2019年初二数学上期末试卷(附答案)
2019年八年级数学上期末试卷(及答案)
9.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?
A.5B.6C.7D.10
10.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于 CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是
解析:2(x-2)2
【解析】
【分析】
先运用提公因式法,再运用完全平方公式.
【详解】
:2x2-8x+8= .
故答案为2(x-2)2.
【点睛】
本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.
15.【解析】【分析】先将分式方程去分母转化为整式方程再由分式方程有增根得到然后将的值代入整式方程求出的值即可【详解】∵∴∵若分式方程有增根∴∴故答案是:【点睛】本题考查了分式方程的增根掌握增根的定义是解
【详解】
解:∵多边形的每个内角都是108°,
∴每个外角是180°﹣108°=72°,
∴这个多边形的边数是360°÷72°=5,
∴这个多边形是五边形,
故选C.
【点睛】
此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.
12.A
解析:A
【解析】
【分析】
将M,N代入到M-N中,去括号合并得到结果为(a﹣1)2≥0,即可解答
故选A.
7.D
解析:D
【解析】
【分析】
根据全等三角形的判定定理逐个判断即可.
【详解】
2019初二数学上册期末试卷附答案
2019初二数学上册期末试卷附答案一、选择(本题每小题2分,共20分)1. 如图,下列图案是我国几家银行的标志,其中轴对称图形有( )A. 1个B. 2个C. 3个D. 4个2. 下列说法中不准确的是( )A. 全等三角形的对应高相等B. 全等三角形的面积相等C. 全等三角形的周长相等D. 周长相等的两个三角形全等3. 下列计算中,准确的是( )A. x3+x3=x6B. a6÷a2=a3C. 3a+5b=8abD. (﹣ab)3=﹣a3b34. 下列各式能够分解因式的是( )A. x2﹣(﹣y2)B. 4x2+2xy+y2C. ﹣x2+4y2D. x2﹣2xy﹣y25. 在有理式,(x+y),,,中,分式有( )A. 1个B. 2个C. 3个D. 4个6. 若使分式有意义,则x的取值范围是( )A. x≠2B. x≠﹣2C. x>﹣2D. x﹣2 D. x11,所以能构成三角形;②当11cm为底边时,则腰长=(26﹣11)÷2=7.5cm,因为7.5+7.5>11,所以能构成三角形.故答案为:7.5cm或11cm.点评:此题主要考查等腰三角形的性质及三角形三边关系的综合使用,关键是利用三角形三边关系实行检验.三、解答21. 计算题:(1)÷;(2)3a3b2÷a2﹣b(a2b﹣3ab﹣5a2b)考点:分式的混合运算.专题:计算题.分析: (1)原式利用除法法则变形,约分即可得到结果;(2)原式第一项利用单项式除以单项式法则计算,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果.解答:解:(1)原式==;(2)原式=3ab2﹣a2b2+3ab2+5a2b2=6ab2+4a2b2.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22. 求下列方程的解.(1)=;(2)+3=.考点:解分式方程.专题:计算题.分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答:解:(1)去分母得:3x=5x﹣10,移项合并得:2x=10,解得:x=5,经检验x=5是分式方程的解;(2)去分母得:1+3(x﹣2)=x﹣1,去括号得:1+3x﹣6=x﹣1,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23. 因式分解:(1)(2x+y)2﹣(x+2y)2;(2)m2﹣14m+49.考点:因式分解-使用公式法.分析: (1)直接利用平方差公式分解因式得出即可;(2)直接利用完全平方公式分解因式得出即可.解答:解:(1)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=(3x+3y)(x﹣y)=3(x+y)(x﹣y);(2)m2﹣14m+49=(m﹣7)2.。
2019年初二数学上期末试卷附答案
2019年初二数学上期末试卷附答案一、选择题1.已知三角形的两边长分别为4cm 和9cm,则下列长度的线段能作为第三边的是( ) A .13cm B .6cm C .5cm D .4m2.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是A .(0,0)B .(0,1)C .(0,2)D .(0,3)3.风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共x 人,则所列方程为( )A .18018032x x -=+B .18018032x x -=+C .18018032x x -=- D .18018032x x -=- 4.下列各因式分解的结果正确的是( ) A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+- 5.计算:(4x 3﹣2x )÷(﹣2x )的结果是( )A .2x 2﹣1B .﹣2x 2﹣1C .﹣2x 2+1D .﹣2x 2 6.如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,在格点F 、G 、H 、I 中选出一个点与点D 、点E 构成的三角形与△ABC 全等,则符合条件的点共有( )A .1个B .2个C .3个D .4个7.下列各式中不能用平方差公式计算的是( )A .()2x y)x 2y -+( B .() 2x y)2x y -+--( C .()x 2y)x 2y ---( D .() 2x y)2x y +-+( 8.等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为( ) A .30B .30或150 C .60或150 D .60或120 9.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙10.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( )A .5B .4C .3D .2 11.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .AB .BC .CD .D 12.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°二、填空题13.如图所示,在Rt △ABC 中,∠A=30°,∠B=90°,AB=12,D 是斜边AC 的中点,P 是AB 上一动点,则PC +PD 的最小值为_____.14.如图ABC ,24AB AC ==厘米,B C ∠=∠,16BC =厘米,点D 为AB 的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,若点Q 的运动速度为v 厘米/秒,则当BPD △与CQP 全等时,v 的值为_____厘米/秒.15.如图,在△ABC 中,AB = AC,BC = 10,AD 是∠BAC 平分线,则BD = ________.16.若分式242x x -+的值为0,则x =_____. 17.若a ,b 互为相反数,则a 2﹣b 2=_____.18.如果代数式m 2+2m =1,那么22442m m m m m +++÷的值为_____. 19.因式分解34x x -= .20.若分式||33x x-+的值是0,则x 的值为________. 三、解答题21.分解因式:(1)(a ﹣b )2+4ab ;(2)﹣mx 2+12mx ﹣36m .22.如图,在Rt ABC ∆中,90BCA ∠=︒,30A ∠=︒.(1)请在图中用尺规作图的方法作出AB 的垂直平分线交AC 于点D ,并标出D 点;(不写作法,保留作图痕迹).(2)在(1)的条件下,连接BD ,求证:BD 平分CBA ∠.23.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=12. 24.先化简,再求值:2282242x x x x x x +⎛⎫÷-- ⎪--⎝⎭,其中2210x x +-=. 25.如图,在直角坐标系中,A (-1,5),B (-3,0),C (-4,3).(1)在图中作出△ABC 关于y 轴对称的图形△A 1B 1C 1;(2)求△ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边可求得第三边取值范围.【详解】设第三边长度为a ,根据三角形三边关系9494a 解得513a .只有B 符合题意故选B.【点睛】本题考查三角形三边关系,能根据关系求得第三边的取值范围是解决此题的关键.2.D解析:D【解析】【详解】解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(-3,0),则OB′=3过点A作AE垂直x轴,则AE=4,OE=1则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,∵C′O∥AE,∴∠B′C′O=∠B′AE,∴∠B′C′O=∠EB′A∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC的周长最小.故选D.3.D解析:D【解析】【分析】先用x表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊了3元钱车费列出方程即可.