雨中行走问题模型

合集下载

关于人在雨中行走的数学模型

关于人在雨中行走的数学模型

关于人在雨中行走的数学模型摘要本题在给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。

其中题中所涉及到的降雨量是指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水面上积聚的水层深度,它可以直观地表示降雨的多少。

淋雨量,是指人在雨中行走时全身所接收的雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

利用MATLAB软件对各个问题进行求解。

对于问题一,设降雨淋遍全身不考虑雨的方向,经简化假设人淋雨面积为前后左右及头顶面积之和。

对于问题二,雨迎面吹来,雨线方向与行走方向在同一平面,人淋雨面积为前方和头顶面积之和。

因各个方向上降雨速度分量不同,故分别计算头顶和前方的淋雨量后相加即为总的淋雨量。

据此可列出总淋雨量w与行走速度v之间的函数关系。

分析表明当行走速度为v时,淋雨量最少。

m对于问题三,雨从背面吹来,雨线与行走在同一平面内,人淋雨量于人和雨相对速度有关,列出函数关系式分析并求解。

关键词:淋雨量,降雨的大小,降雨的方向(风),路程的远近,行走的速度,雨滴下落的速度,角度,降雨强度问题重述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方体,高a =1.5m (颈部以下),宽b =0.5m ,厚c =0.2m .设跑步距离d =1000m ,跑步最大速度m v =5s m /,雨速u =4s m /,降雨量w =2h cm /,记跑步速度为v .按以下步骤进行讨论:(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。

(2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数θ,,,,,,wa之间的关系,问速度v多大,bucdθ,0ο30时的总淋雨量。

总淋雨量最少。

计算==θ(3)雨从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角α,如图2.建立总淋雨量与速度v及参数α,dca之间的关系,问速度v多ub,,w,,,大,总淋雨量最少。

人在雨中行走时的淋雨量问题

人在雨中行走时的淋雨量问题

人在雨中行走时的淋雨量问题人在雨中行走时的淋雨量问题一.模型假设 1.把人看做一个长方体;2.雨滴下落的速度,方向保持不变;3.人行走一段距离的速度,方向保持不变。

4.假设主要淋雨量集中在正面,背面和头部,忽略两侧淋雨量。

即考虑总淋雨量时只考虑(正面+头部)或者(背面+头部)二.符号说明1.V 为雨速(m/s ),方向定义为朝着人正面为正。

2.D 为人在雨中行走距离。

3.R 为人在雨中行走速度3.θ为雨滴下落方向与地平面的所成角,0°≤θ≤90°。

4. h1,h2,h3分别为视人体为一个长方体时人的身高(m)、身宽(m)、厚度(m);5.总淋雨量为W (R)单位为m 3。

三.模型建立本模型是在上诉理想条件下分析人在行走时的淋雨量的大小,而淋雨量的大小取决与降雨量的大小,方向,还有人行走的速度,行走的路程。

我们的目标是求出使得人在雨中行走时淋雨量最小的条件。

即最佳行走速度。

以人为Z 轴,人行走的方向为X 轴,左边为y 轴建立空间坐标系。

则雨的降落速度可以按这个坐标系分解到x 轴,y 轴,z 轴。

得到θθθsin ,cos ,cos V Vz V Vy V Vx ===。

进一步得到θcos V R V +=相.人的头部,正面或背面的淋雨面积为h1h2,h2h3,淋雨时间为D/V.则可得到人正面或背面的淋雨量为θcos 21V R h h R D +;人头部淋雨量为θsin 32V h h RD ;进一步得总淋雨量W(R )=()θθsin 33cos 21V h h V R h h RD ++。

分析:1)当雨从人正面降落,即V 方向取正,V>0,由此得到}sin 32)cos (21{)(θθV h h V R h h R D R W ++=;对W (R)进行单调性分析可知,其一阶导数0)(<'R W 。

所以W(V)单调递减。

无最小值。

2)当雨从人后面降落,即V 方向取负,V<0,由此得到()θθsin 33cos 21)(V h h V R h h RD R W ++= =21)cos 21sin 32(h Dh RV h h V h h D --θθ,θcos 0V R -<<----------------① =θθθcos ,21)sin 32cos 21(V R h Dh RV h h V h h D -≥++;------------------② 分别讨论上诉两种情况下的一阶导数可得:2)cos 21sin 32()(R V h h V h h D R W θθ+-=' 下面对其进行极值分析:其 a )当θcos 0R R -<<时,当θθcos 21sin 32V h h V h h +>0时,。

雨中行走数学建模

雨中行走数学建模

雨中行走问题的分析吴珍数学与应用数学二班 A班冯奎艳数学与应用数学二班 A班杨彦云数学与应用数学二班 A班摘要本文讨论了雨线方向、跑步速度与淋雨量关系的问题.针对问题一,将人视为长方体,采用物理学中流体计算的思想方法计算淋雨量,得到速度越大淋雨量越小的结论。

针对问题二,首先引入雨滴降落频率的概念,解决了用雨速来确定降雨量雨滴降落不连续的问题。

然后采用物理学中流体计算的思想方法计算淋雨量,建立跑步速度与淋雨量关系的优化模型,得到速度越大淋雨量越小的结论。

针对问题三,在问题二的基础上,改变雨线方向,采用物理学中流体计算的思想方法,建立与跑步速度与淋雨量关系的优化模型,确定淋雨量最小情况下的跑步速度.针对问题四,综合雨线方向与跑步方向夹角,跑步速度,淋雨量的关系,建立几何模型,采用数形结合的方法建立淋雨量模型。

关键词雨滴降落频率;优化模型;淋雨量一、问题重述一般情况下,行人未带雨具却突降大雨,都会选择加快行走速度以减少淋雨量,但如果考虑风速、雨速,就会发现淋雨量并不光与淋雨时间有关。

