东华大学卓越计划概率论第1章

合集下载

概率论与数理统计课后答案

概率论与数理统计课后答案
3. 某市有 A, B, C 三种报纸发行.已知该市某一年龄段的市民中,有 45%的人喜欢读 A 报,34%的人喜 欢读 B 报,20%的人喜欢读 C 报,10%的人同时喜欢读 A 报和 B 报,6%的人同时喜欢读 A 报和 C 报, 4%的人同时喜欢读 B 报和 C 报,1%的人 A, B, C 三种报纸都喜欢读.从该市这一年龄段的市民中任选 一人,求下列事件的概率:(1)至少喜欢读一种报纸;(2)三种报纸都不喜欢;(3)只喜欢读 A 报; (4)只喜欢读一种报纸.
少?
3
解:设 A 表示人均收入在 6000 元以下,B 表示城市职工家庭,故 P(B | A) = 25 = 0.1724 . 145
解:分别设 A, B, C 表示此人喜欢读 A, B, C 报,有 P (A ) = 0.45,P (B ) = 0.34,P (C ) = 0.2,P (AB ) = 0.1, P (AC ) = 0.06,P (BC ) = 0.04,P (ABC ) = 0.01, (1)P (A∪B∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC ) = 0.8;
3. 根据抽样调查资料,2000 年某地城市职工家庭和农村居民家庭收入按人均收入划分的户数如下:
户数
6000 元以下
6000 ~ 12000 元
12000 元以上
合计
城市职工
25
125
50
200
农村居民
120
132
48
300
合计
145
257
98
500
现从被调查的家庭中任选一户,已知其人均收入在 6000 元以下,试问这是一个城市职工家庭的概率是多

概率论与数理统计的答案详解_北邮版_(第一章的)

概率论与数理统计的答案详解_北邮版_(第一章的)

概率论与数理统计习题及答案习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点. (1) 掷一颗骰子,出现奇数点. (2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面.” B =“至少有一次出现正面.” C =“两次出现同一面.” 【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ=======,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反2.设A ,B ,C 为三个事件,试用A ,B ,C(1) A 发生,B ,C 都不发生; (2) A 与B 发生,C (3) A ,B ,C 都发生; (4) A ,B ,C (5) A ,B ,C 都不发生; (6) A ,B ,C(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC(5) ABC=A B C (6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.指出下列等式命题是否成立,并说明理由:(1) A∪B=(AB)∪B;(2) A B=A∪B;A∩C=AB C;(3) B(4) (AB)( AB)= ∅;(5) 若A⊂B,则A=AB;(6) 若AB=∅,且C⊂A,则BC=∅;(7) 若A⊂B,则B⊃A;(8) 若B⊂A,则A∪B=A.【解】(1)不成立.特例:若Α∩B=φ,则ΑB∪B=B.所以,事件Α发生,事件B必不发生,即Α∪B发生,ΑB∪B不发生.故不成立.(2)不成立.若事件Α发生,则A不发生,Α∪B发生,所以A B不发生,从而不成立.A,AB画文氏图如下:(3)不成立.B所以,若Α-B发生,则AB发生, A B不发生,故不成立.(4)成立.因为ΑB与AB为互斥事件.(5)成立.若事件Α发生,则事件B发生,所以ΑB发生.若事件ΑB发生,则事件Α发生,事件B发生.故成立.(6)成立.若事件C发生,则事件Α发生,所以事件B不发生,故BC=φ.⊂.(7)不成立.画文氏图,可知B A(8)成立.若事件Α发生,由()A AB ⊂,则事件Α∪B 发生.若事件Α∪B 发生,则事件Α,事件B 发生. 若事件Α发生,则成立.若事件B 发生,由B A ⊂,则事件Α发生.4.设A ,B 为随机事件,且P (A )=0.7,P (A B )=0.3,求P (AB ). 【解】 P (AB )=1P (AB )=1[P (A )P (AB )]=1[0.70.3]=0.65.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB(2) 在什么条件下P (AB【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0P(AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )P (AB )P (BC )P (AC )+P (ABC )=14+14+13112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8. (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1P (A 1)=1(17)59. 从一批由45件正品,5件次品组成的产品中任取3件,求其中恰有一件次品的概率.【解】与次序无关,是组合问题.从50个产品中取3个,有350C 种取法.因只有一件次品,所以从45个正品中取2个,共245C 种取法;从5个次品中取1个,共15C 种取法,由乘法原理,恰有一件次品的取法为245C 15C种,所以所求概率为21455350C C P C =.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从NM 件次品中取nm 件的排列数为P n mN M --种,故P (A )=C P P P m m n mn M N MnN-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n种,n 次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n m 次取得次品,每次都有N M 种取法,共有(N M )n m 种取法,故()C ()/m m n m nnP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 在电话号码簿中任取一电话号码,求后面4个数全不相同的概率(设后面4个数中的每一个数都是等可能地取自0,1,…,9).【解】这是又重复排列问题.个数有10种选择,4个数共有104种选择.4个数全不相同,是排列问题.用10个数去排4个位置,有410P 种排法,故所求概率为4410/10P P =.12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p == *16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076*17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=?19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|xy |>30.如图阴影部分所示.22301604P ==22.0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+⎪⎝⎭⎰⎰ 题22图23.P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.则1(0.8)0.9n-≥即为 (0.8)0.1n ≤ 故n ≥1lg8=11.07,至少必须进行11次独立射击. 32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦()()()()P AB P B P AB P B =,即()[1()][()()]()P AB P B P A P AB P B -=- 因此 ()()()P AB P A P B =,故A 与B 相互独立. 33.三人独立地破译一个密码,他们能破译的概率分别为151314,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)×0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)×0.6+0.4×0.5×0.7×1=0.458。