【详解】解:设前去观看开幕式的同学共x人,根据题意,得:18018032x x-= -.故选:D.【点睛】本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错增加前后的人数.4.C解析:C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】()321a a a a-=-=a(a+1)(a-1),故A错误;2(1)++=++,故B错误;b ab b b b a22x x x-+=-,故C正确;12(1)22x y+不能分解因式,故D错误,故选:C.【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.5.C解析:C【解析】【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:(4x3﹣2x)÷(﹣2x)=﹣2x2+1.故选C.【点睛】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.6.B解析:B【解析】分析:根据全等三角形的判定解答即可.详解:由图形可知:AB=5,AC=3,BC=2,GD=5,DE=2,GE=3,DI=3,EI=5,所以G,I两点与点D、点E构成的三角形与△ABC全等.故选B.点睛:本题考查了全等三角形的判定,关键是根据SSS证明全等三角形.解析:A【解析】【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】解:A、由于两个括号中含x、y项的系数不相等,故不能使用平方差公式,故此选项正确;B、两个括号中,含y项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,故此选项错误;D、两个括号中,y相同,含2x的项的符号相反,故能使用平方差公式,故此选项错误;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.8.B解析:B【解析】【分析】等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为【详解】解:如图1,∵∠ABD=60°,BD是高,∴∠A=90°-∠ABD=30°;如图2,∵∠ABD=60°,BD是高,∴∠BAD=90°-∠ABD=30°,∴∠BAC=180°-∠BAD=150°;∴顶角的度数为30°或150°.故选:B.本题主要考查了等腰三角形的性质及三角形内角和定理.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.9.B解析:B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.D解析:D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=22a-,由分式方程有整数解,得到a=0,2,共2个,故选:D.【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.C解析:C【解析】试题分析:根据轴对称图形的定义可知,只有选项C是轴对称图形,故选C.12.C解析:C【解析】【分析】根据等边对等角可得∠B=∠ACB=50°,再根据三角形内角和计算出∠A的度数,然后根据三角形内角与外角的关系可得∠BPC>∠A , 再因为∠B=50°,所以∠BPC<180°-50°=130°进而可得答案.【详解】∵AB=AC,∠B=50°,∴∠B=∠ACB=50°,∴∠A=180°-50°×2=80°,∵∠BPC=∠A+∠ACP,∴∠BPC>∠A,∴∠BPC>80°.∵∠B=50°,∴∠BPC<180°-50°=130°,则∠BPC的值可能是100°.故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.二、填空题13.12【解析】【分析】作C关于AB的对称点E连接ED易求∠ACE=60°则AC=AE且△ACE为等边三角形CP+PD=DP+PE为E与直线AC之间的连接线段其最小值为E到AC 的距离=AB=12所以最小解析:12【解析】【分析】作C关于AB的对称点E,连接ED,易求∠ACE=60°,则AC=AE,且△ACE为等边三角形,CP+PD=DP+PE为E与直线AC之间的连接线段,其最小值为E到AC的距离=AB=12,所以最小值为12.【详解】作C关于AB的对称点E,连接ED,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵AC=AE,∴△ACE为等边三角形,∴CP+PD=DP+PE为E与直线AC之间的连接线段,∴最小值为C'到AC的距离=AB=12,故答案为12【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.14.4或6【解析】【分析】此题要分两种情况:①当BD=PC时△BPD与△CQP 全等计算出BP的长进而可得运动时间然后再求v;②当BD=CQ时△BDP≌△QCP 计算出BP的长进而可得运动时间然后再求v【详解析:4或6【解析】【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.【详解】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=12AB=12cm,∵BD=PC,∴BP=16-12=4(cm),∵点P在线段BC上以4厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=4cm,∴v=4÷1=4厘米/秒;当BD=CQ时,△BDP≌△QCP,∵BD=12cm,PB=PC,∴QC=12cm,∵BC=16cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=12÷2=6厘米/秒.故答案为:4或6.【点睛】此题主要考查了全等三角形的判定,关键是要分情况讨论,不要漏解,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.15.5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BCBD=CD=BC=5【详解】解:∵AB=ACAD是∠BAC平分线∴AD⊥BCBD=CD=BC=5故答案为:5【点睛】本题考查了等腰三角形的性解析:5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BC,BD=CD=12BC=5.【详解】解:∵AB=AC,AD是∠BAC平分线,∴AD⊥BC,BD=CD=12BC=5.故答案为:5.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解决问题的关键.16.x=2【解析】分析:根据分式值为0的条件:分子为0分母不等于0可得即可解得详解:因为分式的值为0所以解得:所以故答案为:点睛:本题主要考查分式值为0的条件解决本题的关键是要熟练运用分式值为0的条件列解析:x=2【解析】分析:根据分式值为0的条件:分子为0,分母不等于0,可得24020xx⎧-=⎨+≠⎩,即可解得2 x=.详解:因为分式242x x -+的值为0, 所以24020x x ⎧-=⎨+≠⎩, 解得:2,2x x =±≠-,所以2x =.故答案为: 2x =.点睛:本题主要考查分式值为0的条件,解决本题的关键是要熟练运用分式值为0的条件列出方程和不等式进行求解.17.0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案【详解】∵ab 互为相反数∴a+b=0∴a2﹣b2=(a+b )(a ﹣b )=0故答案为0【点睛】本题考查了公式法分解因式以及相解析:0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=0,∴a 2﹣b 2=(a+b )(a ﹣b )=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键. 18.1【解析】【分析】先化简再整体代入解答即可【详解】因为m2+2m =1所以的值为1故答案是:1【点睛】考查了代数式求值熟练掌握运算法则是解本题的关键解析:1【解析】【分析】先化简,再整体代入解答即可.【详解】224m 42+++÷m m m m 22(2)2m m m m +=⨯+ 22,m m =+因为m 2+2m =1, 所以224m 42+++÷m m m m的值为1, 故答案是:1考查了代数式求值,熟练掌握运算法则是解本题的关键.19.【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式若有公因式则把它提取出来之后再观察是否是完全平方公式或平方差公式若是就考虑用公式法继续分解因式因此先提取公因式后继续应用平方 解析:()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-. 20.3【解析】【分析】根据分式为0的条件解答即可【详解】因为分式的值为0所以∣x ∣-3=0且3+x≠0∣x ∣-3=0即x=33+x≠0即x≠-3所以x=3故答案为:3【点睛】本题考查分式值为0的条件:分解析:3【解析】【分析】根据分式为0的条件解答即可,【详解】 因为分式|x |33x-+的值为0, 所以∣x ∣-3=0且3+x ≠0,∣x ∣-3=0,即x=±3,3+x ≠0,即x ≠-3,所以x=3,故答案为:3【点睛】 本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.三、解答题21.(1)(a +b )2;(2)﹣m (x ﹣6)2【解析】【分析】(1)先进行去括号,然后合并同类项,最后根据公式法进行因式分解即可.(2)先提取公因式,然后运用公式法,即可得出答案.解:(1)(a ﹣b )2+4ab=a 2﹣2ab +b 2+4ab=a 2+2ab +b 2=(a +b )2;(2)﹣mx 2+12mx ﹣36m=﹣m (x 2﹣12xy +36)=﹣m (x ﹣6)2.