那么在雨中以何种速度跑,淋雨量最少。

现假设要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型,讨论是否跑得越快,淋雨量越少。

按以下步骤进行讨论:(1) 不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。

(2) 雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,问速度多大时,总淋雨量最少。

(3) 雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为α,问速度多大时,总淋雨量最少。

(4) 若雨线方向与跑步方向不在同一平面内即异面时,模型会有什么变化。

二、问题分析人在雨中行走时,行走时间即淋雨时间。

把人看成一个长方体,总淋雨量是各个面淋雨量之和。

为解决雨滴不是连续的,引进雨滴频率P (模型建立部分会做具体阐述)的概念。

对于问题一,在不考虑雨速方向的前提下,人的前、后、左、右以及顶部都会被淋到雨,此时淋雨量只与行走时间及单位时间内的降雨量有关。

简单优化模型10雨中行走

简单优化模型10雨中行走

雨中行走问题提出:人们外出行走,途中遇雨,未带雨伞势必淋雨,自然就会想知道:走多快才会少淋雨呢?模型假设:1.只考虑人在雨中沿直线从一处向另一处行进;2.视人体为一个长方体,其身高为h 米,身宽为w 米,厚度为d 米;3.人在雨中行走的速度为v 米/秒,行走距离为D 米;4.雨以速度r 米/秒,沿降雨角度θ(雨滴下落方向与人行走方向的角度)下落;5.降雨强度系数(单位时间内的降雨深度占竖直降雨速度的比例)为ρ,因而降雨强度(单位时间内单位面积上的降雨量,即单位时间内的降雨深度)为:⋅ρ竖直降雨速度.问题分析:如果不考虑降雨角度的影响,即人在行走过程中身体的前后、左右、上方都被雨水淋到,那么,淋雨面积为wd hd hw S ++=22,又淋雨时间为vD t =,故总淋雨量为v wd hd hw rD t S r C )22(++=⋅⋅=. 此式表明,淋雨量与行进速度成反比. 因此,人应尽可能快跑以能减少淋雨量.这种情形过于简单,下面来讨论考虑降雨角度影响的情形.模型建立: 分情况讨论:淋雨时间为v D t =1.20πθ≤<(0=θ不合乎实际)此时,雨迎面而来,人的头部和前部被淋(见下图).头部的淋雨量:头部的面积为dw ,雨在竖直方向上的分速度为θsin r ,降雨强度为θρsin r ⋅,故淋雨量为θρθρsin sin 1dr vwD v D dw r C =⋅⋅=. 前部的淋雨量:前部的面积为wh ,雨在水平方向上的分速度为θcos r ,相对于人的速度为v r +θcos ,降雨强度为)cos (v r +⋅θρ,故淋雨量为)cos ()cos (2v r h vwD v D wh v r C +=⋅⋅+=θρθρ. 于是,总淋雨量为 [])cos (sin )cos (sin 21v r h dr vwD v r h v wD dr v wD C C C ++=++=+=θθρθρθρ. 特别地,当2πθ=(雨竖直下落)时,总淋雨量为)(hv dr vwD C +=ρ. 2.πθπ<<2(πθ=不合乎实际)此时,雨从背后落下,人的头部、后部(或前部)被淋(见下图).v令απθ+=2,则20πα<<.头部的淋雨量:头部的面积为dw ,雨在竖直方向上的分速度为αcos r ,降雨强度为αρcos r ⋅,故淋雨量为αραρcos cos 1dr vwD v D dw r C =⋅⋅=. 水平方向上的淋雨量:后部(或前部)的面积为wh ,雨在水平方向上的分速度为αsin r ,相对于人的速度为|sin |v r -α,降雨强度为|sin |v r -⋅αρ,故淋雨量为|sin ||sin |2v r h vwD v D wh v r C -=⋅⋅-=αραρ. 于是,总淋雨量为 []|sin |cos |sin |cos 21v r h dr v wDv r h v wDdr v wDC C C -+=-+=+=ααραραρ.Case (1):αsin r v ≤此时,人的行进速度不快于雨在水平方向上的分速度(雨从后方赶上人),头部和后部被淋,总淋雨量为[])sin (cos v r h dr v wDC -+=ααρ.特别地,当αsin r v =时,人的行进速度恰好等于雨在水平方向上的分速度(人刚好跟着雨向前走),仅头部被淋,总淋雨量为αρcos dr v wDC =. Case (2):αsin r v >此时,人的行进速度快于雨在水平方向上的分速度(人赶上前方的雨),头部和前部被淋,总淋雨量为[])sin (cos ααρr v h dr v wDC -+=.综上,总淋雨量为[][][]⎪⎪⎪⎩⎪⎪⎪⎨⎧><<-+≤<<-+≤<++=απθπααραπθπααρπθθθρsin ,2,)sin (cos sin ,2,)sin (cos 20,)cos (sin r v r v h dr vwD r v v r h dr vwD v r h dr v wD C 由απθ+=2得[][][]⎪⎪⎪⎩⎪⎪⎪⎨⎧-><<++-≤<<+-≤<++=θπθπθθρθπθπθθρπθθθρcos ,2,)cos (sin cos ,2,)cos (sin 20,)cos (sin r v r v h dr v wD r v v r h dr vwD v r h dr v wD C 即⎪⎪⎪⎩⎪⎪⎪⎨⎧-><<++-≤<<--≤<++=θπθπρθθρθπθπρθθρπθρθθρcos ,2,)cos sin (cos ,2,)cos sin (20,)cos sin ()(r v wDh v h d wDr r v wDh v h d wDr wDh v h d wDr v C 模型求解: 当20πθ≤<和θπθπcos ,2r v -≤<<时,)(v C 均为v 的减函数,故为使)(v C 最小,应使v 尽可能大;当θπθπcos ,2r v -><<时,)(v C 的单调性取决于θθcos sin h d +的正负,应视情况来判断.结论:要使淋雨量最小,(1)若雨迎面而来,则人应以最大可能的速度向前行进;(2)若雨从背后落下,则人应控制行进速度为雨在水平方向上的分速度.模型讨论:如果视人体为一圆柱,如何?。

