高等数学(上)课程教学大纲
高等数学教学大纲
高等数学教学大纲一、课程概述高等数学是高等院校理工科及经济管理等专业的一门重要基础课程,它为学生学习后续专业课程提供必要的数学理论和方法,培养学生的逻辑思维能力、抽象概括能力、运算能力和创新能力。
二、课程目标1、使学生掌握高等数学中的基本概念、基本理论和基本方法,为后续课程的学习和今后的工作打下坚实的数学基础。
2、培养学生的逻辑思维能力、抽象概括能力、运算能力和空间想象能力,提高学生的数学素养。
3、使学生能够运用所学的数学知识和方法解决实际问题,培养学生的创新意识和应用能力。
三、课程内容1、函数与极限函数的概念及性质数列的极限函数的极限无穷小与无穷大极限的运算法则两个重要极限函数的连续性与间断点2、导数与微分导数的概念导数的几何意义函数的求导法则高阶导数隐函数及由参数方程所确定的函数的导数函数的微分3、微分中值定理与导数的应用微分中值定理洛必达法则函数的单调性与极值函数的凹凸性与拐点函数图形的描绘曲率4、不定积分不定积分的概念与性质换元积分法分部积分法有理函数的积分5、定积分定积分的概念与性质微积分基本公式定积分的换元法和分部积分法反常积分6、定积分的应用平面图形的面积体积平面曲线的弧长功、水压力和引力7、向量代数与空间解析几何向量及其运算空间直角坐标系平面与直线曲面与空间曲线8、多元函数微分法及其应用多元函数的基本概念偏导数全微分多元复合函数的求导法则隐函数的求导公式多元函数的极值及其求法9、重积分二重积分的概念与性质二重积分的计算法三重积分重积分的应用10、曲线积分与曲面积分对弧长的曲线积分对坐标的曲线积分格林公式及其应用对面积的曲面积分对坐标的曲面积分高斯公式与斯托克斯公式11、无穷级数常数项级数的概念和性质正项级数审敛法任意项级数的绝对收敛与条件收敛幂级数函数展开成幂级数12、常微分方程微分方程的基本概念可分离变量的微分方程齐次方程一阶线性微分方程可降阶的高阶微分方程高阶线性微分方程常系数齐次线性微分方程常系数非齐次线性微分方程四、教学方法1、课堂讲授:通过讲解、演示和推导,使学生理解和掌握高等数学的基本概念、基本理论和基本方法。
《高等数学(上)》(higher mathematics(1))教学大纲(《高等数学(上)》(高等数学(1))教学大纲)
《高等数学(上)》(higher mathematics(1))教学大纲(《高等数学(上)》(高等数学(1))教学大纲)《高等数学(上)》(高等数学(1))教学大纲一课程编号::040401。
二课程类型:必修课。
课程学时:80 / 5学分学时适用专业:除信科、强化班外的理、工科各专业先修课程:初等数学三。
课程性质与任务高等数学是我校理工科各专业的一门重要基础课理论课程,是各专业学生一门必修的重要课程。
通过本课程的学习,使学生系统地获得一元函数微积分等基本知识和基本理论;重点介绍极限、导数、积分(不定积分、定积分),并注重培养学生熟练的运算能力和较强的抽象思维能力﹑逻辑推理能力﹑几何直观和空间想象能力,从而使学生学会利用数学知识去分析和解决一些几何﹑力学和物理等方面的实际问题,为学习后续课程和进一步扩大数学知识奠定必要的数学基础。
四。
教学主要内容及学时分配序号主要内容学时一函数、极限与连续十八二导数与微分十五三中值定理及导数的应用十五四不定积分十二五定积分十六定积分的应用八五。
基本要求和基本内容(一)函数与极限1、理解一元函数、反函数、复合函数的定义;2、了解函数的表示和函数的简单性态--有界性、单调性、奇偶性、周期性;3、熟悉基本初等函数与初等函数(包含其定义区间、简单性态和图形);4、理解数列极限的概念(对定义不作过高要求);5、熟悉收敛数列的性质-有界性、唯一性;6、了解数列极限的存在准则-单调有界准则、夹逼准则;7、理解函数的极限的定义(包括当和时,函数极限的定义及左、右极限的定义)8、了解函数极限的性质--唯一性、保号性、局部有界性;9、熟练掌握极限的四则运算法则(包括数列极限与函数极限)10、掌握两个重要极限:11、熟悉无穷小量的概念及其运算性质、无穷小量的比较;12、了解无穷大量的概念及其与无穷小量的关系;13、函数极限与无穷小量的关系;14、理解函数的连续性的概念、了解函数的间断点的分类;15、熟悉连续函数的和、差、积、商及复合函数的连续性;16、了解初等函数的连续性,掌握闭区间上连续函数的性质。
(完整版)《高等数学》课程教学大纲
《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。