【点睛】本题主要考察了因式分解,解题的关键是灵活运用因式分解与整式的乘除.22.(1)详见解析;(2)详见解析.【解析】【分析】(1)作线段AB 的垂直平分线即可;(2)根据线段垂直平分线的性质可得DA=DB ,根据等边对等角可得30DBA A ︒∴∠=∠=,进而可得∠CBA =60°,然后可得答案. 【详解】(1)解:如图所示,点D 就是所求.(2)证明:由(1)可知:AB 的垂直平分线交AC 于点DAD BD ∴=30DBA A ︒∴∠=∠=90BCA ︒∠=且30A ∠=︒90CBA A ︒∴∠+∠=90903060CBA A ︒︒︒︒∴∠=-∠=-=30CBD DBA ︒∴∠=∠=BD ∴平分CBA ∠【点睛】本题考查了基本作图,以及线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.23.4ab ,﹣4.【解析】【分析】原式利用平方差公式,以及完全平方公式进行展开,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2=a 2﹣4b 2﹣a 2+4ab ﹣4b 2+8b 2=4ab ,当a=﹣2,b=12时,原式=﹣4. 【点睛】本题考查了整式的混合运算﹣化简求值,熟练掌握乘法公式以及整式混合运算的运算顺序及运算法则是解本题的关键. 24.2124x x +;12. 【解析】【分析】 先计算括号,后计算除法,然后整体代入即可求解.【详解】()()22282822242222x x x x x x x x x x x x -+++⎛⎫÷--=÷ ⎪----⎝⎭ ()()222222x x x x x ++=÷-- ()()222222x x x x x +-=⨯-+ ()122x x =+ =2124x x+; ∵2210x x +-=,∴221x x +=∴原式=12. 【点睛】 本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.25.(1)图见解析;(2)112.【解析】【分析】(1)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)用一个矩形的面积减去三个三角形的面积计算△ABC的面积.【详解】:(1)如图,△A1B1C1为所作;(2)△ABC的面积11111 353132522222 =⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了作图-对称性变换,注意画轴对称图形找关键点的对称点然后顺次连接是解题的关键.。
2019年八年级数学上期末试题含答案
2019年八年级数学上期末试题含答案一、选择题1.如果a c b d =成立,那么下列各式一定成立的是( ) A .a d c b = B .ac c bd b = C .11a c b d++= D .22a b c d b d++= 2.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 3.如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,在格点F 、G 、H 、I 中选出一个点与点D 、点E 构成的三角形与△ABC 全等,则符合条件的点共有( )A .1个B .2个C .3个D .4个4.若2310a a -+=,则12a a +-的值为( ) A .51+B .1C .-1D .-5 5.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11 6.下列计算中,结果正确的是( )A .236a a a ⋅=B .(2)(3)6a a a ⋅=C .236()a a =D .623a a a ÷= 7.如果30x y -=,那么代数式()2222x y x y x xy y +⋅--+的值为( ) A .27- B .27 C .72- D .728.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④ 9.若代数式4x x -有意义,则实数x 的取值范围是( ) A .x =0B .x =4C .x ≠0D .x ≠4 10.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( ) A .3B .4C .6D .12 11.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4B .2C .0D .4 12.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形 二、填空题13.分解因式:39a a -= __________14.已知2m =a ,32n =b ,则23m +10n =________.15.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.16.若分式221x x -+的值为零,则x 的值等于_____. 17.如图,已知AB ∥DE ,∠ABC=80°,∠CDE=140°,则∠BCD=_____.18.分解因式:x 3y ﹣2x 2y+xy=______.19.连接多边形的一个顶点与其它各顶点,可将多边形分成11个三角形,则这个多边形是______边形.20.如图,边长为的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为三、解答题21.已知,关于x 的分式方程1235a b x x x --=+-. (1)当1a =,0b =时,求分式方程的解; (2)当1a =时,求b 为何值时分式方程1235a b x x x --=+-无解: (3)若3a b =,且a 、b 为正整数,当分式方程1235a b x x x --=+-的解为整数时,求b 的值.22.解分式方程2212323x x x +=-+. 23.先化简,再求值:224144124x x x x x-++÷-,其中14x =-. 24.“丰收1号”小麦的试验田是边长为a 米(a>1)的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(1a -)米的正方形,两块试验田里的小麦都收获了500千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?25.先化简,再求值:(442a a --﹣a ﹣2)÷2444a a a --+.其中a 与2,3构成△ABC 的三边,且a 为整数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】 已知a c b d=成立,根据比例的性质可得选项A 、B 、C 都不成立;选项D ,由2a b b +=2c d d +可得22a c b d +=+,即可得a c b d=,选项D 正确,故选D. 点睛:本题主要考查了比例的性质,熟练运用比例的性质是解决问题的关键.2.B解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.详解:(x+1)(x-3)=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.3.B解析:B【解析】分析:根据全等三角形的判定解答即可.详解:由图形可知:AB =5,AC =3,BC =2,GD =5,DE =2,GE =3,DI =3,EI =5,所以G ,I 两点与点D 、点E 构成的三角形与△ABC 全等.故选B .点睛:本题考查了全等三角形的判定,关键是根据SSS 证明全等三角形. 4.B解析:B【解析】【分析】 先将2310a a -+=变形为130a a -+=,即13a a +=,再代入求解即可. 【详解】∵2310a a -+=,∴130a a -+=,即13a a +=, ∴12321a a+-=-=.故选B. 【点睛】本题考查分式的化简求值,解题的关键是将2310a a -+=变形为13a a+=. 5.C解析:C【解析】【详解】试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE ,然后证明△ACB ≌△DCE ,再结合全等三角形的性质和勾股定理来求解即可.解:由于a 、b 、c 都是正方形,所以AC=CD ,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE ,在△ABC 和△CED 中,,∴△ACB ≌△CDE (AAS ),∴AB=CE ,BC=DE ;在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =1+9=10,∴b 的面积为10,故选C .考点:全等三角形的判定与性质;勾股定理;正方形的性质.6.C解析:C【解析】选项A ,235a a a ⋅=,选项A 错误;选项B ,()()2236a a a ⋅= ,选项B 错误;选项C ,()326a a =,选项C 正确;选项D ,624a a a ÷=,选项D 错误.故选C.7.D解析:D【解析】【分析】先把分母因式分解,再约分得到原式=2x y x y +-,然后把x=3y 代入计算即可. 【详解】原式=()22x y x y +-•(x-y )=2x y x y+-, ∵x-3y=0,∴x=3y ,∴原式=63y yy y+-=72.故选:D.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.8.B解析:B【解析】【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x xx x x x x++-=-=+++++1111xx x-=++.