人在雨中走淋雨模型

人在雨中走淋雨模型

人在雨中行走的淋雨量数学模型院系:数学与统计学院班级:数学与应用数学1班姓名:学号:摘要一直以来,下雨对我来说,是件很烦恼的的事情。

不管下雨有多大,不管有没有打伞,总是会让自己淋得全身是雨,所以研究人在雨中行走的淋雨量对我这样的人有很大的必要。

本题给定路人在地点AB之间为直线行走。

要求建立路人淋雨量与雨速、雨向、行走速度之间的关系。

假设题中所涉及的降雨量为指天空降落到地面上的直接降雨量(未经流失、蒸发、渗透在地面上(假设是水平地面)集聚的水层深度。

)。

淋雨量,指下雨时路人在行走时全身所淋的全部雨的量(即淋雨的路人淋雨的体积,为人表面的面积×淋雨时间×单位面积的淋雨量。

)。

雨速为天空中降雨的速度。

雨向随风而定。

行走速度即行人的步速。

对于问题,我们设人淋雨面积为模型人前、后、左、右、头顶面积之和。

当有风时,人的身体就不会全部淋雨,那么此时淋雨面积就要根据风向即雨向来定,要根据具体情况来确定淋雨体积。

关键词:模型、淋雨量、降雨量、雨速、雨向、降雨角度、行人行走速度、分析、联系实际。

问题重述与分析:问题:下雨时,路人从A地点直线行走到达B地点。

(1)建立路人淋雨量与雨速、雨向、行走速度的关系;(2)并用计算机模拟方法对建立的关系证实。

分析:假设雨向与行人行走方向成夹角为α,①当无风时,α=90°,雨自上而下垂直向下。

则雨均匀淋遍全身。

②当风迎面吹来,即此时α<90°,此时淋在行人身上的雨即为降雨的竖直分量。

③当风从背面吹来,即此时α>90°,此时淋在行人身上的雨也为降雨的竖直分量。

当有风时还要考虑降雨速度与行人速度的相对速度。

问题假设:假设行人为标准长方体形状。

假设行人在雨中行走时,以速度ν从地点A匀速向地点B走去,不管雨速、雨向如何都不变化。

雨向一旦固定,就不会在改变,即α恒定。

雨的密度相同,雨滴大小、形状相同,雨滴为标准球形。

假设行人淋雨的量与雨速成正比。

雨中行走问题

雨中行走问题

雨中行走问题天将下雨,从寝室到教室约一公里的路程,由于事情紧急,不拿雨具就跑了出去。

可刚到门口,天已经下了大雨。

如果冒雨前行,问你将会被淋得多湿?乍看简单,如果考虑了雨的方向,就会生出疑虑来。

1.澄清问题给定一个特定的降雨条件,能否设计一个方案使你被雨淋得最少?这个模型是确定的因为它完全取决于雨速、风向、路程与奔跑速度,我们需要给出一个依赖于这些因素的淋雨量的公式。

通过调查,可以知道一组比较经典的数据,雨速=4m/s, 走速=2m/s, 跑速=6m/s,路程=1000m, 降雨量=2cm/小时.与问题有关的因素:因素符号单位淋雨时间t 秒雨速r 米/秒雨的角度θ度走速 v 米/秒人的高度 h 米人的宽度 w 米人的厚度 d 米淋雨量 C 升雨的强度 I 行走距离 D 米2.形成模型先考虑最简单的情况:假定人走的是直线,将人视为正方体,设雨速为常数,不考虑雨向。

若一公理的路程中人奔跑速度为6米/秒,则耗时约为167秒。

若降雨量为2厘米/小时,则167秒中的降雨量约为2×167×0.01/3600 (米),假定人高为1.5米、宽为0.5米、厚为0.2米,则前后表面积1.5米2,侧面积0.6米2,顶部面积0.1米2。

设这些表面积都淋雨,则淋雨量=(2×167×0.01/3600)×2.2==2.041(升)这样,将约有两瓶啤酒的雨量淋在你的身上。

通常,雨垂直下的假定要取消。

实际上r、θ、v、t和C是变量而其它量在这个特殊情况下不是变量。

另外,雨速和降雨量是有区别的,如果雨象连续的水流,则雨速就可以确定地面的降雨量,然而这往往不现实,因为雨点是离散的,所以需要引入降雨强度的概念:由上面的数据,雨速=4米/秒=1.44×106厘米/小时,而降雨量为2厘米/小时,雨速和降雨量的比值为I=7.2×105,定义降雨强度I=1/(7.2×105),I反映的降雨的强度,I=0表示无雨,I=1表示雨是连续流。

关于雨中行走模型

关于雨中行走模型

关于雨中行走模型第六讲建模方法论(5)——建模实例(一)雨中行走问题夏季的某天,你去某地办事,接近目的地时,天空突然下起了大雨,糟糕的是你没有带雨具,且难以找到避雨的地方。

一个似乎很简单的事实是你应该在雨中尽可能的快走(跑),以减少雨淋时间。

这样做合理吗,试组建数学模型来探讨如何在雨中行走才能最大限度地减少雨淋的程度,即确定最优行走策略。

问题分析问题是在给定的降雨条件下,设计一个在雨中行走的策略(调整行走速度),使得你被雨水淋湿的程度最低。

所谓被雨水淋湿的程度,可以用其间被淋在身上的雨水量的大小来刻划,而与此有关的主要因素有:降雨的大小、风(降雨)的方向、路程的远近和行走的速度。

为了简化问题的研究,我们先做以下假设: 模型假设1(降雨的速度(即雨滴降落的速度)和降雨强度保持不变;2(行走速度恒定;3(风速及风向始终保持不变(这三项都是均匀化假设)。

4(把人的身体看成是一个呈长方体形状的物体(理想化)。

5(淋在身上的雨水被完全吸收(极端化)。

6(不考虑降雨的角度的影响,也就是说在行走的过程中身体的上方及前后左右都将淋到雨水。

7(设定变量和参数雨中行走的距离(单位:米):D;雨中行走的速度(单位:米/秒):v;人体的高度、宽度、厚度(单位:米):h,w, d被淋雨水总量(单位:升):C;降雨强度(单位:厘米/小时):I;2 身体被雨淋的面积(单位:米):S;雨中行走时间(单位:秒):t=D/v.其中,降雨强度是单位时间内平面上降雨的厚度,用以刻划降雨的大小。

在本问题中,D,d,w,h从而S是问题的参数;v,t,I是问题中的变量。

C是因变量,而v是决策变量。

模型中的参数可以通过观测和日常的调查资料得到。

模型的建立与求解按上面的分析与假设,容易知道:在雨中行走时被淋雨水总量等于被雨淋时间、被雨淋面积和降雨强度三者的乘积。

考虑到量纲一致性,并注意到I、v、D为常数,我们有C(v)=tS(米)=(米)=模型表明,被淋在身上的雨水总量与在雨中行走的速度成反比,因此在雨中最优行走策略是尽可能的快跑。