二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。
掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。
能较熟练地应用微积分学的思想方法解决应用问题。
三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。
难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。
《高等数学》教学大纲
《高等数学》课程教学大纲一、课程的性质、目的和任务高等数学是工科本科各专业学生的一门必修的重要基础理论课,通过本课程的学习,要使学生获得:1.函数与极限;2.一元函数微积分学;3.常微分方程;4.向量代数和空间解析几何;5.多元函数微积分学;6.无穷级数(包括傅立叶级数)等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。
在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力。
二、课程教学的基本要求及基本内容说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。
高等数学(上)一、函数、极限、连续1.理解函数的概念及函数的奇偶性、单调性、周期性和有界性。
2.理解复合函数和反函数的概念。
3.熟悉基本初等函数的性质及其图形。
4.会建立简单实际问题中的函数关系式。
5.理解极限的概念(对极限的-N、-定义不作高要求),掌握极限四则运算法则及换元法则。
6.理解极限存在的夹逼准则,了解单调有界准则,掌握运用两个重要极限求极限的方法。
7.了解无穷小、无穷大以及无穷小的阶的概念。
会用等价无穷小求极限。
8.理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。
9.了解初等函数的连续性和闭区间上连续函数的性质(介值定理和最大、最小值定理)。
二、一元函数微分学1.理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数的导数公式。
了解微分的四则运算法则和一阶微分形式不变性。
3.了解高阶导数的概念。
4.掌握初等函数一阶、二阶导数的求法。
知道某些初等函数n 阶导数的求法与公式。
5.会求隐函数和参数式所确定的函数的一阶、二阶导数。
(完整版)《高等数学》课程教学大纲
《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。
二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。
掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。
能较熟练地应用微积分学的思想方法解决应用问题。
三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。
难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。
《高等数学》 课程教学大纲
二、课程基本内容和要求
1. 函数、极限、连续
教学内容
(1) 函数概念、性质、基本初等函数图象的性质,复合函数,初等函数,建立函数关系举例。
(2) 函数极限的概念,极限的四则运算,两个重要极限,无穷小量与无穷大量概念及性质,无穷小的比较
(3) 函数的连续性,初等函数的连续性,间断点,闭区间上连续函数的性质
制定人:朱铭扬
审核人:高 枫
(2)偏导数概念,多元复合函数与隐函数的微分法
(3)全微分及其应用
(4)多元函数的极值和最值
教学要求
(1) 理解多元函数的基本概念,其定义域及图象特点,知道二元函数的极限、连续性等概念,知道有界闭区域上连续函数的性质。
(2) 理解偏导数,熟练地计算函数的一阶偏导数,熟练掌握复合函数的求导法则,会求隐函数的偏导数。
《高等数学》 课程教学大纲
总学时:128 学分:8
一、课程性质、任务和目的
高等数学是大学专科工学和理学专业一门必修的重要公共基础课,通过本课程的学习着重使学生理解极限的思想方法,掌握微积分学、级数、微分方程等内容,并通过各教学内容的有机结合,培养学生的逻辑思维能力和比较熟练的运算能力,为学生学习后继课程和解决实际问题提供必不可少的数学基础知识及常用数学方法。