又∵x为正整数,∴121xx≤+<1,故表示22(2)1441xx x x+-+++的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.9.D解析:D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.10.B解析:B【解析】【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数,即可得方程:x+x=180,解此方程即可求得答案.【详解】设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数,∴这个正多边形的一个内角为: x°,∴x+x=180,解得:x=900,∴这个多边形的边数是:360°÷90°=4.故选B .【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,方程思想的应用是解题的关键.11.D解析:D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,∵关于x 的方程244x a x x =+--有增根, ∴x-4=0,∴分式方程的增根是x=4. 关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4 故选D .【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.12.B解析:B【解析】【分析】n 边形的内角和是(n ﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据n 边形的内角和公式,得(n ﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B .【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.二、填空题13.【解析】分解因式的方法为提公因式法和公式法及分组分解法原式==a(3+a)(3-a)解析:(3)(3)a a a +-【解析】分解因式的方法为提公因式法和公式法及分组分解法.原式==a(3+a)(3-a). 14.a3b2【解析】试题解析:∵32n =b ∴25n=b ∴23m +10n =(2m)3×(25n)2=a3b2故答案为a3b2解析:a 3b 2【解析】试题解析:∵32n =b ,∴25n =b∴23m +10n =(2m )3×(25n )2= a 3b 2故答案为a 3b 215.30【解析】【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P 的度数【详解】∵BP 是∠ABC 的平分线CP 是∠ACM 的平分线∠ABP=20°∠ACP=50°∴解析:30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P 的度数.【详解】∵BP 是∠ABC 的平分线,CP 是∠ACM 的平分线,∠ABP=20°,∠ACP=50°, ∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM ,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.16.2【解析】根据题意得:x ﹣2=0解得:x=2此时2x+1=5符合题意故答案为2 解析:2【解析】根据题意得:x ﹣2=0,解得:x=2.此时2x +1=5,符合题意,故答案为2.17.40°【解析】试题分析:延长DE 交BC 于F 点根据两直线平行内错角相等可知A BC==80°由此可得然后根据三角形的外角的性质可得=-=40°故答案为:40° 解析:40°【解析】试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°. 故答案为:40°.18.xy (x ﹣1)2【解析】【分析】原式提取公因式再利用完全平方公式分解即可【详解】解:原式=xy (x2-2x+1)=xy (x-1)2故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合解析:xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.【解析】【分析】一个n 边形把一个顶点与其它各顶点连接起来形成的三角形个数为(n-2)据此可解【详解】解:∵一个n 边形把一个顶点与其它各顶点连接起来可将多边形分成(n-2)个三角形∴n -2=11则n=解析:【解析】【分析】一个n 边形,把一个顶点与其它各顶点连接起来,形成的三角形个数为(n-2),据此可解.【详解】解:∵一个n 边形,把一个顶点与其它各顶点连接起来,可将多边形分成(n-2)个三角形,∴n-2=11,则n=13.故答案是:13.【点睛】本题主要考查多边形的性质,一个n 边形,把一个顶点与其它各顶点连接起来,形成的三角形个数为(n-2).20.【解析】【分析】【详解】因为大正方形边长为小正方形边长为m 所以剩余的两个直角梯形的上底为m 下底为所以矩形的另一边为梯形上下底的和:+m= 解析:24m +【解析】【分析】【详解】因为大正方形边长为4m +,小正方形边长为m ,所以剩余的两个直角梯形的上底为m ,下底为4m +,所以矩形的另一边为梯形上、下底的和:4m ++m=24m +.三、解答题21.(1)1011x =-;(2)5b =或112;(3)3,29,55,185b = 【解析】【分析】(1)将a ,b 的值代入方程得11235x x x +=+-,解出这个方程,最后进行检验即可; (2)把1a =代入方程得11235b x x x --=+-,分式方程去分母转化为整式方程为(112)310b x b -=-,由分式方程有增根,得11-2b=0,或230x +=(不存在),或50x -=求出b 的值即可;(3)把3a b =代入原方程得31235b b x x x --=+-,将分式方程化为整式方程求出x 的表达式,再根据x 是正整数求出b ,然后进行检验即可.【详解】 (1)当1a =,0b =时,分式方程为:11235x x x +=+- 解得:1011x =-经检验:1011x =-时是原方程的解 (2)解:当1a =时,分式方程为:11235b x x x --=+- (112)310b x b -=-①若1120b -=,即112b =时,有:1302x •=,此方程无解 ②若1120b -≠,即112b ≠时,则 若230x +=,即310230112b b -⨯+=-,663320b b -=-,不成立若50x -=,即31050112b b--=-,解得5b = ∴综上所述,5b =或112时,原方程无解 (3)解:当3a b =时,分式方程为:31235b b x x x --=+- 即(10)1815b x b +=- ∵,a b 是正整数∴100b +≠ ∴181510b x b-=+ 即1951810x b=-+ 又∵,a b 是正整数,x 是整数. ∴3,5,29,55,185b =经检验,当5b =时,5x =(不符合题意,舍去)∴3,29,55,185b =【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.x =7.5【解析】【分析】先两边同乘(2x-3)(2x+3),得出整式方程,然后合并同类项,进行计算即可.【详解】解:方程两边同乘(2x ﹣3)(2x +3),得4x +6+4x 2﹣6x =4x 2﹣9,解得:x =7.5,经检验x =7.5是分式方程的解.【点睛】本题主要考察了解分式方程,解题的关键是正确去分母.23.42x x -+,14. 【解析】【分析】根据分式的除法法则把原式进行化简,再把x 的值代入进行计算即可.【详解】原式=()()22121212422()1()x x xxx x x +-⋅=--++,当x=−14时,原式=14. 【点睛】 此题考查分式的化简求值,解题关键在于掌握运算法则.24.(1) “丰收2号”小麦的试验田小麦的单位面积产量高;(2)单位面积产量高是低的11a a +-倍. 【解析】【分析】 (1)先用a 表示出两块试验田的面积,比较出其大小,再根据其产量相同可知面积较小的单位面积产量高即可得出结论;(2)根据(1)中两块试验田的面积及其产量,求出其比值即可.【详解】(1)∵“丰收1号”小麦的试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a−1)米的正方形, ∴“丰收1号”小麦的试验田的面积=a 2−1;“丰收2号”小麦的试验田的面积=(a−1)2,∵a 2−1−(a−1)2=a 2−1−a 2+2a−1=2(a−1),由题意可知,a >1,∴2(a−1)>0,即a 2−1>(a−1)2,∴“丰收2号”小麦的试验田小麦的单位面积产量高;(2)∵丰收1号”小麦的试验田的面积=a 2−1;“丰收2号”小麦的试验田的面积=(a−1)2,两块试验田的小麦都收获了500千克, ∴“丰收2号”小麦的试验田小麦的单位面积产量高,∴()()222500500500(1)(1)150011a a a a a +-÷=⋅---=11a a +-. 答:单位面积产量高是低的11a a +-倍. 【点睛】本题考查了分式的混合运算,把分式的分子分母正确分解因式是解题的关键.25.﹣a 2+2a ,-3【解析】分析:先算减法,再把除法变成乘法,算乘法,求出a ,最后代入请求出即可. 详解:原式22(44)(4)(2)24a a a a a ----=⋅--,22(4)(2)2.24a a a a a a a ---=⋅=-+-- ∵a 与2,3构成△ABC 的三边,且a 为整数, ∴a 为2、3、4,当a =2时,a −2=0,不行舍去;当a =4时,a −4=0,不行,舍去; 当a =3时,原式=−3.点睛:考查分式混合运算以及三角形的三边关系,掌握分式混合运算的法则是解题的关键.。
2019数学初中八年级的上册的期末试卷习题包括答案.doc