《雨中行走问题》课件

《雨中行走问题》课件
行人行走的方向取决于其目的地和路线选择。
行人行走的方向
行人行走的速度
雨滴对行人产生的冲击力会影响行人的行走速度和稳定性。
雨滴的冲击力
雨滴的湿度
雨滴的能见度
雨滴的湿度会影响行人的舒适度,进而影响其行走意愿和速度。
雨滴的能见度降低会影响行人的视线和判断力,从而影响其行走安全。
03
02
01
03
CHAPTER
机器学习算法
利用大量的历史数据和实时数据,不断优化和改进系统的行走策略。
数据驱动
适用于数据充足且需要高度智能化的雨中行走问题,如复杂环境、不确定因素等。
适用场景
04
CHAPTER
雨中行走问题的未来研究方向
雨滴对行人的影响
雨滴下落对行人的行走速度、步态和舒适度有何影响?
1
2
3
如何建立一个能够准确描述雨中行走动态过程的数学模型?
在健康和安全领域,研究雨中行走问题可以帮助提高行人的安全意识和行为,减少事故风险。
02
CHAPTER
雨中行走问题的数学模型
雨滴下落的速度取决于风速、重力加速度以及空气阻力等因素。
雨滴下落的速度
雨滴下落的方向与风向、气压等气象条件有关,同时也受到地形、建筑物等因素的影响。
雨滴下落的方向
行人行走的速度取决于其步频、步长以及身体状况等因素。
05
CHAPTER
结论
雨中行走问题涉及到人类日常生活中的实际问题,对解决该问题具有实际意义。
研究雨中行走问题有助于提高人们对于行走行为和环境因素的认知,促进相关领域的发展。
解决雨中行走问题可以为人们提供更加安全、舒适和高效的行走方式,提高生活质量。
通过改进雨具的材料、结构和使用方式,提高雨具的防水性能和舒适度。

雨中行走问题数学模型案例

雨中行走问题数学模型案例

雨中行走问题数学模型案例
一个常见的数学模型案例是“雨中行走”问题。

在这个问题中,假设有一个人需要从一个地方到另一个地方,但是正在下雨。

人可以以一定的速度行走,但是会因为雨水而放慢速度。

问如何确定最快的路线,使得从起点到终点的时间最短。

为了建立这个数学模型,可以采用以下假设和变量:
1. 假设下雨时,人的行走速度是正常时的百分之多少,这个值称为“减速因子”。

假设减速因子为x%,则雨中行走的速度为正常速度的x%。

2. 假设人在雨中行走时的速度是与雨水的强度相关的。

可以假设速度与雨水强度成正比,即速度v与雨水强度I之间存在关系v = kI (其中k为比例常数)。

3. 假设人在雨中行走的路径是直线。

1
根据上述假设和变量,可以建立以下数学模型:
1. 定义起点和终点的坐标(x1,y1)和(x2,y2)。

2. 定义每个点(x,y)处的雨水强度I。

3. 计算人在一段距离(Δx,Δy)内花费的时间t:t = l / (v * x / 100),其中l是距离,v是速度,x是减速因子。

4. 计算从起点到终点的路线上每个点(x,y)的雨水强度I。

5. 根据模型3计算从起点到终点的每个区间的时间t,并将它们的
和作为总时间T。

6. 通过改变减速因子x,并重新计算总时间T,找到最小的总时间
对应的减速因子x,确定最快的路线。

这样,通过数学模型,可以帮助人们确定在雨中行走时最快的路线。

2。

数学建模数学建模之雨中行走问题模型

数学建模数学建模之雨中行走问题模型

正文:数学建模之雨中行走问题模型摘要:考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。

试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。

若雨是迎着你前进的方向向你落下,这时的策略很简单,应以最大的速度向前跑;若雨是从你的背后落下,你应控制你在雨中的行走速度,让它刚好等于落雨速度的水平分量。

① 当αsin r v <时,淋在背上的雨量为[]v vh rh pwD -αsin ,雨水总量()[]v v r h dr pwD C -+=ααsin cos .② 当αsin r v =时,此时02=C .雨水总量αcos v pwDdr C =,如030=α,升24.0=C这表明人体仅仅被头顶部位的雨水淋湿.实际上这意味着人体刚好跟着雨滴向前走,身体前后将不被淋雨.③ 当αsin r v >时,即人体行走的快于雨滴的水平运动速度αsin r .此时将不断地赶上雨滴.雨水将淋胸前(身后没有),胸前淋雨量()v r v pwDh C αsin 2-=关键词:淋雨量, 降雨的大小,降雨的方向(风),路程的远近,行走的速度1.问题的重述人们外出行走,途中遇雨,未带雨伞势必淋雨,自然就会想到,走多快才会少淋雨呢?一个简单的情形是只考虑人在雨中沿直线从一处向另一处进行时,雨的速度(大小和方向)已知,问行人走的速度多大才能使淋雨量最少?2.问题的分析.由于没带伞而淋雨的情况时时都有,这时候大多人都选择跑,一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。

但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。

,一、我们先不考虑雨的方向,设定雨淋遍全身,以最大速度跑的话,估计总的淋雨量;二、再考虑雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为 ,如图1,建立总淋雨量与速度v 及参数a,b,c,d,u,w,θ之间的关系,问速度v 多大,总淋雨量最少,计算=0,=090时的总淋雨量;θθθ三、再是雨从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角为α,如图2.,建立总淋雨量与速度v及参数a , b , c, d , u , w , α之间的关系,问速度多大,总淋雨量最少;四、以总淋雨量为纵轴,对(三)作图,并解释结果的实际意义;五、若雨线方向不在同一平面内,模型会有什么变化;按照这五个步骤,我们可以进行研究了。

雨中行走问题模型

雨中行走问题模型

雨中行走问题数学2班 1107022015 朱婷婷摘要这篇论文主要讨论了在不同的降雨角度下,人在雨中从一处跑到另一处,在此过程中,人的行走速度与淋雨量多少的关系。

在构建模型过程中,将人体简化成一个长方体,高m a 5.1= (颈部以下),宽0.5m b =,厚0.2m c =.在将人体简化成长方体过后,运用简单的代数知识、几何知识得到了在不同的降雨角度下,人跑完全程的淋雨量与行走速度及降雨角度的的关系公式。

由这些公式,可以讨论人在雨中行走的快慢与淋雨量多少的关系。

关键词:淋雨量 降雨角度 行走速度1问题提出人在雨中从一处跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