(2)直角坐标系与极坐标系下二重积分的计算
(3)二重积分在几何上的应用:曲顶柱体体积计算
教学要求
(1) 理解二重积分概念及几何意义,知道其性质
(2) 掌握直角坐标系下二重积分的计算,会利用极坐标系计算二重积分。
(3) 会利用二重积分计算一些简单曲顶柱体的体积。
重点与难点:二重积分(包括概念、计算与应用);化重积分为累次积分;元素法
高等数学教学大纲(2024年版)
高等数学教学大纲(2024年版)1. 引言本教学大纲旨在为高等数学课程提供清晰、详细的指导,确保教学内容的系统性和连贯性,帮助学生掌握高等数学的核心概念和方法,培养其分析和解决问题的能力。
本大纲适用于我国高等教育阶段理科、工科、经济管理类等专业的本科生。
2. 教学目标通过本课程的研究,学生应达到以下目标:1. 掌握高等数学的基本概念、理论和方法。
2. 能够运用高等数学知识解决实际问题。
3. 培养逻辑思维、创新能力和团队合作精神。
4. 提高数学素养,为后续专业课程和研究生阶段的研究打下坚实基础。
3. 教学内容高等数学教学内容主要包括以下几个部分:3.1 极限与连续1. 极限的概念与性质2. 极限的计算方法3. 无穷小与无穷大4. 函数的连续性5. 极限与连续在实际问题中的应用3.2 导数与微分1. 导数的概念与性质2. 导数的计算方法3. 高阶导数4. 隐函数求导与参数方程求导5. 微分学在实际问题中的应用3.3 积分与面积1. 不定积分与定积分的概念与性质2. 积分计算方法3. 换元积分与分部积分4. 定积分的应用5. 面积与体积的计算3.4 微分方程1. 微分方程的基本概念与分类2. 一阶微分方程的解法3. 高阶微分方程的解法4. 常微分方程的应用5. 线性微分方程与非线性微分方程3.5 级数1. 数项级数的概念与性质2. 收敛性与发散性判断3. 幂级数与泰勒公式4. 傅里叶级数5. 级数在实际问题中的应用3.6 向量与空间解析几何1. 向量的概念与运算2. 空间解析几何的基本概念3. 线性空间与线性变换4. 向量空间的应用5. 坐标变换与几何变换3.7 线性代数1. 矩阵的概念与运算2. 线性方程组3. 特征值与特征向量4. 二次型5. 线性代数在实际问题中的应用4. 教学方法与手段1. 采用讲授、讨论、自学相结合的教学方法,引导学生主动探究、积极思考。
2. 使用多媒体课件、板书等多种教学手段,提高教学效果和学生的研究兴趣。
《高等数学(上)》(5学分)课程教学大纲
《高等数学(上)》(5学分)课程教学大纲一、课程编号:0210011二、课程名称:高等数学(上) (80学时)Advanced Mathematics(I)三、先修课程四、适用专业:工科类各专业《高等数学(下)》(5学分)课程教学大纲一、课程编号:0210021二、课程名称:高等数学(下) (80学时)Advanced Mathematics (II)三、先修课程:高等数学(上)四、适用专业:工科类各专业《高等数学(上)》(3学分)课程教学大纲一、课程编号:0210012二、课程名称:高等数学(上) (48学时)Advanced Mathematics (I)三、先修课程四、适用专业:文科类各专业《高等数学(下)》(3学分)课程教学大纲一、课程编号:0210022二、课程名称:高等数学(下) (48学时)Advanced Mathematics (II)三、先修课程:高等数学 (上)四、适用专业:文科类各专业《数学分析(上)》(6学分)课程教学大纲一、课程编号:0210031,0210032二、课程名称:数学分析(上) (96 学时)Mathematical Analysis (I)三、先修课程四、适用专业电信学院、计算机学院《数学分析(下)》(6学分)课程教学大纲一、课程编号:0210041,0210042二、课程名称:数学分析(下) (96学时)Mathematical Analysis (II)三、先修课程:数学分析(上)四、适用专业:电信学院、计算机学院《线性代数》(2学分)课程教学大纲一、课程编号:0210050二、课程名称:线性代数(32学时)Linear Algebra三、先修课程四、适用专业:工科类各专业《高等代数》(3学分)课程教学大纲一、课程编号:0210060二、课程名称:高等代数(48学时)Advanced Algebra三、先修课程四、适用专业:电信学院、电子工程学院《概率论与随机过程》(3学分)课程教学大纲一、课程编号:0210070二、课程名称:概率论与随机过程(48学时)Probability