概率论第一章习题参考解答

概率论第一章习题参考解答

概论论与数理统计 习题参考解答 习题一8. 掷3枚硬币, 求出现3个正面的概率. 解: 设事件A ={出现3个正面}基本事件总数n =23, 有利于A 的基本事件数n A =1, 即A 为一基本事件, 则125.08121)(3====n n A P A . 9. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率. 解: 设事件A ={能打开门}, 则A 为不能打开门基本事件总数210C n =, 有利于A 的基本事件数27C n =, 467.0157910212167)(21027==⨯⨯⋅⨯⨯==C C A P因此, 533.0467.01)(1)(=-=-=A P A P .10. 一部四卷的文集随便放在书架上, 问恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率是多少?解: 设A ={能打开门},基本事件总数2412344=⨯⨯⨯==P n , 有利于A 的基本事件数为2=A n , 因此, 0833.0121)(===n n A P A . 11. 100个产品中有3个次品,任取5个, 求其次品数分别为0,1,2,3的概率. 解: 设A i 为取到i 个次品, i =0,1,2,3,基本事件总数5100C n =, 有利于A i 的基本事件数为3,2,1,0,5973==-i C C n i i i则00006.09833512196979697989910054321)(006.0983359532195969739697989910054321)(138.09833209495432194959697396979899100543213)(856.0334920314719969798991009394959697)(51002973351003972322510049711510059700=⨯⨯==⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯=⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯=⨯===⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C C n n A P C C n n A P C C n n A P12. N 个产品中有N 1个次品, 从中任取n 个(1≤n ≤N 1≤N ), 求其中有k (k ≤n )个次品的概率. 解: 设A k 为有k 个次品的概率, k =0,1,2,…,n ,基本事件总数nN C m =, 有利于事件A k 的基本事件数kn N N k N k C C m --=11,k =0,1,2,…,n ,因此, n k C C C m m A P nNkn N N k N k k ,,1,0,)(11 ===-- 13. 一个袋内有5个红球, 3个白球, 2个黑球, 计算任取3个球恰为一红, 一白, 一黑的概率.解: 设A 为任取三个球恰为一红一白一黑的事件,则基本事件总数310C n =, 有利于A 的基本事件数为121315C C C n A =, 则25.0412358910321)(310121315==⨯⨯⨯⨯⨯⨯⨯===C C C C n n A P A 14. 两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解: 设A 为前两个邮筒没有信的事件, B 为第一个邮筒内只有一封信的事件, 则基本事件总数1644=⨯=n , 有利于A 的基本事件数422=⨯=A n , 有利于B 的基本事件数632=⨯=B n , 则25.041164)(====n n A P A 375.083166)(====n n B P B .15. 一批产品中, 一, 二, 三等品率分别为0.8, 0.16, 0.04, 若规定一, 二等品为合格品, 求产品的合格率.解: 设事件A 1为一等品, A 2为二等品, B 为合格品, 则 P (A 1)=0.8, P (A 2)=0.16,B =A 1+A 2, 且A 1与A 2互不相容, 根据加法法则有 P (B )=P (A 1)+P (A 2)=0.8+0.16=0.9616. 袋内装有两个5分, 三个2分, 五个一分的硬币, 任意取出5个, 求总数超过一角的概率. 解: 假设B 为总数超过一角,A 1为5个中有两个5分, A 2为5个中有一个5分三个2分一个1分, A 3为5个中有一个5分两个2分两个1分, 则B =A 1+A 2+A 3, 而A 1,A 2,A 3互不相容, 基本事件总数252762354321678910510=⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯==C n设有利于A 1,A 2,A 3的基本事件数为n 1,n 2,n 3, 则5.0252126252601056)(,60214532,1052,563216782523123153312238221==++==⨯⨯⨯⨯===⨯===⨯⨯⨯⨯==B P C C C n C C C n C C n 17. 求习题11中次品数不超过一个的概率.解: 设A i 为取到i 个次品, i =0,1,2,3, B 为次品数不超过一个, 则B =A 0+A 1, A 0与A 1互不相容, 则根据11题的计算结果有 P (B )=P (A 0)+P (A 1)=0.856+0.138=0.99419. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A )的概率为4/15, 刮风(用B 表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P (A |B ), P (B |A ), P (A +B ). 解: 根据题意有P (A )=4/15, P (B )=7/15, P (AB )=1/10, 则633.03019303814101154157)()()()(275.08315/410/1)())|(214.014315/710/1)()()|(==-+=-+=-+=+========AB P B P A P B A P A P PAB A B P B P AB P B A P20. 为防止意外, 在矿内同时设有两种报警系统A 与B , 每种系统单独使用时, 其有效的概率系统A 为0.92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85, 求 (1) 发生意外时, 这两个报警系统至少有一个有效的概率 (2) B 失灵的条件下, A 有效的概率解: 设A 为系统A 有效, B 为系统B 有效, 则根据题意有 P (A )=0.92, P (B )=0.93, 85.0)|(=A B P(1) 两个系统至少一个有效的事件为A +B , 其对立事件为两个系统都失效, 即B A B A =+, 而15.085.01)|(1)|(=-=-=A B P A B P , 则988.0012.01)(1)(012.015.008.015.0)92.01()|()()(=-=-=+=⨯=⨯-==B A P B A P A B P A P B A P(2) B 失灵条件下A 有效的概率为)|(B A P , 则829.093.01012.01)()(1)|(1)|(=--=-=-=B P B A P B A P B A P21. 10个考签中有4个难签, 3人参加抽签考试, 不重复地抽取, 每人一次, 甲先, 乙次, 丙最后, 证明3人抽到难签的概率相等.证: 设事件A ,B ,C 表示甲,乙,丙各抽到难签, 显然P (A )=4/10, 而由903095106)|()()(902496104)|()()(902494106)|()()(901293104)|()()(=⨯===⨯===⨯===⨯==A B P A P B A P A B P A P B A P A B P A P B A P A B P A P AB P由于A 与A 互不相容,且构成完备事件组, 因此B A AB B +=可分解为两个互不相容事件的并, 则有1049036902412)()()(==+=+=B A P AB P B P 又因B A B A B A AB ,,,之间两两互不相容且构成完备事件组, 因此有C B A C B A BC A ABC C +++=分解为四个互不相容的事件的并,且720120849030)|()()(72072839024)|()()(72072839024)|()()(72024829012)|()()(=⨯===⨯===⨯===⨯==B A C P B A P C B A P B A C P B A P C B A P B A C P B A P BC A P AB C P AB P ABC P则104720288720120727224()()()()(==+++=+++=C B A P C B A P BC A P ABC P C P 因此有P (A )=P (B )=P (C ), 证毕.22. 用3个机床加工同一种零件, 零件由各机床加工的概率分别为0.5, 0.3, 0.2, 各机床加工的零件为合格品的概率分别等于0.94, 0.9, 0.95, 求全部产品中的合格率. 解: 设A 1,A 2,A 3零件由第1,2,3个机床加工, B 为产品合格, A 1,A 2,A 3构成完备事件组. 则根据题意有P (A 1)=0.5, P (A 2)=0.3, P (A 3)=0.2,P (B |A 1)=0.94, P (B |A 2)=0.9, P (B |A 3)=0.95, 由全概率公式得全部产品的合格率P (B )为93.095.02.09.03.094.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P23. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率.解: 设A 0,A 1,A 2,A 3为第一次比赛取到了0,1,2,3个新球, A 0,A 1,A 2,A 3构成完备事件组. 设B 为第二次取到的3个球中有2个新球. 则有22962156101112321)|(,552132101112789321)(,442152167101112321)|(,55272101112389321)(,552842178101112321)|(,2202710111239321)(,552732189101112321)|(,2201101112321)(312162633123933121527231213292312142813122319131213290312330=⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯==C C C A B P C C A P C C C A B P C C C A P C C C A B P C C C A P C C C A B P C C A P根据全概率公式有455.01562.02341.00625.00022.022955214421552755282202755272201)|()()(3=+++=⋅+⋅+⋅+⋅==∑=i i i A B P A P B P 24. 某商店收进甲厂生产的产品30箱, 乙厂生产的同种产品20箱, 甲厂每箱100个, 废品率为0.06, 乙厂每箱装120个, 废品率是0.05, 求: (1)任取一箱, 从中任取一个为废品的概率;(2)若将所有产品开箱混放, 求任取一个为废品的概率. 解: (1) 设B 为任取一箱, 从中任取一个为废品的事件. 设A 为取到甲厂的箱, 则A 与A 构成完备事件组056.005.04.006.06.0)|()()|()()(05.0)|(,06.0)|(4.05020)(,6.05030)(=⨯+⨯=+=======A B P A P A B P A P B P A B P A B P A P A P(2) 设B 为开箱混放后任取一个为废品的事件.则甲厂产品的总数为30×100=3000个, 其中废品总数为3000×0.06=180个, 乙厂产品的总数为20×120=2400个, 其中废品总数为2400×0.05=120个, 因此...055555555.0540030024003000120180)(==++=B P25. 一个机床有1/3的时间加工零件A , 其余时间加工零件B , 加工零件A 时, 停机的概率是0.3, 加工零件B 时, 停机的概率是0.4, 求这个机床停机的概率.解: 设C 为加工零件A 的事件, 则C 为加工零件B 的事件, C 与C 构成完备事件组. 设D 为停机事件, 则根据题意有 P (C )=1/3, P (C )=2/3, P (D |C )=0.3, P (D |C )=0.4, 根据全概率公司有367.04.0323.031)|()()|()()(=⨯+⨯=+=C D P C P C D P C P D P 26. 甲, 乙两部机器制造大量的同一种机器零件, 根据长期资料总结, 甲机器制造出的零件废品率为1%, 乙机器制造出的废品率为2%, 现有同一机器制造的一批零件, 估计这一批零件是乙机器制造的可能性比它们是甲机器制造的可能性大一倍, 今从该批零件中任意取出一件, 经检查恰好是废品, 试由此检查结果计算这批零件为甲机器制造的概率.解: 设A 为零件由甲机器制造, 则A 为零件由乙机器制造, A 与A 构成完备事件组. 由P (A +A )=P (A )+P (A )=1并由题意知P (A )=2P (A ), 得P (A )=1/3, P (A )=2/3. 设B 为零件为废品, 则由题意知P (B |A )=0.01, P (B |A )=0.02,则根据贝叶斯公式, 任抽一件检查为废品条件下零件由甲机器制造的概率为2.005.001.002.03201.03101.031)|()()|()()|()()|(==⨯+⨯⨯==+=A B P A P A B P A P A B P A P B A P 27. 有两个口袋, 甲袋中盛有两个白球, 一个黑球, 乙袋中盛有一个白球两个黑球. 由甲袋中任取一个球放入乙袋, 再从乙袋中取出一个球, 求取到白球的概率.解: 设事件A 为从甲袋中取出的是白球, 则A 为从甲袋中取出的是黑球, A 与A 构成完备事件组. 设事件B 为从乙袋中取到的是白球. 则P (A )=2/3, P (A )=1/3, P (B |A )=2/4=1/2, P (B |A )=1/4, 则根据全概率公式有417.012541312132)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P28. 上题中若发现从乙袋中取出的是白球, 问从甲袋中取出放入乙袋的球, 黑白哪种颜色可能性大?解: 事件假设如上题, 而现在要求的是在事件B 已经发生条件下, 事件A 和A 发生的条件概率P (A |B )和P (A |B )哪个大, 可以套用贝叶斯公式进行计算, 而计算时分母为P (B )已上题算出为0.417, 因此2.0417.04131)()|()()|(8.0417.02132)()|()()|(=⨯===⨯==B P A B P A P B A P B P A B P A P B A PP (A |B )>P (A |B ), 因此在乙袋取出的是白球的情况下, 甲袋放入乙袋的球是白球的可能性大. 29. 假设有3箱同种型号的零件, 里面分别装有50件, 30件和40件, 而一等品分别有20件, 12件及24件. 现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回). 试求先取出的零件是一等品的概率; 并计算两次都取出一等品的概率.解: 称这三箱分别为甲,乙,丙箱, 假设A 1,A 2,A 3分别为取到甲,乙,丙箱的事件, 则A 1,A 2,A 3构成完备事件组.易知P (A 1)=P (A 2)=P (A 3)=1/3.设B 为先取出的是一等品的事件. 则6.04024)|(,4.03012)|(,4.05020)|(321======A B P A B P A B P 根据全概率公式有467.036.04.04.0)|()()(31=++==∑=i i i A B P A P B P设C 为两次都取到一等品的事件, 则38.039402324)|(1517.029301112)|(1551.049501920)|(240224323021222502201=⨯⨯===⨯⨯===⨯⨯==C C A C P C C A C P C C A C P根据全概率公式有22.033538.01517.01551.0)|()()(31=++==∑=i i i A C P A P C P30. 发报台分别以概率0.6和0.4发出信号“·”和“—”。