2019 数学八年级上册期末试卷含答案一、(共 6 小,每小 2 分,分 12 分)1.4 的平方根是()A .±2 B. 2 C . 2 D. 162.下列形中,不是称形的是()A .B . C. D.3.下列中,适合用普的是()A .了解初中生最喜的目B .了解某班学生数学期末考的成C.估某水中每条的平均重量D.了解一批灯泡的使用寿命4.在△ ABC和△ A1B1C1中,已知∠ A=∠A1, AB=A1B1,下列添加的条件中,不能判定△ ABC≌△ A1B1C1的是()A . AC=A1C1 B.∠C=∠C1 C. BC= B1C1 D.∠B=∠B15.如,一次函数 y1=x+b 与 y2=kx 2 的象相交于点横坐1,关于 x 的不等式 x+b>kx 2 的解集是(P,若点)P 的A . x < 2 B. x > 2 C. x < 1 D. x > 16.如,在平面直角坐系中,一个点从 A(a1,a2)出沿中路依次 B(a3,a4),C(a5,a6),D(a7,a8),⋯,按此一直运下去,a2014+a2015+a2016的(A. 1006 B . 1007 C . 1509 D . 1511二、填空(共10 小,每小 2 分,分 20 分)7.= ;= .8.一次函数y=2x 的象沿y 正方向平移 3 个位度,平移后的象所的函数表达式.9.已知点 A 坐(2, 3),点 A 到x 距离,到原点距离.10.如,M、N、P、Q是数上的四个点,四个点中最适合表示的点是.11.如是某超市2013 年各季度“加多宝” 料售情况折,根据此,用一句此超市料售情况行要分析:.12.在△ ABC中,AB=c,AC=b,BC=a,当a、b、c 足,∠ B=90°.13.比大小, 2.0 2.020020002⋯(填“>”、“<”或“ =”).14.已知方程的解,一次函数y=x+1 和y=2x 2 的象的交点坐.15.如, A、C、E在一条直上, DC⊥AE,垂足若根据“ HL”,△ ABC≌△ DEC,可添加条件写一种情况)C.已知AB=DE,.(只16.已知点 A(1,5), B(3,1),点 M在 x 上,当 AM BM,点M的坐.三、解答(共10 小,分 68 分)17.求下列各式中的x:(1)25x2=36;(2)( x﹣1)3+8=0.18.如图,长 2.5m 的梯子靠在墙上,梯子的底部离墙的底端 1.5m,求梯子的顶端与地面的距离 h.19.某校准备在校内倡导“光盘行动”,随机调查了部分同学某年餐后饭菜的剩余情况,调查数据的部分统计结果如表:某校部分同学某午餐后饭菜剩余情况调查统计表项目人数百分比没有剩 80 40%剩少量 a 20%剩一半 50 b剩大量 30 15%合计 200 100%(1)根据统计表可得: a=,b=.(2)把条形统计图补充完整,并画出扇形统计图;(3)校学生会通过数据分析,估计这次被调查的学生该午餐浪费的食物能够供 20 人食用一餐,据此估算,这个学校 1800 名学生该午餐浪费的食物可供多少人食用一餐?20.已知:如图, AB=AC,BD=CD,DE⊥AB,垂足为 E,DF⊥AC,垂足为F.求证: DE=DF.21.如图,在正方形网格中,每个小正方形的边长为 1 个单位长度,已知△ ABC的顶点 A、C的坐标分别为(﹣ 4,4)、(﹣ 1,2),点 B 坐标为(﹣ 2,1).(1)请在图中准确地作出平面直角坐标系,画出点B,并连接AB、BC;(2)将△ ABC沿 x 正方向平移 5 个位度后,再沿 x 翻折得到△DEF,画出△ DEF;(3)点 P(m,n)是△ ABC的上的一点,( 2)中的化后得到点 Q,直接写出点 Q的坐.22.如,在△ ABC中, AD是高, E、F 分是 AB、AC的中点.(1)若四形 AEDF的周 24,AB=15,求 AC的;(2)求: EF垂直平分 AD.23.世界上大部分国家都使用氏温度(℃),但美、英等国的天气仍然使用氏温度(℉)两种量之有如下:氏温度 x ⋯ 0 10 20 30 40 50⋯氏温度 y ⋯ 32 50 68 86 104 122⋯如果氏温度 y(℉)是氏温度x(℃)的一次函数.(1)求出一次函数表达式;(2)求出氏 0 度氏是多少度(精确到 0.1 ℃);(3)氏温度的可能小于其的氏温度的?如果可能,求出 x 的取范,如不可能,明理由.24.已知:△ ABC是等三角形.(1)用直尺和分作△ ABC的角平分 BE、CD,BE,CD交于点 O (保留作痕迹,不写作法);(2)点 C画射 CF⊥BC,垂足 C,CF交射 BE与点 F.求:△OCF是等三角形;(3)若 AB=2,直接写出△ OCF的面.25.一快和一慢分从 A、B 两地同出匀速相向而行,快到达 B 地后,原路原速返回 A 地. 1 表示两行程中离 A 地的路程 y(km)与行 x(h)的函数象.(1)直接写出快慢两的速度及 A、B 两地距离;(2)在行程中,慢出多,两相遇;(3)若两之的距离 skm,在 2 的直角坐系中画出 s(km)与 x(h)的函数象.26.由小学的知可知:方形的相等,四个角都是直角.如,方形 ABCD中, AB=4,BC=9,在它的上取两个点 E、F,使得△ AEF 是一个腰 5 的等腰三角形,画出△ AEF,并直接写出△ AEF的底.(如果你有多种情况,用①、②、③、⋯表示,每种情况用一个形独表示,并在中相的位置出底的,如果形不用,自己画出).参考答案与解析一、(共 6 小,每小 2 分,分 12 分)1.4 的平方根是()A .±2 B. 2 C . 2 D. 16考点:平方根.分析:根据平方根的定,求数 a 的平方根,也就是求一个数x,使得x2=a, x 就是 a 的一个平方根.解答:解:∵(± 2 )2=4,∴4的平方根是± 2.故: A.点评:本题主要考查平方根的定义,解题时利用平方根的定义即可解决问题.2 .下列图形中,不是轴对称图形的是()A .B .C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故准确;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选 A.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.下列问题中,适合用普查的是()A .了解初中生最喜爱的电视节目B .了解某班学生数学期末考试的成绩C.估计某水库中每条鱼的平均重量D.了解一批灯泡的使用寿命考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解: A、了解初中生最喜爱的电视节目,被调查的对象范围大,适宜于抽样调查,故 A 错误;B、了解某班学生数学期末考试的成绩适宜于普查,故 B 准确;C、估计某水库中每条鱼的平均重量,适宜于抽样调查,故C错误;D、了解一批灯泡的使用寿命,具有破坏性,适宜于抽样调查,故D错误;故选: B.点评:本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法实行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.在△ ABC和△ A1B1C1中,已知∠ A=∠A1, AB=A1B1,下列添加的条件中,不能判定△ ABC≌△ A1B1C1的是()A . AC=A1C1 B.∠C=∠C1 C. BC=B1C1 D.∠B=∠B1考点:全等三角形的判定.分析:全等三角形的判定定理有 SAS,ASA,AAS,SSS,根据全等三角形的判定定理逐个判断即可.解答:解:A、符合全等三角形的判定定理 SAS,即能推出△ ABC≌△ A1B1C1,故本选项错误;B、符合全等三角形的判定定理 AAS,即能推出△ ABC≌△ A1B1C1,故本选项错误;C、不符合全等三角形的判定定理,即不能推出△ ABC≌△ A1B1C1,故本选项准确;D、符合全等三角形的判定定理 ASA,即能推出△ ABC≌△ A1B1C1,故本;故 C.点:本考了全等三角形的判定定理的用,主要考学生判定定理的理解水平,注意:全等三角形的判定定理有 SAS,ASA,AAS,SSS.5.如,一次函数 y1=x+b 与 y2=kx 2 的象相交于点横坐1,关于 x 的不等式 x+b>kx 2 的解集是(P,若点)P 的A .x < 2 B.x > 2 C.x < 1 D.x > 1考点:一次函数与一元一次不等式.分析:察函数象得到当x> 1 ,函数 y=x+b 的象都在 y=kx1 的象上方,所以不等式 x+b>kx 1 的解集 x> 1.解答:解:当 x> 1 , x+b>kx 1,即不等式 x+b>kx 1 的解集 x> 1.故:D.点:本考了一次函数与一元一次不等式:从函数的角度看,就是求使一次函数 y=ax+b 的大于(或小于) 0 的自量 x 的取范;从函数象的角度看,就是确定直 y=kx+b 在 x 上(或下)方部分所有的点的横坐所构成的集合.6.如,在平面直角坐系中,一个点从 A(a1,a2)出沿中路依次 B(a3,a4),C(a5,a6),D(a7,a8),⋯,按此一直运下去,a2014+a2015+a2016的(A . 1006B . 1007C . 1509D . 1511考点:律型:点的坐.分析:由意得即 a1=1,a2=1,a3= 1,a4=2,a5=2,a6=3,a7= 2,a8=4,⋯,察得到数列的律,求出即可.解答:解:由直角坐系可知 A(1,1), B( 1,2), C(2,3),D( 2,4), E(3,5), F( 3,6),即 a1=1,a2=1, a3= 1,a4=2,a5=2,a6=3,a7= 2,a8=4,⋯,由此可知,所有数列偶数个都是从 1 开始逐增的,且都等于所在的个数除以 2, a2014=1007, a2016=1008,每四个数中有一个数,且每的第三个数,每的第 1 奇数和第 2 个奇数是互相反数,且从 1 开始逐减的, 2016÷4=504, a2015= 504,a2014+a2015+a2016=1007 504+1008=1511.故: D.点:本主要考了推理的,关是找到律,属于基.二、填空(共10 小,每小 2 分,分 20 分)7. = 3;=3.考点:立方根;算平方根.:算.分析:原式利用平方根,立方根定算即可.解答:解:原式=3;原式 = 3.故答案: 3; 3.点:此考了立方根,以及算平方根,熟掌握各自的定是解本的关.8.