Theory and Stochastic Processes三、先修课程:高等数学、线性代数、积分变换、复变函数四、适用专业:电信学院、电子工程学院《概率论与随机过程》(4学分)课程教学大纲一、课程编号:暂无二、课程名称:概率论与随机过程(64学时)Probability Theory and Stochastic Processes三、先修课程:高等数学、线性代数、积分变换、复变函数,信号原理四、适用专业:计算机学院《概率论与数理统计》(3学分)课程教学大纲一、课程编号:0210080二、课程名称:概率论与数理统计(48学时)Probability Theory and Mathematical Statistics三、先修课程:高等数学、线性代数四、适用专业:管理学院《复变函数》(2学分)课程教学大纲一、课程编号:0210110二、课程名称:复变函数(32学时)Complex Analysis三、先修课程:高等数学四、适用专业:电信学院、电子工程学院《数学物理方法》(2学分)课程教学大纲一、课程编号:0210120二、课程名称:数学物理方法(32学时)Mathematical Methods for Physical Science三、先修课程:高等数学积分变换四、适用专业:电子工程学院《组合数学》(2学分)课程教学大纲一、课程编号:0210130二、课程名称:组合数学(32学时)Combinatorial Mathematics三、先修课程:高等数学、高等代数、近世代数四、适用专业:计算机学院《数学建模与模拟》(2学分)课程教学大纲一、课程编号:0210140二、课程名称:数学建模与模拟(32学时)Mathematical Models and Computer Simulation三、先修课程:高等数学、线性代数、概率论等四、适用专业:计算机学院《运筹学》(2学分)课程教学大纲一、课程编号:0210150二、课程名称:运筹学 (32学时)Operational Research三、先修课程:高等数学、线性代数四、适用专业:计算机学院《高等数学解题方法(上)》(2学分)课程教学大纲一、课程编号:0210210二、课程名称:高等数学解题方法(上) (32学时)Problem Solving Method of Advanced Mathematics (I)三、先修课程四、适用专业:工科类各专业《高等数学解题方法(下)》(2学分)课程教学大纲一、课程编号:0210220二、课程名称:高等数学解题方法(下) (32学时)Problem Solving Method of Advanced Mathematics (II)三、先修课程:高等数学(上)四、适用专业:工科类各专业《计算机算法与数学模型》(4学分)课程教学大纲一、课程编号:0210230, 0210250二、课程名称:计算机算法与数学模型(32*2学时)Computing Methods and Mathematical Models三、先修课程:数学分析、高等代数、概率论等四、适用专业:工科类各专业《复变函数》(2学分)课程教学大纲一、课程编号:0210240二、课程名称:复变函数(32学时)Complex Analysis三、先修课程:高等数学四、适用专业:工科类各专业《离散数学》(2学分)课程教学大纲一、课程编号:0210260二、课程名称:离散数学(32学时)Discrete Mathematics三、先修课程:高等数学、线性代数四、适用专业:工科类各专业《数学物理方法》(2学分)课程教学大纲一、课程编号:0210270二、课程名称:数学物理方法(32学时)Mathematical Methods for Physical Science三、先修课程:高等数学积分变换四、适用专业:工科类各专业《数理统计》(2学分)课程教学大纲一、课程编号:0210280二、课程名称:数理统计(32学时)Mathematical Statistics三、先修课程:高等数学、线性代数、概率论四、适用专业:工科类各专业《图论及其应用》(2学分)课程教学大纲一、课程编号:0210290二、课程名称:图论及其应用 (32学时)Graph Theory with Applications三、先修课程:高级语言程序设计四、适用专业:工科类各专业《近世代数及其应用》(2学分)课程教学大纲一、课程编号:0210300二、课程名称:近世代数及其应用(32学时)Modern Algebra with