.
总结:A为矛盾式当且仅当A0 A为重言式当且仅当A1
说明:演算步骤不惟一,应尽量使演算短些
零律:
A11, A00
同一律: A0A, A1A
排中律: AA1
矛盾律: AA0
基本等值式(续)
蕴涵等值式: ABAB
等价等值式: AB(AB)(BA)
假言易位:
ABBA
等价否定等值式: ABAB
归谬论:
(AB)(AB) A
注意:
A,B,C代表任意的命题公式
牢记这些等值式是继续学习的基础
等值演算与置换规则