集合的概念练习测试题.doc
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(62)
1.1 集合的概念一、单选题1.已知3a =,{|2}A x x =≥,则( )A .a A ∈B .a A ∉C .{}a A =D .{}a a ∉答案:A解析:根据元素与集合的关系,即可求解.详解:由题意,集合{|2}A x x =≥,且3a =,因为32>,所以a A ∈.故选:A.2.设集合{1}A x Z x =∈-,则A .A ∅∉B .C .2A ∈D .{}2⊆A 答案:B详解:试题分析:集合A 表示大于1-的正数,因此B 项正确 考点:元素与集合的元素3.下列所给关系正确的个数是①π∈R 3Q ;③0∈*N ;④|−4|∉*N .A .1B .2C .3D .4 答案:B详解:由R(实数集)、Q(有理数集)、*N (正整数集)的含义知,①②正确,③④不正确.4.对于任意实数x x ,表示不小于x 的最小整数,如1.220.20=-=,.定义在R 上的函数()2f x x x =+,若集合(){}|10A y y f x x ==-,≤≤,则集合A 中所有元素的和为( )A .3-B .4-C .5-D .6-答案:B解析:根据x 的范围即可求出2x 的范围,根据x <>的定义即可求出2x x <>+<>的值,即得出集合A 的所有元素,从而得出集合A 的所有元素的和.详解:因为10x -,∴①1x =-时,22x =-,则:1x <>=-,22x <>=-;23x x ∴<>+<>=-;②10x -<时,220x -<,则:0x <>=,21x <>=-,或0; 21x x ∴<>+<>=-,或0;{3A ∴=-,1-,0};∴集合A 中所有元素和为4-.故选:B点睛:本题主要考查对x <>的定义的理解,以及不等式的性质,意在考查学生对这些.5.集合5793,,,,234⎧⎫⎨⎬⎩⎭用描述法可表示为( ) A .*21|,2n n x x n N +⎧⎫=∈⎨⎬⎩⎭ B .*23|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭ C .*21|,n x x n N n -⎧⎫=∈⎨⎬⎩⎭ D .*21|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭答案:D 解析:找出集合中元素的规律通式即可.详解: 由5793,,,,234,即3579,,,,1234,从中发现规律*21,n x n N n +=∈, 故可用描述法表示为*21|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭. 故选:D.点睛:本题考查集合的描述法,属于基础题.6.已知集合A 中元素x 满足x x N *∈,则必有( )A .-1∈AB .0∈ACD .1∈A答案:D解析:利用列举法求解即可.详解:因为x ≤≤又x N *∈,所以x 的可能取值1,2.故选:D.点睛:本题主要考查了列举法.属于容易题.7.集合{1,2,3,5}A = ,当x A ∈时,若1,1x A x A -∉+∉,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为( )A .1B .2C .3D .4答案:A解析:根据“孤立元素”的定义,依次研究各元素即可得答案.详解:解:对于元素1,112A +=∈,故不满足孤立元素的定义;对于元素2,213A +=∈,故不满足孤立元素的定义;对于元素3,312A -=∈,故不满足孤立元素的定义;对于元素5,514A -=∉,516A +=∉,故满足孤立元素的定义;故A 中孤立元素的个数为1个.故选:A.点睛:本题考查集合新定义问题,正确理解新定义是解题的关键,是基础题.8.已知集合{1,,1}A a a =-,若2A -∈,则实数a 的值为( )A .2-B .1-C .1-或2-D .2-或3-答案:C解析:由已知得2a =-或12a -=-,解之并代入集合中验证可得选项.详解:因为集合{1,,1}A a a =-,且2A -∈,所以2a =-或12a -=-,当2a =-时,{1,2,3}A =--,适合题意;当12a -=-时,1a =-,{1,1,2}A =--,也适合题意,所以实数a 的值为1-或2-.故选:C.点睛:本题考查元素与集合的关系,属于基础题.9.设集合222,3,3,7A a a a a⎧⎫=-++⎨⎬⎩⎭,{}|2|,0B a =-,已知4A ∈且4B ∉,则实数a 的取值集合为( )A .{}-1,-2B .{}-1,2C .{}-2,4D .{}4答案:D解析:由234a a -=或274a a ++=解出a 的值,再验证集合中元素的互异性.详解:当234a a -=时,可得4a =或1a =-,若1a =-,则274a a ++=,不合题意;若4a =,则2711.5a a ++=,|2|2a -=符合题意; 当274a a++=,可得1a =-或2a =-,若1a =-,则234a a -=,不合题意;若2a =-,则|2|0a -=,不合题意.综上所述:4a =.故选:D.点睛:本题考查了集合中元素的互异性,考查了分类讨论思想,属于基础题.二、填空题1.已知集合{}2|60A x x px =-+=,若3A ∈,则方程15x p -=的解为__________.答案:2x =解析:由题意可知,3是方程260x px -+=的根,解得5p =.方程15x p -=等价变形为155x -=,解得,即可.详解:3A ∈∴3是方程260x px -+=的根,即23360p -+=,解得5p =. 又方程155x p -==11x ∴-=,解得2x =.故答案为:2x =点睛:本题考查元素与集合的关系以及实数指数幂的运算,属于较易题.2.若-3∈x-2,2x 2-5x ,12},则x =________.答案:-1,32,1解析:由已知得x -2=-3或2x 2-5x =-3,解之再代入集合中检验集合的元素是否互异,可得答案.详解:由题意知,x -2=-3或2x 2-5x =-3.①当x -2=-3时,x =-1.把x =-1代入,得集合的三个元素为-3,7,12满足集合中元素的互异性;②当2x 2-5x =-3时,x =32或x =1,当x =32时,集合的三个元素为-12,-3,12,满足集合中元素的互异性;当x =1时,集合的三个元素为-1,-3,12,满足集合中元素的互异性,由①②知x =-1,32,1.故答案为:-1,32,1.点睛:本题考查由集合与元素的关系求参数的值,注意集合中的元素需互异,属于基础题.3.设集合{}2|20x x x a ++=有且只有两个子集,则a =______________.答案:1a =解析:本题先将条件“集合{}2|20x x x a ++=有且只有两个子集”转化为“方程220x x a ++=有且仅有1个解”,再建立方程求a 的值.详解:解:因为集合{}2|20x x x a ++=有且只有两个子集,所以集合{}2|20x x x a ++=有且只有一个元素,所以方程220x x a ++=有且仅有1个解,所以2240a ∆=-=,解得1a =.故答案为:1a =.点睛:本题考查根据集合中元素的个数求参数的值,是基础题.4.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________答案:12(,]23解析:由f (x )=x 2﹣(a+2)x+2﹣a <0可得x 2﹣2x+1<a (x+1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出.详解:f (x )=x 2﹣(a+2)x+2﹣a <0,即x 2﹣2x+1<a (x+1)﹣1,分别令y =x 2﹣2x+1,y =a (x+1)﹣1,易知过定点(﹣1,﹣1),分别画出函数的图象,如图所示:∵集合A =x∈Z|f(x )<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10{120 311a a a -≤--≤<,解得12<a 23≤故答案为(12,23]点睛:本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题5.设,a b ∈R ,集合{}{}2,0,a b a =,则b a -=_____________答案:1-解析:根据集合的互异性原则,可求得a 与b 的值,即可求得b a -的值.详解:因为集合{}{}2,0,a b a = 所以0a =或0b =当0a =时,集合20a =,因而元素重复,与集合的互异性原则相悖,所以舍去0a =当0b =时,可得2a a =,解得0a =(舍)或1a =综上可知, 1a =,0b =所以011b a -=-=-故答案为: 1-点睛:本题考查了集合的互异性原则及集合相等的应用,属于基础题.三、解答题1.写出集合2|,3n x x n ⎧⎫=∈⎨⎬⎩⎭N 中最小的3个元素.答案:240,,33解析:让n 取自然数集中最小3个数代入即可得.详解:0,1,2n =时,三个元素为24033,,. 点睛:根据集合中元素的性质,取n 为自然数集中最小3个数代入可求得集合A 中最小的三个元素.2.已知数集{}()1212,,,0,2n n A a a a a a a n =≤<<<≥具有性质P :对任意的i、()1j i j n ≤≤≤,i j a a +,与j i a a -两数中至少有一个属于A .(1)分别判断数集{}0,1,3,4与{}0,2,3,6是否具有性质P ,并说明理由;(2)证明:10a =,且()122n n na a a a =+++; (3)当5n =时,若22a =,求集合A .答案:(1)集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明见解析. (3){0,2,4,6,8}A =.解析:(1)利用i j a a +与j i a a -两数中至少有一个属于A .即可判断出结论.(2)先由0n na a A =-∈,得出10a =,令“,1j n i =>,由“i j a a +与j i a a -两数中至少有一个属于A ”可得n i a a -属于A .令1i n =-,那么1n n a a --是集合A 中某项,1a 不符合不符合题意,2a 符合.同理可得:令1i n =-可以得到21n n a a a -=+,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,倒序相加即可.(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P,5i a a A -∈,又1i =时,51a a A -∈,可得51i a a Ai -∈=51525354550a a a a a a a a a a ->->->->-=,则515533524a a a a a a a a a -=-=-= ,又34245a a a a a +>+=,可得34a a A +∉,则43a a A -∈,则有43221a a a a a -==-.可得即12345,,,,a a a a a 是首项为0,公差为22a =等差数列是首项为0,公差为22a =等差数列.详解:解:(1)在集合{}0,1,3,4中,设{}0,1,3,4A =①011,101A A +=∈-=∈,具有性质P②033,303A A +=∈-=∈,具有性质P③044,404A A +=∈-=∈,具有性质P④134,312A A +=∈-=∉,具有性质P⑤145,413A A +=∉-=∈,具有性质P⑥347,431A A +=∉-=∈,具有性质P综上所述:集合{}0,1,3,4具有性质P ;在集合{}0,2,3,6中,设{}0,2,3,6B =,①022,202B B +=∈-=∈,具有性质P②033,303B B +=∈-=∈,具有性质P③066,606B B +=∈-=∈,具有性质P④235,321B B +=∉-=∉,不具有性质P⑤267,624B B +=∉-=∉,具有性质P⑥368,633B B +=∉-=∈,具有性质P综上所述:集合{}0,2,3,6不具有性质P .故集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明:令,1j n i =>由于120n a a a ≤<<<,则n n n a a a +>,故2n a A ∉ 则0n n a a A =-∈,即10a =i j a a +与j i a a -两数中至少有一个属于A ,i j a a ∴+不属于A ,n i a a ∴-属于A .令1i n =-,那么1n n a a --是集合A 中某项,10a =不符合题意,2a 可以.如果是3a 或者4a ,那么可知31n n a a a --=那么231n n n a a a a a -->-=,只能是等于n a ,矛盾.所以令1i n =-可以得到21n n a a a -=+,同理,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,∴倒序相加即可得到1232n n n a a a a a +++⋯+= 即()122n n na a a a a =+++⋯+(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P ,5i a a A -∈,又1i =时,51a a A -∈,51,2,3,4,5i a a Ai ∴-∈=123451234500a a a a a a a a a a =<<<<=<<<<,51525354550a a a a a a a a a a ∴->->->->-=,则515524a a a a a a -=-=,533a a a -=,从而可得245532a a a a a +==,故2432a a a +=,即433230a a a a a <-=-<,又3424534a a a a a a a A +>+=∴+∈/ ,则43a a A -∈,则有43221a a a a a -==-又54221a a a a a -==-544332212a a a a a a a a a ∴-=-=-=-=,即12345,,,,a a a a a 是首项为0,公差为22a =等差数列,{0,2,4,6,8}A ∴=点睛:(1)本问采用举反例的方法证明A 不具有P 性质;(2)采用极端值是证明这类问题的要点,一个数集满足某个性质,则数集中的特殊的元素(比如最大值、最小值)也满足这个性质;本问的第二个要点是集合的元素具有互异性,由互异性及题中给的性质P ,可得出等式;(3)利用在(2)中得到的结论得出12345,,,,a a a a a 之间的关系,再结合A 中元素所具有的P 性质即可得到结论.3.分别用列举法和描述法表示方程x 2+x –2=0的所有实数解的集合.答案:1,–2},x|x=1或x=–2}解析:根据列举法和描述法的定义分别进行表示即可. 详解:由220x x +-= 得1x = 或2x =- ,所以用列举法表示解集为}{1,2- ,用描述法表示为}{{}22012.x x x x x x +-===-=-或点睛:本题主要考查集合表示的两种方法:列举法和描述法,比较基础,要注意两者之间的区别.。
1.1 集合的概念同步练习卷【新教材】人教A版(2019)高中数学必修第一册(含答案)
1.1 集合的概念同步练习卷【人教A版2019】考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共22题,单选8题,多选4题,填空4题,解答6题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本节内容的具体情况!一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•袁州区校级月考)下列四组对象中能构成集合的是()A.宜春市第一中学高一学习好的学生B.在数轴上与原点非常近的点C.很小的实数D.倒数等于本身的数2.(3分)(2020秋•路北区校级期中)下列元素与集合的关系表示正确的是()①﹣1∈N*;②√2∉Z;③32∈Q;④π∈QA.①②B.②③C.①③D.③④3.(3分)(2020•西城区校级期中)已知集合M={﹣2,3},N={﹣4,5,6},依次从集合M,N中各取出一个数分别作为点P的横坐标和纵坐标,则在平面直角坐标系中位于第一、二象限内的点P的个数是()A.4B.5C.6D.74.(3分)(2020春•大武口区校级期中)已知集合M={1,m+2,m2+4},且5∈M,则m的值为()A.1或﹣1B.1或3C.﹣1或3D.1,﹣1或35.(3分)集合A={1,﹣3,5,﹣7,9,﹣11,…},用描述法表示正确的是()①{x|x=2n±1,n∈N};②{x|x=(﹣1)n(2n﹣1),n∈N};③{x|x=(﹣1)n(2n+1),n∈N}.A.③B.①③C.②③D.①②③6.(3分)(2020秋•张店区校级月考)集合A={x∈N∗|63−x∈Z},用列举法可以表示为()A.{1,2,4,9}B.{1,2,4,5,6,9}C.{﹣6,﹣3,﹣2,﹣1,3,6}D.{﹣6,﹣3,﹣2,﹣1,2,3,6}7.(3分)(2020秋•华龙区校级期中)已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},则集合B中的元素的个数为()A.4B.5C.6D.78.(3分)(2020秋•汇川区校级月考)设集合A={2,3,a2﹣3a,a+2a+7},B={|a﹣2|,0}.已知4∈A且4∉B,则实数a的取值集合为()A.{﹣1,﹣2}B.{﹣1,2}C.{﹣2,4}D.{4}二.多选题(共4小题,满分16分,每小题4分)9.(4分)(2020秋•中山市校级月考)已知x∈{1,2,x2},则有()A.x=1B.x=2C.x=0D.x=√210.(4分)(2020秋•农安县月考)下面四个说法中错误的是()A.10以内的质数组成的集合是{2,3,5,7}B.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C.方程x2﹣2x+1=0的所有解组成的集合是{1,1}D.0与{0}表示同一个集合11.(4分)(2020秋•余姚市校级月考)已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则实数a可以取()A.a≥1B.a=0C.a≤﹣1D.﹣1≤a≤112.(4分)若集合A具有以下性质:(1)0∈A,1∈A;(2)若x∈A,y∈A;则x﹣y∈A,且x≠0时,1x∈A.则称集合A是“好集”.下列命题中正确的是()A.集合B={﹣1,0,1}是“好集”B.有理数集Q是“好集”C.整数集Z不是“好集”D.设集合A是“好集”,若x∈A,y∈A,则x+y∈A 三.填空题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•辛集市校级月考)下列关系中,正确的是.①−43∈R;②√3∉Q;③|﹣20|∉N*;④|−√2|∈Q;⑤﹣5∉Z;⑥0∈N.14.(4分)(2020秋•浙江期中)已知集合A={﹣2,2a,a2﹣a},若2∈A,则a=.15.(4分)(2020秋•汇川区校级月考)设集合A中有n个元素,定义|A|=n,若集合P={x∈Z|6x−3∈Z},则|P|=.16.(4分)(2020秋•河东区校级月考)已知a,b,c均为非零实数,集合A={x|x=|a|a+b|b|+ab|ab|},则集合A的元素的个数有个.四.解答题(共6小题,满分44分)17.(6分)下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有个子高的同学;(3)不等式2x+1>7的整数解.18.(6分)已知集合M={﹣2,3x2+3x﹣4,x2+x﹣4},若2∈M,求x的值.19.(8分)用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x=|x|,x<5,且x∈Z};(4){(x,y)|x+y=6,x∈N*,y∈N*};(5){﹣3,﹣1,1,3,5}.20.(8分)(2020秋•黄浦区校级月考)已知集合A={x|kx2﹣8x+16=0,k∈R,x∈R}.(1)若A只有一个元素,试求实数k的值,并用列举法表示集合A;(2)若A至多有两个子集,试求实数k的取值范围.21.(8分)设集合A中含有三个元素3,x,x2﹣2x.(1)求实数x应满足的条件;(2)若﹣2∈A,求实数x.22.(8分)(2020秋•越秀区校级期中)已知不等式ax2+5x﹣2>0的解集是M.(1)若2∈M且3∉M,求a的取值范围;(2)若M={x|12<x<2},求不等式ax2﹣5x+a2﹣1>0的解集.1.1 集合的概念同步练习卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•袁州区校级月考)下列四组对象中能构成集合的是( ) A .宜春市第一中学高一学习好的学生B .在数轴上与原点非常近的点C .很小的实数D .倒数等于本身的数【分析】根据集合的含义分别分析四个选项,A ,B ,C 都不满足函数的确定性故排除,D 确定,满足. 