Applications三、先修课程:高等代数或线性代数四、适用专业:工科类各专业《大学物理(上)》(4学分)课程教学大纲一、课程编号:0220010二、课程名称:大学物理(上) (64学时)University Physics (I)三、先修课程:高等数学(上)四、适用专业:全校理工科专业《大学物理(下)》(3学分)课程教学大纲一、课程编号:0220020二、课程名称:大学物理(下) 48学时University Physics (II)三、先修课程:高等数学、大学物理(上)四、适用专业:全校理工科专业《大学物理》(4学分)课程教学大纲一、课程编号:0220040二、课程名称:大学物理(64学时)University Physics三、先修课程:高等数学(上)四、适用专业:计算机学院《物理实验(1)》(1.5学分)课程教学大纲一、课程编号:0230010二、课程名称:物理实验(1) (24学时)Physics Experiment (1)三、先修课程:高等数学、大学物理四、适用专业:全校理工科《物理实验(2)》(1.5学分)课程教学大纲一、课程编号:0230020二、课程名称:物理实验(2) (24学时)Physics Experiment (2)三、先修课程:高等数学、大学物理四、适用专业:全校理工科《物理实验》(2学分)课程教学大纲一、课程编号:0230030二、课程名称:物理实验(32学时)Physics Experiment三、先修课程:高等数学、大学物理四、适用专业:全校物理少学时各专业《大学物理解题方法(上)》(2学分)教学大纲一、课程编号:0220110二、课程名称:大学物理解题方法(上) (32学时)Problem Solving Method of University Physics (I)三、先修课程:高等数学(上)四、适用专业:全校各专业《大学物理解题方法(下)》(2学分)教学大纲一、课程编号:0220120二、课程名称:大学物理解题方法(下) (32学时)Problem Solving Method of University Physics (II)三、先修课程:大学物理(上)四、适用专业:全校各专业《光通信的物理基础》(2学分)课程教学大纲一、课程编号:0220130二、课程名称:光通信的物理基础(32学时)Physics Foundations for Optical Communications三、先修课程:大学物理四、适用专业:全校理工科专业学生选修《量子力学导论》(2学分)课程教学大纲一、课程编号:0220140二、课程名称:量子力学导论(32学时)Introduction to Quantum Mechanics三、先修课程:高等数学、线性代数、大学物理四、适用专业:非物理各专业《大学物理拓展与应用》(2学分)教学大纲一、课程编号:0220150二、课程名称:大学物理拓展与应用(32学时)Selected Topics of General Physics and Applications三、先修课程:大学物理四、适用专业:全校各专业《物理实验(选修)》(2学分)教学大纲一、课程编号:0230110二、课程名称:物理实验(32学时)Physics Experiment三、先修课程:高等数学、物理实验(1)四、适用专业:全校理工科各专业《高级物理实验》(2学分)课程教学大纲一、课程编号:0230120二、课程名称:高级物理实验(32学时)Advanced Experiments of Physics三、先修课程:物理实验(1)、物理实验(2)四、适用专业:理工科各专业《印制电路与计算机辅助设计》(2学分)课程教学大纲一、课程编号:0240010二、课程名称:印制电路与计算机辅助设计(32学时)Printed Circuit Board and Its Computer Aided Design三、先修课程:电子电路、计算机基础知识四、适用专业:全校各专业《金属腐蚀与防护》(2学分)课程教学大纲一、课程编号:0240020二、课程名称:金属腐蚀与防护(32学时)Metal Corrosion and Protection三、先修课程四、适用专业:全校各专业《大气化学与环境保护》(2学分)课程教学大纲一、课程编号:0240030二、课程名称:大气化学与环境保护(32学时)Atmospheric Chemistry and Environmental Protection三、先修课程四、适用专业:全校各专业。
《高等数学》教学大纲