概率论与随机过程第1章45节PPT课件

概率论与随机过程第1章45节PPT课件


海 大
解: 设A:第一次取到次品;
AB

B:第二次取到次品。
通 第一次取走一只次品后,
信 盒中还剩下9只产品,其中
A
___
AB
学 院
只有2个次品,故
PB/ A 2.
B S
9
又 BAB AB,且 (AB)(AB)故
P (B ) P (A ) B P (_ A _ B )_ 32 733 19 019 010
P B /A P (B )
上 海 大 学
❖ 从样本空间分析: 第一次抽取时的样本空间
S e 1,次 e2品 , e3,e 4,正 ... e品 10,


学 院 当A发生后,S缩减为
SA e i次 1 ,e 品 i2, ,e 4,正 ... e品 10,
信 概率是多少?


类型 W(白)
R(红) 共计
N(新)
40
30
70
O(旧)
20
共计
60
10
30
40
100
解: 按题意,即求P(W/N)=? 1) 在缩减样本空间N中考虑计算:P(W/N)=40/70=4/7。
2) 用公式求解:P(W/N)= P(WN)/ P(N)= 40/100 4 70/100 7

海 有关条件概率的三定理

学 1. 概率的乘法定理:
通 信
设A、B∈S,P(A)>0,则
学 院
P(AB)=P(A)P(B|A)。
可推广到三个事件的情形:
A、B、C∈S,P(AB)>0,则有
P(ABC)=P(A)P(B|A)P(C|AB).