【解答】解:A :宜春市第一中学高一学习好的学生,因为学习好的学生不确定,所以不满足集合的确定性,排除B :在数轴上与原点非常近的点,因为非常近的点不确定,所以不满足集合的确定性,排除C :很小的实数,因为很小的实数不确定,所以不满足集合的确定性,排除D :倒数等于它自身的实数为1与﹣1,∴满足集合的定义,故正确. 故选:D .【点睛】本题考查集合的含义.通过对集合元素三个性质:确定性,无序性,互异性进行考查,属于基础题.2.(3分)(2020秋•路北区校级期中)下列元素与集合的关系表示正确的是( ) ①﹣1∈N *;②√2∉Z ;③32∈Q ;④π∈QA .①②B .②③C .①③D .③④【分析】认识常用数集的表示符号及元素和集合的关系. 【解答】解:对于①:﹣1不是自然数,故﹣1∉N *,故①错误;对于②:√2是无理数不是整数,Z 表示整数集合∴√2∉Z ,故②正确; 对于③:32是有理数,Q 表示有理数集,∴32∈Q ,故③正确;对于④:π是无理数,Q 表示无理数集,∴π∉Q ,故④错误. 故选:B .【点睛】本题考查对数集的认识,属于基础题3.(3分)(2020•西城区校级期中)已知集合M ={﹣2,3},N ={﹣4,5,6},依次从集合M ,N 中各取出一个数分别作为点P的横坐标和纵坐标,则在平面直角坐标系中位于第一、二象限内的点P的个数是()A.4B.5C.6D.7【分析】利用列举法和第一、二象限的点的性质直接求解.【解答】解:集合M={﹣2,3},N={﹣4,5,6},依次从集合M,N中各取出一个数分别作为点P的横坐标和纵坐标,在平面直角坐标系中位于第一、二象限内的点P有:(﹣2,5),(﹣2,6),(3,5),(3,6),共4个.故选:A.【点睛】在平面直角坐标系中位于第一、二象限内的点P的个数的求法,考查列举法和第一、二象限的点的性质等基础知识,考查运算求解能力,是基础题.4.(3分)(2020春•大武口区校级期中)已知集合M={1,m+2,m2+4},且5∈M,则m的值为()A.1或﹣1B.1或3C.﹣1或3D.1,﹣1或3【分析】由5∈{1,m+2,m2+4},得m+2=5或m2+4=5,再由集合中元素的互异性,能求出m的取值集合.【解答】解:∵5∈{1,m+2,m2+4},∴m+2=5或m2+4=5,即m=3或m=±1.当m=3时,M={1,5,13};当m=1时,M={1,3,5};当m=﹣1时,M={1,1,5}不满足互异性,∴m的取值集合为{1,3}.故选:B.【点睛】本题考查实数的取值集合的求法,解题时要认真审题,注意集合性质的合理运用,是基础题.5.(3分)集合A={1,﹣3,5,﹣7,9,﹣11,…},用描述法表示正确的是()①{x|x=2n±1,n∈N};②{x|x=(﹣1)n(2n﹣1),n∈N};③{x|x=(﹣1)n(2n+1),n∈N}.A.③B.①③C.②③D.①②③【分析】取n=0,1,2分别验证三个集合即可.【解答】解:取n=0,{x|x=2n±1,n∈N}={0,1},故①错误;取n=0,{x|x=(﹣1)n(2n﹣1),n∈N}={﹣1},故②错误;取n=0,{x|x=(﹣1)n(2n+1),n∈N}={1},取n=1,{x|x=(﹣1)n(2n+1),n∈N}={﹣3},取n=2,{x|x=(﹣1)n(2n+1),n∈N}={5},……,故③正确;故选:A.【点睛】本题主要考查了集合的表示方法,是基础题.6.(3分)(2020秋•张店区校级月考)集合A={x∈N∗|63−x∈Z},用列举法可以表示为()A.{1,2,4,9}B.{1,2,4,5,6,9}C.{﹣6,﹣3,﹣2,﹣1,3,6}D.{﹣6,﹣3,﹣2,﹣1,2,3,6}【分析】利用已知条件,化简求解即可.【解答】解:集合A={x∈N∗|63−x∈Z},可知63−1=3,63−2=6,63−4=−6,63−5=−3,63−6=−2,63−9=−1,则x=1,2,4,5,6,9.集合A={x∈N∗|63−x∈Z}={1,2,4,5,6,9}.故选:B.【点睛】本题考查集合的表示方法,是基础题.7.(3分)(2020秋•华龙区校级期中)已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},则集合B中的元素的个数为()A.4B.5C.6D.7【分析】通过集合B,利用x∈A,y∈A,y﹣x∈A,求出集合B中元素的个数.【解答】解:因为集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},所以当x=1时,y=2或y=3或y=4,当x=2时,y=3或y=4,当x=3时,y=4,所以集合B中的元素个数为6.故选:C.【点睛】本题考查集合的元素与集合的关系,属基础题.8.(3分)(2020秋•汇川区校级月考)设集合A={2,3,a2﹣3a,a+2a+7},B={|a﹣2|,0}.已知4∈A且4∉B ,则实数a 的取值集合为( ) A .{﹣1,﹣2}B .{﹣1,2}C .{﹣2,4}D .{4}【分析】根据题意分a 2﹣3a =4且|a ﹣2|≠4,a +2a +7=4且|a ﹣2|≠4两种情况讨论,求出a 的值,并利用集合的互异性进行验证,即可求得符合题意的a 的值.【解答】解:由题意可得①当a 2﹣3a =4且|a ﹣2|≠4时,解得a =﹣1或4, a =﹣1时,集合A ={2,3,4,4}不满足集合的互异性,故a ≠﹣1, a =4时,集合A ={2,3,4,1112},集合B ={2,0},符合题意.②当a +2a+7=4且|a ﹣2|≠4,解得a =﹣1,由①可得不符合题意. 综上,实数a 的取值集合为{4}. 故选:D .【点睛】本题主要考查元素与集合的关系,考查集合的互异性,属于基础题. 二.多选题(共4小题,满分16分,每小题4分)9.(4分)(2020秋•中山市校级月考)已知x ∈{1,2,x 2},则有( ) A .x =1B .x =2C .x =0D .x =√2【分析】利用元素与集合的关系及集合中元素的互异性即可求解. 【解答】解:因为x ∈{1,2,x 2},所以x =2或x =x 2,解得x =2或x =1或x =0, 当x =2时,x ∈{1,2,4},符合题意;当x =1时,x ∈{1,2,1},不满足集合的互异性; 当x =0时,x ∈{1,2,0},符合题意., 故x =2或x =0. 故选:BC .【点睛】本题主要考查元素与集合间的关系,利用集合中元素的互异性验证结论是否符合题意是解题的关键,属于基础题.10.(4分)(2020秋•农安县月考)下面四个说法中错误的是( ) A .10以内的质数组成的集合是{2,3,5,7}B .由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C .方程x 2﹣2x +1=0的所有解组成的集合是{1,1}D.0与{0}表示同一个集合【分析】结合集合的表示及元素与集合的基本关系分别检验各选项即可判断.【解答】解:10以内的质数组成的集合是{2,3,5,7},故A正确;由集合中元素的无序性知{1,2,3}和{3,2,1}表示同一集合,故B正确;方程x2﹣2x+1=0的所有解组成的集合是{1},故C错误;由集合的表示方法知0不是集合,故D错误,故选:CD.【点睛】本题主要考查了集合的表示及元素与集合的基本关系的判断,属于基础题.11.(4分)(2020秋•余姚市校级月考)已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则实数a可以取()A.a≥1B.a=0C.a≤﹣1D.﹣1≤a≤1【分析】根据集合A={x|ax2﹣2x+a=0}中至多含有一个元素,讨论集合A中的方程ax2﹣2x+a=0的根的情况,求解若ax2﹣2x+a=0为一元一次方程和一元二次方程至多含有一个根的情况,符合题意时可得实数a可以取为:a=0,a≥1或a≤﹣1.【解答】解:已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则讨论集合A中的方程ax2﹣2x+a=0的根的情况,①若ax2﹣2x+a=0为一元一次方程,则a=0,解得x=0,符合题意;②若ax2﹣2x+a=0为一元二次方程,则a≠0,方程至多含有一个根,△=4﹣4a2≤0,解得a≥1或a≤﹣1,符合题意;故实数a可以取为:a=0,a≥1或a≤﹣1.故选:ABC.【点睛】本题主要考查元素与集合的关系,一元二次方程根的情况,分类讨论思想,属于基础题.12.(4分)若集合A具有以下性质:(1)0∈A,1∈A;(2)若x∈A,y∈A;则x﹣y∈A,且x≠0时,1x∈A.则称集合A是“好集”.下列命题中正确的是()A.集合B={﹣1,0,1}是“好集”B.有理数集Q是“好集”C .整数集Z 不是“好集”D .设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A【分析】逐一判断给定的3个集合,是否满足“好集”的定义,最后综合讨论结果,可得答案. 【解答】解:对于A ,假设集合B 是“好集”,因为﹣1∈B ,1∈B ,所以﹣1﹣1=﹣2∈B ,这与﹣2∉B 矛盾,所以集合B 不是“好集”.故A 错误;对于B ,因为0∈Q ,1∈Q ,且对任意的x ∈Q ,y ∈Q 有x ﹣y ∈Q ,且x ≠0时,1x ∈Q ,所以有理数集Q 是“好集”,故B 正确;对于C ,因为2∈Z ,但12∉Z ,所以整数集Z 不是“好集”.故C 正确;因为集合A 是“好集”,所以0∈A ,又y ∈A ,所以0﹣y ∈A ,即﹣y ∈A ,又x ∈A ,所以x ﹣(﹣y )∈A ,即x +y ∈A ,故D 正确. 故选:BCD .【点睛】本题主要考查了元素与集合关系的判断,以及新定义的理解,同时考查了运算求解的能力,属于基础题.三.填空题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•辛集市校级月考)下列关系中,正确的是 ①②⑥ . ①−43∈R ; ②√3∉Q ; ③|﹣20|∉N *; ④|−√2|∈Q ; ⑤﹣5∉Z ; ⑥0∈N .【分析】根据元素与集合的关系进行判断即可. 【解答】解:①−43∈R ,正确; ②√3∉Q ,正确;③因为|﹣20|=20∈N *,则|﹣20|∉N *,错误; ④因为|−√2|=√2∉Q ;则|−√2|∈Q ,错误; ⑤﹣5∉Z ,错误; ⑥0∈N .正确;所以正确的是①②⑥.【点睛】本题主要考查元素与集合的关系,属于基础题.14.(4分)(2020秋•浙江期中)已知集合A ={﹣2,2a ,a 2﹣a },若2∈A ,则a = 1或2 .【分析】根据2是集合中的元素,求出a 值,再验证集合中元素的互异性即可.【解答】解:∵2∈A ,∴2a =2或a 2﹣a =2;当2a =2时,a =1,a 2﹣a =0,A ={﹣2,2,0},符合题意;当a 2﹣a =2时,a =﹣1或a =2,a =2时,A ={﹣2,4,2},符合题意.a =﹣1时,A ={﹣2,﹣2,2},不符合题意.综上a =1或a =2,故答案为:1或2.【点睛】本题考查集合中元素的性质及元素与集合的关系,属于基础题目.15.(4分)(2020秋•汇川区校级月考)设集合A 中有n 个元素,定义|A |=n ,若集合P ={x ∈Z |6x−3∈Z },则|P |= 8 .【分析】通过对集合中元素构成的特点及元素条件求集合P ,即可得到答案.【解答】解:∵集合P ={x ∈Z |6x−3∈Z },∵x ∈Z ,6x−3∈Z ,∴x ﹣3=±1,±2,±3,±6.解得x =4,2,5,1,0,6,9,﹣3,∴P ={﹣3,0,1,2,4,5,6,9}.|P |=8,故答案为:8.【点睛】本题考查集合的元素,通过对集合中元素构成的特点及元素条件求集合,属于基础题.16.(4分)(2020秋•河东区校级月考)已知a ,b ,c 均为非零实数,集合A ={x|x =|a|a +b |b|+ab |ab|},则集合A 的元素的个数有 2 个.【分析】通过对a ,b 的正负的分类讨论,利用绝对值的定义去掉绝对值的符号 然后进行运算,求出集合中的元素.【解答】解:当a >0,b >0时,x =|a|a +b |b|+ab |ab|=1+1+1=3,当a >0,b <0时,x =|a|a +b |b|+ab |ab|=1﹣1﹣1=﹣1,当a <0,b >0时,x =|a|a +b |b|+ab |ab|=−1+1﹣1=﹣1,当a<0,b<0时,x=|a|a+b|b|+ab|ab|=−1﹣1+1=﹣1,故x的所有值组成的集合为{﹣1,3}故答案为:2.【点睛】本题考查了分类讨论的数学思想方法,绝对值的几何意义.考查计算能力,属于基础题.四.解答题(共6小题,满分44分)17.(6分)下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有个子高的同学;(3)不等式2x+1>7的整数解.【分析】根据集合元素的确定性,互异性进行判断即可.【解答】解:(1)小于5的自然数为0,1,2,3,4,元素确定,所以能构成集合.为{0,1,2,3,4}.(2)个子高的标准不确定,所以集合元素无法确定,所以不能构成集合.(3)由2x+1>7得x>3,因为x为整数,集合元素确定,但集合元素个数为无限个,所以用描述法表示为{x|x>3,且x∈Z}.【点睛】本题主要考查集合的含义和表示,利用元素的确定性,互异性是判断元素能否构成集合的条件,比较基础.18.(6分)已知集合M={﹣2,3x2+3x﹣4,x2+x﹣4},若2∈M,求x的值.【分析】由已知2是集合M的元素,分类讨论列出方程,求出x的值,将x的值代入集合,检验集合的元素需满足互异性.【解答】解:当3x2+3x﹣4=2时,3x2+3x﹣6=0,x2+x﹣2=0,x=﹣2或x=1.经检验,x=﹣2,x=1均不合题意.当x2+x﹣4=2时,x2+x﹣6=0,x=﹣3或2.经检验,x=﹣3或x=2均合题意.∴x=﹣3或x=2.【点睛】本题考查解决集合中的参数值时,需将求出的参数值代入集合检验集合的互异性、考查分类讨论的数学思想方法.19.(8分)用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x=|x|,x<5,且x∈Z};(4){(x,y)|x+y=6,x∈N*,y∈N*};(5){﹣3,﹣1,1,3,5}.【分析】根据集合的概念,列举法及描述法的定义,选择适当的方法表示每个集合即可.【解答】解:(1){绝对值不大于2的整数}={﹣2,﹣1,0,1,2}.(2){能被3整除,且小于10的正数}={3,6,9}.(3){x|x=|x|,x<5,且x∈Z}={0,1,2,3,4}.(4){(x,y)|x+y=6,x∈N*,y∈N*}={(1,5),(2,4),(3,3),(4,2),(5,1)}.(5){﹣3,﹣1,1,3,5}={x|x=2k﹣1,﹣1≤k≤3,k∈Z}.【点睛】考查集合的概念,集合的表示方法:列举法,描述法.20.(8分)(2020秋•黄浦区校级月考)已知集合A={x|kx2﹣8x+16=0,k∈R,x∈R}.(1)若A只有一个元素,试求实数k的值,并用列举法表示集合A;(2)若A至多有两个子集,试求实数k的取值范围.【分析】(1)当k=0时,易知符合题意,当k≠0时,利用△=0即可求出k的值;(2)由A至多有两个子集,可知集合A中元素个数最多1个,再分k=0和k≠0两种情况讨论,即可求出实数k的取值范围.【解答】解:(1)①当k=0时,方程化为:﹣8x+16=0,解得x=2,此时集合A={2},满足题意;②当k≠0时,∵方程kx2﹣8x+16=0有一个根,∴△=(﹣8)2﹣4k×16=0,解得:k=1,此时方程为x2﹣8x+16=0,解得x=4,∴集合A={4},符合题意,综上所述,k=0时集合A={2};k=1时集合A={4};(2)∵A至多有两个子集,∴集合A中元素个数最多1个,①当k≠0时,一元二次方程kx2﹣8x+16=0最多有1个实数根,∴△=(﹣8)2﹣4k×16≤0,解得k≥1,②当k=0时,由(1)可知,集合A={2}符合题意,综上所述,实数k 的取值范围为:{0}∪[1,+∞).【点睛】本题主要考查了集合的表示方法,考查了集合的元素个数,是基础题.21.(8分)设集合A 中含有三个元素3,x ,x 2﹣2x .(1)求实数x 应满足的条件;(2)若﹣2∈A ,求实数x .【分析】(1)由集合元素的互异性直接求解.(2)若﹣2∈A ,则x =﹣2或x 2﹣2x =﹣2.由此能出x .【解答】解:(1)由集合元素的互异性可得:x ≠3,x 2﹣2x ≠x 且x 2﹣2x ≠3,解得x ≠﹣1,x ≠0且x ≠3.(2)若﹣2∈A ,则x =﹣2或x 2﹣2x =﹣2.由于x 2﹣2x =(x ﹣1)2﹣1≥﹣1,所以x =﹣2.【点睛】本题考查集合中元素的性质、实数值的求法,是基础题,解题时要认真审题,注意元素与集合的关系的合理运用.22.(8分)(2020秋•越秀区校级期中)已知不等式ax 2+5x ﹣2>0的解集是M .(1)若2∈M 且3∉M ,求a 的取值范围;(2)若M ={x|12<x <2},求不等式ax 2﹣5x +a 2﹣1>0的解集.【分析】(1)由2∈M 且3∉M ,列出不等式组,能求出实数a 的取值范围.(2)推导出12,2是方程ax 2+5x ﹣2=0的两个根,由韦达定理求出a =﹣2,从而不等式ax 2﹣5x +a 2﹣1>0即为2x 2+5x ﹣3<0,由此能求出不等式的解集.【解答】解:(1)∵不等式ax 2+5x ﹣2>0的解集是M .2∈M 且3∉M ,∴{4a +8>09a +13≤0,解得﹣2<a ≤−139, ∴a 的取值范围是(﹣2,−139].(2)∵M ={x|12<x <2},∴12,2是方程ax 2+5x ﹣2=0的两个根,∴由韦达定理得{12+2=−5a 12⋅2=−2a ,解得a =﹣2, ∴不等式ax 2﹣5x +a 2﹣1>0为2x 2+5x ﹣3<0,∴不等式ax 2﹣5x +a 2﹣1>0的解集为{x|−3<x <12}.【点睛】本题考查实数的取值范围的求法,考查不等式的解集的求法,考查运算求解能力,是基础题.。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(60)
1.1 集合的概念一、单选题1.下列叙述正确的是( ).A .方程2210x x -+=的根构成的集合为{}1,1-B .{}22401030x x R x x R x ⎧⎫+>⎧∈+==∈⎨⎨⎬+<⎩⎩⎭C .集合(){,5M x y x y =+=且}20x y -=表示的集合是{}2,3D .集合{}1,2,3与集合{}3,2,1是不同的集合答案:B解析:解出2210x x -+=、520x y x y +=⎧⎨-=⎩可判断AC 的正误,由集合的无序性可得D 的正误,{}22401030x x R x x Rx ⎧⎫+>⎧∈+==∈=∅⎨⎨⎬+<⎩⎩⎭,可得B 的正误. 详解:方程2210x x -+=的根为1x =,故A 错误;{}22401030x x R x x Rx ⎧⎫+>⎧∈+==∈=∅⎨⎨⎬+<⎩⎩⎭,故B 正确; 由520x y x y +=⎧⎨-=⎩可解得53103x y ⎧=⎪⎪⎨⎪=⎪⎩,故C 错误; 集合{}1,2,3与集合{}3,2,1是相同的集合,故D 错误故选:B2.定义集合运算:{|()(),A B z z x y x y ⊗==+⨯-,}x A y B ∈∈,设A =,{1B =,则集合A B ⊗的真子集个数为A .8B .7C .16D .15答案:B详解:由题意A =,{B =,则A B ⊗有)))111,0,112,⨯=⨯==1= 四种结果,由集合中元素的互异性,则集合A B ⊗由3个元素,故集合A B ⊗的真子集个数为3217-=个,故选B3.已知M =x|x≤5,x∈R},a =b ( )A .a∈M,b∈MB .a∈M,b MC .a M ,b∈MD .a M ,b M答案:B解析:∵5a =,5b ,{|5}M x x x R =≤∈,,∴ a M b M ∈∉,,故选B. 4.设集合A={1,4,5},若a∈A,5-a∈A,那么a 的值为A .1B .4C .1或4D .0 答案:C详解:试题分析:当1a =时54a A -=∈成立;当4a =时51a A -=∈成立;当5a =时50a A -=∉,舍. 所以1a =或4a =.故C 正确.考点:元素与集合间的关系.5.已知集合A =3|,2x x Z Z x 且⎧⎫∈∈⎨⎬-⎩⎭,则集合A 中的元素个数为( ) A .2B .3C .4D .5 答案:C详解: 试题分析:32Z x ∈-,2x -的取值有3-、1-、1、3,又x Z ∈, x ∴值分别为5、3、1、1-,故集合A 中的元素个数为4,故选C.考点:数的整除性6.集合(x ,y)|y =2x -1}表示( )A .方程y =2x -1B .点(x ,y)C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图像上的所有点组成的集合答案:D解析:由集合中的元素的表示法可知集合(x ,y )|y=2x ﹣1}表示函数y=2x ﹣1图象上的所有点组成的集合.详解:集合(x ,y )|y=2x ﹣1}中的元素为有序实数对(x ,y ),表示点,所以集合(x ,y )|y=2x ﹣1}表示函数y=2x ﹣1图象上的所有点组成的集合.故选D .点睛:本题考查了集合的分类,考查了集合中的元素,解答的关键是明确(x ,y )表示点,是基础题.7.已知集合{}1,2,3A =,则下列说法正确的是( )A .2A ∈B .2A ⊆C .2A ∉D .∅=A答案:A解析:根据元素与集合之间关系,可直接得出结果.