《高等数学》教学大纲一、课程基本信息课程名称:高等数学课程类别:公共基础课课程学分:_____课程总学时:_____授课对象:_____先修课程:_____二、课程性质与任务高等数学是高等院校各专业学生必修的一门重要基础理论课,它不仅为学生学习后续课程和解决实际问题提供了必不可少的数学基础知识和数学方法,而且在培养学生的创新思维能力、逻辑推理能力、空间想象能力以及分析问题和解决问题的能力等方面都起着重要的作用。
本课程的主要任务是使学生掌握高等数学的基本概念、基本理论和基本方法,培养学生运用数学知识解决实际问题的能力,为学生学习后续课程以及今后从事科学研究和实际工作打下坚实的数学基础。
三、课程教学目标1、知识目标使学生掌握函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程等方面的基本概念、基本理论和基本方法。
了解数学建模的基本思想和方法,能够运用所学的数学知识建立简单的数学模型,并求解实际问题。
2、能力目标培养学生的逻辑推理能力、抽象思维能力和空间想象能力。
提高学生的运算能力和综合运用所学知识分析问题、解决问题的能力。
培养学生的创新意识和创新能力。
3、素质目标培养学生的科学态度和严谨的治学精神。
提高学生的数学素养和文化素质。
培养学生的团队合作精神和沟通能力。
四、课程教学内容与要求(一)函数、极限与连续1、函数理解函数的概念,掌握函数的表示方法。
了解函数的单调性、奇偶性、周期性和有界性。
掌握基本初等函数的性质和图形,了解初等函数的概念。
2、极限理解数列极限和函数极限的概念。
掌握极限的性质和运算法则,会求数列和函数的极限。
了解无穷小量和无穷大量的概念,掌握无穷小量的性质和比较方法。
3、连续理解函数连续的概念,掌握函数在一点连续的充要条件。
了解函数的间断点及其类型,会判断函数的间断点。
掌握初等函数的连续性,会利用连续性求函数的极限。
(二)一元函数微分学1、导数与微分理解导数的概念,掌握导数的几何意义和物理意义。
高等数学》(一)教学大纲
《高等数学》课程教学大纲课程名称:高等数学英文名称:advanced mathematics课程编号:10132101 -10132102学时数:180学分数: 18适用专业:工科各专业一、课程的性质、目的和任务《高等数学》是工科院校各个专业的一门必修的公共基础理论课。
通过本课程的学习使学生比较系统地理解数学的基本概念和基本理论,掌握数学的基本方法。
使学生具有抽象的思维能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学知识分析问题和解决问题的能力。
二、课程教学内容的基本要求、重点和难点掌握高等数学的基础知识及基本方法,提高分析问题和解决问题的能力,将所学的知识熟练运用到后继专业课的学习,并为考研打好基础。
通过本课程的学习,要使学生获得:1.函数,极限,连续;2.一元函数微积分学;3.矢量代数与空间解析几何;4.多元函数微积分学;5.无穷级数;6.常微分方程.等方面的基本概念、基本理论和基本运算技能,为今后学习后继课程、从事工程技术工作、进行科学研究以及进一步获得科学技术知识奠定必要的数学基础。
第一章函数与极限1.理解函数的概念,掌握函数的表示方法。
2.了解函数性质:奇偶性,单调性,周期性和有界性。
3.理解复合函数和分段函数的概念,了解反函数与隐函数的概念,并会建立简单应用问题中的函数关系式。
掌握基本初等函数的性质及其图形。
4.理解函数极限、左(右)极限的概念以及函数极限存在与左右极限之间的关系。
5.熟练掌握极限性质及四则运算法则、掌握极限存在的两个准则,并会利用它求极限。
6.熟练掌握两个重要极限并会利用它求极限。
7.理解无穷小(大)的概念,掌握无穷小的比较方法,并会根据等价无穷小求极限。
8.理解函数连续,左(右)连续的概念,会判别函数间断点的类型。
9.了解连续函数的性质及闭区间上连续函数的性质,并会应用这些性质解题。
第二章导数与微分1.理解导数的概念,几何意义,会求平面曲线的切线和法线方程,理解导数的物理意义,会用导数描述一些物理量。
高等数学大纲(1)
政治与公共管理系课程教学大纲公共事业管理专业《高等数学》(1)政治与公共管理系制楚雄师范学院政管系11级公共事业管理专业《高等数学》(1)课程教学大纲一、课程基本情况课程代码:课程中文名称:高等数学课程英文名称;Advanced Mathematics课程类别:专业必修使用专业:公共事业管理使用年级:一年级学制:学分制开课学期:一学期总学时:54学时总学分:3学分预修课程:高中数学并修课程:课程简介:本课程是公共事业管理专业的核心必修课程。