概率论第一章PPT课件

概率论第一章PPT课件
则 A B。
事实上,A={4,8},B={2,4,6,8,10}。
2021/3/24
-
26
AB Ω
事件的相等
若A B且B A ,则称事件A 与事件B 相等,记作A=B。
2021/3/24
-
27
2.事件的和(并)
我们称“事件A与事件B至少一个发生”的事件 为事件A与事件B的和事件,记作A+B(或A∪B)。
对于随机现象,人们经过长期实践并深入研究之后, 发现这类现象在大量重复试验或观察下,它的结果会呈现 某种规律性,这种规律性我们称之为统计规律性。
概率论就是研究和揭示随机现象统计规律性的一门数 学学科;数理统计是以概率论为基础,研究如何通过观察 和试验认识自然规律和社会规律的一门方法论学科。
2021/3/24
A
B
2021/3/24
-
25
§1.1.3 事件的关系及运算
设A,B,…,是随机试验E的事件,Ω是E 的样本空间。
1. 事件的包含关系
若事件A发生必然导致事件B发生,则称事件A包含于
事件B或事件B包含事件A,记作 A B。
例如,在例1.2中,若令
A={抽到能被4整除的号码},
B={抽到偶数号码},

特殊事件
试验最直接的可能结果
由若干个基本事件共同 在一起才能表达的结果
必然事件 不可能事件
每次试验必然发 生的结果,记 为Ω
每次试验必不发生的 结果,记为
2021/3/24
-
24
从集合的角度看
显然,样本空间是以基本事件为元素的集合,复 杂事件是样本空间的至少包含两个元素的真子集, 基本事件就是一个单点集,必然事件就是样本空间, 不可能事件是样本空间的空子集。

概率论第一章课件ppt

概率论第一章课件ppt

概率的性质
1. P(F) 0
2.若 A1, A2,..., An是两两互不相容事件,则有 P ( A 1 A 2 . . . A n ) P ( A 1 ) P ( A 2 ) . . . P ( A n )
3.设 A , B 是两个事件,若 A B , 则有
P(BA)P(B)P(A); P(B)P(A).
概率论的广泛应用几乎遍及所有的科学 领域, 例如天气预报, 地震预报, 产品的抽样 调查; 在通讯工程中可用以提高信号的抗干 扰性,分辨率等等.
概率论的起源
大约400年以前, 欧洲一些赌徒遇到这样的问题
1. 同时掷两枚骰子, 以每个骰子朝上的点数之和 作为赌博的内容, 问赌注下在多少点最有利?
2.甲乙二人赌博,各出赌注30元,共60元,每局甲、 乙胜的机会均等,都为1/2。约定:谁先胜满3局,则 他赢得全部赌注60元。现已赌完3局,甲2胜1负,因 故中断赌博,问这60元如何分给2人才算公平?
= P({e1})+ P({e2})+ … +P({en})= nP({ei}) 所以, P({ei})=1/n, i=1, 2, …, n. 那么, P(A)=P({ei1}∪{ei2}∪ … ∪{eik})
“1”, “2”, “3”, “4”, “5” 或 “6”.
实例4 “从一批含有正品 和次品的产品中任意抽取 一个产品”.
实例5 “过马路交叉口时, 可能遇上各种颜色的交通 指挥灯”.
其结果可能为: 正品 、次品.
实例6 “出生的婴儿可 能是男,也可能是女”.
实例7 “明天的天气可 能是晴 , 也可能是多云 或雨”等都为随机现象.
事先明确试验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果

概率论第一章ppt课件

概率论第一章ppt课件

i1
i1
13
3. 积(交)事件 : 事件A与事件B同时发生,记
作 AB 或AB。
推广:n个事件A1, A2,…, An同时发生,记作
n
n
A1A2…An或 A i 或 A i
i1
i1
14
4. 差事件: A-B称为A与B的差事件, 表示事件 A发生而事件B不发生
15
5. 互不相容事件(也称互斥的事件): 即事件 A与事件B不能同时发生。AB= 。
A 1 “: 至少有一人命中目标 A 2 “: 恰有一人命中目标” A 3 “: 恰有两人命中目标” A 4 “: 最多有一人命中目标 A 5 “: 三人均命中目标” A 6 “: 三人均未命中目标”
”:
ABC
: ABCABCABC
: AC BABC ABC
”: BCACAB
:
ABC
:
ABC
21
小结
P Ak
k 1
k
k 1 k!
e
1 e

本题可采用另外一种解法. A A0 { 该地一年内
未发生交通事故} ,于是
P(A) 1 P(A) 1 P( A0) 1 e .
33
小结
• 本节课主要讲授: 1.概率的统计定义; 2.概率的公理化定义; 3.概率的性质(重点)。
34
§1.3 古典概型与几何概型
验,简称试验。随机试验常用E表示。
7
1.1.3 随机事件与样本空间
❖样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间, 记为Ω. ❖样本点: 试验的每一个可能出现的结果(样本空 间中的元素)称为试验E的一个样本点, 记为ω.
8
例1-2:

东华大学8个本科专业、6个研究生层次学科领域加入“卓越计划”

东华大学8个本科专业、6个研究生层次学科领域加入“卓越计划”

东华大学8个本科专业、6个研究生层次学科领域加入“卓越
计划”
佚名
【期刊名称】《纺织服装教育》
【年(卷),期】2011(026)005
【摘要】日前,教育部办公厅公布了“卓越工程师教育培养计划”(“卓越计划”)2011年学科专业名单,全国6l所第一批“卓越计划”学校的462个本科专业或试点班、293个研究生层次学科领域被批准加入“卓越计划”。

东华大学纺织工程、轻化工程、软件工程、机械工程及自动化、高分子材料与工程、电子信息工程、网络工程、环境工程8个本科专业以及纺织工程、计算机技术、软件工程、材料工程、电子与通信工程、环境工程6个研究生层次学科领域被批准加入“卓越计划”。

【总页数】1页(P376-376)
【正文语种】中文
【中图分类】G648.9
【相关文献】
1.结合就业市场需求的“三层次”实践教学改革研究——以东华理工大学《城乡规划图件制作与处理》课程为例
2.硕士层次卓越工程师培养企业学习环节质量保障体系研究与实践——以东华理工大学为例
3.东华理工大学泛化学本科专业的新时代人才培养模式探究
4.数学类本科专业建模与计算人才的培养体系与实践——以东华理工大学为例
5.东华大学新增7个本科专业
因版权原因,仅展示原文概要,查看原文内容请购买。