详解:因为集合{}1,2,3A =,所以2A ∈.故选:A点睛:本题主要考查元素与集合之间关系的判断,熟记元素与集合之间的关系即可,属于基础题型.8.集合8,,3M y y x N y N x ⎧⎫==∈∈⎨⎬+⎩⎭的元素个数是 A .2B .4C .6D .8答案:A 解析:根据题中给出的条件,x y N ∈,分别从最小的自然数0开始给x 代值,求出相应的y 的值,直到得出的1y <为止,求出y N ∈的个数.详解: 因为8|,,3M y y x y N x ⎧⎫==∈⎨⎬+⎩⎭, 所以:当0x =时,83y N =∈/; 当x 1=时,8213y N ==∈+; 当x 2=时,88235y N ==∈/+; 当3x =时,84333y N ==∈/+; 当x 4=时,88437y N ==∈/+;当5x =时,8153y N ==∈+; 当6x ≥时,813y x =<+,且0y ≠,所以y N ∉. 综上,8|,,{2,1}3M y y x y N x ⎧⎫==∈=⎨⎬+⎩⎭,元素个数是2个. 故选A.点睛:本题考查了集合中元素的个数,关键根据,x y N ∈用赋值法分析和解决问题,属于基础题.9.下面对集合1,5,9,13,17}用描述法表示,其中正确的是( )A .x|x 是小于18的正奇数}B .x|x =4s +1,s∈N,且s <5}C .x|x =4t -3,t∈N,且t<5}D .x|x =4s -3,s∈N ,且s<6}答案:B解析:根据描述法的定义,依次判断选项即可.详解:A :集合含有元素3,故A 错误;B :当s 01234=、、、、时,1591317x =、、、、,故B 正确; C :当0t =时,3x =-,故C 错误;D :当0s =时,3x =-,故D 错误.故选:B二、填空题1.已知{}20,,A a a =,若1A ∈,则实数a 的值是______.答案:1-解析:利用元素和集合的关系,以及集合的互异性可求解.详解:1A ∈,1a 或21a =,当1a =时,21a =,则{0,1,1}A =,不满足集合的互异性,舍去.当21a =时,解得:1a =-,1a =(舍去),此时{0,1,1}A =-符合题意.故答案为:1-2.已知集合123A x N y Z x ⎧⎫=∈=∈⎨⎬+⎩⎭,则集合A 用列举法表示为__________________答案:{}0,1,3,9解析:由y Z ∈,x ∈N ,可得3x +是12不小于3的因数,列出因数,求解即可详解:由x ∈N ,y Z ∈,则3x +是12不小于3的因数,则3x +可为3,4,6,12,即x 为0,1,3,9, 则集合A 用列举法表示为{}0,1,3,9点睛:本题考查描述法与列举法的转换,列举法表示集合,数集的应用3.设集合{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9,则实数a 的值为______.答案:3-解析:先通过已知可得219a -=或29a =,解方程求出a ,然后带入集合验证,满足互异性即可.详解:∵{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9, ∴219a -=或29a =.当219a -=时,5a =,此时{}4,9,25A =-,{}9,0,4B =-,A ,B 中还有公共元素4-,不符合题意;当29a =时,3a =±,若3a =,{}9,2,2B =--,集合B 违背互异性.若3,{4,7,9},{9,8,4},{9}a A B A B =-=--=-=,∴3a =-.故答案为:3-.点睛:本题考查元素与集合的关系,以及集合中元素的互异性,是基础题.4.集合[]{}cos(cos )0,0,x x x ππ=∈= _____.(用列举法表示)答案:2,33ππ⎧⎫⎨⎬⎩⎭ 解析:由已知得cos 2x ππ=,或cos 2x ππ=-,由此能得出结果. 详解: 集合[]{}cos(cos )0,0,x x x ππ=∈,cos 2x ππ∴=,或cos 2x ππ=-, 1cos 2x ∴=或1cos 2x =-, 3x π∴=或23x π=. []{}2cos(cos )0,0,,33x x x ππππ⎧⎫∴=∈=⎨⎬⎩⎭. 故答案为:2,33ππ⎧⎫⎨⎬⎩⎭. 点睛:本题主要考查的是三角函数以及列举法表示集合,是基础题.5.用描述法表示图中的阴影部分(包括边界)___________.答案:(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭ 解析:根据阴影部分所在象限,确定xy 的范围,再结合图像,判断出,x y 的取值范围,由此求得可以表示出阴影部分的集合.详解:由于阴影部分所在象限为第一、三象限,且在,x y 轴上都有点,故0xy ≥;根据图像可知211,132x y -≤≤-≤≤,所以描述法表示图中的阴影部分(包括边界)为(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭. 故填:(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭. 点睛:本小题主要考查用集合表示区域,考查数形结合的数学思想方法,属于基础题.三、解答题1.已知53,⎛ ⎝⎭和3)都是集合{}22(,)|1A x y ax by =-=中的元素,求实数,a b 的值.答案:1,14a b ==解析:把3,⎛ ⎝⎭和代入方程221ax by -=列出方程组,即可求出实数,a b 的值. 详解:由题:3,⎛ ⎝⎭和都是集合{}22(,)|1A x y ax by =-=中的元素,所以3,⎛ ⎝⎭和满足方程221ax by -=, 59141631a b a b ⎧-=⎪⎨⎪-=⎩,解得:141a b ⎧=⎪⎨⎪=⎩, 所以1,14a b ==.点睛:此题考查根据集合中的元素求参数的值,关键在于准确代值列出方程组,解方程组即可得解.2.若a ,b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭. 求:(1)a b +;(2)20222019a b +.答案:(1) 0; (2) 2;解析:(1)根据{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭可得出0a b +=, (2)由(1)得=-a b ,即1b a=-,根据元素的互异性可得1a =-, 1b =,代入20222019a b +计算即可. 详解: (1)根据元素的互异性,得0a b +=或0a =,若0a =,则b a无意义,故0a b +=; (2) 由(1)得=-a b ,即1b a =-,据元素的互异性可得:1b a a ==-,1b =, ∴()2022202220192019112a b +=-+=.点睛:本题考查集合中元素的互异性,属于基础题.3.在平面直角坐标系中,O 为坐标原点,对任意的点(),P x y ,定义OP x y =+,任取点()()1122,,,A x y B x y ,记()()''1221,,,A x y B x y ,若此时2222''OA OB OA OB +≥+成立,则称点,A B 相关.(1)分别判断下面各组中两点是否相关,并说明理由.①()()2,1,3,2A B -;②()()4,3,2,4C D -.(2)给定*N ,3n n ∈≥,点集(){},,,,n x y n x n n y n x y Z Ω=-≤≤-≤≤∈,求集合n Ω中与点()1,1A 相关的点的个数.答案:(1)见解析(2)245n +解析:(1)根据所给定义,代入不等式化简变形可得对应坐标满足的关系,即可判断所给两个点的坐标是否符合定义要求.(2)根据所给点集,依次判断在四个象限内满足的点个数,坐标轴上及原点的个数,即可求得集合n Ω中与点(1,1)A 相关的点的个数;详解:若点()11,A x y ,()22,B x y 相关,则()12,A x y ',()21,B x y ,而OP x y =+不妨设11220,0,0,0x y x y ≥≥≥≥ 则由定义2222OA OB OA OB ''+≥+可知()()()()222211221221x y x y x y x y +++≥+++ 化简变形可得()()12120x x y y --≥(1)对于①(2,1)A -,(3,2)B ;对应坐标取绝对值,代入可知(23)(12)0--≥成立,因此相关;②对应坐标取绝对值,代入可知(42)(34)0--<,因此不相关.(2)在第一象限内,(1)(1)0x y --≥,可知1x n ≤≤且1y n ≤≤,有2n 个点;同理可知,在第二象限、第三象限、第四象限也各有2n 个点.在x 轴正半轴上,点()1,0满足条件;在x 轴负半轴上,点1,0满足条件;在y 轴正半轴上,点0,1满足条件;在y 轴负半轴上,点0,1满足条件;原点()0,0满足条件;因此集合n Ω中共有245n +个点与点(1,1)A 相关.点睛:本题考查了集合中新定义的应用,对题意的理解与分析能力的要求较高,属于难题.。
高考(高中)数学 集合的概念 100道练习题 有答案
高中(高考)数学知识点集合的概念练习卷试卷排列:按知识点知识点:集合的概念难度:中等以上版本:适合各地版本题型:填空题40多道,选择题20多道,解答题20多道,共100道有无答案:均有答案或解析价格:6元,算下来每题6分钱。
页数:46页1.已知A B ⊆,A C ⊆,{}1,2,3,5B =,{}0,2,4,8C =,则A 可以是( ) A .{}1,2 B .{}2,4 C .{}2 D .{}4 【答案】C【解析】解:因为{2}}8,4,2,0{},5,3,2,1{,可以是A C B B A C A ∴==⊆⊆2.若A 、B 、C 为三个集合,且C B B A =,则一定有( ) A 、C A ⊆ B 、A C ⊆ C 、C A ≠ D 、φ=A 【答案】A3.: 集合2{03},{9}P x Z x M x R x =∈≤<=∈≤,则PM =(A) {1,2} (B) {0,1,2} (C){x|0≤x<3} (D) {x|0≤x ≤3} 【答案】:B . 【解析】:{}0,1,2P =,[]3,3M =-,因此P M ={}0,1,24.设a ,b ∈R ,集合a b b aba b a -=+则},,,0{},,1{=(A )1 (B )-1 (C )2 (D )-2 【答案】C5.已知集合{(,),}U x y x R y R =∈∈,{(,)}M x y x y a =+<,{(,)()}P x y y f x ==,现给出下列函数:①x y a =②log a y x =③sin()y x a =+④cos y ax =,若01a <<时,恒有U P C M P ⋂=,则()f x 所有可取的函数的编号是 ( )A . ①②③④B .①②④C .①②D .④ 【答案】B 【解析】考点:补集及其运算;交集及其运算. 专题:计算题;数形结合.分析:利用补集的定义求出∁uM ,由P∩∁uM=P ,得到P ⊆∁uM ,故P 中的函数f (x )必须满足||x|+|y|≥a,检验各个选项是否满足此条件.解答:解:∵∁uM={(x ,y )||x|+|y|≥a},0<a <1时,P∩∁uM=P ,∴P={(x ,y )y=f (x )}⊆∁uM ,如图所示:结合图形可得满足条件的函数图象应位于曲线|x|+|y|=a (-a≤x≤a )的上方.①中,x ∈R ,y >0,满足|x|+|y|≥a,故①可取.②中,x >0,y=log a x ∈R ,满足||x|+|y|≥a,故②可取. ③中的函数不满足条件,如 x=0,a=π4时,y= 22,不满足|x|+|y|≥a.④中x ∈R ,-1≤y≤1,满足||x|+|y|≥a,故④可取.故选B .点评:本题考查补集的定义和运算,交集的定义和运算,求出∁uM={(x ,y )||x|+|y|≥a},是解题的关键.6.对于集合M、N,定义{},M N x x M x N -=∈∉且,()()M N M N N M ⊕=--.设{}23A t t x x ==-,(){}lg B x y x ==-,则A B ⊕为( )A .904x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭-<≤B.904x x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭<-≥或C .904x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭-<≤D .904x x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭->≤或【答案】B7.设集合{|0},{|03},1xA xB x x x =<=<<-那么“x A ∈”是“x B ∈”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】A8.设集合A p a a x a x A ∈><<--=1:},0,2|{命题,命题.2:A q ∈若q p ∨为真命题,q p ∧为假命题,则a 的取值范围是 ( )A .210><<a a 或B .210≥<<a a 或C .21≤<aD .21≤≤a【答案】C 【解析】由题q p ∨为真命题,q p ∧为假命题,可知p 、q 中有且仅有一个为真命题, i)若p 为真,q 为假,则0,12><<--a a a 且A ∉2,解得21≤<a ; ii) 若q 为真,则0,22><<--a a a ,解得2>a ,可知A ∈1,则p 为真,不符题意.9.含有三个实数的集合可表示为{a, ab,1},也可表示为{a 2,a+b ,0},则a 2007 +b 2007的值为( )A .0B .1C .—1D .1± 【答案】C【解析】100-=⇒=⇒=a b ab得a 2007 +b 12007-=10.设集合}5,4,3,2,1{},1,0,2{=-=N M ,映射N M f →:使得对任意的M x ∈,都有)()(x xf x f x ++是奇数,则这样的映射f 的个数是 ( )(A )45 (B )27 (C )15 (D )11 【答案】A 【解析】当2-=x 时,)2(2)()(---=++f x xf x f x 为奇数,则)2(-f 可取1、3、5,有3种取法;当0=x 时,)0()()(f x xf x f x =++为奇数,则)0(f 可取1、3、5,有3种取法;当1=x 时,)1(21)()(f x xf x f x +=++为奇数,则)1(f 可取1、2、3、4、5,有5种取法。
集合概念和练习题
集合概念及练习题集合的概念必然范围的,确信的,能够区别的事物,看成一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。
集合的分类:并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}补集:属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}空集:包括于任何集合,但不能说“空集属于任何集合无穷集:概念:集合里含有无穷个元素的集合叫做无穷集有限集:令N*是正整数的全部,且N_n={1,2,3,……,n},若是存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。
集合元素的性质:1.确信性:每一个对象都能确信是不是某一集合的元素,没有确信性就不能成为集合,例如“个子高的同窗”“很小的数”都不能组成集合。
那个性质要紧用于判定一个集合是不是能形成集合。
2.互异性:集合中任意两个元素都是不同的对象。
如写成{1,1,2},等同于{1,2}。
互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作那个集合的一个元素。
3.无序性:{a,b,c}{c,b,a}是同一个集合。
4.纯粹性:所谓集合的纯粹性,用个例子来表示。
集合A={x|x<2},集合A 中所有的元素都要符合x<2,这确实是集合纯粹性。
5.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这确实是集合完备性。
完备性与纯粹性是遥相呼应的。
经常使用数集的符号:(1)全部非负整数的集合通常简称非负整数集(或自然数集),记作N (2)非负整数集内排除0的集,也称正整数集,记作N+(或N*) (3)全部整数的集合通常称作整数集,记作Z(4)全部有理数的集合通常简称有理数集,记作Q(5)全部实数的集合通常简称实数集,记作R(6)复数集合计作C集合的表示方式:经常使用的有列举法和描述法。
集合的概念练习题
第一讲 集合的概念及其运算1、子集的个数例1、(1)若{ 1,2 }A ⊆{ 1,2,3,4 },求满足这个关系式的集合A 的个数(2)已知集合A ={0、2、4},},|{A b a b a x x B ∈⋅==、,则集合B 的子集的个数为 。
(3)从自然数1~20这20个数中,任取两个数相加,得到的和作为集合M 的元素,则M 的真子集共有 个。
☆规律方法总结:(1)子集的个数:一个有n 个元素的集合,其①子集有 个;②真子集有 个;③非空子集有 个;④非空真子集有 个; (2)已知集合M 中有m 个元素,集合N 中有n 个元素,则满足M N P ⊆的集合P 的个数为12--m n2、集合中元素的个数例2、(1)已知集合M,N 分别含有8个、13个元素,若N M 中有6个元素, ①求N M 中的元素个数. ②当N M 含多少个元素时,φ=N M .(2)50名学生参加跳远和铅球两样测试,跳远和铅球测验成绩分别及格40人和31人,两次测验成绩均不及格的有4人,则两项成绩都及格的人数是( )A 、35B 、25C 、28D 、15(3) 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 3、集合间的关系例3、判断下列两集合之间的关系⑴ },14|{},,12|{Z k k x x N Z k k x x M ∈±==∈+== (2)},2|{},,12|{22R b b b x x B R a a a x x A ∈-==∈++== (3) },24|{},,42|{Z k k x x N Z k k x x M ∈+==∈+==ππππ 4、方程、不等式与集合例4、(1) 已知方程0)(,0)(==x g x f 的解集分别为B A ,。
① 写出方程0)()(=⋅x g x f 的解集② 写出方程0)()(22=+x g x f 的解集③ 写出方程0)()(=x g x f 的解集 (2)已知不等式0)()0(>>x g x f ,的解集分别为B A 、, 0)()0(<<x g x f ,的解集分别为N M 、。
集合的概念及练习题