假设跑步距离100d =米,跑步最大速度为5/m v m s =,雨速为4/m s ,降雨量为2/w cm h =.将人体简化成一个长方体,高m a 5.1= (颈部以下),宽0.5m b =,厚0.2m c =.2 合理假设2.1 降雨的速度和降水的强度保持不变 2.2 人在雨中行走的速度是定量 2.3 风速保持恒定 2.4 人体视为一个长方体2.5 假设产生影响的各个因素相互独立 2.6 变量限定d :人在雨中行走的距离(m )t :人在雨中行走的时间(t )v :人在雨中行走的速度(/m s )c b a ,,:人的高度,宽度和厚度(m )w :降雨量(降雨强度,单位时间平面上降下雨水的厚度,/cm h )C :淋雨的总量(L )u :雨滴落下的速度,即雨速(/m s )p :雨滴的密度(1,1=≤p p 时意味着大雨倾盆)θ:降雨的角度(雨滴落下的方向与行走的方向之间的夹角) 利用新的记号,pu w =3 模型构建3.1 不考虑降雨角度的影响当不考虑降雨角度时,假设淋雨的部位是全身所有部位。

则淋雨的面积为22S ab ac bc =++淋雨时间为 dt v=淋雨的总量为:(22)dSw d ab ac bc wC twS v v++===3.2 考虑降雨的角度影响(迎面)图1 02πθ<≤当降雨的角度:θ02πθ<≤时,淋雨的部位为顶部和前方头顶淋雨总量为:1(s i n )()d p u b c C v θ=前方的淋雨总量为: 2(cos )dp u v abC vθ+=所以总的淋雨量为: []12sin (sin )dbpC C C cu a u v vθθ=+=++ 从表达式可以看出,人在行走的速度越快,淋雨量就越小。

《数学模型》淋雨模型-数学模型淋雨模型

《数学模型》淋雨模型-数学模型淋雨模型

对函数V(v)求导,得:
V
cos 7.5sin
1800 v2
显然:V<0, 所以V为v的减函数,V随v增大而减小。 因此,速度v=vm=5m/s ,总淋雨量最小。
(Ⅰ)当θ=0,代入数据,解得: V=0.0011527778(m³)≈1.153(L)
(Ⅱ)当θ=30°,代入数据,解得: V=0.0014025(m³)≈1.403(L)
情形2建立及求解: 若雨从迎面吹来,雨线与跑步方向在同一平面
内,且与人体的夹角为θ.,则淋雨量只有两部分: 顶部淋雨量和前部淋雨量. (如图1)设雨从迎面吹 来时与人体夹角为. ,且 0°<<90°,建立a,b,c,
d,u,,之间的关系为:
(1)、考虑前部淋雨量:(由图可知)雨速的水
平分量为 u sin 且方向与v相反,故人相对于雨的

1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1220. 12.12Sa turday, December 12, 2020

2、阅读一切好书如同和过去最杰出的 人谈话 。11:1 3:0811: 13:0811 :1312/ 12/2020 11:13:08 AM

3、越是没有本领的就越加自命不凡。 20.12.1 211:13: 0811:1 3Dec-20 12-Dec-20

4、越是无能的人,越喜欢挑剔别人的 错儿。 11:13:0 811:13: 0811:1 3Saturday, December 12, 2020

5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 220.12. 1211:1 3:0811: 13:08D ecembe r 12, 2020

数学建模 雨中行走问题

数学建模 雨中行走问题

数学模型论文学校:班级:姓名:学号:雨中行走问题摘要当我们在雨中冒雨行走时总会下意思的加快速度,似乎跑得越快淋雨量就会越小。

但事实上会是这种情况吗?在这里,我们将给予综合性的考虑,来解释不同情况下的淋雨量。

在不考虑风向的情况下,若人的全身都受到雨淋,理所当然人跑的越快所淋的雨就会越少。

那么模型也可算出淋雨量。

当雨线从正面和人的跑步方向在同一平面时,并且考虑风向的影响,雨线方向和竖直方向成θ角。

因为迎着雨的方向跑,所以全身都会淋到雨,由于有夹角,可以将雨分成竖直方向和水平方向两部分。

便可根据题的要求解出模型。

当雨线从后面和人的跑步方向在同一平面时,并且考虑风向的影响,雨线方向和竖直方向成α角。

因为背着雨的方向跑,所以全身不一定都会淋到雨。

可分几种情况分别来说。

关键词人速;雨速;风向;夹角1.问题的重述当人们在雨中行走时,是不是走的越快就会淋越少的雨呢?对于这个问题,建立合理的数学模型。

讨论一下,在不考虑风向时,人的淋雨量为多少;进而进一步讨论一下,在考虑雨线方向与人的跑步方向在同一平面内成不同角度时的淋雨量。

2.问题的分析当人在雨中行走时,是否跑的越快所淋的雨量就越少那,答案当然不是。

人在雨中所淋到的雨量和风向有关,因为风向的不同会导致雨线和人成不同的角度。

从而使人所淋到的雨量有所不同。

3.模型的假设与符号说明3.1模型的假设(1)把人体视为长方体,身高h米,身宽w米,身厚d米,淋雨总量C升。

(2)把降雨强度视为常量,记为:I(cm h)。

(3)风速保持不变。

v m s跑完全程D。

(4)以定速度()3.2符号说明h人体的身高(m)w 人体的宽度(m)d 人体的厚度(m)D 人跑步的全程(m)v 人跑步的速度(m/s)i 降雨强度(cm/h)c 人在跑步中的淋雨总量(L)s 人在雨中会被雨淋的面积 (㎡)t 人在雨中跑步的时间 (s)v 雨滴下落速度 (m/s)θ 雨滴反方向与人速度方向的夹角ρ 雨滴密度4.模型的建立与求解(1)不考虑雨的方向,此种情况,人的前后左右都会淋雨。

雨中行走问题数学建模

雨中行走问题数学建模

雨中行走问题数学建模摘要:1.引言:雨中行走的背景和问题描述2.数学建模的基本概念和方法3.雨中行走问题的数学模型建立4.雨中行走问题的求解方法5.雨中行走问题的实际应用6.结论:数学建模在解决实际问题中的重要性正文:1.引言雨中行走是一个日常生活中常见的场景,然而,在雨中行走时,人们往往会面临一个问题:如何选择一条路径,使得行走的时间最短或者淋雨的程度最小?这个问题看似简单,实际上涉及到复杂的数学问题。