概率统计教材(东华大学高教2017版)参考答案

概率统计教材(东华大学高教2017版)参考答案

《概率论与数理统计》(东华大学高教2017版)参考答案第1章1. (2) (4).2. (3).3. (1)不能,样本量过小. (2)样本量达到近200。

4.(1)不合理,总体中浅色衣服比例未知;(2)例如,总体中着深色和浅色衣服人数相同。

5. (2)(3)适当,每个个体被抽到可能性相同。

第2章4. 均值41.75,中位数32.9,标准差=21.955. 9,157. 均值27320.35, 中位数24487, 标准差6503.1, 方差42290357.1. 20000开始,每隔5000一组。

分组后计算,均值26693.55, 中位数22500。

8. 10%分位数 22307, 85%分位数 318279. 第一四分位8,中位数=10, 第三四分位17.510. 相关系数为0.94. 说明交通事故数和死亡人数呈明显的正相关11. R=--0.7638. 受教育年限与脉搏数负相关第3章1 (1) 0,1,2,3(2)000,001,010,011,100,101,110,111 (注:0正,1反)(3)2,3,4,5,6,7,8,9,10,11,12(4)0,1,2,……(5) {(x,y)|x^2+y^2<1}2.(1)7;(2)1,3,4,5,7;(3)3,5,7;(4)1,3,4,5;(5)4,6;(6)1,4 4. (1) 1234A A A A ;(2)41i i A =(3) 1234123412341234A A A A A A A A A A A A A A A A (4) 123412341234123412341234A A A A A A A A A A A A A A A A A A A A A A A A5. 根据加法公式证明6. 根据加法公式证明7. 0.78 . 0.15,0.5,0.1,0.5 9 . 2/9 10. 89/14411. 0.5815 , 0.9819 12. 0.125 , 0.1665 ,0.75 13. 0.04614 . 庄家赢的概率0.5177,0.491415. 一等 ; 二等 ; 三等。

(全)概率论与数理统计答案(东华大学出版)

(全)概率论与数理统计答案(东华大学出版)

第二章 离散型随机变量及其分布律第二节 一维离散型随机变量及其分布律习题Page 551、 一个口袋里有6只球,分别标有数字-3、-3、1、1、1、2,从中任取一个球,用ξ表示所得球上的数字,求ξ的分布律。

解答:因为ξ只能取-3、1、2,且分别有2、3、1个,所以ξ的分布律为:ξ-3 1 2 {}i P x ξ=2/63/61/62、 在200个元件中有30个次品,从中任意抽取10个进行检查,用ξ表示其中的次品数,问ξ的分布律是什么?解答:由于200个元件中有30个次品,只任意抽取10个检查,因此10个元件中的次品数可能为0、1、2到10个。

当次品数ξ为k 时,即有k 个次品时,则有10-k 个正品。

所以:ξ的分布律为:103017010200{},0,1,,10k k C C P k k C ξ-===。

3、 一个盒子中有m 个白球,n m -个黑球,不放回地连续随机地从中摸球,直到取到黑球才停止。

设此时取到的白球数为ξ,求ξ的分布律。

解答:因为只要取到黑球就停止,而白球数只有m 个,因此在取到黑球之前,所取到的白球数只可能为0m 中的任意一个自然数。

设在取到黑球时取到的白球数ξ等于k ,则第1k +次取到是黑球,以i A 表示第i 次取到的是白球;_i A 表示第i 次取到的是黑球。

则ξ的分布律为:__12112111{}()()(|)(|)11,0,1,,11k k k k P k P A A A A P A P A A P A A A m m m k n m k mn n n k n kξ++===--+-=⋅⋅⋅⋅=--+-。

4、 汽车沿街道行驶,要通过3个有红绿灯的路口,信号灯出现什么信号相互独立,且红绿灯显示时间相等。

以ξ表示该车首次遇到红灯前已通过的路口数,求ξ的分布律。

解答:因为只有3个路口,因此ξ只可能取0、1、2、3,其中{3}ξ=表示没有碰到红灯。

以i A 表示第i 个路口是红灯,因红绿灯显示时间相等,所以()1/2i P A =,又因信号灯出现什么信号相互独立,所以123,,A A A 相互独立。

东华大学卓越计划概率论第1章

东华大学卓越计划概率论第1章

他们把弹洞的位置报上来。然后自己铺开一张大白纸,
4
画出飞机的轮廓,再把小窟窿一个个添上去。画完之
后大家一看,飞机浑身上下都是窟窿,只有飞行员座
舱和尾翼两个地方几乎是空白。 沃尔德告诉大家:从数学家的眼光来看,这张图
明显不符合概率分布的规律,而明显违反规律的地方
往往是问题的关键。飞行员们一看就明白了:如果座
解:
方法一:若事先确定第几个是小偷,则小偷被抓获的 6 概率为 。 24 方法二:若采用“过半选优”法,则小偷被抓获的概 率 10 为 24 。 1、上例反映了数学的精妙之处,每种可能性均
可用数字表示出来。
2、利用高度来确定结果,这就是“随机过程”。
7
概率论与数理统计
第一章 概率论的基本概念
8
定义:在试验或观测之前,不能确切知道
⑵ 每个样本点 ei (1,2,…,n) 出现的可能性 即发生的概率相同。
1 P e1 P e2 P en n
29
概率的古典定义
设 S={e1,e2,…,en} 为古典概型,事件A 发生的概率定义为
k A所包含的基本事件总数 P A n 基本事件总数
17
⑴ A( A )发生当且仅当 A (A)不发生; ⑵ 若两个事件A、B满足
① A B S
② AB 称A、B对立或称A、B互逆。
1 A, B互逆 A, B互斥,反之不成立; 于是有 2 A A, A S A 3 A B AB A AB
18
35
⑶ 一口袋中有5红2白7个球,从袋中任取一
球,有放回地取2次,求:
① 均取红球的概率;
② 第一次取红球,第二次取白球的概 设事件A、B的概率分别为 和 ,求下列 3 2