---------------------------------------------------------------最新资料推荐------------------------------------------------------集合的概念及练习题集合的概念及练习题 1.1 集合与集合的表示方法一、选择题 1.下列各组对象①接近于 0 的数的全体;②比较小的正整数全体;③平面上到点 O 的距离等于 1 的点的全体;④正三角形的全体;⑤2 的近似值的全体.其中能构成集合的组数有 A.2 组 B.3 组 C.4 组 D.5 组 2.设集合 M={大于 0 小于 1 的有理数}, N={小于 1050 的正整数}, P={定圆 C 的内接三角形}, Q={所有能被 7 整除的数},其中无限集是 A.M、N、P B.M、P、Q C.N、P、Q D.M、N、Q 3.下列命题中正确的是 A.{x|x2+2=0}在实数范围内无意义 B.{}与{}表示同一个集合C.{4,5}与{5,4}表示相同的集合 D.{4,5}与{5,4}表示不同的集合 4.直角坐标平面内,集合 M={|xy0,xR,yR} 的元素所对应的点是 A.第一象限内的点 B.第三象限内的点C.第一或第三象限内的点 D.非第二、第四象限内的点 5.已知 M={m|m=2k,kZ},X={x|x=2k+1,kZ},Y={y|y=4k+1,kZ},则 A.x+yM B.x+yX C.x+yY D.x+y?M 6.下列各选项中的 M 与 P 表示同一个集合的是 A.M={xR|x2+0.01=0},P={x|x2=0} B.M={|y=x2+1,xR},P={|x =y2+1,xR} C.M={y|y=t2+1,tR},P={t|t=2+1,yR} D.M={x|x=2k,kZ},P={x|x=4k+2,kZ} 二、1/ 8填空题 7.由实数 x,-x,|x|所组成的集合,其元素最多有______个. 8.集合{3,x,x2-2x}中,x 应满足的条件是______. 9.对于集合 A={2,4,6},若 aA,则 6-aA,那么 a 的值是______. 10.用符号或?填空:①1______N,0______N.-3______Q,0.5______Z,2______R.②1______R,5______Q,|-3|______N+,|-|______Z. 11.若方程 x2+mx+n=0 的解集为{-2,-1},则 m=______,n=______. 12.若集合 A={x|x+x+b=0}中,仅有一个元素 a,则 a=______,b=______. ?x?y?1?13.方程组?y?z?2 的解集为______. ?z?x?3? 14.已知集合 P ={0,1,2,3,4},Q={x|x=ab,a,bP,ab},用列举法表示集合 Q=______. 15.用描述法表示下列各集合:① {2 , 4 , 6 ,8 ,10 ,12}________________________________________________.② {2 , 3 ,4}_________________________________________________________ __.③,,,,}_______________________________________________ _______. 16.已知集合 A={-2,-1,0,1},集合 B={x|x=|y|,yA},则 B=______.三、解答题 17.集合 A ={有长度为 1 的边及 40的内角的等腰三角形}中有多少个元素?试画出这些元素来. 18.设 A 表示集合{2,3,a2+2a-3},B 表示集合{a +3,2},若已知 5A,且 5?B,求实数 a 的---------------------------------------------------------------最新资料推荐------------------------------------------------------ 值. 19.实数集 A 满足条件:1?A,若 aA,则12345345671?A. 1?a 若 2A,求 A;集合 A 能否为单元素集?若能,求出 A;若不能,说明理由;求证:1? 1?A. a 20.已知集合 A={x|ax-3x+2=0},其中 a 为常数,且aR ①若 A 是空集,求 a 的范围;②若 A 中只有一个元素,求 a 的值;③若 A 中至多只有一个元素,求 a 的范围. 21.用列举法把下列集合表示出来:①A={x?N| ②B={29?N};?x9?N|x?N};?x ③C={y|y=-x2+6,xN,yN};④D={|y=-x2+6,xN,yN};⑤E={x|p?x,p?q?5,p?N,q?N*}? q 22.已知集合 A={p|x2+2x+1=0,xR},求集合B={y|y=2x-1,xA}.集合与集合的表示方法参考答案一、选择题1.A .B .C .D .A 6.C 解析:在选项 A 中,M=?,P={0},是不同的集合;在选项 B 中,有 M={|y=x2+11,xR},P={|x=y2+11,yR},是不同的集合,在选项 C 中,y=t2+11,t=2+11,则 M={y|y1},P={t|t1},它们都是由不小于 1 的全体实数组成的数集,只是用不同的字母代表元素,因此,M 和 P 是同一个集合,在选项 D 中,M 是由,0,2,4,6,8,10,组成的集合,P 是由,2,6,10,14,组成的集合,因此,M 和 P 是两个不同的集合.答案:3/ 8C.二、填空题7.2.x3 且x0 且x-1 ?x??3,?2 根据构成集合的元素的互异性,x 满足?x?2x??3, ?x2?2x?x.?? 解之得 x3 且 x0 且 x-1. 9.2 或 410.①,,,?,.②,?,,?.11.m=3,n=2. 11,b?.解析:由题意知,方程x2+x+b=0 只有等根x=a,则?=39 112-4b=0①,将 x=a 代入原方程得 a2+a+b=0②,由①、②解得 a?,b?.912.a? 13.{} 14.Q={0,2,3,4,6,8,12} *15.①{x|x=2n,nN 且 n6},②{x|2x4,xN},或{x|=0} ③{x|x?n,n?N*且 n?6} n?2 16.B={0,1,2}解析:∵yA,y=-2,-1,0,1,∵x=|y|,x=2,1,0,B={0,1,2} 三、解答题 17.解:有 4 个元素,它们分别是:底边为 1,顶角为 40的等腰三角形;底边为 1,底角为 40的等腰三角形;腰长为 1,顶角为 40的等腰三角形;腰长为1,底角为 40的等腰三角形. 18.解:∵A,且5?B.?a2?2a?3?5,?a??4 或a?2,?即?a?2.a?3?5,???? a=-4 1?A,即-1A.1?2 11∵-1A,-11?A,即?A.1? 111∵?A??A,即 2A. ?1,221?2 11由以上可知,若 2A,则 A 中还有另外两个数-1和A?{?1,,2}.2 1,即 a2-a+1=0.不妨设 A 是单元素的实数集.则有 a?1?a19.证明:---------------------------------------------------------------最新资料推荐------------------------------------------------------ 若 2A,由于 21,则∵?=2-411=-3<0,方程 a2-a+1=0 没有实数根. A 不是单元素的实数集. 1?A1?a 11?A. ?A,即11?a1?1?a∵若 aA,则 ?20.解:①∵A 是空集方程 ax2-3x+2=0 无实数根 ?a??0,9 解得a?????9?8a?0, 2;②∵A 中只有一个元素,方程 ax2-3x+2=0 只有一个实数根.当 a=0 时,方程化为-3x+2=0,只有一个实数根 x? 当 a0 时,令?=9-8a=0,得 a? 等的实数根,即 A 中只有一个元素.由以上可知 a=0,或 a?9,这时一元二次方程 ax2-3x+2=0 有两个相 89 时,A 中只有一个元素. 9.③若 A 中至多只有一个元素,则包括两种情形,A中有且仅有一个元素,A 是空集,由①、②的结果可得 a=0,或 a? 21.解:①由 9-x>0 可知,取 x=0,1,2,3,4,5,6,7,8 验证,则 x=0,6,8 时 9?1,3,9 也是自然数,A={0,6,8}?x ②由①知,B={1,3,9}.③∵y=-x2+66,而 xN,yN, x=0,1,2 时,y=6,5,2 符合题意. C={2,5,6}.④点满足条件 y=-x2+6,xN,yN,则有新课标集合的含义及其表示姓名:_________ 一、选择题:1.下面四个命题:集合 N 中的最小元素是 1:5/ 8若?a?N,则 a?N x2?4?4x 的解集为{2,2};0.7?Q,其中不正确命题的个数为 A. 0 B. 1 C. D.3 2. 下列各组集合中,表示同一集合的是 A.M???3,2??,N??2,3?? B.M??3,2?,N??2,3? C.M???x,y?x?y?1?,N??yx?y?1?D. M??1,2?,N???1.2?? 3.下列方程的实数解的集合为??12? ?2,?3?? 的个数为4x2?9y2?4x?12y?5?0;6x2?x?2?0; ?2x?1?2 ?3x?2??0;x2?x?2?0 A.1 B. C.3D.4 4.集合A??xx2 ?x?1?0? ,B??x?Nx?x2 ?6x?10??0 ?,C??x?Q4x?5?0?, D??xx 为小于 2 的质数? ,其中时空集的有 A. 1 个 B.2 个 C.3 个 D.4 个. 下列关系中表述正确的是 A.0??x2?0? B.0???0,0?? C. 0?? D.0?N. 下列表述正确的是 A.?0??? B.?1,2???2,1? C.?????D.0?N 7. 下面四个命题:集合 N 中的最小元素是 1:方程?x?1?3 ?x?2??x?5??0 的解集含有 3 个元素;0??满足 1?x?x 的实数的全体形成的集合。
(完整版)集合的概念与表示方法习题
集合的概念与表示方法测试卷一、选择题(共15题,每题2分,共30分) 1.给出下列表述:①联合国常任理事国;②充分接近2的实数的全体;③方程 错误!未找到引用源。
的实数根;④全国著名的高等院校. 以上能构成集合的是( ) A.①③ B.①② C.①③④ D.①②③④2. 由 a ²,2-a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是() A 、1 B 、-2 C 、6 D 、23.下列各组对象中不能组成集合的是()A. 直角三角形的全体B. 所有的无理数C. 方程2x-1=0的整数解D. 我班个子较高的同学 4.下列叙述正确的是( ) A. 集合},3|{N x x x ∈<中只有两个元素 B. }1{}012|{2==+-x x xC. 整数集可表示为}{ZD. 有理数集表示为{x x |为有理数集}5.方程组⎩⎨⎧-=-=+11y x y x 的解集是( ) A. {0,1} B. (0,1)C. {(x,y)|x=0,或y=1}D. {(0,1)}6.下列集合表示法正确的是( )A.{1,2,2}B.{全体实数}C.{有理数}D.不等式 x ²-5>0的解集为{x ²-5>0} 7. 设A={a},则下列各式正确的是( ) A 、0∈A B 、a ∉AC 、a ∈AD 、a=A8. 由大于-3且小于11的偶数所组成的集合是( ) A 、{x|-3<x<11,x ∈Q} B 、{x|-3<x<11}C 、{x|-3<x<11,x=2k,k ∈N}D 、{x|-3<x<11,x=2k,k ∈Z} 9. 设集合M ={(1,2)},则下列关系成立是( )。
A 、1∈MB 、2∈MC 、(1,2)∈MD 、(2,1)∈M 10. 集合{x-1,x ²-1,2}中的x 不能取得值是( ) A 、2 B 、3 C 、4 D 、511. 直角坐标平面内,集合M={(x ,y )丨xy ≥0,x ∈R ,y ∈R }的元素所对应的点是 A 、第一象限内的点 B.第三象限内的点C.第一或第三象限内的点D.非第二、第四象限内的点 12. 下列结论不正确的是( )A 、0∈NB 、错误!未找到引用源。
(完整版)集合的概念与关系练习题
集合的概念与关系练习题1.集合{x ∈N +|x -3<2}用列举法可表示为( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5} 2.给出下列几个关系,正确的个数为( )①3∈R ;②0.5D ∈/Q ;③0∈N ;④-3∈Z ;⑤0∈N +. A .0B .1C .2D .3 3.下列集合中,结果是空集的是( )A .{x ∈R |x 2-1=0}B .{x |x >6或x <1}C .{(x ,y )|x 2+y 2=0}D .{x |x >6且x <1}4.将集合⎩⎪⎨⎪⎧(x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =52x -y =1表示成列举法,正确的是( )A .{2,3}B .{(2,3)}C .{(3,2)}D .(2,3) 5.下列集合中,不同于另外三个集合的是( )A .{x |x =1}B .{y |(y -1)2=0}C .{x =1}D .{1}6.下列正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是( )7.若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为( ) A .5B .4C .3D .28.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可 9.集合M ={(x ,y )|xy <0,x ∈R ,y ∈R }是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集10.下列命题:①空集无子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若A ∅⊆,则A ≠∅.其中正确的有( ) A .0个B .1个C .2个D .3个11.集合M ={x |x =3k -2,k ∈Z },P ={y |y =3n +1,n ∈Z },S ={z |z =6m +1,m ∈Z }之间的关系是( )A . S P M ⊆⊆B . S P M =⊆C .S P M ⊆=D . P M S =⊆12.由下列对象组成的集体属于集合的是________.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.13.设a,b都是非零实数,y=a|a|+b|b|+ab|ab|可能取的值组成的集合是________.14.已知集合A是由a-2,2a2+5a,12三个元素组成的,且-3∈A,求a.15.已知集合A={-1,3,2m-1},集合B={3,m2}.若B⊆A,则实数m=________. 16.如果有一集合含有三个元素1,x,x2-x,则实数x的取值范围是________.17.已知集合A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围是________.18.用列举法表示下列集合:(1)A={x∈N||x|≤2}=________;(2)B={x∈Z||x|≤2}=________;(3)C={(x,y)|x2+y2=4,x∈Z,y∈Z}=________.19.已知集合A={x|x=a+16,a∈Z},B={x|x=b2-13,b∈Z},C={x|x=c2+16,c∈Z},则A、B、C之间的关系是________.20.集合A={x|kx2-8x+16=0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A.21.定义集合运算A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和是多少?22.已知集合A={x||x-a|=4},B={1,2,b}.问是否存在实数a,使得对于任意实数b(b≠1,b ≠2)都有A ⊆B .若存在,求出对应的a 值;若不存在,说明理由.23.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m +1≤x ≤2m -1},求实数m 的取值范围; (2)若A ⊆B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围; (3)若A =B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围.24.已知集合A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集,求a 的取值范围; (2)若B 是A 的子集,求a 的取值范围; (3)若A =B ,求a 的取值范围.25.已知函数221y x ax =++在12x -≤≤上的最大值为4,求a 的值.26.求关于x 的二次函数221y x tx =-+在21x -≤≤上的最小值(t 为常数).。
高中数学必修一人教A版1.1 集合的概念练习(含解析)(55)
1.1 集合的概念一、单选题1.已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .302.设集合{|11,}A x x a x =-<-<∈R ,{|15,}B x x x =<<∈R ,若A B =∅,则实数a 的取值范围是( ) A .06a ≤≤B .2a ≤或4aC .0a ≤或6a ≥D .24a ≤≤3.已知集合{}21,21,1P a a =-+-,若0P ∈,则实数a 的取值集合为( )A .1,12⎧⎫--⎨⎬⎩⎭B .{}1,1-C .1,12⎧⎫-⎨⎬⎩⎭D .1,1,12⎧⎫--⎨⎬⎩⎭4.已知集合{}220A x ax x a =-+=中至多含有一个元素,则实数a 的取值范围( )A .[]1,1-B .[1,)(,1]+∞-∞-C .[]{}1,10-D .{}[)1,,10(]+∞-∞-5.设集合{}0A x x =>,则( ) A .A φ∈B .1A ∉C .1A ∈D .1A ⊆6.点的集合(){},0M x y xy =≥是指 A .第一象限内的点集 B .第三象限内的点集.C .第一、第三象限内的点集D .不在第二、第四象限内的点集.7.集合{}21,A x x x Z =-<<∈中的元素个数为( ) A .1B .2C .3D .48.对集合1,5,9,13,17}用描述法来表示,其中正确的是( ) A . x |是小于18的正奇数} B .{}|41,5x x k k Z k =+∈<且C .{}|43,,5x x s s N s =-∈≤且D .{}|43,,5x x s s N s *=-∈≤且9.设{}1,2,3,4P =,{}4,5,6,7,8Q =,定义(){},|,,P Q a b a P b Q a b *=∈∈≠,则P Q *中元素的个数为( ) A .4 B .5 C .19 D .20二、填空题1.如果{}{},1,2a b =,则a b=_______.2.已知集合A =a +2,(a +1)2,a 2+3a +3},且1∈A,则2017a 的值为_________. 3.定义集合运算:{}|,,A B z z xy x A y B ⊗==∈∈,设,,则集合A B ⊗的所有元素之和为______________.4.列举法表示方程()22x 2a 3x a 3a 20-++++=的解集为______.5.已知x R ∈,[]x 表示小于x 的最大整数,{}[]x x x =-,令{}{}M x 0x 100,1x =≤≤=,则M 中元素之和为________. 三、解答题1.已知集合{2,5,12}A x x =-+,且3A -∈,求x 的值.2.设2y x ax b =-+,{}|0A x y x =-=,{|0}B x y ax =-=,若{3,1}A =-,试用列举法表示集合B .3.已知由实数组成的集合A ,1A ∉,又满足:若x A ∈,则11A x∈-. (1)设A 中含有3个元素,且2,A ∈求A ;(2)A 能否是仅含一个元素的单元素集,试说明理由;(3) A 中含元素个数一定是*3()n n N ∈个吗?若是,给出证明,若不是,说明理由.参考答案一、单选题 1.C 详解: 因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.考点:1.集合的相关知识,2.新定义题型.2.C解析:由题意可得{|11,}A x a x a x R ,∵11a a +>-,∴A ≠∅,又A B =∅,用数轴表示集合A 、B ,即可求出结果. 详解:由11x a -<-<得11a x a -<<+.∵11a a +>-,∴A ≠∅,用数轴表示集合A 、B 如图所示,或由数轴可知,11a +≤或15a -≥,所以0a ≤或6a ≥.故选:C. 点睛:本题主要考查了集合间的子集关系,以及数形结合的应用,属于基础题. 3.C解析:分别令210a +=和210a -=,求得a 后,验证是否满足集合元素的互异性即可得到结果. 详解:当210a +=时,12a =-,此时2314a -=-,满足题意; 当210a -=时,1a =或1-;若1a =,213a +=,满足题意;若1a =-,211a +=-,不满足互异性,不合题意;∴实数a 的取值集合为1,12⎧⎫-⎨⎬⎩⎭.故选:C . 点睛:本题考查根据元素与集合关系求解参数值的问题,易错点是忽略求得参数值后,需验证集合中元素是否满足互异性. 4.D解析:将问题转化为方程220ax x a -+=至多只有一个根,对a 分0a =和0a ≠两种情况讨论,即可求解. 详解:解:由题意,原问题转化为方程220ax x a -+=至多只有一个根,当0a =时,方程为20x -=,解得0x =,此时方程只有一个实数根,符合题意; 当0a ≠时,方程220ax x a -+=为一元二次方程, 所以2440a ∆=-≤,解得1a ≤-或1a ≥.综上,实数a 的取值范围为{}(][,11),0-∞-+∞. 故选:D . 5.C解析:由10,>可判断1A ∈,进而得解. 详解:集合{}0A x x =>,10,1A >∴∈故选: C 点睛:本题考查元素与集合的关系,是基础题. 6.D解析:0xy ≥指x 和y 同号或至少一个为零,结合象限的概念可得结果. 详解:0xy ≥指x 和y 同号或至少一个为零,故为第一或第三象限内的点或坐标轴上的点.即不为第二、第四象限内的点,故选D . 点睛:本题主要考查对集合的概念和表示的理解,属于基础知识的考查. 7.B解析:表示出集合A 中的元素,即可得出个数. 详解:{}{}21,1,0A x x x Z =-<<∈=-, ∴集合A 中有2个元素.故选:B. 点睛:本题考查集合元素个数的求解,属于简单题. 8.D解析:对照四个选项一一验证:对于A : x |是小于18的正奇数}={}1,3,5,7,9,11,13,15,17,即可判断; 对于B :{}{}|41,53,1,5,9,13,17x x k k Z k =+∈<=-且即可判断; 对于C :{}{}|43,,53,1,5,9,13,17x x s s N s =-∈≤=-且即可判断;对于D :{}{}|43,,51,5,9,13,17x x s s N s *=-∈≤=且即可判断.详解:对于A : x |是小于18的正奇数}={}1,3,5,7,9,11,13,15,17,,故A 错误; 对于B :{}{}|41,53,1,5,9,13,17x x k k Z k =+∈<=-且,故B 错误; 对于C :{}{}|43,,53,1,5,9,13,17x x s s N s =-∈≤=-且,故C 错误;对于D :{}{}|43,,51,5,9,13,17x x s s N s *=-∈≤=且,故D 正确.