一次函数 y=2x 的图象沿 y 轴正方向平移 3 个单位长度,则平移后的图象所对应的函数表达式为y=2x+3.考点:一次函数图象与几何变换.分析:原常数项为 0,沿 y 轴正方向平移 3 个单位长度是向上平移,上下平移直线解析式只改变常数项,让常数项加 3 即可得到平移后的常数项,也就得到平移后的直线解析式.解答:解:∵一次函数y=2x 的图象沿 y 轴正方向平移 3,∴新函数的 k=2,b=0+3=3,∴得到的直线所对应的函数解析式是y=2x+3.故答案为 y=2x+3.点评:本题考查了一次函数图象与几何变换,用到的知识点为:上下平移直线解析式只改变常数项,上加下减.9.已知点点距离为A 坐标为(﹣.2,﹣ 3),则点 A 到x 轴距离为3,到原考点:点的坐标;勾股定理.分析:根据点到 x 轴的距离是点的纵坐标的绝对值,可得第一个空的答案,根据点到原点的距离是横坐标、纵坐标的平方和的绝对值,可得答案.解答:解:已知点 A 坐标为(﹣ 2,﹣ 3),则点 A 到 x 轴距离为 3 ,到原点距离为,故答案为: 3,.点评:本题考查了点的坐标,点到 x 轴的距离是点的纵坐标的绝对值,点到原点的距离是横坐标、纵坐标的平方和的绝对值.10.如图, M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是P.考点:估算无理数的大小;实数与数轴.分析:先估算出的取值范围,再找出符合条件的点即可.解答:解:∵ 4<7<9,∴2<<3,∴在 2 与 3 之间,且更靠近3.故答案为: P.点评:本题考查的是的是估算无理数的大小,熟知用有理数逼近无理数,求无理数的近似值是解答此题的关键.11.如图是某超市 2013 年各季度“加多宝”饮料销售情况折线统计图,根据此统计图,用一句话对此超市该饮料销售情况实行简要分析:从第一季度到第四季度,此超市该饮料销售呈先升后降的趋势.考点:折线统计图.分析:由折线统计图能够看出,从第一季度到第三季度,此超市该饮料销售逐渐上升,第三季度达到峰,从第三季度到第四季度,销售快速下降.解答:解:由题意可得,从第一季度到第四季度,此超市该饮料销售呈先升后降的趋势.故答案为从第一季度到第四季度,此超市该饮料销售呈先升后降的趋势.点评:本题考查了折线统计图,折线图不但能够表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.从统计图中得到必要的信息是解决问题的关键.12.在△ ABC中, AB=c,AC=b,BC=a,当a、b、c 足a2+c2=b2 ,∠B=90°.考点:勾股定理的逆定理.分析:根据勾股定理的逆定理可得到足的条件,可得到答案.解答:解:∵ a2+c2=b2,△ ABC是以AC斜的直角三角形,∴当 a、b、c 足 a2+c2=b2,∠ B=90°.故答案: a2+c2=b2.点:本主要考勾股定理的逆定理,掌握当两平方和等于第三的平方第三所的角直角是解的关.13.比大小, 2.0> 2.020020002⋯(填“>”、“<”或“=”).考点:数大小比.分析: 2.0 =2.0222222 ⋯,再比即可.解答:解:2.0>2.020020002⋯故答案:>.点:本考了数的大小比的用,注意: 2.0 =2.0222222 ⋯.14.已知方程的解,一次函数 y= x+1 和 y=2x 2 的象的交点坐(1,0).考点:一次函数与二元一次方程().分析:二元一次方程是两个一次函数形得到的,所以二元一次方程的解,就是函数象的交点坐.解答:解:∵方程的解,∴一次函数 y= x+1 和 y=2x 2 的象的交点坐( 1,0).故答案为:( 1,0).点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.15.如图,A、C、E在一条直线上,DC⊥AE,垂足为C.已知AB=DE,若根据“HL”,△ABC≌△DEC,则可添加条件为BC=CE .(只写一种情况)考点:全等三角形的判定.专题:开放型.分析:求出∠ ACB=∠DCE=90°,根据 HL推出即可,此题答案不,也能够是 AC=DC.解答:解:BC=CE,理由是:∵ DC⊥CE,∴∠ ACB=∠DCE=90°,在Rt△ABC和 Rt△DEC中,,∴Rt△ABC≌Rt△DEC( HL),故答案为: BC=CE.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有 SAS,ASA,AAS,SSS,HL,此题是一道开放型的题目,答案不.16.已知点 A(1,5), B(3,1),点 M在 x 轴上,当 AM﹣BM时,点M的坐标为(,0).考点:轴对称-最短路线问题;坐标与图形性质.分析:连接 AB并延长与 x 轴的交点 M,即为所求的点.求出直线 AB 的解析式,求出直线 AB和 x 轴的交点坐标即可.解答:解:设直线AB的解析式是y=kx+b,把A(1,5), B(3,1)代入得:,解得: k=﹣2,b=7,即直线 AB的解析式是 y=﹣2x+7,把y=0 代入得:﹣ 2x+7=0,x= ,即M的坐标是(,0),故答案为(,0).点评:本题考查了轴对称,用待定系数法求一次函数的解析式等知识点的应用,关键是找出 M的位置.三、解答题(共10 小题,满分 68 分)17.求下列各式中的x:(1)25x2=36;(2)( x﹣1)3+8=0.考点:立方根;平方根.分析:(1)先两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先移项,再根据立方根定义开方,即可得出一个一元一次方程,求出方程的解即可.解答:解:(1)25x2=36,5x=±6,x1= ,x2=﹣;(2)( x﹣1)3+8=0,(x﹣1)3=﹣8,x﹣1=﹣2,x=﹣1.点评:本题考查了立方根和平方根的应用,解此题的关键是能关键定义得出一个或两个一元一次方程.18.如图,长 2.5m 的梯子靠在墙上,梯子的底部离墙的底端 1.5m,求梯子的顶端与地面的距离 h.考点:勾股定理的应用.分析:在Rt△ABC中,利用勾股定理即可求出h 的值.解答:解:在Rt△ABC中,AB2=AC2﹣BC2,∵AC=2.5m, BC=1.5m,∴AB= =2m,即梯子顶端离地面距离h 为 2m.点评:本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.19.某校准备在校内倡导“光盘行动”,随机调查了部分同学某年餐后饭菜的剩余情况,调查数据的部分统计结果如表:某校部分同学某午餐后饭菜剩余情况调查统计表项目人数百分比没有剩 80 40%剩少量 a 20%剩一半 50 b剩大量 30 15%合计 200 100%(1)根据统计表可得: a= 40 ,b= 25% .(2)把条形统计图补充完整,并画出扇形统计图;(3)校学生会通过数据分析,估计这次被调查的学生该午餐浪费的食物能够供 20 人食用一餐,据此估算,这个学校 1800 名学生该午餐浪费的食物可供多少人食用一餐?考点:条形统计图;用样本估计总体;统计表;扇形统计图.40%,即可求分析:(1)根据没剩余的人数是 80,所占的百分比是得总人数,然后利用百分比的定义求得 a、b 的值;(2)求得剩少量的人数,求得对应的百分比,即可作出扇形统计图;(3)利用 1800 除以调查的总人数,然后乘以20 即可.解答:解:(1)统计的总人数是:80÷40%=200(人),则a=200×20%=40,b= ×100%=25%;(2)剩少量的人数是: 200﹣80﹣50﹣30=40(人),扇形统计图是:;(3)×20=180(人).点评:本题考查的是条形统计图和扇形统计图的综合使用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.已知:如图, AB=AC,BD=CD,DE⊥AB,垂足为 E,DF⊥AC,垂足为F.求证: DE=DF.考点:全等三角形的判定与性质.专题:证明题.分析:连接 AD,利用“边边边”证明△ ABD和△ ACD全等,再根据全等三角形对应边上的高相等证明.解答:证明:如图,连接AD,在△ ABD和△ ACD中,,∴△ ABD≌△ ACD( SSS),∵DE⊥AB,DF⊥AC,∴DE=DF(全等三角形对应边上的高相等).点评:本题考查了全等三角形的判定与性质,作辅助线构造出全等三角形是解题的关键.21.(6 分)(2014 秋南京期末)如图,在正方形网格中,每个小正方形的边长为1 个单位长度,已知△ABC的顶点A、C的坐标分别为(﹣ 4,4)、(﹣ 1,2),点 B 坐标为(﹣ 2,1).(1)请在图中准确地作出平面直角坐标系,画出点B,并连接AB、BC;(2)将△ ABC沿 x 轴正方向平移 5 个单位长度后,再沿 x 轴翻折得到△DEF,画出△ DEF;(3)点 P(m,n)是△ ABC的边上的一点,经过( 2)中的变化后得到对应点 Q,直接写出点 Q的坐标.考点:作图-轴对称变换.专题:作图题.分析:(1)以点 B 向下 2 个单位,向右 1 个单位为坐标原点建立平面直角坐标系,然后确定出点 B,再连接即可;(2)根据网格结构找出点 A、B、 C平移、对称后的对应点 D、E、F 的位置,然后顺次连接即可;x 轴对称的点的横坐(3)根据向右平移横坐标加,纵坐标不变,关于标不变,纵坐标互为相反数解答.解答:解:(1)如图所示;(2)△ DEF如图所示;(3)点Q(﹣ m﹣5,﹣ n).点评:本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构以及平面直角坐标系的定义,准确找出对应点的位置是解题的关键.22.如图,在△ ABC中, AD是高, E、F 分别是 AB、AC的中点.(1)若四边形 AEDF的周长为 24,AB=15,求 AC的长;(2)求证: EF垂直平分 AD.考点:直角三角形斜边上的中线;线段垂直平分线的性质.分析:(1)根据直角三角形斜上的中等于斜的一半可得DE=AE= AB,DF=AF= AC,然后求出 AE+DE=AB,再求解即可;(2)根据到段两端点距离相等的点在段的垂直平分明.解答:(1)解:∵ AD是高, E、F 分是 AB、AC的中点,∴DE=AE= AB,DF=AF= AC,∴AE+DE=AB=15,AF+DF=AC,∵四形 AEDF的周 24,AB=15,∴AC=2415=9;(2)明:∵ DE=AE, DF=AF,∴点 E、F 在段 AD的垂直平分上,∴EF 垂直平分 AD.