通过本课程的学习,要使学生掌握高等数学的基本概念、基本理论和基本方法,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生综合运用所学知识去分析解决实际问题的意识和能力教材和参考书教材:赵利彬《高等数学》上册同济大学出版社2007主要参考书:(1)《高等数学》《高等数学习题集》,《教学参考书》同济大学数学教研室;(2)《数学分析》,复旦大学数学系,高教出版社;(3)《数学分析习题集》,修定本,吉米多维奇,人民教育出版社。
二、课程性质、目的及总体教学要求本课程是公共事业管理专业的核心必修课程。
高等数学课程是一门重要的基础课。
通过本课程的学习,要求学生将较系统地获得大纲所列内容的基本知识、必需的基础理论和常用的运算方法,为学生学习后继课程和解决实际问题提供必不可少的数学基础知识及常用的数学方法。
通过教学要实现传授知识和发展能力两方面的教学目的,能力培养要贯穿教学全过程。
本课程关于能力方面的要求是:逐步培养学生具有比较熟练的基本运算能力、自学能力、综合运用所学知识去分析问题和解决问题的能力、初步的抽象概括问题的能力以及一定的逻辑推理能力。
教学中要认真探讨和贯彻“以应用为目的,以必需够用为度”的教学原则。
教学重点要放在“掌握概念,强化应用,培养技能”上。
执行大纲时,要注意以下几点:1.适当注意数学自身的系统性和逻辑性,课程内容应具有较大的覆盖面,在保证必修内容的基础上,可以根据需要有所侧重和选择。
《高等数学》课程教学大纲
《高等数学》课程教学大纲高等数学课程教学大纲1. 引言高等数学是大学理工类专业中一门重要的基础课程,它为学生提供了深入理解数学概念和方法的机会。
本教学大纲旨在明确高等数学课程的目标、内容和教学方式,以帮助教师和学生在学习过程中更好地掌握知识和技能。
2. 课程目标2.1 知识目标通过本课程的学习,学生应能够:- 掌握高等数学的基本概念、原理和公式;- 理解和运用微积分的基本思想和方法;- 熟悉常微分方程的求解技巧;- 理解多元函数的极限、连续性和偏导数等概念;- 掌握重要的高等数学定理和定理的证明方法。
2.2 技能目标通过本课程的学习,学生应能够:- 运用高等数学知识解决实际问题;- 熟练使用数学工具(如计算器和数学软件)进行计算和绘图;- 能够进行简单的数学推理和证明;- 培养数学建模和问题求解的能力。
3. 课程内容3.1 函数与极限- 函数的概念与性质- 极限的定义与运算法则- 连续与间断3.2 微积分- 导数与微分- 函数的极值与最值- 曲线的图形与函数的分析- 不定积分与定积分- 微分方程的基本概念与求解方法3.3 多元函数与偏导数- 多元函数的极限与连续性- 偏导数与全微分- 多元函数的极值与最值- 多元函数的泰勒展开4. 教学方式4.1 授课教师通过讲授基本概念、原理和公式,引导学生理解和掌握数学知识。
4.2 讨论与互动教师组织学生进行小组讨论、问题解答和数学实例演练,促进学生之间和教师之间的互动。
4.3 实践与实验教师引导学生进行数学建模和实际问题的求解,通过实践和实验帮助学生巩固和应用所学知识。
4.4 作业与课堂测试教师布置作业和组织课堂测试,帮助学生及时巩固所学知识,并提供反馈和指导。
5. 教材及参考资料- 主教材:《高等数学教程》(或其他适合的教材)- 辅助教材:《高等数学习题集》(或其他适合的教材)- 参考资料:相关数学期刊、学术论文和互联网资源6. 考核方式6.1 平时成绩包括作业、实验报告、课堂表现等6.2 期中考试考察学生对前期知识的掌握和理解能力6.3 期末考试考察学生对所有学习内容的整体掌握和应用能力7. 教学评价通过课程问卷调查、评估反馈和学生学业成绩等多种方式对教学效果进行评价,不断改进教学方法和内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“高等数学(上)”课程教学大纲
一、课程基本信息
二、课程任务目标
(一)课程任务
本课程是理科院校经管类专业的一门专业基础课,又是全国硕士研究生入学考试统考科目。
通过本课程的学习,要使学生掌握一元函数极限、微分学、积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。
(二)课程目标
在学完本课程之后,学生能够:基本了解一元函数极限、微积分学的基础理论;充分理解一元函数极限、微积分学的背景及数学思想。