概率论(01章)课件。

概率论(01章)课件。
出现正面的次数m 出现正面的频率m/n
1061 2048 6019 12012 14994
0.518 0.5069 0.5016 0.5005 0.4998
频率和概率
频率的稳定性 随机事件A在相同条件下重复多次时,事件A 随机事件 在相同条件下重复多次时,事件 发 在相同条件下重复多次时 生的频率在一个固定的数值p附近摆动, 生的频率在一个固定的数值 附近摆动,随试验次数 附近摆动 的增加更加明显 事件的概率 事件A的频率稳定在数值 ,说明了数值p可以用 事件 的频率稳定在数值p,说明了数值 可以用 的频率稳定在数值 来刻划事件A发生可能性大小,可以规定为事件 来刻划事件A发生可能性大小,可以规定为事件A 的概率
概率的统计定义
对任意事件A,在相同的条件下重复进行n 对任意事件A,在相同的条件下重复进行 A,在相同的条件下重复进行 次试验,事件A 次试验,事件A发 生的频率 m/n,随着试验次 , 数n的增大而稳定地在某个常数 附近摆动那么称 的增大而稳定地在某个常数 p为事件A的概率,记为 为事件A的概率, 为事件
随机试验: 随机试验:抛掷两颗骰子
Rolling two die 随机试验 抛掷两颗骰子, 抛掷两颗骰子,观察出现的点数 试验的样本点和基本事件
样本空间 ),(1, ) ( , ),( ),(1, ), ={(1,1),( ,2),(1,3),( ,4), , ),( ),(1, ), ,(6, ),( ),...,( ),(6, (1,5),( ,6), ,( ,1),( , , ),( 2), ,( ,6)}. ),...,( ), ,(6, )
样本空间 写出下列事件的样本空间
E1: 射手向以一目标射击,记录射击的次数 射手向以一目标射击,

概率论第一章课件

概率论第一章课件

• 使概率论成为数学一个分支的另一奠基人 是瑞士数学家雅各布-伯努利[1654-1705]。 他的主要贡献是建立了概率论中的第一个 极限定理,我们称为“伯努利大数定理” • 到了1730年,法国数学家棣莫弗和数个数 学家建立了关于“正态分布”及“最小二 乘法”的理论 。概率论发展史上的代表人 物是法国的泊松。他推广了伯努利形式下 的大数定律 ,研究得出了一种新的分布 。
课程说明
• 期末闭卷考试,平时课后留作业,每周五收作业。 • 成绩计算方法:期末考试占70%,平时分占30% • 平时分计算方法:作业上交情况,平时上课做题 情况,思考题,讨论题。按百分制记,每上黑板 每上黑板 做一次题加6分 做一次思考题加10分 做一次题加 分,做一次思考题加 分,讲解讨论 题加16分 一次作业没有交扣5分 旷课扣15分 题加 分,一次作业没有交扣 分,旷课扣 分, 累计旷课3次平时分低于 分。 累计旷课 次平时分低于40分 次平时分低于 • 课程安排:讲解 到7章,13周左右作一次概率论 课程安排:讲解1到 章 周左右作一次概率论 应用专题讲解, 周课堂讨论我给出问题 周课堂讨论我给出问题. 应用专题讲解,15周课堂讨论我给出问题 上限100分,下限 分. 注:上限 分 下限0分
摸球问题( 例1.摸球问题(抽奖问题) 摸球问题 抽奖问题)
袋中有a只红球,b 袋中有a只红球,b只白球
(除颜色外无任何差别),现依次将球一只只摸出(不放回), 求第k 求第k次摸到红球的概率
解:将这a + b只球进行编号,其中a只红球为1-a号, b只白球为a+1-a+b号, b只白球为a+1-a+b号,
a b
b
1 f ( x, y ) = 1( a ≤ x ≤b ,0≤ y ≤ M ) M (b − a )

概率统计练习册-仅答案2

概率统计练习册-仅答案2

第一章 概率论的基本概念一、选择题 1.答案:(B ) 2. 答案:(B ) 3.答案:(C ) 4. 答案:(C ) 5. 答案:(C ) 6. 答案:(D ) 7. 答案:(C ) 8. 答案:(D ) 9.答案:(C ) 10.答案:(A ) 11.答案:(C ) 12.答案:(B ) 13.答案:(D ) 14.答案:(A ) 15.答案:(D ) 16.答案:(B ) 17.答案:(A ). 18.答案:(C ) 19.答案:(C ) 二、填空题1.{(正,正,正),(正,正,反),(正,反,反),(反,反,反),(反,正,正),(反,反,正),(反,正,反),(正,反,正)}2.;ABC ABC ABC ABC ABC U U U 或AB BC AC U U 3.0.3,0.5 4.0.7 5.0.3 6.0.6 7.7/12 8.1/4 9.1/6 10.1126011.3/7 12.6/11三、解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )=3150488-+=四、解:由由已知条件定义有11()()(|)1143(|)()()()2()6P A B P A P B A P A B P B P B P B P B ´=揪揪井=? 由乘法公式,得1()()(|)12P A B P A P B A == 由加法公式,得1111()()()()46123P A B P A P B P A B ?+-=+-=五、解:A 1={男人},A 2={女人},B={色盲},显然A 1∪A 2=S ,A 1 A 2=φ由已知条件知12121()()(|)5%,(|)0.25%2P A P A P B A P B A ====o 由贝叶斯公式,有)()()|(11B P B A P B A P =)|()()|()()|()(221111A B P A P A B P A P A B P A P +=2120100002521100521100521=⋅+⋅⋅=六、解、记A 1,A 2分别表“从甲袋中取得白球,红球放入乙袋”再记B 表“再从乙袋中取得白球” ∵ B =A 1B +A 2B 且A 1,A 2互斥∴P (B )=P (A 1)P (B | A 1)+ P (A 2)P (B | A 2)=111n N m Nn m N M n m N M +?++++++第二章 随机变量及其分布一、选择题 1.答案:(B ) 2.答案:(B )3.答案:(D ) 4 答案:(C ) 5.答案:(A ) 6.答案:(B ) 7.答案:(D ) 8.答案:(C ) 9.答案:(B ) 10.答案:(A ) 11.答案:(B ) 12.答案:(D ) 13.答案:(A ) 14.答案:(B ) 二、填空题 1.{}X x £.2.1516c =. 3.12a =.4. a=1/6,b=5/6.5.21(1)4x -. 6.22()21(),2x f x e x m s ps--=-?< ;221(),2y f y e y p-=-?<7. }{270.9910P X -<<=. 8. 3c =.9.130.50.5? ÷ç÷ç÷ç÷ç÷桫 10. 1()()(04)4Y Y f y F y y y¢==<<. 三、解:X 可以取值3,4,5,分布律为一球为号两球为号一球为号再在中任取两球一球为号再在中任取两球22352335243511(3)(3,1,2)1013(4)(4,1,2,3)1016(5)(5,1,2,3,4)10C P X P C C P X P C C P X P C ´====´====´====也可列为下表X : 3, 4,5P :136,,101010四、 解:(1)P (X ≤2)=F X (2)= ln2, P (0<X ≤3)= F X (3)-F X (0)=1,5555(2()(2)ln ln 2ln 2224X X P X F F <<=-=-= (2)其它1,1,()'()0,x e x f x F x ìïï<<ï==íïïïïî五、解:()()()xF x P X x f t dt -=?ò当时当时当时当时2002101012120,()0001,()0212,()0(2)2122,()0(2)01x x xx x F x dt x x F x dt t dt x x F x dt t dt t dt x x F x dt t dt t dt dt -- --<==?=+=#=++-=--<=++-+=ò蝌蝌蝌蝌故分布函数为2200012()2112212x x x F x x x x x <ìïïïïïï?ïïï=íïï--#ïïïïï<ïïî六、解:∵ K 的分布密度为:其他10550()0K f K ìïï<<ï-=íïïïïî要方程有根,就是要K 满足(4K )2-4×4× (K+2)≥0。