故选:D 9.C解析:采用列举法,分别列举1a =、2、3、4时,集合P Q *中的元素,即可求解. 详解:当1a =时,集合P Q *中元素为()1,4,()1,5,()1,6,()1,7,()1,8共5个, 当2a =时,集合P Q *中元素为()2,4,()2,5,()2,6,()2,7,()2,8共5个, 当3a =时,集合P Q *中元素为()3,4,()3,5,()3,6,()3,7,()3,8共5个, 当4a =时,集合P Q *中元素为()4,5,()4,6,()4,7,()4,8共4个, 所以集合P Q *中共有555419+++=个, 故选:C.二、填空题 1.12或2解析:根据已知条件可得出a 、b 的值,即可得出结果. 详解:因为{}{},1,2a b =,则12a b =⎧⎨=⎩或21a b =⎧⎨=⎩,因此,12a b =或2.故答案为:12或2. 2.1解析:对集合A 中的元素分情况讨论,结合集合中元素的互异性可求得结果. 详解:当a +2=1时,a =-1,此时有(a +1)2=0,a 2+3a +3=1,不满足集合中元素的互异性; 当(a +1)2=1时,a =0或a =-2,当a =-2,则a 2+3a +3=1,舍去,经验证a =0时满足;当a 2+3a +3=1时,a =-1或a =-2,由上知均不满足,故a =0,则2017a =1. 故答案为:1 3.54解析:试题分析:由新定义运算可知集合A B ⊗中所有的元素是由集合,中的元素的乘积得到的,所有元素依次为0,4,5,8,10,12,15,求和得54 考点:新定义集合问题4.{}a 1,a 2++解析:根据题意,求出方程的解,用集合表示即可得答案. 详解:根据题意,方程()22x 2a 3x a 3a 20-++++=变形可得()()x a 1x a 20⎡⎤⎡⎤-+-+=⎣⎦⎣⎦,有2个解:1x a 1=+,2x a 2=+, 则其解集为{}a 1,a 2++; 故答案为{}a 1,a 2++. 点睛:本题考查集合的表示方法,关键是求出方程的解,属于基础题. 5.5050解析:本题首先可根据题意确定集合{}0,1,2,3,4,,100M =,然后根据等差数列求和公式即可得出结果. 详解:因为{}[]x x x =-,0x 100≤≤,{}1x =, 所以集合{}0,1,2,3,4,,100M =, 则M 中元素之和为010001210010150502, 故答案为:5050. 点睛:本题考查求集合中所有元素的和,能否确定集合中包含的元素是解决本题的关键,考查等差数列求和公式,考查推理能力与计算能力,是中档题.三、解答题 1.1-或8-解析:由题意知A 集合中必有元素-3,则23x -=-或53x +=-,求得1x =-或8x =-,分别代入集合A 验证是否能构成集合. 详解:∵3A -∈,∴23x -=-或53x +=-,∴1x =-或8x =-.当1x =-时,{3,4,12}A =-,满足集合元素的互异性,∴1x =-符合题意; 当8x =-时,{10,3,12}A =--,也满足集合元素的互异性,∴8x =-也符合题意. 综上,x 的值为1-或8-. 点睛:本题考查根据元素与集合的关系求参数,属于基础题.2.{33B =---+解析:将2y x ax b =-+带入集合A 的方程化简整理,由{3,1}A =-利用韦达定理求出参数,a b ,再利用一元二次方程的解法求解集合B. 详解:将2y x ax b =-+代入集合A 中的方程并整理得2(1)0x a x b -++=. 因为{3,1}A =-,所以方程2(1)0x a x b -++=的两根为-3,1,由韦达定理得311,31,a b -+=+⎧⎨-⨯=⎩解得3,3,a b =-⎧⎨=-⎩所以233y x x =+-.将233y x x =+-,3a =-代入集合B 中的方程并整理得2630x x +-=,解得3x =--或3x =-+{33B =---+.点睛:本题考查了集合的表示方法,准确的利用韦达定理求参数是解题的关键,属于一般难度的题.3.(1)12,1,2A ⎧⎫=-⎨⎬⎩⎭;(2)不存在这样的A ,理由见解析;(3)是,证明见解析.解析:(1)根据题意得,1112A =-∈-,()11112A =∈--,故11,,22A ⎧⎫=-⎨⎬⎩⎭; (2)假设集合A 是单元数集合,则210x x -+=,根据矛盾即可得答案; (3)根据已知条件证明x ,11x-,11x -是集合A 的元素即可.详解:解:(1)因为若x A ∈,则11A x∈-,2,A ∈, 所以1112A =-∈-,()11112A =∈--,12112A =-∈, 所以11,,22A ⎧⎫=-⎨⎬⎩⎭.(2)假设集合A 是仅含一个元素的单元素集合,则11x x=-,即:210x x -+=, 由于30∆=-<,故该方程无解, 所以A 不能是仅含一个元素的单元素集.(3)因为1A ∉,x A ∈,则11A x∈-,则1111111x A x x x-==-∈--, 所以111x Ax x =∈--,故该集合有三个元素,下证x ,11x-,11x -互不相等即可.假设11x x =-,则210x x -+=,该方程无解,故x ,11x-不相等, 假设11x x-=,则210x x -+=,该方程无解,故x ,11x -不相等,假设1111x x =--,则210x x -+=,该方程无解,故11x-,11x -不相等. 所以集合A 中含元素个数一定是*3()n n N ∈个. 点睛:本题考查集合与元素的关系,其中第三问解题的关键在于根据已知证明x ,11x-,11x -互不相等且属于集合A 即可.考查运算求解能力与逻辑推理能力,是中档题.。
高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)(45)
1.1 集合的概念1.已知集合2{|320}A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是A .98⎧⎫⎨⎬⎩⎭B .90,8⎧⎫⎨⎬⎩⎭C .{0}D .20,3⎧⎫⎨⎬⎩⎭答案:B解析:由题意分方程为一次方程和二次方程两种情况分别求解.详解:由集合2{|320}A x ax x =-+=中有且只有一个元素,得a=0或0980a a ≠⎧⎨=-=⎩, ∴实数a 的取值集合是0, 98}故选B .点睛:本题考查实数的取值集合的求法,考查单元素集的性质等基础知识.2.下列集合中是有限集的是( )有意义的所有自然数组成的集合;③方程21x =-的所有实数解组成的集合.④15的质因数的全体构成的集合A .①②③B .②③④C .①②④D .①③④答案:B解析:根据有限集的知识进行分析,由此确定正确选项.详解:①,202x x -≥⇒≥,[)2,+∞为无限集,不符合题意,①错误,所以选B.②,30,N 0,1,2,3x x x -≥∈⇒=,{}0,1,2,3为有限集,符合题意,②正确.③,方程21x =-的所有实数解组成的集合为空集,为有限集,符合题意,③正确.④,15的质因数的全体构成的集合为{}3,5,为有限集,符合题意,④正确.故选:B3.集合8,,3M y y x N y N x ⎧⎫==∈∈⎨⎬+⎩⎭的元素个数是A .2B .4C .6D .8答案:A 解析:根据题中给出的条件,x y N ∈,分别从最小的自然数0开始给x 代值,求出相应的y 的值,直到得出的1y <为止,求出y N ∈的个数.详解: 因为8|,,3M y y x y N x ⎧⎫==∈⎨⎬+⎩⎭, 所以:当0x =时,83y N =∈/; 当x 1=时,8213y N ==∈+; 当x 2=时,88235y N ==∈/+; 当3x =时,84333y N ==∈/+; 当x 4=时,88437y N ==∈/+; 当5x =时,8153y N ==∈+; 当6x ≥时,813y x =<+,且0y ≠,所以y N ∉. 综上,8|,,{2,1}3M y y x y N x ⎧⎫==∈=⎨⎬+⎩⎭,元素个数是2个. 故选A.点睛:本题考查了集合中元素的个数,关键根据,x y N ∈用赋值法分析和解决问题,属于基础题.4.已知集合,A B 满足:(ⅰ)A B =Q ,A B =∅;(ⅱ)1x A ∀∈,若2x ∈Q 且21x x <,则2x A ∈;(ⅲ)1y B ∀∈,若2y ∈Q 且21y y >,则2y B ∈.给出以下命题:①若集合A 中没有最大数,则集合B 中有最小数;②若集合A 中没有最大数,则集合B 中可能没有最小数;③若集合A 中有最大数,则集合B 中没有最小数;④若集合A 中有最大数,则集合B 中可能有最小数.其中,所有正确结论的序号是A .①③B .②③C .③④D .①④答案:B解析:根据并集和交集的结果可知Q A C B =;由条件(ⅱ)(ⅲ)可知两集合的元素以1x 为分界,可确定集合,A B 的构成;当集合A 有最大数时,根据有理数的特点可知大于1x 的有理数无最小数,知③正确;当集合A 无最大数时,若1x a →中的a 为有理数或无理数,此时集合B 可能最小数为a 或无最小数,知②正确.详解:若A B =Q ,A B =∅ Q A C B ∴=则集合A 为所有小于等于1x 的有理数的集合,集合B 为所有大于等于1y 的有理数的集合 Q A C B = 1y ∴无限接近1x ,即集合B 为所有大于1x 的有理数的集合当集合A 有最大数,即1x 有最大值时,大于1x 的有理数无最小数,可知③正确;当集合A 无最大数,即1x a →时,a 为集合B 中的最小数;也可能a 为无理数,则1y a →,集合B 中无最小数,可知②正确故选B点睛:本题考查根据并集和交集的结果确定集合、元素与集合关系的应用;本题的解题关键是明确有理数的特点:无最大数也无最小数;本题较为抽象,对于学生的分析和解决问题能力有较高要求.5.用描述法表示奇数集合:①A=a|a =2k+1,k∈Z}②B=a|a =2k ﹣1,k∈Z}③C=2b+1|b∈Z}④D=d|d =4k±1,k∈Z}.上述表示方法正确的个数是( )A .1B .2C .3D .4答案:C解析:由整数的整除性,可得A 、B 都表示奇数集,D 表示除以4余1的整数或表示除以4余3的整数.由此不难得到本题的答案.详解:由题意得:①②表示奇数集合,③的表示方法错误,④D=x|x =4k±1,k∈z},表示除以4余1的整数或除以4余3的整数,∵一个奇数除以4之后,余数不是1就是3,故④表示奇数集合;故选:C .6.已知集合{}1,2,3A =,集合{},,B z z x y x A y A ==-∈∈,则集合B 中元素的个数为( )A .4B .5C .6D .7答案:B 解析:根据集合A 中的元素,集合B 中的元素特征,求出x y -,利用集合元素的互异性即可求解.详解:{}1,2,3A =,{},,B z z x y x A y A ==-∈∈,1,2,3x ∴=,1,2,3y =,当1x =时,0,1,2x y -=--,当2x =时,1,0,1x y -=-,当3x =时,2,1,0x y -=即2,1,0,1,2x y -=--,即 {}2,1,0,1,2B =--共有5个元素.故选:B点睛:本题考查了集合元素的特征,理解集合的表示以及集合中的元素特征,考查了基本运算,属于基础题.7.集合{}2|0,A x x px q x R =++=∈{}2=,则p q +=( )A .1-B .0C .1D .2答案:B 解析:根据集合相等可知方程20x px q ++=有相等实根2,即可由根与系数关系求解. 详解:因为集合{}2|0,A x x px q x R =++=∈{}2=,所以方程20x px q ++=有相等实根2,根据根与系数的关系可知,2222p q +=-⎧⎨⨯=⎩, 所以440p q +=-+=,故选:B点睛:本题主要考查了根据集合的元素求参数,一元二次方程,属于容易题.8.已知集合{(,)|10,10,,}A x y x y x y N =≤≤∈,B A ⊆,且对于集合B 中任意两个元素()11,x y ,()22,x y ,均有()()12120x x y y --≤,则集合B 中元素的个数最多为A .21B .19C .11D .10答案:A解析:根据题意知集合A 表示的是第一象限内的1111121个点,又因为B A ⊆,B 中任意两个元素()11,x y ,()22,x y ,均有()()12120x x y y --≤,则在同一象限内,y 随着x 的增大而减小或相等.根据规律一一列举即可得出结果.详解:解:因为{(,)|10,10,,}A x y x y x y N =≤≤∈,则集合A 表示的是第一象限内的1111121个点,又因为B A ⊆,且对于集合B 中任意两个元素()11,x y ,()22,x y ,均有()()12120x x y y --≤,则12120x x y y -⎧⎨->≤⎩或121200x x y y -<≥-⎧⎨⎩ 则在同一象限内,y 随着x 的增大而减小或相等.若点0,10A,则(1,9)B 或(1,10)B ,根据规律可得: 2,8,3,7,4,6,5,5,6,4,7,38,29,1,10,0, 或2,9,3,8,4,7,5,6,6,5,7,48,39,2,10,1故B 中元素的个数最多为21个.故选:A点睛:本题考查集合的元素的个数的求法,考查不等式求函数的单调性,利用单调性解决集合问题.9.若集合M=, 则下面结论中正确的是( ) A .B .C .D . 答案:A详解: 56<,所以{}a M ⊆ ,故选:A10.下列说法:①集合x∈N|x 3=x}用列举法表示为-1,0,1};②实数集可以表示为x|x 为所有实数}或R};③方程组31x y x y +=⎧⎨-=-⎩的解集为x =1,y =2}. 其中正确的有( )A .3个B .2个C .1个D .0个答案:D 解析:x 3=x 的解为-1,0,1,因为x∈N 从而可知①错误;实数集可以表示为x|x 为实数}或R ,故②错误;集合x=1,y=2}表示x=1与y=2两条直线,故③错误.详解:∵x 3=x 的解为-1,0,1,∴集合x∈Z|x 3=x}用列举法表示为-1,0,1},故①正确;实数集可以表示为x|x 为实数}或R ,故②错误;方程组31x y x y +=⎧⎨-=-⎩的解集为(1,2)},集合x=1,y=2}中的元素是x=1,y=2;故③错误;故选D .点睛:本题考查了元素与集合的关系的判断及集合的表示法的应用,属于基础题.11.下列命题中正确的是( )A .空集没有子集B .空集是任何一个集合的真子集C .任何一个集合必有两个或两个以上的子集D .设集合B A ⊆,那么,若x A ∉,则x B ∉答案:D解析:根据集合的相关概念,逐项判断,即可得出结果详解:A 选项,空集是其本身的子集,A 错;B 选项,空集是任一非空集合的真子集,B 错;C 选项,空集只有一个子集,即是空集本身;C 错;D 选项,若B A ⊆,则B 中元素都在A 中,A 中没有的元素,则B 中也没有;故D 正确. 故选:D.12.已知{}32,,1a a ∈-,则实数a 的值为( )A .3B .4C .3或 4D .无解 答案:B详解:因为{}32,,1a a ∈-,当3a =时,那么12a -=,违反集合元素的互异性,不满足题意,当13a -=时,4a =,集合为{}2,4,3满足题意,∴实数a 的值为4,故选B.13.已知集合{}22M x x =-<<,i 为虚数单位,1a i =+,则下列选项正确的是( )A .a M ∈B .{}a M ∈C .{}a M ⊄D .a M ∉答案:A 解析:利用复数模的计算公式可得a =,即可判断出结论.详解:a =,又集合{}22M x x =-<<, ∴a M ∈.故选:A .点睛:本题考查了复数模的计算公式、元素与集合之间的关系,考查了推理能力与计算能力,属于基础题.14.用列举法将集合(x ,y )|x∈0,1},y∈–1,1}}可以表示为A .0,–1},0,1},1,–1},1,1}}B .0,1},–1,1}}C .(0,–1),(0,1),(1,–1),(1,1)}D .(0,1),(–1,1)}答案:C解析:根据描述法表示集合,分析集合中元素的特性,再用列举法表示集合.详解:由题意可知,共有组合0,1x y =⎧⎨=-⎩ 0,1x y =⎧⎨=⎩1,1x y =⎧⎨=-⎩1.1x y =⎧⎨=⎩对应四个元素分别为 (0,–1),(0,1),(1,–1),(1,1).选C.点睛:本题的关键在于首先要注意是点的集合,其次注意集合中元素的特性.15.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是A .1B .﹣2C .6D .2答案:C详解:试题分析:通过选项a 的值回代验证,判断集合中有3个元素即可.解:当a=1时,由a 2=1,2﹣a=1,4组成一个集合A ,A 中含有2个元素,当a=﹣2时,由a 2=4,2﹣a=4,4组成一个集合A ,A 中含有1个元素,当a=6时,由a 2=36,2﹣a=﹣4,4组成一个集合A ,A 中含有3个元素,当a=2时,由a 2=4,2﹣a=0,4组成一个集合A ,A 中含有2个元素,故选C .点评:本题考查元素与集合的关系,基本知识的考查.16.已知集合M={x ∈N | 8-x∈N},则M 中元素的个数是.A .10B .9C .8D .无数个 答案:B详解:试题分析:M={x ∈N | 8-x∈N},所以集合M 中的元素x 的值可以为0,1,2,3,4,5,6,7,8,共9个元素考点:集合的描述法点评:在集合M 中,元素x 满足两个条件x N ∈和8x N -∈,N 是自然数集17.设集合{}{}22,0,1,6,|,2,2A B k k R k A k A ==∈-∈-∉,则集合B 中所有元素之积为A .48B .C .96D .192答案:C详解:试题分析:由题意得,{}2,0,1,6A =且22,2k A k A -∈-∉,令22k -分别等于2,0,1,6,解得2,k =-±B 中所有元素之积为96,故选C . 考点:集合的新定义运算.18.非空集合A 具有下列性质:①若,x y A ∈,则x A y ∈;②若,x y A ∈,则x y A +∈,下列判断一定成立的是( )(1)1A -∉(2)20202021A ∈(3)若,x y A ∈,则xy A ∈(4)若,x y A ∈,则x y A -∉ A .(1)(3)B .(1)(4)C .(1)(2)(3)D .(2)(3)(4)答案:C解析:假设1A -∈,推出矛盾,可判断(1)正确;推导出1A ∈,进而可推导出n N *∀∈,n A ∈,由此可判断(2)的正误;推导出1A y ∈,结合①可判断(3)的正误;若x 、y A ,假设x y A -∈,推出0A ∈,可判断(4)的正误.综合可得出结论.详解:对于(1),若1A -∈,则111A -=-∈,因此110A -+=∈;而对于1x A =-∈,0y A =∈时,10-显然无意义,不满足x A y ∈,所以1A -∉,故(1)正确;对于(2),若0x ≠且x A ∈,则1x A x =∈,211A ∴=+∈,321A =+∈,依此类推可得知,n N *∀∈,n A ∈,2020A ∴∈,2021A ∈,20202021A ∴∈,(2)正确; 对于(3),若x 、y A ,则0x ≠且0y ≠,由(2)可知,1A ∈,则1A y ∈, 所以,1x xy A y=∈,(3)正确;对于(4),由(2)得,1,2A ∈,取 2,1x y ==,则1x y A -=∈,所以(4)错误. 故选:C.点睛:关键点点睛:求解本题的关键在于理解题中所给集合的性质,结合性质,确定集合中元素的特征,利用元素与集合之间的关系,结合选项,逐项求解即可.19.已知集合22{(,)|}A x y x y x Z y Z =+≤∈∈4,,,则A 中元素的个数为( )A .15B .14C .13D .12答案:C解析:根据列举法,确定圆及其内部整点个数即可得出结果.详解:224x y +≤ 24x ∴≤,x Z ∈2,1,0,1,2x ∴=--,当2x =-时,0y =;当1x =-时,1,0,1y =-;当0x =时,2,1,0,1,2y =--当1x =时,1,0,1y =-;当2x =时,0y =;所以共有13个,故选:C.20.若集合2{|320}A x R ax x =∈-+=中只有一个元素,则(a = )A .92B .98C .0D .0或98答案:D 解析:分0a =与0a ≠两种情况讨论元素的个数可得答案. 详解:解:集合2{|320}A x R ax x =∈-+=中只有一个元素, 当0a =时,可得23x =,集合A 只有一个元素为:23. 当0a ≠时:方程2320ax x -+=只有一个解:即980a ∆=-=, 可得:98a =. 故选:D . 点睛:本题主要考查了集合描述法的意义,涉及集合元素的确定和个数的判断,属于基础题.。
高中数学必修一人教A版1.1 集合的概念练习(含解析)(21)