数学建模就是利用数学方法来解决实际问题,它已经成为各个领域解决实际问题的重要手段。

本文将从雨中行走这个问题出发,介绍数学建模的基本概念和方法。

2.数学建模的基本概念和方法数学建模是运用数学理论、方法和工具对实际问题进行抽象、描述和求解的过程。

它主要包括以下几个步骤:(1)问题分析:了解问题的背景,明确问题的目标,为建立数学模型奠定基础。

(2)建立模型:根据问题分析的结果,建立数学模型,将实际问题转化为数学问题。

(3)求解模型:运用数学方法求解模型,得到实际问题的解。

(4)模型检验:将求解得到的结果反演到实际问题中,检验模型的有效性和准确性。

(5)模型应用:将求解结果应用到实际问题中,为实际问题的解决提供理论依据。

3.雨中行走问题的数学模型建立为了解决雨中行走问题,我们首先需要建立一个数学模型。

假设一个人要从A 地走到B 地,途中会遇到降雨,降雨的强度可以用降雨量表示。

假设这个人的行走速度为v,降雨量为r,那么,他走完这段路程所需的时间为t=d/v,其中d 表示A 地到B 地的距离。

另外,他在行走过程中淋雨的量为Q=rt,其中r 表示降雨的强度,t 表示行走的时间。

4.雨中行走问题的求解方法为了求解雨中行走问题,我们需要构建一个目标函数,用来描述行走时间和淋雨量的关系。

假设我们的目标是最小化行走时间,那么目标函数可以表示为:min t。

根据目标函数,我们可以建立一个线性规划模型,用来求解雨中行走问题。

雨中行走模型

雨中行走模型
可以看出:淋雨量与降雨的方向和行走的速度有关。
v 问题转化为给定 ,如何选择 使得
情形1
最小。 C
90
0.8 C 6.95 10 ( 1.5) v
4
结果表明:淋雨量是速度的减函数,当速度尽可能大时 淋雨量达到最小。 假设你以6米/秒的速度在雨中猛跑,则计算得
C 11.3 104 m3 1.13升
2 升的雨水,大约有4 酒瓶的水量。这是不可思议的。
表明:用此模型描述雨中行走的淋雨量不符合实际。
原因:不考虑降雨的方向的假设, 使问题过于简化。
2)考虑降雨方向。 若记雨滴下落速度为 r (米/秒) 雨滴的密度为
p, p 1
表示在一定的时刻 在单位体积的空间 内,由雨滴所占的 空间的比例数,也 称为降雨强度系数。 所以, I rp
C 6.95104[(0.8sin 6 cos ) / v 1.5]
令 90 ,则0 90 。

C 6.95104[(0.8sin(90 ) 6 cos(90 )) / v 1.5] C 6.95104[(0.8 cos 6 sin ) / v 1.5]
情形2
60
C 6.95104[1.5 (0.4 3 3) / v]
结果表明:淋雨量是速度的减函数,当速度尽可能大时 淋雨量达到最小。 假设你以6米/秒的速度在雨中猛跑,则计算得
C 14.7 104 m3 1.47升 情形3 90 180
此时,雨滴将从后面向你身上落下。
当 0 90时,C可能取负值,这是不可 能的。
出现这个矛盾的原因:我们给出的基本模型是针对雨从 你的前面落到身上情形。 因此,对于这种情况要另行讨论。

雨中行走模型

雨中行走模型

雨中行走模型下雨天忘记带伞总是件不愉快的事,因为你往往不得不硬着头皮跑回家,弄得一身湿。

怎样才能在跑动中少淋雨,自然是一件非常重要的事,本节试图从定性的角度,分析奔跑速度与淋雨量的关系。

不妨设人在三个方向上相对于雨水的速度为 ,并让体表分别在垂直于这三个方向的平面上作投影,投影面积分别记为 。

通过等积原理,将这三者拼合成三个相邻表面。

设某人在雨中奔跑了设某人在雨中奔跑了时间,根据等效原理,体外表面在三个方向上扫过的体积分别为 ,人体扫过的总体积为淋雨量与人的形体有关,而人体是不规则的立体形状,因此为了计算淋雨量,有必要对人体形状做些假设。

为了简化计算,我们先给出几个相关的假设。

(1) 人体的外表面为一长方体(见图1)在三维坐标系中,人体外表面相对于雨水的运动有三个方向,彼此独立,互不干扰,可以分别讨论。

计算淋雨量,需要先弄清楚雨水的运动情况。

雨水可以视为且在空间分布均匀的流体,不妨设其质量分布系数为 。

当人淋雨时,就普通人而言,看到的只是雨水纷纷而下。

但若换一个角度,建立相对直角坐标系,将雨水视为静止的,那么人就在相对雨水而动了。

形象地说,当雨水被视为静止的,它便和空间保持位置不变,而人则在静止的雨水中穿梭。

显然,人的这种运动是相对雨水而言的。

而且人在穿梭过程中,外表面不断地扫过一定的空间。

根123,,x y z S v t S v t S v t 123x y z V S v t S v t S v t =++123,,S S S ,,x y z v v v据以上分析,我们可以发现,人的淋雨量(2)通常雨水并非垂直下落的,我们将雨水的速度向量分解为垂直速度和水平速度,不妨增加假设:(2) 雨水的垂直速度为 ,水平速度为雨中的人在不停的奔跑,每跨出一步(从一脚起跳到落地),其重轨迹可近似为一个抛物线轨迹,因此人在雨中奔跑的重心可视为一系列全等的抛物线,据此,我们给出假设:(3) 每个抛物线的长度为 ,起跳时垂直速度与水平速度分别记为 ,从起跳到落地的时间为,人在雨中奔跑的总距离为 ,不妨假设 为 的整倍数。

雨中行走问题(数学问题解决)

雨中行走问题(数学问题解决)

雨中行走问题(数学问题解决)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN科目:数学问题解决摘要:雨天,你有件急事需要从家中到学校去,学校离家不远,仅有一公里,况且事情紧急,你不准备花时间翻找雨具,决定碰一下运气,顶着雨去学校。