点:本考了直角三角形斜上的中等于斜的一半的性,到段两端点距离相等的点在段的垂直平分的性,熟性是解的关.23.世界上大部分国家都使用氏温度(℃),但美、英等国的天气仍然使用氏温度(℉)两种量之有如下:氏温度 x ⋯ 0 10 20 30 40 50⋯氏温度 y ⋯ 32 50 68 86 104 122⋯如果氏温度 y(℉)是氏温度x(℃)的一次函数.(1)求出一次函数表达式;(2)求出氏 0 度氏是多少度(精确到 0.1 ℃);(3)氏温度的可能小于其的氏温度的?如果可能,求出 x 的取范,如不可能,明理由.考点:一次函数的应用.分析:(1)设一次函数的解析式为 y=kx+b,由待定系数法求出其解即可;(2)当 y=0 时代入( 1)的解析式求出其解即可;(3)由华氏温度的值小于其对应的摄氏温度的值建立不等式求出其解即可.解答:解:(1)设一次函数的解析式为y=kx+b,由题意,得,解得:,∴y=1.8x+32 .答:一次函数表达式为y=1.8x+32 ;(2)当 y=0 时,1.8x+32=0,解得: x=﹣≈﹣ 18.9 .答:华氏 0 度时摄氏约是﹣ 18.9 ℃;(3)由题意,得1.8x+32 <x,解得: x<﹣.答:当 x<﹣时,华氏温度的值小于其对应的摄氏温度的值.点评:本题考查了待定系数法求一次函数的解析式的使用,由函数值求自变量的值的使用,一元一次不等式的使用,解答时求出函数的解析式是关键.24.已知:△ ABC是等边三角形.(1)用直尺和圆规分别作△ ABC的角平分线 BE、CD,BE,CD交于点O (保留作图痕迹,不写作法);(2)过点 C画射线 CF⊥BC,垂足为 C,CF交射线 BE与点 F.求证:△OCF是等边三角形;(3)若 AB=2,请直接写出△ OCF的面积.考点:作图—复杂作图;等边三角形的判定与性质.分析:(1)利用直尺和圆规即可作出;(2)根据等边三角形的每个角的度数是 60°,以及三角形的内角和定理,证明∠ F=∠FCO=60°即可证得;(3)作 OG⊥BC于点 G,△ OBC是等腰三角形,利用三角函数求得 OC 的长,则△ OCF的面积即可求得.解答:解:(1)BE、CD就是所求;(2)∵ BE是∠ ABC的平分线,∴∠ FBC= ∠ABC= ×60°=30°,同理,∠ BCD=30°.∵CF⊥BC,即∠ BCF=90°,∴∠F=∠FCO=60°,∴△ OCF是等边三角形;(3)作 OG⊥BC于点 G.∵∠ FBC=∠DCB=30°,∴OB=OC,∴CG= BC= AB=1,∴OC= = = .则S 等边△ OCF= = .点评:本题考查了等边三角形的性质以及判定,和尺规作图,准确求得 OC的长度是本题的关键.25.一辆快车和一辆慢车分别从 A、B 两地同时出发匀速相向而行,快车到达 B 地后,原路原速返回 A 地.图 1 表示两车行驶过程中离 A 地的路程 y(km)与行驶时间 x(h)的函数图象.(1)直接写出快慢两车的速度及 A、B 两地距离;(2)在行驶过程中,慢车出发多长时间,两车相遇;(3)若两车之间的距离为 skm,在图 2 的直角坐标系中画出 s(km)与x(h)的函数图象.考点:一次函数的应用.分析:(1)由速度 =路程÷时间就能够得出结论,由函数图象的数据意义直接能够得出 A、B 两地之间的距离;(2)设 OA的解析式为 y=kx,AB的解析式为 y1=k1x+b1,CD的解析式为 y2=k2x+b2,由一次函数与二元一次方程组的关系就能够求出结论;(3)先求出两车相遇的时间,找到关键点的坐标就能够画出图象.解答:解:( 1)由题意,得,A、B 两地距离之间的距离为2250km,快车的速度为: 2250÷10=225km/h,慢车的速度为: 2250÷30=75km/h;(2) OA的解析式 y=kx,AB的解析式 y1=k1x+b1,CD的解析式y2=k2x+b2,由意,得2250=10k,,,解得: k=225,,,∴y=225x, y1= 225x+4500,y2= 75x+2250当225x= 75x+2250 ,x=7.5 .当 225x+4500= 75x+2250 ,解得: x=15.答:慢出 7.5 小或 15 小,两相遇;(3)由意,得7.5 小两相遇, 10 ,两相距 2.5 (225+75)=750km,15两相遇, 20两相距 750km,由些关点画出象即可.点:本考了行程的数量关系的使用,待定系数法求一次函数的解析式的使用,一次函数与一元一次方程的使用,作函数象的使用,解答求出函数的解析式是关.26.由小学的知可知:方形的相等,四个角都是直角.如,方形 ABCD中, AB=4,BC=9,在它的上取两个点 E、F,使得△ AEF 是一个腰 5 的等腰三角形,画出△ AEF,并直接写出△ AEF的底.(如果你有多种情况,用①、②、③、⋯表示,每种情况用一个形独表示,并在中相的位置出底的,如果形不用,自己画出).考点:矩形的性;等腰三角形的判定;勾股定理.分析:分点A是顶角顶点和底角顶点两种情况作出图形,然后过点 E 作EG⊥AD于G,利用勾股定理列式求出AG:①点A 是顶角顶点时,求出 GF,再利用勾股定理列式计算即可得解;②点 A 是底角顶点时,根据等腰三角形三线合一的性质可得 AF=2AG.解答:解:如图,过点 E 作 EG⊥AD于 G,由勾股定理得, AG= =3,①点 A 是顶角顶点时, GF=AF﹣AG=5﹣3=2,由勾股定理得,底边EF= =2 ,②点 A 是底角顶点时,底边AF=2AG=2×3=6,综上所述,底边长为 2 或 6.点评:本题考查了矩形的性质,等腰三角形的判定,勾股定理,难点在于分情况讨论,作出图形更形象直观.。
2019年初二数学上期末试卷(含答案)
2019年初二数学上期末试卷(含答案)一、选择题1.如图,已知每个小方格的边长为1,A ,B 两点都在小方格的顶点上,请在图中找一个顶点C ,使△ABC 为等腰三角形,则这样的顶点C 有( )A .8个B .7个C .6个D .5个2.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=-B .120100x x 10=+C .120100x 10x =-D .120100x 10x=+ 3.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50° 4.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是( ) A .6B .11C .12D .18 5.下列各因式分解的结果正确的是( ) A .()321a a a a -=- B .2()b ab b b b a ++=+ C .2212(1)x x x -+=-D .22()()x y x y x y +=+- 6.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是轴对称图形的是( ) A . B . C . D .7.如图,AB ∥CD ,BC ∥AD ,AB=CD ,BE=DF ,图中全等的三角形的对数是( )A .3B .4C .5D .68.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .6 9.下列计算正确的是( ) A .235+= B .a a a +=222 C .(1)x y x xy +=+ D .236()mn mn = 10.如果2x +ax+1 是一个完全平方公式,那么a 的值是()A .2B .-2C .±2D .±1 11.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A .30°B .45°C .50°D .75°12.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg 货物,则可列方程为A .B .C .D .二、填空题13.腰长为5,高为4的等腰三角形的底边长为_____.14.分解因式:2a 2﹣8=_____.15.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.16.若实数,满足,则______.17.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设 x 管道,那么根据题意,可得方程 .18.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB= .19.若分式的值为零,则x 的值为________.20.分解因式2m 2﹣32=_____.三、解答题21.为了改善生态环境,某乡村计划植树4000棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?22.如图,四边形ABCD 中,∠B=90°, AB//CD ,M 为BC 边上的一点,AM 平分∠BAD ,DM 平分∠ADC ,求证:(1) AM ⊥DM;(2) M 为BC 的中点.23.为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20kg ,甲型机器人分类800kg 垃圾所用的时间与乙型机器人分类600kg 垃圾所用的时间相等。
2019年初二上数学试题期末试题(有答案)