1.1 集合的概念一、单选题1.若集合{}210b a a a b a ⎧⎫=+⎨⎬⎩⎭,,,,,则20212020a b +的值为( ) A .0 B .1 C .1- D .1±2.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )A .3.14B .-2C .78D 3.变量x 满足210x ,则x 的取值集合为 A .12x <B .12x >C .12x x ⎧⎫<⎨⎬⎩⎭D .12x x ⎧⎫>⎨⎬⎩⎭4.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①1+A .4B .3C .2D .1 5.已知a=4,A=x|x≥3},则以下选项中正确的是( ) A .a A ∉ B .a∈A C .a}=A D .a ∉a} 6.下列写法正确的是( ).A .(){}00,1∈B .(){}10,1∈C .()(){}0,10,1∈D .(){}0,10,1∈7.下列选项能组成集合的是( ) A .兴趣广泛的同学 B .个子较高的男生 C .英文26个字母D .非常大的数8.下列说法不正确的是( ) A .*0∈NB .0∈NC .0.1∉ZD .2∈Q9.对于非空数集M ,定义()f M 表示该集合中所有元素的和.给定集合{2,3,4,5}S =,定义集合(){},T f A A S A =⊆≠∅,则集合T 的元素的个数为( )A .11B .12C .13D .14二、多选题1.已知{}2A x x px q x =++=,()(){}2111B x x p x q x =-+-+=+,当{}2A =时,则集合B 中实数x可能的取值为( ) A .4B .3C .3D .42.当一个非空数集G 满足“如果,a b G ∈,则,,a b a b ab G +-∈,且0b ≠时,a G b∈”时,我们称G 就是一个数域,以下关于数域的说法:①0是任何数域的元素;②若数域G 有非零元素,则2019G ∈;③集合{}|2,P x x k k Z ==∈是一个数域;④有理数集是一个数域;⑤任何一个有限数域的元素个数必为奇数.其中正确的选项有 A .①② B .②③ C .③④ D .④⑤ 3.(多选题)若集合A=x|kx 2+4x+4=0,x∈R}只有一个元素,则实数k 的值为( )A .0B .1C .2D .34.设集合{},,A x x m m n N *==∈,若1x A ∈,2x A ∈,12x x A ⊕∈,则运算⊕可能是( )A .加法B .减法C .乘法D .除法5.给出下列关系:其中不正确的是( ) ①{}0∅⊆;②πQ ∈;③{}{}11,2∈;④0N ∉. A .① B .② C .③ D .④三、填空题1.已知集合A 含有两个元素a 和2a ,若1A ∈,则实数a 的值为________.2.已知集合()22,12516x y A x y ⎧⎫⎪⎪=+=⎨⎬⎪⎪⎩⎭,(){},B x y y x ==,则A B 的元素个数为______个3.含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭又可表示成{}2,,0a a b +,20142015a b +=______. 4.已知集合(){}(){},|21,,|3A x y y x B x y y x ==+==+,若a A ∈且a B ∈则a 为__________. 5.设*6N ,2A xx Z x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法表示A=____________.四、解答题1.用列举法表示下列集合: (1)6|,2x Z x Z x ⎧⎫∈∈⎨⎬-⎩⎭; (2)(x ,y)|y =3x ,x∈N 且1≤x<5}.2.用适当的方法表示下列集合. (1)小于5的自然数构成的集合; (2)直角坐标系内第三象限的点集; (3)偶数集.3.已知集合{}2221,,M x x a a b a b Z ==+-=∈(1)证明:若x M ∈,则1x x+是偶数; (2)设m M ∈,且132m <<,求实数m 的值;(3)设n A ∈M 2(3n ≤<+的n 的值.参考答案一、单选题 1.C解析:由集合相等和集合中元素的互异性,可得出结果. 详解:由题意可知0a ≠,0,0∴=∴=b b a,21a ∴=且1a ≠,1a ∴=-2021202020212020(1)01+=-+=-a b故选:C 2.D解析:由题意知a 应为无理数,故a 选D. 3.D解析:解不等式210x ->得到12x >,写成集合的形式即为D 的形式. 详解:解不等式210x ->得到12x >,写成集合的形式,则得到选项为D.故选D. 点睛:本小题考查一元一次不等式的解法,考查解集要写成集合的形式.属于基础题. 4.C解析:①②③都可以写成m a =+的形式,验证,a b 的平方验证,判断. 详解:①当1a +时,可得1,a b π==,这与,a b Q ∈矛盾,3=3a ∴+=,可得3,1a b == ,都是有理数,所以正确,2122==-,1a∴+,可得11,2a b==-,都是有理数,所以正确,④2426 =+=而(22222a a b+=++,,a b Q∈,(2a∴+是无理数,M中的元素,只有②③是集合M的元素.故选:C点睛:本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型. 5.B解析:根据元素与集合的关系求解.详解:因为4≥3,所以a∈A.故选:B点睛:本题主要考查元素与集合的关系,属于基础题.6.C解析:可判断0∉(0,1)},1∉(0,1)},(0,1)∉0,1},(0,1)∈(0,1)}.详解:由元素与集合的关系知,(0,1)}中的元素为集合故0∉(0,1)},1∉(0,1)},(0,1)∉0,1},(0,1)∈(0,1)};故选:C.【点评】本题考查了元素与集合的关系的判断及有序数对与数的区别,属于基础题.7.C解析:根据集合中元素的确定性,逐项分析可得.详解:对于A ,兴趣广泛的标准不明确,不能组成集合; 对于B ,个子较高的标准不明确,不能组成集合; 对于C ,英文26个字母能组成集合;对于D ,非常大的标准不明确,不能组成集合. 故选C . 点睛:本题考查了集合中元素的确定性,属于基础题. 8.A解析:根据元素与集合的关系以及常见数集的符号表示即可得出选项. 详解:*N 为正整数集,则*0∉N ,故A 不正确;N 为自然数集,则0∈N ,故B 正确; Z 为整数集,则0.1∉Z ,故C 正确;Q 为有理数集,则2∈Q ,故D 正确;故选:A 点睛:本题考查了常见数集的符号表示,需熟记符号所表示的数集,属于基础题. 9.B解析:分别考虑集合A 为单元素集、双元素集、三元素集、四元素集,然后分别计算出()f A 的取值,由此确定出集合T 中的元素的个数. 详解:当集合A 为单元素集时,可取{}{}{}{}2,3,4,5,此时()f A 可取2,3,4,5;当集合A 为双元素集时,可取{}{}{}{}{}{}2,3,2,4,2,5,3,4,3,5,4,5,此时()f A 可取5,6,7,8,9; 当集合A 为三元素集时,可取{}{}{}{}2,3,4,2,3,5,2,4,5,3,4,5,此时()f A 可取9,10,11,12, 当集合A 为四元素集时,可取{}2,3,4,5,此时()f A 可取14,综上可知()f A 可取2,3,4,5,6,7,8,9,10,11,12,14,共12个值,所以T 的元素个数为12, 故选:B. 点睛:本题考查集合中的新定义问题,对学生的理解与分析问题的能力要求较高,难度较难.解答新定义的集合问题,首先要明确集合中表示元素的含义,其次才是解答问题.二、多选题 1.BC解析:由条件可知方程2x px q x ++=有两个相等的实根,并且2x =,列式求,p q 的值,再代入集合B ,求方程的实数根. 详解:由{}2A =,得方程2x px q x ++=有两个相等的实根,且2x =.从而有()2422140p q p q ++=⎧⎪⎨--=⎪⎩解得34p q =-⎧⎨=⎩ 从而()(){}213141B x x x x =---+=+.解方程()()213141x x x ---+=+,得3x =± 故选:BC 点睛:本题考查集合元素与一元二次方程实数根的关系,重点考查计算能力,属于基础题型. 2.AD解析:利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证. 详解:①当a b =时,由数域的定义可知, 若,a b G ∈,则有a b G -∈,即0G ∈, 故①是真命题;②当0a b =≠时,由数域的定义可知, 若,a b G ∈,则有a G b∈,即1G ∈, 若1G ∈,则112G +=∈,则213G +=∈,则120182019G +=∈,故②是真命题; ③当2,4a b ==时,12a G b=∉,故③是假命题; ④若,a b Q ∈,则,,a b a b ab Q +-∈,且0b ≠时,aQ b∈,故④是真命题; ⑤0G ∈,当b G ∈且0b ≠时,则b G -∈,因此只要这个数不为0就一定成对出现,所以有限数域的元素个数必为奇数,所以⑤是真命题. 故选:AD .点睛:本题考查学生对新定义题型的理解和把握能力,理解数域的定义是解决该题的关键,题目着重考查学生的构造性思维,一定要读懂题目再入手,没有一个条件是多余的,是难题. 3.AB解析:根据给定条件按方程kx 2+4x+4=0的类型分类讨论求解即得. 详解:集合A 中只有一个元素,即方程kx 2+4x+4=0只有一个根, 当k=0时,方程为一元一次方程,只有一个根,当k≠0时,方程为一元二次方程,若只有一个根,则∆=16-16k=0,即k=1, 所以实数k 的值为0或1. 故选:AB 4.AC解析:先由题意设出111x m =,222x m =,然后分别计算12x x +,12x x -,12x x ,12x x ,即可得解. 详解:由题意可设111x m =,222x m =,其中1m ,2m ,1n ,2n N *∈, 则()1212x x m m +=+)12n n +,12x x A +∈,所以加法满足条件,A 正确;())121212x x m m n n -=--,当12n n =时,12x x A -∉,所以减法不满足条件,B 错误;)12121211213x x m m n n m n m n ==+,12x x A ∈,所以乘法满足条件,C正确;12x x =,当()11220m n m n λλ==>时,12x A x ∉,所以出发不满足条件,D 错误. 故选:AC. 5.BCD解析:根据空集是任何集合的子集,即可判断①;由于π是无理数,而Q 表示有理数集,即可判断②;根据集合间的关系及元素和集合的关系,即可判断③;由于0是自然数,N 表示自然数集,即可判断④;从而可判断得出答案. 详解:解:①由于空集是任何集合的子集,则{}0∅⊆正确,故①正确; ②因为π是无理数,而Q 表示有理数集,∴πQ ∉,故②不正确;③由于{}1和{}1,2均为集合,故{}{}11,2∈不正确,故③不正确; ④因为0是自然数,N 表示自然数集,∴0N ∈,故④不正确. 故选:BCD.三、填空题 1.1-解析:根据集合A 含有两个元素a 和2a ,且1A ∈,分类讨论,集合元素的互异性,即可求解. 详解:由题意,集合A 含有两个元素a 和2a ,且1A ∈,若1a =,则21a =,此时集合A 中两元素相同,与元素的互异性矛盾,故1a ≠; 若21a =,则1a =-或1a = (舍去),此时集合A 中两元素为1,1-,故1a =-. 综上所述1a =-,即实数a 的值为1-. 故答案为:1- 点睛:本题主要考查了元素与集合的关系,以及集合元素的互异性的应用,其中解答中熟记元素与集合的关系,以及合理利用元素的互异性判定是解答的关键,着重考查推理与运算能力. 2.2解析:画出曲线和函数图像,根据交点个数即可判断A B 的元素个数. 详解:集合()22,12516x y A x y ⎧⎫⎪⎪=+=⎨⎬⎪⎪⎩⎭,(){},B x y y x ==, 画出椭圆的曲线及函数图像如下图所示:由图像可知,两个曲线有2个交点,因而A B 有2个元素, 故答案为:2. 点睛:本题考查了利用数形结合法求集合交集个数,属于基础题. 3.1解析:根据两个集合的相等关系,可求得,a b 的值,即可得解. 详解:由题意可知,两个集合相等,{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,由0a ≠所以只能是0b a=,即0b =,所以{}{}2,0,1,,0a a a =,由集合互异性可知1a ≠,则21a =,解得1a =-,符合题意, 所以20142015101a b +=+=, 故答案为:1. 点睛:本题考查了集合相等的应用,由集合互异性和相等求参数,属于基础题. 4.(2,5)解析:由213y x y x =+⎧⎨=+⎩,解方程组即可求出a 的值.详解:解:由213y x y x =+⎧⎨=+⎩,可得2,5x y ==.故a 为(2,5),故答案为(2,5).点睛:本题考查集合的含义,考查学生的计算能力,比较基础.5.{}4,1,0,1-- 解析:62x-为正整数且x 也为整数,可知2x -能够被6整除,逐个正因数计算即可. 详解: 由题意得,*6N ,2x Z x ∈∈-,故62x -为6的正因数,所以61,2,3,62x =-,故26,3,2,1x -=,故4,1,0,1x =--,列举法得出答案{}4,1,0,1--.故答案为{}4,1,0,1--.点睛:本题主要考查对因数的理解以及集合中的常用集合表示,N 表示自然数,*N 表示正自然数,即正整数.Z 表示整数.四、解答题1.(1)-4,-1,0,1,3,4,5,8};(2)(1,3),(2,6),(3,9),(4,12)}. 解析:根据条件,求出集合的所有元素,然后列举法表示即可.详解:(1)因为6,2Z x Z x∈∈-,所以2x -是6的因数, 则21,2,3,6x -=,即x =1,3,4,0,-1,5,-4,8.所以原集合可用列举法表示为-4,-1,0,1,3,4,5,8};(2)因为x∈N 且1≤x<5,所以x =1,2,3,4,其对应的y 的值分别为3,6,9,12.所以原集合可用列举法表示为(1,3),(2,6),(3,9),(4,12)}.2.(1){0,1,2,3,4};(2){(,)|0,0}x y x y <<;(3){|2,}x x k k Z =∈.解析:(1)用列举法表示集合,自然数集{}0,1,2,3,4,5N =; (2)用描述法表示集合,第三象限内上点横纵坐标都小于零;(3)用描述法表示集合,能被2整除的整数叫偶数.详解:(1){}0,1,2,3,4;(2){(,)|0,0}x y x y <<;(3){|2,}x x k k Z =∈点睛:本题考查了用不同方法表示集合,其时用描述法表示集合时,也不是唯一的一种表示方法,比如本题的偶数集也可以表示为{|22,},{|22,}x x k k Z x x k k Z =-∈=+∈等等,再有本题的第一个集合也可以用描述法进行表示:{|04},{|05}x N x x N x ∈≤≤∈≤<等等.3.(1)证明见解析;(2)1m =;(3)证明见解析;3n =+解析:(1)将x a =+1x x+化简即可判断;(2)设m a =+,2221,,a b a b -=∈Z .由(1)可知12m a m +=,即5256a <<,1a =或2a =.再分别代入2221,,ab a b -=∈Z ,验证是否符合题意即可;(3)设2,na b 且2221,,a b a b -=∈Z 322n ()(3432a b b a =-+-代入2221,,a b a b -=∈Z 化简可得结论,等式同时除以3+可得324≤<,得1m =,可得结果.详解:(1)证明:若x M ∈,则x a =+2221,,a b a b -=∈Z .所以1x a x =++a =+222a a a b=-++-因为2221,a b -=所以原式2a a a =+-=.因为a ∈Z .所以2a ∈偶数.原式得证(2)因为m M ∈,且132m <<则1123m <<,所以5156m m<+<设m a =+,2221,,a b a b -=∈Z .由(1)可知12m a m +=,即5256a << 所以1a =或2a =.当1a =时,代入2221,,a b a b -=∈Z 可得0b =此时1m a =+=,满足132m <<,所以1m =成立当2a =时,代入2221,,a b a b -=∈Z 解得2b =±, 不满足b ∈Z ,所以不成立;综上,可知1m =(3)证明:因为n M ∈,所以可设2,na b 且2221,,a b a b -=∈Z 2(2)(322)322322(322)(322)na b a b ()(3432a b b a =-+-代入2221,,a b a b -=∈Z 得:22(34)2(32)a b b a ---22229241629124a ab b b ab a ⎡⎤=-+--+⎣⎦2221a b =-=()(),34,32a b Z a b Z b a Z ∈∴-∈-∈M 成立, 原式得证2(3n ≤<+,不等式同时除以3+可得324≤< 由(2)可知,在132m <<范围内,1m =,即3n =+点睛:本题主要考查集合与元素之间的关系,考查了函数与方程思想的应用,同时考查了不等式的解法,同时考查了计算能力,体现数学运算,逻辑推理等数学学科素养,属于难题.。
高中数学必修一人教A版1.1 集合的概念练习(含解析)(22)
1.1 集合的概念一、单选题 1.已知{}{}23201,2,3,4,5,6x x x A -+=⊆⊆,则集合A 的个数为( )A .18B .16C .15D .82.集合{}13A x N x =∈-<<的真子集的个数为( )A .3B .4C .7D .8 3.已知全集U=R ,那么正确表示集合M=-1,0}和N=x|x 2-x=0}关系的韦恩(Venn)图是( ) A . B .C .D .4.已知集合A=0,1,2},B=z|z=x+y ,x∈A,y∈A},则B=( )A .0,1,2,3,4}B .0,1,2}C .0,2,4}D .1,2}5.已知集合{}21,1A a a =++,且2A ∈,则实数a 的取值是( )A .1或-1B .-1C .1D .-1或0 6.已知集合{1,2,1}A a =-,2{0,3,1}B a =+,若{2}A B =,则实数a 的值为A .1±B .1-C .1D .0 7.已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为( ) A .9B .8C .5D .4 8.下列描述中不能构成集合的是( )A .中国的直辖市B .我国的小河流C .大于3小于11的奇数D .方程2320x x +-=的所有实数根9.已知集合 A={}2|20,1,x x x a A a -+≥∉且则实数的取值范围是 A .(],1-∞B .[)1,+∞C .(),1-∞D .[)0,+∞ 二、多选题 1.设集合2{|0}A x x x =+=,则下列表述不正确的是( )A .{0}A ∈B .1A ∉C .{1}A -∈D .0A ∈2.(多选题)已知集合{}220A x x x =-=,则有( )A .A ∅⊆B .2A -∈C .{}0,2A ⊆D .{}3A y y ⊆<3.若集合A 具有以下性质:(1)0∈A,1∈A; (2)若x∈A,y∈A;则x ﹣y∈A,且x≠0时,1x ∈A.则称集合A 是“好集”.下列命题中正确的是( )A .集合B =﹣1,0,1}是“好集”B .有理数集Q 是“好集”C .整数集Z 不是“好集”D .设集合A 是“好集”,若x∈A,y∈A,则x+y∈A4.已知集合{}21,A x x m m Z ==-∈,{}2,B x x n n Z ==∈,且1x 、2x A ∈,3x B ∈,则下列判断正确的是( )A .12x x A ∈B .23x x B ∈C .12x x B +∈D .123x x x A ++∈ 5.(多选)由2a ,2a -,4组成一个集合A ,且集合A 中含有3个元素,则实数a 的取值可以是( )A .1-B .2-C .6D .2三、填空题1.已知{}20,1,x x ∈,则实数的值是________. 2.已知集合{|A a =关于x 的方程211x a x +=-有唯一实数解,}a R ∈,用列举法表示集合A =___________. 3.已知a ,b ,c 均为非零实数,集合a b ab A x x a b ab ⎧⎫⎪⎪==++⎨⎬⎪⎪⎩⎭,则集合A 的元素的个数有___________个.4.若{}210,,a a ∈,则a =_______. 5.定义集合A -B =x|x∈A,且x ∉B},若集合A =x|2x +1>0},集合B =x|23-x <0},则集合A -B =____________.四、解答题1.用适当的方法表示下列集合:(1)方程组2314328x y x y -=⎧⎨+=⎩,的解集;(2)方程2210x x -+=的实数根组成的集合;(3)平面直角坐标系内所有第二象限的点组成的集合;(4)二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合.2.已知3A -∈,A 中含有的元素有23,21,1a a a --+,求a 的值.3.已知集合{}22,2A a a a =++,若3A ∈,求实数a 的值.参考答案一、单选题1.B 解析:求出集合{}2320x x x -+=,列出符合条件的集合A 即可得出结论.详解:{}{}23201,2x x x -+==,所以,{}{}1,21,2,3,4,5,6A ⊆⊆, 则满足条件的集合A 有:{}1,2、{}1,2,3、{}1,2,4、{}1,2,5、{}1,2,6、{}1,2,3,4、{}1,2,3,5、{}1,2,3,6、{}1,2,4,5、{}1,2,4,6、{}1,2,5,6、{}1,2,3,4,5、{}1,2,3,4,6、{}1,2,3,5,6、{}1,2,4,5,6、{}1,2,3,4,5,6,共16个,故选:B.2.C 解析:先化简集合A ,再列举出所有真子集,从而可得答案.