东华大学《概率论与数理统计》课件 第一章 随机事件与概率

东华大学《概率论与数理统计》课件 第一章 随机事件与概率
(2) P(S)=1;
(3) 设A1,A何2,…时,P是(A一|列B两)两<互P不(A相)容? 的事件,即AiAj=
,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+….
则称P(A)为事件A的概率。
例 一盒中混有100只新 ,旧乒乓球,各有红、白两 色,分 类如下表。从盒中随机取出一球,若取得的 是一只红球,试求该红球是新球的概率。
1.定义 若对随机试验E所对应的样本空间中的 每一事件A,均赋予一实数P(A),集合函数P(A)满足 条件:
(1) 非负性: P(A) ≥0;
(2) 规范性: P(S)=1;
(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有
概率论与数理统计
第一章 随机事件与概率
教材:
《概率论与数理统计》
魏宗舒编
高等教育出版社
本章主要内容:
1. 概率的概念与性质 2. 事件的关系与运算性质 3. 古典概型概率的计算 4. 加法公式、条件概率、乘法公式 5. 事件的独立性、伯努利概型
重点:古典概型、概率的计算 难点:事件的关系和运算
条件概率、伯努利概型
(2) 单调不减性:若事件AB,则 P(A)≥P(B)
(3) 事件差: A、B是两个事件,

P(A-B)=P(A)-P(AB)
(4) 加法公式:对任意两事件A、B,有 P(AB)=P(A)+P(B)-P(AB)
该公式可推广到任意n个事件A1,A2,…,An的情形 ;
(5) 互补性:P(A)=1- P(A); (6) 可分性:对任意两事件A、B,有

华理概率论与数理统计PPT C11ps

华理概率论与数理统计PPT C11ps

概率论与数理统计主讲教师:胡海燕hyhu@公邮:gailvtongji_hu@ 密码:gailvtongji周四(今天, 实时:周五周日阵雨转阵雨南风主要内容随机事件及其概率数理统计的基本知识⏹⏹随机变量及其分布⏹随机变量的数字特征⏹多维随机变量⏹大数定律与中心极限定理⏹⏹参数估计⏹假设检验⏹方差分析⏹回归分析◆可在相同条件下重复进行。

◆每次试验的可能结果不止一个,并且事先明确试验的所有可能结果。

◆试验前无法预知究竟哪个结果出现。

♊样本空间所有可能结果放在一起构成的集合,记为。

♊随机试验Ω♊样本点每一个可能的结果,记为。

ω♊随机事件样本空间的一个子集,简称事件。

事件常用大写字母A、B、C等表示。

♊基本事件由一个样本点组成的单点集称为一个基本事件,记为E.♊事件A发生该子集A中至少有一个样本点出现。

●特殊的事件☞必然事件:Ω☞不可能事件:∅解:令ωij i j i j (,,,,,,)<=12345表示两球的号码为i 和j ,则 Ω={ωωωωωωωωωω12131415232425343545,,,,,,,,,}事件A 表示两个球的号码为双数, 则 A ={ω24}事件B 表示两个球的号码为单数, 则 B ={351513,,ωωω}事件C 表示两个球的号码均不超过3, 则 C ={ωωω121323,,}例2.一袋中有三个白球(编号1,2,3)与二个黑球(编号4,5),现从中任取两个,观察两球的号码。