假设刚刚出发雨就大了,但你也不打算再回去了。

一路上,你将被大雨淋湿。

一个似乎很简单的事实是你应该在雨中尽可能地快走,以减少雨淋的时间。

但是如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。

通过建立数学模型来探讨如何在雨中行走才能减少淋雨的程度,分别从雨与人的方向以及是否在同一平面等情况找出如何在雨中行走才能淋雨最少。

一.问题的提出对于雨中行走这个实际的问题,它的背景是简单的,人人皆知无需进一步讨论。

我们的问题是:要在给定的降雨条件下,设计一个雨中行走的策略,使得你被雨水淋湿的程度最低。

显然它可以按确定性模型处理。

分析参与这一问题的因素,主要有:①降雨的大小;②风(降雨)的方向;③路程的远近与你跑的快慢。

二、模型假设1、降雨的速度(即雨滴下落速度)和降水强度(单位时间平面上降下雨水的厚度)保持不变;2、你以定常的速度跑完全程;3、风速始终保持不变;4、把人体看成一个长方体的物体;三、模型的建立与求解1、不考虑降雨的角度的影响即在你行走的过程中身体的前后左右和上方都将淋到雨水。

参数与变量::d雨中行走的距离;t雨中行走的时间;::v雨中行走的速度;:a你的身高;:b你的宽度;:c你的厚度;:q你身上被淋的雨水的总量;:w降水强度(降雨的大小,即单位时间平面上降下雨水的厚度,厘米/时)行走距离d,身体尺寸不变,从而身体被雨淋的面积22s ba ca bc=++是不变的,可认为是问题的参数。

雨中行走的速度v,从而在雨中行走的时间/t d v=及降雨强度的大小在问题中是可以调节、分析的,是问题中的变量。

考虑到各参数取值单位的一致性,可得在整个雨中行走期间整个身体被淋的雨水的总量是:()3(/3600)0.01()/(/3600)10() q t w S d v w S=⋅⋅⋅=⋅⋅⋅米升模型中的参数可以通过观测和日常的调查资料得到。

雨中行走问题

雨中行走问题

数学建模课程作业论文题目:雨中行走问题一、问题重述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

二、问题分析本题针对人的淋雨量问题,从下列三种情况考虑:(1)雨垂直下落,人以速度v前行,此时降雨淋遍全身;(2)雨迎面吹来,雨线与跑步方向在同一平面内,与人的正面夹角为 ,此时后背淋不到雨;(3)雨从背面吹来,雨线方向与跑步方向在同一平面内,与人的背后夹角为α,此时正面淋不到雨;针对每种假设,建立模型求解。

三、模型假设1. 将人体简化为一个长方体,高1.5m(颈部以下),宽0.5m,厚0.2m;2. 跑步距离为1000m,跑步的最大速度5m/s;3.雨速为4m/s且方向不变,降雨量为2cm/h;4. 考虑雨的方向与人体前进的方向在同一平面内。

四、符号说明b 人的宽度(m )c 人的厚度(m )d 跑步距离(m ) w 降雨量(cm/h ) Q 总淋雨量(L ) s淋雨面积(m 2)五、模型建立先考虑如下情形,现有一块土地面积为s ,雨垂直降落,雨速及方向不变,且降雨量为一常数w ,则有时间t 内该土地的淋雨量为 Q =stw 。

若雨速发生变化,则降雨量也会相对发生改变,设雨速从u 变为u +Δu ,则降雨量相对变化为u+Δu uw ,从而可求得此时的淋雨量为 Q =stwu+Δμu。

若雨速不变,降雨的方向发生改变,设其与原方向的夹角为θ,那么此时的淋雨量为 Q =stw cos θ。

类似我们可以求得在问题分析中出现的三种情况下人体的总淋雨量如下:5.1 雨垂直下落的情况,人以最大速度奔跑淋雨面积:22s ab ac bc =++ 淋雨时间:md t v =总淋雨量:(22)mdQ stw ab ac bc w v ==++ (1)5.2 雨从迎面吹来,雨线与人体夹角为θ当雨迎面吹来时,只有顶部和人体的迎面部分为有效淋雨面积,记顶部面积为1s ,迎面部分面积为2s ,则12,s bc s ab ==,分别计算其淋雨量如下:淋雨时间:d t v=雨速垂直分量:θcos u雨速水平分量:θsin u ,且方向与v 相反,故合速度v =v u +θsin 顶部淋雨量:11cos cos dQ s tw bcw vθθ== 迎面淋雨量:22sin v d u v Q s tw ab w u v uθ+== 总淋雨量为:12cos (sin )cos (sin )bcduw abdw u v bdw cu a u v Q Q Q uv u vθθθθ⋅+⋅+++=+== (2)5.3雨从背面吹来,雨线与人体夹角为α当雨从背面吹来时,只有顶部和人体的背面部分为有效淋雨面积,记顶部面积为3s ,背面部分面积为4s ,则34,s bc s ab ==,分别计算其淋雨量如下:淋雨时间:d t v=雨速垂直分量:αcos u雨速水平分量:sin u α,方向与v 相同,故合速度v =sin u v α- 顶部淋雨量:33cos cos Q s tw bcdwvαα== 背面的淋雨量: 44|sin |v abdw u v Q s tw u uvα-== 总淋雨量为:()()34cos (sin )(cos sin ),sin 3cos (sin )(cos sin ),sin 4Q Q Q bdw cu a u v bdw u c a av v u u v u vbdw cu a v u bdw u c a av v u uv u v αααααααααα=+=+-+-⎧=<⎪⎪⎨+--+⎪=≥⎪⎩六、模型求解6.1 雨垂直下落给定a 1.5,0.5,0.2,1000,5/,4/,2/m m b m c m d m v m s u m s w cm h =======,根据(1)式,可得全身面积s=2.2m 2,淋雨时间t=200s,降雨量w=2cm/h= 10−4/18 m/s,总淋雨量为Q=stw ≈2.44L6.2 雨从迎面吹来对(2)式,关于v 求导可得:2cos sin 0Q bdw cu au v u v θθ∂+=-<∂,故Q关于v 是单调递减函数,故此种情况下,当mv v =时,Q 最小;6.2.1 当θ=0°时,带入给定数据,可得cos0(sin 0)v 1.15L m m m mcu a u v cu a bdw bdw Q u v u v +++==≈6.2.2当θ=30°时,带入给定数据,可得cos30(sin 30)1.55m mcu a u v bdw Q L u v ︒+︒+=≈6.3 当雨从背面吹来时对(3)(4)式,分以下两种情况讨论如下: 1︒ sin v u α≤此时对(3)式关于v 求导可得2cos sin 0Q bdw cu au v u v αα∂+=-<∂ ,可知v 越大,淋雨量Q 越小,又因为sin v u α≤,故知当sin v u α=时,Q 最小;2︒ sin v u α≥当cos sin 0c a αα-≥,即tan caα≤, 对(4)关于v 求导2(cos sin )0Q bdw u c a v u v αα∂-=-<∂,故Q关于v 是单调递减函数,同样可得,当mv v =时,Q 最小;当cos sin 0c a αα-<,对(4)关于v 求导2(cos sin )0Q bdw u c a v u v αα∂-=->∂,故Q关于v 是单调递增函数,又αsin u v ≥,故αsin u v =时,Q 最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模之雨中行走问题模型
摘要:由于降雨方向的变化,在跑步过程中尽力快跑不一定是最好的策略。