详解:因为{}{}130,1,2A x N x =∈-<<=,所以A 的真子集为{}{}{}{}{}{},0,1,2,0,1,0,2,1,2∅可得真子集的个数为7,故选:C .3.A解析:化简集合,判断集合,M N 没有包含关系,即可得出答案.详解:{1,0},{(1)0}{0,1}M N x x x =-=-==∣,∴集合,M N 没有包含关系故选:A4.A解析:因为0,1,2,1,2,3,2,3,4x y += ,所以B=0,1,2,3,4},选A.5.B解析:根据元素与集合的关系求解.详解:∵2A ∈,∴12a +=或212a +=,若12a +=,则1a =,此时212a +=,不合题意,舍去,若212a +=,1a =±,其中1a =不合题意.∴1a =-.故选:B.点睛:本题考查元素与集合的关系,解题时要注意检验,是否符合集合的定义.符合集合元素的性质.6.B详解:因为{}2A B ⋂=,则a 2+1=2,即a =±1. 但当a =1时,A =1,2,0},此时{}0,2A B =,不合题意,舍去,所以a =-1,故选B.7.A解析:根据枚举法,确定圆及其内部整点个数.详解:223x y +≤23,x ∴≤x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.8.B解析:直接根据集合的确定性判断即可.详解:中国的直辖市由确定地市组成,可以组成集合;大于3小于11的奇数,由可以确定的实数组成,可以组成集合;方程2320x x +-=的所有实数根,只有两个确定的数,可以组成集合;我国的小河流,因为“小”是相对的、不具有确定性,所以我国的小河流不能组成集合.故选:B.点睛:本题主要考查集合的定义与性质,意在考查对基础知识的掌握情况,属于基础题.9.C详解:本题考查了集合与元素的关系.解: 解得:二、多选题1.AC解析:求出集合2{|0}{0A x x x =+==,1}-,利用元素与集合的关系能判断正确结果. 详解:解:集合2{|0}{0A x x x =+==,1}-,0A ∴∈,1A -∈,{}0A ⊂,{}1A -⊂,1A ∉.∴AC 选项均不正确,BD 选项正确.故选:AC .点睛:本题主要考查元素与集合的关系,属于基础题.2.ACD解析:先化简集合{0,2}A =,再对每一个选项分析判断得解.详解:由题得集合{0,2}A =,由于空集是任何集合的子集,故A 正确:因为{}0,2A =,所以CD 正确,B 错误.故选ACD.本题主要考查集合的化简,考查集合的元素与集合的关系,意在考查学生对这些知识的理解掌握水平.3.BCD解析:逐一判断给定的3个集合,是否满足“好集”的定义,最后综合讨论结果,可得答案.详解:解:对于A ,假设集合B 是“好集”,因为1B -∈,1B ∈,所以112B --=-∈,这与2B -∉矛盾,所以集合B 不是“好集”.故A 错误;对于B ,因为0Q ∈,1Q ∈,且对任意的x Q ∈,y Q ∈有x y Q -∈,且0x ≠时,1Q x ∈,所以有理数集Q 是“好集”,故B 正确;对于C ,因为2Z ∈,但12Z ∉,所以整数集Z 不是“好集”.故C 正确;因为集合A 是“好集”,所以0A ∈,又y A ,所以0y A -∈,即y A -∈,又x A ∈,所以()x y A --∈,即x y A +∈,故D 正确. 故选:BCD .4.ABC解析:本题首先可根据题意得出A 表示奇数集,B 表示偶数集,1x 、2x 是奇数,3x 是偶数,然后依次对12x x 、23x x 、12x x +、123x x x ++进行判断,即可得出结果.详解: 因为集合{}21,A x x m m Z ==-∈,{}2,B x x n n Z ==∈,所以集合A 表示奇数集,集合B 表示偶数集,1x 、2x 是奇数,3x 是偶数,A 项:因为两个奇数的积为奇数,所以12x x A ∈,A 正确;B 项:因为一个奇数与一个偶数的积为偶数,所以23x x B ∈,B 正确;C 项:因为两个奇数的和为偶数,所以12x x B +∈,C 正确;D 项:因为两个奇数与一个偶数的和为偶数,所以123x x x B ,D 错误,故选:ABC.5.AC解析:根据题中条件,得到222424a a a a ⎧≠-⎪≠⎨⎪-≠⎩求出a 的范围,即可根据选项确定结果.因为由2a ,2a -,4组成一个集合A ,且集合A 中含有3个元素,所以只需222424a a a a ⎧≠-⎪≠⎨⎪-≠⎩,解得2a ≠±且1a ≠, 因此排除B D ,可选AC.故选:AC.点睛:本题主要考查由集合中元素个数求参数,属于基础题型.三、填空题1.1-解析:试题分析:因,故,故应填答案. 考点:元素与集合的关系及运用.2.51,1,4⎧⎫--⎨⎬⎩⎭ 解析:试题分析:由211(1)(1)x a x ax x x ++==--+,当1x a x +=-或1x a x +=+时,方程有一解,当21x a x +=-有一解时,0∆=,54a =-,所以答案应填:51,1,4⎧⎫--⎨⎬⎩⎭. 考点:含参分式方程.3.2解析:通过对a 、b 正负的讨论,利用绝对值的定义去掉绝对值,然后进行计算,即可求出集合A 的元素,即可求得答案详解:当0a >,0b >时,1113ab ab x a b ab=++=++=, 当0a >,0b <时,0ab <, 1111ab ab x ab ab =++=--=-, 当0a <,0b <时,0ab >, 1111ab ab x ab ab =++=--+=-, 当0a <,0b >时,0ab <, 1111ab ab x a b ab =++=-+-=-,故x 的所有值构成的集合为{}1,3-,集合A 的元素的个数有2个,故答案为:2点睛:本题主要考查集合元素的个数,涉及绝对值的定义以及元素的互异性,属于基础题.4.1-解析:利用集合元素的确定性可得a 的值,再利用互异性检验这些值是否满足要求. 详解:因为{}210,,a a ∈,故1a =或21a =, 当1a =时,21a a ==,与元素的互异性矛盾;当21a =时,1a =或1a =-,若1a =,则21a a ==,与元素的互异性矛盾;而1a =-时,满足互异性的要求,所以1a =-.故答案为:1-.点睛:本题考查集合元素的性质(确定性、互异性),注意利用确定性求值,再利用互异性检验,此类问题属于基础题.5.x|x≥2}解析:分别求出集合A,B 后,再根据所给的定义求解可得所求的集合.详解: 由题意得{}12102A x x x x ⎧⎫==-⎨⎬⎩⎭+,2{|0}{|2}3x B x x x -=<=<, 所以1,2{|2}2A B x x x x x ⎧⎫-=-≥=≥⎨⎬⎩⎭且. 故答案为{|2}x x ≥.点睛:本题考查集合中的新运算问题,考查阅读理解和运算能力,解题的关键是读懂题意,然后再结合新运算进行解题,必要时要结合数轴进行求解.四、解答题1.(1){(4,2)}-;(2){1};(3){(,)0x x y x <且0}y >;(4){}2|210y y x x =+-.解析:(1)解方程组,用列举法表示解集即可;(2)求解方程2210x x -+=的实数根,用列举法方式即可;(3)由第二象限的点,横坐标,纵坐标与0的关系,用描述法表示即可;(4)用描述法表示即可.详解:(1)解方程组2314328x y x y -=⎧⎨+=⎩,,得42x y =⎧⎨=-⎩,,故解集可用列举法表示为{(4,2)}-. (2)方程2210x x -+=的实数根为1,因此可用列举法表示为{1}.(3)集合的代表元素是点,可用描述法表示为{(,)0x x y x <且0}y >.(4)二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合中,代表元素为y ,故可用描述法表示为{}2|210y y x x =+-.点睛:本题主要考查了用列举法和描述法表示集合,属于基础题.2.0a =和1a =-解析:根据3A -∈,得到33a -=-或213a -=-,结合集合中元素的互异性,即可求解. 详解:由3A -∈且211a +≥,可得33a -=-或213a -=-,当33a -=-时,可得0a =;当213a -=-时,可得1a =-,经检验0a =和1a =-都符合题意.所以0a =和1a =-.3.32- 解析:根据题意,可得23a +=或223+=a a ,然后根据结果进行验证即可. 详解:由题可知:集合{}22,2A a a a =++,3A ∈ 所以23a +=或223+=a a ,则1a =或32a =- 当1a =时,222a a a +=+,不符合集合元素的互异性, 当32a =-时,1,32⎧⎫=⎨⎬⎩⎭A ,符合题意 所以32a =- 点睛:本题考查元素与集合的关系求参数,考查计算能力,属基础题.。
(完整版)集合的概念与关系练习题
若集合A= {—1,1}, B = {0,2},则集合{z|z= x+ y, x€ A, y€ B}中的元素的个数为(已知集合A是由0, m, m2—3m + 2三个元素组成的集合,且D • 0,2,3 均可M = {(x, y)|xy v 0, x € R , y€ R}是第一象限内的点集 B •第三象限内的点集10 •下列命题:①空集无子集;②任何集合至少有两个子集;③空集是任何集合的真子集;B • S P MC • S P集合的概念与关系练习题1集合{x€ N + |x—3<2}用列举法可表示为A • {0,123,4}B • {123,4}C • {0,123,4,5}D • {123,4,5}2 •给出下列几个关系,正确的个数为① 3 € R:② 0.5D € /Q;③ 0€ N ;④—3€Z ;⑤ 0€ N+.3.下列集合中,结果是空集的是A • {x€ R|x2— 1 =0}C • {(x, y)|/+ y2= 0}4 •将集合x,A •{2,3}5 •下列集合中,{x|x > 6 或x v 1}{xx> 6 且x v 1}x+ y= 5 一丄y | 表示成列举法,正确的是2x —y= 1B •{(2,3)}C •{(3,2)}不同于另外三个集合的是C • {x=1}A. {x|x = 1} B • {y|(y—1)2= 0}6•下列正确表示集合M = { —1,0,1}和N= {xlx2+ x= 0}关系的Venn图是(2,3){1}D•2€ A,则实数m为(集合第四象限内的点集 D •第二、四象限内的点集④若A,贝U心?•其中正确的有11 •集合M = {x|x= 3k—2, 的关系是k€ Z}, P = {y|y= 3n+ 1, n€ Z}, S= {z|z= 6m + 1,m€ Z}之间12 •由下列对象组成的集体属于集合的是•(填序号)①不超过n的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.13•设a, b都是非零实数,丫=合+若+鑒可能取的值组成的集合是________________ •|a| |b| |ab|14•已知集合A是由a —2,2a2+ 5a,12三个元素组成的,且—3€ A,求a.15. ______________________________________________________________________ 已知集合 A = { —1,3,2m —1},集合B = {3 , m2}.若B? A,则实数m= ________________ .16. 如果有一集合含有三个元素____________________ 1, x, x2—x,则实数x的取值范围是•17. 已知集合A = {x|1v x v2}, B={x|x v a},若A B,则实数a的取值范围是__________________ .18. 用列举法表示下列集合:(1) A = {x€ N||x|W 2} = _______ ;(2) B = {x€ Z||x|W 2} = ________ ;(3) C = {(x, y)|x2+ y2= 4, x€ Z , y € Z} = _______ .1 b 1 c 119. 已知集合A={x|x= a+6,a€ Z} , B= {x|x= - —3, b € Z} , C = {x|x=- + -, c€ Z},则A、B、C之间的关系是 __________ .20. 集合A= {x|kx2—8x+ 16= 0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A.21. 定义集合运算A*B= {z|z= xy, x€ A, y€ B}.设A = {1,2} , B = {0,2},则集合A*B 的所有元素之和是多少?22. 已知集合A= {x||x—a|= 4}, B = {1,2 , b}.问是否存在实数a,使得对于任意实数b(b^ 1,2)都有A? B若存在,求出对应的a值;若不存在,说明理由.23. 已知集合A ={x|/—3x—10W0},⑴若B? A, B= {x|m+ 1 < x< 2m—1},求实数m的取值范围;(2) 若A? B, B= {x|m—6< x< 2m—1},求实数m的取值范围;(3) 若A = B, B= {x|m—6< x< 2m—1},求实数m的取值范围.24. 已知集合A = {xlx2—3x+ 2< 0} , B= {x|x2—(a + 1)x+ a< 0}.(1) 若A 是B 的真子集,求a 的取值范围;(2) 若B 是A 的子集,求a 的取值范围;⑶若A = B,求a的取值范围.25.已知函数y x22ax 1在1 x 2上的最大值为4,求a 的值.226.求关于x的二次函数y x 2tx 1在2 x 1上的最小值(t为常数)•。
高考数学《集合的概念》练习题
高考数学《集合的概念》练习题1. 下列说法正确的个数为( )①集合{}1,3,5,7与集合{}025-表示同一集合;②集合{}1x y x =-与集合{}1y y x =- 不是同一集合;③集合{}21y y x =-与集合(){}2,1x y y x =-是同一个集合;④集合{}2,3和集合{}3,2是同一集合;⑤集合(){}2,3和集合(){}3,2是同一集合;⑥方程2560x x --=的解集为(){}6,1-.A.1个B.2个C.3个D.4个2. 用列举法表示下列集合: ①6,2x Z x N x ⎧⎫∈∈⎨⎬-⎩⎭; ②62Z x N x ⎧⎫∈∈⎨⎬-⎩⎭;③(){},2,13,x y y x x x N =<≤∈.3. 用描述法表示下列集合:①正偶数集;②大于2的实数;③100以内能被3整除的正整数.4. 已知{}0,1,2,3a ∈且{}1,2,3a ∉,则a 的值为( )A.0B.1C.2D.35. 已知集合{}2A x x x ==,那么( ) A.0A ∈ B.1A ∉C.{}1A ∈D.{}0,1A ≠6. 给出下列说法: ①集合{}3x N x x ∈=用列举法表示为{}1,0,1-;②实数集可以表示为{}x x 为实数或{}R ;③方程组31x y x y +=⎧⎨-=-⎩的解组成的集合为{}1,2x y ==; 其中不正确的有 .(把所有不正确的说法的序号都填上)7. 若集合{}210A x ax ax =-+<=∅,则实数a 的取值范围是 .8. 设集合,P Q 是两个非空数集,定义集合{},P Q a b a P b Q +=+∈∈,若{}0,2,5P =,{}1,2,6Q =,则P Q+中元素的个数为( )A.9B.8C.7D.69. 定义集合运算:{},,A B z z xy x A y B *==∈∈.设{}1,2A =,{}0,2B =,则集合A B *中所有元素之和为( )A.0B.2C.3D.6。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(10)
1.1 集合的概念一、单选题1.方程组5346x y x y +=⎧⎨-=-⎩的解集是( ) A .{}2,3x y ==B .{}2,3C .(){}2,3D .23x y =⎧⎨=⎩答案:C 解析:首先求出二元一次方程组的解,再写出其解集;详解:解:因为5346x y x y +=⎧⎨-=-⎩,所以23x y =⎧⎨=⎩所以方程组5346x y x y +=⎧⎨-=-⎩的解集为(){}2,3 故选:C2.下列对象中,能组成集合的是( )A .所有接近1的数的全体B .某班高个子男生的全体C .某校考试比较靠前的学生的全体D .大于2小于7的实数的全体答案:D解析:根据集合元素的特性:确定性即可排除ABC ,进而得到正确选项.详解:由集合元素的特性:ABC 不符合确定性原则,D 可表示为{|27}x x <<,故选:D3.若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =( ) A .4B .2C .0D .0或4答案:A详解: 2=40,0 4.0.A a a a a A A ∴∆-=∴==集合中只有一个元素,或又当时集合中无元素,故选考点:该题主要考查集合的概念、集合的表示以及集合与一元二次方程的联系.4.已知a=4,A=x|x≥3},则以下选项中正确的是( )A .a A ∉B .a∈AC .a}=AD .a ∉a}答案:B解析:根据元素与集合的关系求解.详解:因为4≥3,所以a∈A.故选:B点睛:本题主要考查元素与集合的关系,属于基础题.5.设集合={1,2,3}A ,B={45},,={x|x=a+b,a A,b B}M ∈∈,则M 中元素的个数为( ) A .3B .4C .5D .6答案:B详解: 由题意知x a b =+,,a A b B ∈∈,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素,故选B.【考点定位】集合的概念6.i 是虚数单位,若集合S ={}1,0,1-,则( )A .10i S ∈B .13i S ∈C .15i S ∈D .2i ∈3答案:A解析:利用虚数单位的性质化简选项中的复数,判断是否属于集合S 即可.详解:根据虚数单位的运算规律可知,10=-1i S ∈,13i i S =∉,153i =i =-i S ∉,那么22ii =-S ∉,故选A. 点睛:本题主要是考查了元素与集合关系,以及虚数单位性质的运用,属于基础题.7.下列四个集合中,不同于另外三个的是( )A .{}2y y =B .{}2x =C .{}2D .{}2440x x x -+=答案:B解析:选项A ,C ,D 中元素都是实数2,而选项B 中元素为等式2x =,即可得到答案. 详解:对选项A ,{}{}22y y ==,元素为实数2;对选项B ,{}2x =,元素为等式2x =;对选项C ,{}2,元素为实数2;对选项D ,{}{}24402x x x -+==,元素为实数2. 故选:B点睛:本题主要考查集合的概念,属于简单题.8.下列集合中是有限集的是( )③方程21x =-的所有实数解组成的集合.④15的质因数的全体构成的集合A .①②③B .②③④C .①②④D .①③④答案:B解析:根据有限集的知识进行分析,由此确定正确选项.详解:①,202x x -≥⇒≥,[)2,+∞为无限集,不符合题意,①错误,所以选B.②,30,N 0,1,2,3x x x -≥∈⇒=,{}0,1,2,3为有限集,符合题意,②正确.③,方程21x =-的所有实数解组成的集合为空集,为有限集,符合题意,③正确. ④,15的质因数的全体构成的集合为{}3,5,为有限集,符合题意,④正确.故选:B9.设集合M=x|x 2-3x≤0},则下列关系式正确的是( )A .2⊆MB .2∉MC .2∈MD .2}∈M答案:C解析:本题已知集合M ,先将相应的不等式化简,得到集合中元素满足的条件,再看元素2是否满足条件,可得到正确选项.详解:230x x -,03x ∴,2{|30}{|03}M x x x x x ∴=-=.又023<<,2M ∴∈.故选:C .点睛:本题考查的是集合知识,重点是判断元素与集合的关系,难点是对一元二次不等式的化简.计算量较小,属于容易题.二、多选题1.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5|Z k n k n =+∈,0k =,1,2,3,4,给出如下四个结论,其中,正确结论的是( )A .[]20211∈B .[]33-∈C .若整数a ,b 属于同一“类”,则[]0a b -∈D .若[]0a b -∈,则整数a ,b 属于同一“类”答案:ACD解析:根据“类”的定义逐一判断四个选项的正误即可得正确选项.详解:对于A :因为202140451=⨯+,所以[]20211∈,故选项A 正确;对于B :因为()3512-=⨯-+,所以[]32-∈,故选项B 错误;对于C :若a 与b 属于同一类,则15a n k =+,25b n k =+,()[]1250(a b n n -=-∈其中1n ,2Z)n ∈,故选项C 正确;对于D :若[]0a b -∈,设5,Z a b n n -=∈,即5,Z a n b n =+∈,不妨令5,Z b m k m =+∈,0k =,1,2,3,4,则()555a m n k m n k =++=++,m ∈Z ,Z n ∈,所以a 与b 属于同一类,故选项D 正确;故选:ACD.2.实数1是下面哪个集合的元素( )A .整数集ZB .{}|x x x =C .