试表示事件“两个球的号码为双数”、“两个球的号码为单数”、“两个球的号码不超过3”。

“两个球的号码都不超过5”=“有一个球的号码是6”=Ω∅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9
例1:判断下列现象为随机现象还是决定性现
象?
(1) 扔一枚分币; (2) 从93个产品(其中90正3次)中抽取一个
产品;
(3) 在标准大气压下将水加热至100℃必沸腾; (4) 火箭速度超过第一宇宙速度就会摆脱地球 引力而飞出地球。
10
§1.1 随机试验 定义:概率论中将对随机现象的观察或为观察 随机现象而进行的试验称为随机试验,它应具
20
例2:圆柱形产品,直径、长度都要合格,产
品才算合格。
规定A=“长度合格”; B=“直径合格”; C=“产品合格”,描述A,B,C之间的关系。 例3: A1 =“2个样品中有一个次品”; A2 =“2个样品全是次品”; B =“2个样品中至少有一个次品”, 求 A2 , B 。
21
例4:p.5,例题3。 例5:掷骰子,A=“掷出奇数点”;B=“点数不 超过3”;C=“点数大于2”; D=“掷出5点”。 求 A∪B;B∪C;AB;BD; A ; A C; A-B;B-A。
36
⑸ ① 将一颗骰子连掷两次,求出现“点数之
22
例6:某人连续三次购买体育彩票,每次一张, 令A、B、C分别表示其第一、二、三次所买的
彩票中奖事件,试用A、B、C表示下列事件:
(1) 第三次未中奖; (2) 只有第三次中了奖; (3) 恰有一次中奖; (4) 至少有一次中奖; (5) 不止一次中奖; (6) 至多中奖两次。
23
§1.3 频率与概率
30
二、古典概型的计算 1、复习排列组合 ⑴ 两个基本原理 ① 乘法原理 进行A过程有n种方法,B过程有m种方法,则
进行AB过程有mn种方法。 ② 加法原理
进行A过程有n种方法,B过程有m种方法,则 进行A∪B过程有m+n种方法。
31
⑵ 排列:从n个元素中取出r个元素进行有顺
序地放置。 ① 有放回选取,从n个元素中有放回选取r个
时往往损失惨重。美国空军对此十分头疼:如果要降
低损失,就要往飞机上焊防弹钢板;但如果整个飞机
都焊上钢板,速度、航程、载弹量等都要受影响。 怎么办?空军请来了数学家亚伯拉罕· 沃尔德。沃 尔德的方法十分简单。他把统计表发给地勤技师,让
他们把弹洞的位置报上来。然后自己铺开一张大白纸,
4
画出飞机的轮廓,再把小窟窿一个个添上去。画完之
一、频率
定义:对于随机事件A,若在n次试验中出现了
nA次,则称
fn(A)=nA/n 为事件A在n次试验中出现的频率。 例1:掷一枚硬币,A=“正面向上”,几位数学 家的试验结果如下:
24
试验次数 正面向上的次数 正面向上的频率 n nA fn(A)
De Morgen Buffon Pearson 2048 4040 12000 24000 1001 2048 6019 12012 0.488 0.5069 0.5016 0.5005
27
⑷ P A P A 1 ⑸ 加法公式:
P A B P A P B P AB
P A B C P A P B P C P AB P AC P BC P ABC
可用数字表示出来。
2、利用高度来确定结果,这就是“随机过程”。
7
概率论与数理统计
第一章 概率论的基本概念
8
定义:在试验或观测之前,不能确切知道
哪个结果会发生,称此现象为随机现象。
相反,在一定条件下能够明确预知其结果,
称此现象为决定性现象。在大量重复试验
或观察中所呈现出的固有规律性,称为
统计规律性。
19
4、德摩根(De Morgen)律:
A B A B
⑴ 此律又称对偶律;
A B A B
⑵ 对于n个事件,甚至无限可列个事件,此律
亦成立。
A1 A2 An A1 A2 An A1 A2 An A1 A2 An
场比赛?
例3:袋中有5红2白7个球,有放回地每次从
袋中摸一球,共摸三次,问两次摸红球、一次
摸白球的试验结果有几个?
34
2、具体例子
⑴ 设有20个某种零件,其中16个为一级品,
4个为二级品,现从中任取三个,求:
① 只有一个一级品的概率;
② 至少有一个一级品的概率。
⑵ 从0、1、2、3这4个数字中任取3个进行排 列,求“取得的3个数字排成的数是三位数且 是偶数”的概率。
n 或 r 。
组合的计算是通过考虑一个组合可以产生多 少个排列而得到结果。
A r!C
r n
r n
r n
n! n C r r !n r !
r n Cn Cn r
33
例1:某铁路线上共有20个车站,要为这条铁
路线准备多少种车票? 例2:30个篮球队进行单循环比赛,要进行几
fn(A)稳定在0.5附近摆动,但不是普通 的极限意义。
25
二、概率的统计意义 1、定义:随机试验E中的事件A,在n次重复试
验中出现的频率为fn(A) ,当n很大时,fn(A) 稳
定地在某一数值p的附近摆动,且随着n的增 大,摆动幅度会减小,则称p为随机事件A发生 的概率,记为
P A p
概率论与数理统计
绪 论
1
目前,数学在经济、金融、管理科学等领
域的应用越来越广泛,需要应用随机数学对这
些领域中的许多问题及大量数据建模、分析和 进行推断,为此,必须掌握随机数学的基础课 程——概率论与数理统计。 应 用
2
理论基 础
概率论是研究随机现象的数量规律的数学 分支,从近代博弈论逐步发展起来;数理统计
以概率论为工具研究统计资料的收集、整理,
并依据收集现象的规律性作出科学的分析和推 断。 概率论与数理统计以随机现象的统计规律 性为研究对象,其最终目的在于用随机现象 的规律性指导我们的实践。
3
引例1:钢板的故事
二战后期,美军对德国和日本法西斯展开了大规
模战略轰炸,每天都有成千架轰炸机呼啸而去,返回
备以下三个特征:
⑴ 每次试验的可能结果不止一个,且事先明确 知道试验的所有可能性结果。 ⑵ 进行试验之前不能确定哪一个结果会发生。 ⑶ 试验可以在相同条件下重复进行。 随机试验简称试验,用英文字母E表示。
11
例2:随机试验的相关例子。
E1:抛一枚硬币,观察正面H、反面T出现的情况; E2:将一枚硬币抛掷三次,观察正面H、反面T出现的
2134
4123
2 1 4 3√ 2 3 1 4 √ 2 3 4 1 √2 4 1 3
4132 4213 4231 4312
2431
3421 4321
6
3 1 2 4√ 3 1 4 2 √ 3 2 1 4 √ 3 2 4 1 √ 3 4 1 2
解:
方法一:若事先确定第几个是小偷,则小偷被抓获的 6 概率为 。 24 方法二:若采用“过半选优”法,则小偷被抓获的概 率 10 为 24 。 1、上例反映了数学的精妙之处,每种可能性均
17
⑴ A( A )发生当且仅当 A (A)不发生; ⑵ 若两个事件A、B满足
① A B S
② AB 称A、B对立或称A、B互逆。
1 A, B互逆 A, B互斥,反之不成立; 于是有 2 A A, A S A 3 A B AB A AB
18
情况;
E3:抛一颗骰子,观察出现的点数;
E4:记录某城市120急救电话台一昼夜接到的呼唤次
数;
E5:在一批灯泡中任取一只,测试它的寿命;
E6:记录某地一昼夜的最高温度和最低温度。
12
§1.2 样本空间、随机事件 一、样本空间 定义:随机试验E的每一个基本结果,称为样
本点,样本点的全体组成的集合称为样本空间,
⑵ 每个样本点 ei (1,2,…,n) 出现的可能性 即发生的概率相同。
1 P e1 P e2 P en n
29
概率的古典定义
设 S={e1,e2,…,en} 为古典概型,事件A 发生的概率定义为
k A所包含的基本事件总数 P A n 基本事件总数
后大家一看,飞机浑身上下都是窟窿,只有飞行员座
舱和尾翼两个地方几乎是空白。 沃尔德告诉大家:从数学家的眼光来看,这张图
明显不符合概率分布的规律,而明显违反规律的地方
往往是问题的关键。飞行员们一看就明白了:如果座
舱中弹,飞行员就完了;尾翼中弹,飞机失去平衡就
会坠落——这两处中弹,轰炸机多半回不来了,难怪 统计数据是一片空白。因此,结论很简单:只需要给 这两个部位焊上钢板就行了。
26
2、概率的基本性质
⑴⑵⑶为基本性质
⑴ 非负性:对任一事件A,有0≤P(A)≤1。 ⑵ 规范性: P S 1, P 0 ⑶ 有限可加性:若事件A,B互斥,则
P A B P A P B
进一步,如果A1,A2,…,Am是两两互斥的事件,则
m m P Ai P Ai i 1 i高很高,躲进了咖啡馆。现馆内有顾客 4人,出于某种原因警察只能在馆外等待机会,判断 跟踪。 假设:1,2,3,4代表4个人从矮到高,即“4”为小偷,
求警察抓住小偷的概率。
1234 1 2 4 3√ 1 3 2 4 √ 1 3 4 2 √1 4 2 3 1432
(二) 运算规律 1、交换律:
A B B A
2、结合律:
AB BA
A B C A B C
3、分配律:
AB C A BC
A B C A C B C A B C A C B C
相关文档
最新文档