掌握极限、微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。
能较熟练地应用极限、微积分学的思想方法解决应用问题。
三、教学内容和要求
第一章函数、极限与连续
1.内容概要
函数,初等函数,数列的极限,函数的极限,无穷小与无穷大,极限运算法则,极限存在准则及两个重要极限,无穷小的比较,函数的连续性与间断点,连续函数的运算与初等函数的连续性,闭区间上连续函数的性质。
2.重点与难点
重点:函数的概念、性质;极限的概念,无穷大、无穷小的概念;极限的运算;连续的概念。
难点:函数的记号及所涉及到的函数值的计算;极限的ε—Ν,ε—δ定义;极限中一些定理的论证方法;极限存在性的判定,连续性的判断。
3.学习目的与要求
(1)了解函数的概念、函数的单调性,反函数和复合函数的概念,熟悉基本初等函数的性质及其图形,能列出简单实际问题中的函数关系。
(2)了解极限的ε—Ν,ε—δ定义;能根据定义证明本课程内容中有关极限的简单定理(对于给出的ε,求Ν或δ不作过高要求),在学习过程中逐步加深对极限思想的理解。
(3)掌握极限的四则运算法则,了解两个极限存在准则(夹逼准则和单调有界准则),会灵活使用两个重要极限。
(4)理解无穷大、无穷小的概念,掌握无穷小的比较,特别是常见的等价无穷小。
(5)理解函数在一点连续的概念,会判断间断点的类型。
(6)了解初等函数的连续性,掌握闭区间上连续函数的性质。
第二章导数与微分
1.内容概要
导数的概念,函数的求导法则,高阶导数,隐函数及由参数方程所确定的函数的导数,函数的微分。
2.重点和难点
重点:导数和微分的概念;复合函数微分法。
难点:微分的概念;隐函数及参数式二阶导数。
3.学习目的与要求
(1)理解导数和微分的概念,了解导数的几何意义及函数的可导性与连续性之间的关系。
(2)熟悉导数和微分的运算法则(包括微分形式不变性)和导数的基本公式,了解高阶导数概念,能熟练的求一阶、二阶导数。
(3)掌握隐函数和由参数式所确定的函数的一阶、二阶导数的求法。
(4)了解微分是函数增量的线性主部的概念及函数局部线性化的思想。
第三章中值定理与导数的应用
1.内容
中值定理,洛必达法则,泰勒公式,函数的单调性与曲线的凹凸性,函数的极值与最大值最小值,函数图形的描绘。
2.重点和难点
重点:微分中值定理,洛必达法则,极值及最大值、最小值。
难点:泰勒定理,中值定理应用于证明问题。
3.学习目的与要求
(1)理解罗尔定理和拉格朗日定理,了解柯西定理和泰勒定理,会应用罗尔、拉格朗日定理。
(2)理解函数的极值概念,掌握求函数的极值、判断函数的单调性和函数图形的凹凸性、求函数图形的拐点等方法。
能描绘函数的图形(包括水平与铅直渐进线),会求解较简单的最大值与最小值的应用问题。
第四章不定积分
1.内容
不定积分的概念与性质,换元积分法,分部积分法,有理函数的积分。
2.重点和难点
重点:不定积分的概念,基本积分公式;不定积分的换元积分法与分部积分法。
难点:不定积分的换元积分法。
3.学习目的与要求
(1)理解不定积分的概念和性质。
(2)熟悉不定积分的基本公式,熟练掌握不定积分的换元法和分部积分法,掌握较简单的有理函数的不定积分。
第五章定积分
1.内容
定积分的概念与性质,定积分的性质,微积分基本公式,定积分的换元积分法和分部积分法,定积分的应用。
2.重点和难点
重点:定积分的概念,定积分的中值定理;积分上限函数及其导数,牛顿—莱布尼兹公式;定积分的换元积分法、分部积分法。
难点:定积分的概念;积分上限函数及其导数;定积分的换元积分法、分部积分法。
3.学习目的与要求
(1)理解定积分的概念和性质。
(2)理解积分上限的函数及其求导定理。
(3)熟练掌握牛顿—莱布尼兹公式。
(4)熟练掌握定积分的换元法和分部积分法。
(5)了解定积分在几何及经济学中的应用。
四、学时分配
五、考核说明
考核方法:闭卷
成绩评定法法:平时成绩+⨯%30考试成绩%70⨯
六、主要教材及教学参考书目
(一)主要教材
1.吴赣昌 编《微积分》上册(经管类.第四版),中国人民大学出版社,20011年。
(二)主要参考书目
1.同济大学数学系 编《高等数学》上册 第六版,高等教育出版社,2007年。
2.四川大学数学系高等数学教研室 编 《高等数学》第一册 第三版,高等教育出版社,2006年。
3. 吴礼斌 主编 《经济数学基础》,高等教育出版社,2005年。
4. 范培华等编 《微积分》,中国商业出版社,2006年。