{}N|11x x ∈-<<D .1R |01x x x -⎧⎫∈≤⎨⎬+⎩⎭答案:ABD解析:分别求出每个选项中的集合的元素,即可判断1是否为集合中的元素,进而可得正确选项.详解:对于A :1是整数,因此实数1是整数集Z 中的元素,故选项A 正确;对于B :由x x =得0x ≥,因此实数1是集合{}|x x x =中的元素,故选项B 正确; 对于C :{}{}N|110x x ∈-<<=,因此实数1不是集合{}N|11x x ∈-<<中的元素;故选项C 不正确;对于D :()(){}1101R |0R ||11110x x x x x x x x x ⎧⎫⎧-+≤-⎪⎪⎧⎫∈≤=∈=-<≤⎨⎬⎨⎨⎬++≠⎩⎭⎪⎪⎩⎩⎭,因此实数1是集合1|01x x R x -⎧⎫∈≤⎨⎬+⎩⎭中的元素,故选项D 正确; 故选:ABD.3.集合{}2210A x a x x =++=中有且仅有一个元素,则实数a 的值为( )A .1B .-1C .0D .2答案:AC 解析:分0a =,和0a ≠两种情况讨论,可得0a =,或1a =.详解:当0a =时,可得1={}2A -,符合题意; 当0a ≠时,因为方程210ax x ++=有唯一解,所以440,1a a ∆=-=∴=.故选:AC.点睛:此题的关键是a 是否为零决定方程是一次方程还是二次方程,影响到根的个数.4.集合{},0,1,20,}1{A B == 且元素,a A b B ∈∈,则a 的取值范围为( )A . 2B .1C . 0D . 1-答案:ABC解析:根据集合与元素的关系即可得答案.详解:因为a A ∈,{0,1,2}A =所以a 的取值范围为0,1,2.故选:ABC5.已知x∈1,2,x 2},则有( )A .1x =B .2x =C .0x =D .x答案:BC解析:利用集合中元素的互异性,分三种情况讨论即可.详解:由x∈1,2,x 2},当21,1x x ==,不满足集合中元素的互异性;当22,4x x ==,满足集合中元素的互异性,符合题意;当20x x x =⇒=或1x =(舍),当0x =满足集合中元素的互异性,符合题意;故选:BC.点睛:本题主要考查了集合中元素的互异性,考查了分类讨论,属于较易题.三、填空题1.已知集合A 中有且仅有2个元素,并且实数a 满足a∈A,4-a∈A,且a∈N,4-a∈N,则A=__.答案:1,3}或0,4}解析:依题意首先确定a 的取值情况,再一一列举出来即可;详解:因为a N ∈,4a N -∈,所以0a =,1,2,3,4.当0a =时,44a N -=∈,集合{}0,4满足题意;当1a =时,43a N -=∈,集合{}1,3满足题意;当2a =时,42a N -=∈,这时不存在满足题意的集合A.当3a =时,41a N -=∈,集合{}1,3满足题意;当4a =时,40a N -=∈,集合{}0,4满足题意;综上所述{}0,4A =或{}1,3.故答案为:{}1,3或{}0,42.已知{}2,P x x a x N =<<∈,已知集合P 中恰有3个元素,则整数a = .答案:6解析:根据题意得出3、4、5P ∈,6P ∉,从而可得出实数a 的不等式,解出即可得出整数a 的值.详解:根据题意得出3、4、5P ∈,6P ∉,56a a >⎧∴⎨≤⎩,即56a <≤. 因此,整数a 的值为6.点睛:本题考查利用集合元素的个数来求参数,解题的关键就是要结合题意列出不等式组进行求解,考查分析问题和解决问题的能力,属于基础题.3.已知30ax A xx a ⎧-⎫=>⎨⎬+⎩⎭,若1A ∈,3A ∉,则实数a 的取值范围为______.答案:[)3,1--解析:由于1A ∈,3A ∉,所以30,1{330,30,3a a a a a ->+-≤+=+或,从而可求出a 的取值范围 详解:因为1A ∈,3A ∉,所以30,1{330,30,3a a a a a->+-≤+=+或解得31a -≤<-. 故答案为:[)3,1--点睛:此题考查元素和集合的关系,考查分式不等式的解法,属于基础题4.用符号“∈”或“∉”填空:①{}2|0A x x x =-=,则1_______A ,1-______A ;②(1,2)______{(,)|1}x y y x =+.答案:∈∉∈解析:利用元素与集合的关系填空即可.详解:①将1代入方程成立,将1-代入方程不成立,故1A ∈,1A -∉.②将1,2x y ==代入1y x =+成立,故填∈.故答案为:,,∈∉∈点睛:本题考查元素与集合的关系,属于基础题.5.已知集合2{1,1,4}M m m =++,如果5M ∈且2M -∉,那么m =________答案:4或1或1-解析:根据元素与集合的关系,可得关于m 的方程,解方程且满足5M ∈且2M -∉,即可求得m 的值.详解:集合2{1,1,4}M m m =++,5M ∈且2M -∉所以若15m +=,解得4m =若245m ,解得1m =±所以m 的值为4或1或1-故答案为: 4或1或1-点睛:本题考查了元素与集合的关系,根据元素属于集合求参数,属于基础题.四、解答题1.已知集合A 中含有两个元素x ,y ,集合B 中含有两个元素0,x 2,若A =B ,求实数x ,y 的值.答案:1,0x y ==解析:根据集合相等的含义,结合集合中元素的互异性,即可得出结论.详解:因为集合A ,B 相等,则x =0或y =0.①当x =0时,x 2=0,B 中元素为0,0,不满足集合中元素的互异性,故舍去.②当y =0时,x =x 2,解得x =0或x =1.由①知x =0应舍去.综上知:x =1,y =0.点睛:本题考查集合相等的含义,考查集合中元素的互异性,属于基础题.2.已知{}{},,1,2,3,5,0,2,4,8,A B A C B C ⊆⊆==求A .答案:{}2或φ解析:,A B A C ⊆⊆,则A B C ⊆,可得集合A . 详解:{}{}1,2,3,5,0,2,4,8B C ==,则{}2B C ⋂=,则{}2A =或A φ=.3.已知集合{}2|320A x R ax x =∈-+=,其中a 为常数,且a R ∈.①若A 是空集,求a 的范围;②若A 中只有一个元素,求a 的值;③若A 中至多只有一个元素,求a 的范围.答案:①98a >;②0a =或98a =;③0a =或98a ≥. 解析:①只需方程2320ax x -+=无解即可;②当0a =成立,当0a ≠时,只需0∆=;③由题意可知0a =时成立,当0a ≠时,只需0∆≤即可. 详解:①若A 是空集,则方程2320ax x -+=无解,此时980a ∆=-<,即98a >, ②若A 中只有一个元素,则方程2320ax x -+=有且只有一个实根, 当0a =时方程为一元一次方程,满足条件当0a ≠,此时980a ∆=-=,解得:98a =. ∴0a =或98a =; ③若A 中至多只有一个元素,则A 为空集,或有且只有一个元素 由①②得满足条件的a 的取值范围是:0a =或98a ≥. 点睛:本题考查根据集合中元素的个数求参,考查方程根的个数问题,较简单.。
集合概念练习题
集合概念练习题(一)1、用适当的符号(∈,∉, , ,=)填空:①0_____Φ; ② 0 _____N ; ③Φ _____{0}; ④ 2 ______{x|x -2=0};⑤{x|x 2-5x+6=0} ______{2,3}; ⑥ (0,1) ____{(x,y)|y=x+1};⑦ {x|x=2k+1,k ∈Z}___{x|x=2k -1 k ∈Z}。
⑧{x|x=4k,k ∈Z} _____{y|y=2n,n ∈Z};⑨ {x|x=a 2-4a,a ∈R} _________{y|y=b 2+2b,b ∈R} 2、用适当的方法表示下列集合,然后说出其是有限集还是无限集。
① 由所有非负奇数组成的集合; __________________________________ ② 由所有小于20的奇质数组成的集合; ______________________________________ ③ 平面直角坐标系内第二象限的点组成的集合;______________________________________ ④ 方程x 2-x+1=0的实根组成的集合; ______________________________________ ⑤ 所有周长等于10cm 的三角形组成的集合;__________________________________________ 3.已知集合{}1,2A =,集合B 满足{}1,2AB =,则集合B 有 个.变式1:已知集合{}1,2A =,集合B 满足AB A =,集合B 与集合A 之间满足的关系是 __变式2:已知集合A 有n 个元素,则集合A 的子集个数有 ____ 个,真子集个数有 ______ 个 变式3:满足条件{}{}1,21,2,3A =的所有集合A 的个数是 个变式4、非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有_____个 4.已知集合{}|37A x x =≤<,{}|210B x x =<<,求()R C A B ,()R C A B ,()R C A B ,()R A C B变式1:已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于 ( )A.[1,4)- B (2,3) C (2,3] D (1,4)-变式2:设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C AB 等于( )A .RB .{},0x x R x ∈≠ C .{}0 D .∅变式3.已知集合{}|110,P x N x =∈≤≤集合{}2|60,Q x R x x =∈+-=则PQ 等于 ( )(A ){}1,2,3 (B ){}2,3 (C ){}1,2 (D ){}25.已知集合{}31,3,A a =-,{}1,2B a =+,是否存在实数a ,使得B A ⊆,若存在,求集合A 和B ,若不存在,请说明理由.变式1:已知集合A ={-1,3,2m -1},集合B ={3,2m }.若B A ⊆,则实数m = . 变式2:(全国1理)设,a b R ∈,集合{1,,}{0,,}ba b a b a+=,则b a -= A .1 B .1- C .2 D .2- 变式3、含有三个实数的集合既可以表示为{,,1}ba a,也可表示为2{,,0}a a b +,求20032004a b +的值 值_______变式4:{}2|60A x x x =+-=,{}|10B x mx =+=,且A B A =,则m 的取值范围是______ .变式5:设{}2|40A x x x =+=,{}22|2(1)10B x x a x a =+++-=且A B B =,求实数a 的值.变式6、已知集合A={}R x x m x x ∈=+++,01)2(2,若A ∩R +=Φ,则实数m 的取值范围是__________.变式7、已知集合A={}0232=+-x x x ,B={}012=-+-a ax x x ,且A ∪B=A ,则a 值为__________.变式8、命题甲:方程x 2+mx+1=0有两个根异负根;命题乙:方程4x 2+4(m -2)x+1=0无实根,这两个命题有且只有一个成立,求m 的取值范围.6、已知集合2{280,}A x x x x R =--<∈,集合22{320,}B x x ax a x R =-+=∈, (1)实数a 在什么范围内取值时,B A ⊂,(2) 实数a 在什么范围内取值时,A B =∅;7. 已知集合M={}+≠⊆⊂Φ>-+-R M x a ax x 满足01)1(2,求a 的取值范围.集合练习题(一)答案1、用适当的符号填空:①0____ ∉ Φ; ② 0 ∈ N ; ③Φ {0}; ④ 2 ∈ {x|x -2=0}; ⑤{x|x 2-5x+6=0} = {2,3}; ⑥ (0,1) ∈ {(x,y)|y=x+1};⑦ {x|x=2k+1,k ∈Z}_=__{x|x=2k -1 k ∈Z}。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(34)
1.1 集合的概念一、单选题1.对于两个非空数集A 、B ,定义点集如下:A×B=(x ,y )|x∈A,y∈B},若A =1,3},B =2,4},则点集A×B 的非空真子集的个数是( )个.A .14B .12C .13D .11答案:A解析:根据A×B=(x ,y )|x∈A,y∈B},得到A×B 的元素的个数求解.详解:∵A×B=(x ,y )|x∈A,y∈B},且A =1,3},B =2,4},所以A×B=(1,2),(1,4),(3,2),(3,4)},共有四个元素,则点集A×B 的非空真子集的个数是:24﹣2=14.故选:A.2.已知集合,,1b A a a ⎧⎫=⎨⎬⎩⎭,集合{}2,,0B a a b =+,若A B A B =,则20202020a b +的值为( ) A .1B .0C .1-D .±1答案:A 解析:根据条件可得集合A=B ,根据集合相等,可求得b 的值,根据集合的互异性可求得a 的值,即可得答案.详解:因为A B A B =,所以A=B ,则0b a=,即b=0,所以{}{}2,0,1,,0a a a =,根据集合的互异性, 所以21a =,解得1a =-或1a =(舍)所以202020202020(1)01a b +=-+=,故选:A3.方程组149x y x y +=⎧⎨-=⎩的解集是( ) A .()2,1-B .()1,2-C .(){}1,2-D .(){}2,1-答案:D解析:利用代入法和消元法即可求解.详解:149x y x y +=⎧⎨-=⎩①②,两式相加可得510x =,所以2x =, 将2x =代入1x y +=可得1y =-,所以21x y =⎧⎨=-⎩, 所以方程组149x y x y +=⎧⎨-=⎩的解集是(){}2,1-, 故选:D4.已知集合{1,3,4,5}A =,集合2{}450|B x Z x x =∈--<,则A B 的子集个数为A .2B .4C .8D .16答案:C详解:试题分析:由2450x x --<,解得15x -<<,所以{}0,1,2,3,4B =,所以{}1,3,4A B ⋂=,所以A B ⋂的子集个数为328=,故选C . 考点:1、不等式的解法;2、集合的交集运算;3、集合的子集.5.方程组 x-3y 10{x y 20+=++= 的解集为( ) A .71{}44,B .71-44⎧⎫⎨⎬⎩⎭, C .7144⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭, D .71--44⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭,答案:D解析:求方程组的解,再写出集合的形式即可.详解:解方程组31020x y x y -+=⎧⎨++=⎩, 得7414x y ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以该方程组的解集为7{(4-,1)}4-.故选:D.点睛:本题考查用集合表示方程组解的问题,考查对概念的理解,属于基础题.6.下列关系正确的是( )A .3∈y|y=x 2+π,x∈R}B .(a ,b)}=(b ,a)}C .(x ,y)|x 2-y 2=1}(x ,y)|(x 2-y 2)2=1} D .x∈R|x 2-2=0}=答案:C解析:试题分析:2{y |y x x R}{y |y }ππ∈≥=+,=,∵3<π,∴23{y |y x π∉=+}.(a ,b)}与(b ,a)}中元素不相同,∴(a,b)}与(b ,a)}不一定相等.(x ,y)|(x 2-y 2)2=1}=(x ,y)|x 2-y 2=1或x 2-y 2=-1},∴C 是正确的.x∈R|x 2-2=0}=2,-2}≠.考点:元素与集合、集合与集合的关系点评:此类问题要先确定集合,再进行判断.7.给出下列62R 3Q ,③0N ∉4N ,⑤Q π∈,⑥2Z -∉,其中正确命题的个数为( )A .1B .2C .3D .4答案:A解析:利用元素与集合的关系可判断①②③④⑤⑥的正误.详解:R 、Q 、N 、Z 分别表示实数集、有理数集、自然数集、整数集, 所以,22R ∈3Q ,0N ∈42N ∈,Q π∉,22Z -=∈, 因此,①正确,②③④⑤⑥不正确,故选:A .8.方程组11x y x y +=⎧⎨-=-⎩的解集是( ) A .{0x =,1}y =B .{0,1}C .{(0,1)}D .{(,)|0x y x =或1}y =答案:C解析:运用加减消元法,求出方程组的解,最后运用集合表示.详解:方程组11x y x y +=⎧⎨-=-⎩, 两式相加得,0x =,两式相减得,1y =.∴方程组的解集为{(0,1)}.故选:C .点睛:本题主要考查集合的表示方法:列举法和描述法,注意正确的表示形式,区分数集和点集.9.{}|10P m m =-<<,2{|440Q m R mx mx =∈+-<对于任意实数x 恒成立},则下列关系中立的是A .P Q ≠⊂B .Q P ≠⊂C .P Q =D .P Q φ=答案:A解析:首先化简集合Q ,2440mx mx +-<对任意实数x 恒成立,则分两种情况:(1)0m =时,易知结论成立,(2)0m <时,2440mx mx +-=无根,则由∆<0求得m 的范围. 详解:{}2|440Q m R mx mx x =∈+-<对任意实数恒成立, 对m 分类:(1)0m =时,40-<恒成立;(2)0m <时,需要2(4)160m m ∆=+<,解得10m -<<,综合(1)(2)知10m -<≤,所以{}|10Q m m =-<≤,因为{}|10P m m =-<<,所以P Q ≠⊂,故选A. 点睛:该题考查的是有关判断集合间的关系的问题,涉及到的知识点有恒成立问题对应参数的取值范围的求法,真子集的概念问题,属于简单题目.二、填空题1.含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20192020a b +=______________.答案:1-解析:根据集合相等,结合集合的互异性,即可求得,a b ,则问题得解.详解: 要使得b a 有意义,则0a ≠,由集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,故可得0b =,此时{}2{,0,1},,0a a a =, 故只需1a =或21a =,若1a =,则集合{}2,,0{1,1,0}a a =不满足互异性,故舍去.则只能为1,0a b =-=.则201920201a b +=-.故答案为:1-.点睛:本题考查集合相等求参数,以及集合的互异性,属综合基础题.2.已知{}1234,,,U a a a a =,集合A 是集合U 中的两个元素所组成的集合,且同时满足下列三个条件:①若1a A ∈,则2a A ∈;②若3a A ∉,则2a A ∉;③若3a A ∈,则4a A ∉.求集合A .答案:{}23,A a a =解析:从1a 开始分析各个元素是否是A 中元素,结合各个条件的等价命题推理出结论. 详解:假设1a A ∈,则2a A ∈.又若3a A ∉,则2a A ∉,∴3a A ∈,与集合A 中有且仅有两个元素不符,∴假设不成立,∴1a A ∉.假设4a A ∈,则3a A ∉,则2a A ∉,且1a A ∉,与集合A 中有且仅有两个元素不符,∴假设不成立,∴4a A ∉.故集合{}23,A a a =,经检验知符合题意.故答案为:{}23,A a a =.3.集合A=x|x=2k ,k∈Z},B=x|x=2k+1,k∈Z} ,C=x|x=4k-1,k∈Z},若m∈A, n∈B,则m+n∈ ___________(选填A 、B 、C )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 . 1 集 合 的 概 念
〖帮你读书〗
1. 集合的概念:有某些的对象组成的叫做集合,简称;组成集合
的对象叫做这个集合的。
2. 集合的表示:一般采用表示集合,
3. 采用表示集合中的元素。
4. 几个常用数集的表示:自然数集记作;正整数集记作;整数集记作;有理数集记作;实数集记作;空集记作。
5. 集合与元素之间的关系:如果 a 是集合 A 的元素,就说 a A
, 记作,
6. 如果 a 不是集合 A 的元素,就说 a A ,记作 ,
7. 集合的分类:含有元素的集合,叫做有限集,含有无限多个元素的集合叫做,不含叫空集,记作 :.
〖疑难解惑〗
1. 只含有元素 0 的集合是空集吗?
〖技能训练〗
1. 用符号 " "或" "填空:
(1)3.14R(2) 2 R
1
(3) 2 N(4)-2N
(5) 3 Q(6) R
2. 选择题:
(1) 下列对象能组成集合的是();
A, 大于 5 的自然数
B.一切很大的树
C.班上个子很高的同学
D.班上考试分数很高的同学
(2)下列对象不能组成集合的是() .
A. 不大于 8 的自然数
B. 很接近于 1 的数
C. 班上身高超过 1.8 米的同学
D. 班上数学小测中得分在85 分以上的同学。
3.下列对象能否组成集合?若能组成集合,判断哪些是有限集?哪些是无限极?那些事空集?
(1). 某班学习成绩好的同学;
(2)绝对值不小于 3 的所有整数;
4.判断下列集合是有限集、无限集还是空集:
(1)所有大于 3 且小于 4 的实数;
(2)方程x25x 6 0的解集 .。