就淋雨量与跑步快慢这个问题,我们通过建立数学模型来探讨在雨中如何行走才能使淋雨量最少。

在不考虑雨的方向时,当然是跑的越快淋得越少;考虑雨的方向时,那么再分情况讨论,若雨是迎着你前进的方向落下,这时以最大的速度向前跑可使淋雨量最少;若雨是从你的背后落下,那么你应控制在雨中行走的速度,让它刚好等于落雨速度的水平分量。

关键词:淋雨量,数学模型,降雨的方向。

正文
1.问题的提出
要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方形,高a=1.5(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论
(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步估计跑完全程的淋雨量;(2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为 ,问跑步速度v 为多大时可使淋雨量最少。

(3)雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。

计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)
2.问题的分析
总的淋雨量等于人体的各个面上的淋雨量之和。

每个面上的淋雨量等于单位面积、单位时间的淋雨量与面积以及时间的乘积。

面积由已知各边长乘积得出,时间为总路程与人前行速度的比值。

再由速度分解,合成,相对速度等知识确定各面淋雨量公式,列出总的方程,根据各变量关系,得出最优解。

淋雨量(V )=降雨量(ω)×人体淋雨面积(S )×淋浴时间(t ) ①
时间(t )=跑步距离(d )÷人跑步速度(v ) ②
由①② 得: 淋雨量(V )=ω×S ×d/v
3.合理假设
3.1模型的假设
(1)人身体的表面非常复杂,为了使问题简单化,假设将人视为一个长方体,并设其高1.5m(颈部以下),宽0.5m,厚0.2m.其前、侧、顶的面积之比为1:b:c, (2)假设降雨量到一定时间时,应为定值; (3)此人在雨中跑步应为直线跑步;
(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;
(5)设雨速为常速且方向不变,选择适当的空间直角坐标系,使人行走的速度为(u,0,0)设雨的速度为(,,)x y z v v v v =,人行走的距离为d=100米。

在上述假设下,再有数学分析中曲面积分的通量概念,显然,单位时间内的淋雨量正比于()
()||,|0|,|0|1,,||||||x y z x y z u v v v b c u v v b v c ---⋅=-+⋅+⋅,从而总淋雨量正比于()()||.........................(3.1)x u d
R u v a u
=
-+ 其中||||0y z a v b v c =⋅+⋅≥,于是该问题抽象成如下数学问题: 在d,x v ,a 已知条件下,求()u R 的最小值。

3.2变量限定
m u :跑步的最大速度
v :雨的速度
w :单位时间内的降雨量
:Q 总的淋雨量
u :跑步速度
θ
:雨线方向与人体夹角
s :人可以被雨淋到的全身面积
m
d
t u =
:雨中行走的最短时间
4.模型的构建与求解
由于这个模型的特殊性,用图解法求解更方便些,分以下几种情况进行讨论: 4.1不考虑雨的方向
这是最简单的情形,即不考虑降雨角度的影响,降雨淋遍全身,那么淋雨的面积
()221.5*0.5 1.5*0.20.5*0.2 2.2s m =++=
淋雨的时间100
205
m d t s u =
== 而降雨量41
2/10/18
w cm h m s -==
⨯ 所以总的淋雨量4431
2.22010 2.441018
Q stw m --==⨯⨯
⨯≈⨯。

4.2考虑雨的方向;分雨从迎面和背面吹来两种情况,但雨线与跑步方向在同一平面内,且与人体的角度为θ 。

如图1和图2。

图1 雨从迎面吹来 图2 雨从背面吹来
由此建立总淋雨量与速度u 之间的关系表达式。

x v =sin v θ,cos z v v θ=。

4.2.1当x v >0时(即雨从背面吹来的情况),
()u R =()()()()()()()().................(3.2)x x x x x x d v a d
v u a d u v u u
d a v d u v a d u v
u
u +⎧-+=-<⎪⎪⎨
-⎪-+=->⎪⎩
再将x v 与a 进行比较: 1)当x v >a 时,()
u R u 的图形如图
3所示,由图可知, x u v =时,()u R 的最小值为
min x
da
R v =
图3 当x v >a 时,()u R u 的图形
2)当x v <a 时,()u R u 的图形如图4所示,由图可知,当u 尽可能大时,()u R 才会可
能小(接近d ).
图4 x v <a 时,()u R u 的图形
4.2.2当x v <0时(即雨从迎面吹来的情况),这是有
()u R =()()()||||...........................5.3x x d v a d
u v a d u u
+++=
+ 此时无论x v 为何值,()u R 都无最小值,即只有当u 尽可能大时,()u R 才会尽可能小,
()u R u 的图形如图5所示。

4.2.3当x v =a 及x v >0时,分别为式(3.1)和式(3.2)的特例。

所以综上所述,当x v >a>0时,即雨从背面吹来时,只要x u v =就可使前后不淋雨,从而总淋雨量最少,而其他情况都应使u 尽可能大,才能使淋雨量尽可能少,显然,这也符合人们的生活常识,
5.模型的结果分析
综合上面的分析,我们得到的结论是:
1.如果雨是迎着你前进的方向落下,这时的最优行走策略是以尽可能大的速度向前跑。

2.如果雨是从你的背后落下,这时你应该控制在雨中行的走的速度,使得它恰好等于雨下落时速度的水平分量
v。

但是该模型只是考虑雨线方向与人的跑步方向在同一平
x
面内,若是雨线方向与人的跑步方向不在同一平面内建立坐标系上,对于这种情况,我们认为在本质和考虑问题的思想上来说模型是不变的,应分别对几个淋雨面进行以上同样方法建立求解模型,但是解算的过程,我想应该更复杂。

参考文献
[1]熊启才,曹吉利,张东生. 数学模型方法及应用,重庆:重庆大学出版社,2005.
[2]姜启源,谢金星,叶俊. 数学模型(第三版),北京:高等教育出版社,2008.。

相关文档
最新文档