第一学期期末教学质量调研测试初 二 数 学(试卷满分130分,考试时间120分)一.选择题.(3*10=30分)1. 下列图形中,轴对称图形的个数为A .1个B .2 个C .3个D .4个2.x 的取值范围是A .4x >B .4x ≠C .4x ≤D .4x ≥ 3.下列给出的三条线段的长,能组成直角三角形的是A .1 、 2 、3B .2 、 3、 4C .5、 7 、 9D .5、 12、 134.A 是有理数B .5C . 5.下列等式中正确的是3=- B. 22=-2=-3=-6. 如图,数轴上点A 对应的数是1,点B 对应的数是2,BC ⊥AB ,垂足为B ,且BC=1,以A 为圆心,AC 为半径画弧,交数轴于点D ,则点D 表示的数为A .1.4BC 1+D .2.47.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a ),(﹣3,2),(b ,m ),(c ,m ),则点E 的坐标是A .(2,﹣3)B .(2,3)C .(3,2)D .(3,﹣2) 8.如图,点E 、F 在AC 上,AD=BC ,AD//BC ,则添加下列哪一个条件后,仍无法判定△ADF ≌△CBE 的是 A.DF=BE B.∠D=∠B C.AE=CF D.DF//BE9. 在同一直角坐标系内,一次函数y kx b =+与2y kx b =-的图象分别为直线为12,l l ,则下列图像中可能正确的是( )A B C D 10.已知点A (1,3)、B (3,1)-,点M 在x 轴上,当AM BM -最大时,点M 的坐标为 A .(2,0) B .(2.5,0) C .(4,0) D .(4.5,0) 二.填空题.(3*8=24分) 11.圆周率 3.1415926π≈,用四舍五入法把π精确到千分位,得到的近似值是_______.12.已知点(,)P a b 在一次函数21y x =-的图像上,则21__________a b -+= 13.如图,已知△ABC ≌△DCB ,∠ABC=65°,∠ACB=30°,则∠ACD=______°14.已知一个球体的体积为3288cm ,则该球体的半径为________cm.(注:球体体积公式V球体=343r π,为球体的半径.)第13题图 第16题图 第17题图 15.已知等边三角形的边长为2,则其面积等于__________.16.如图,已知一次函数y ax b =+的图像为直线l ,则关于x 的不等式0ax b +<的解集为 _________17.如图,等腰△ABC 中,AB AC =,AB 的垂直平分线MN 交边AC 于点D ,且∠DBC= 15°,则∠A 的度数是_______.18.已知实数,a b 满足22a b +=,则在平面直角坐标系中,动点(,)P a b 到坐标系原点(0,0)O 距离的最小值等于___________. 三.简答题.(76分) 19. (本题满分8分) 计算:(10(1- (2)211(|1()2-++20. (本题满分6分)已知3y -与x 成正比例,且2x =-时,y 的值为7. (1)求y 与的函数关系式;(2)若点 (2,)m -、点(4,)n 是该函数图像上的两点,试比较m 、n 的大小,并说明理由.21. (本题满分6分)如图,△ABC 中,∠A=36°,∠C=72°,∠DBC=36°. (1) 求∠ABD 的度数。
2019年初二数学上期末试卷含答案
2019年初二数学上期末试卷含答案一、选择题1.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠ D .12OCED S CD OE =⋅四边形 2.风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共x 人,则所列方程为( )A .18018032x x -=+ B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=- 3.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()n n A .2-B .1-C .2D .3 4.下列各因式分解的结果正确的是( ) A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-5.如图,在△ABC 中,∠ACB=90°,分别以点A 和B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,下列结论错误的是( )A .AD=BDB .BD=CDC .∠A=∠BED D .∠ECD=∠EDC6.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形7.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a +b)2-(a -b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A .a 2-b 2=(a +b)(a -b)B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .(a -b)(a +2b)=a 2+ab -b 28.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等 C .90BOC A ∠=+∠oD .设OD m =,AE AF n +=,则12AEF S mn ∆= 9.到三角形各顶点的距离相等的点是三角形( )A .三条角平分线的交点B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点 10.如图,在△ABC 中,∠ABC =90°,∠C =20°,DE 是边AC 的垂直平分线,连结AE ,则∠BAE 等于( )A .20°B .40°C .50°D .70°11.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是A .射线OE 是∠AOB 的平分线B .△COD 是等腰三角形C .C 、D 两点关于OE 所在直线对称D .O 、E 两点关于CD 所在直线对称12.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50°二、填空题13.如图所示,请将12A ∠∠∠、、用“>”排列__________________.14.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.15.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 16.数学家们在研究15,12,10这三个数的倒数时发现:-=-.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x>5),则x =________. 17.若分式242x x -+的值为0,则x =_____.18.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为 .19.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB= .20.如图,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是__________.三、解答题21.如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠B=40°,∠DAE=15°,求∠C 的度数.22.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O . 求证:△AEC ≌△BED ;23.计算:(1)4(x ﹣1)2﹣(2x +5)(2x ﹣5); (2)2214a ab b a b b ⎛⎫-÷ ⎪-⎝⎭n . 24.已知a=2014m +2012,b=2014m +2013,c=2014m +2014,求a 2+b 2+c 2-ab-bc-ca 的值.25.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:OE是AOB∠的角平分线,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四边形OCED=S△COE+S△DOE=111222OE CM OE DM CD OE+=g g g,但不能得出OCD ECD∠=∠,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.【点睛】本题考查了作图﹣基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面积等,熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.2.D解析:D【解析】【分析】先用x表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊了3元钱车费列出方程即可.【详解】解:设前去观看开幕式的同学共x 人,根据题意,得:18018032x x-=-. 故选:D.【点睛】本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错增加前后的人数. 3.C解析:C【解析】分析:先把括号内通分,再把分子分解后约分得到原式22m m =+,然后利用2220m m +-=进行整体代入计算. 详解:原式2222244(2)(2)222m m m m m m m m m m m m m +++=⋅=⋅=+=+++, ∵2220m m +-=,∴222m m ,+= ∴原式=2.故选C.点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.4.C解析:C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】()321a a a a -=-=a (a+1)(a-1),故A 错误; 2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.5.D解析:D【解析】【分析】根据题目描述的作图方法,可知MN垂直平分AB,由垂直平分线的性质可进行判断.【详解】∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.【点睛】本题考查垂直平分线的性质,熟悉尺规作图,根据题目描述判断MN为AB的垂直平分线是关键.6.D解析:D【解析】试题解析:∵(b﹣c)(a2+b2)=bc2﹣c3,∴(b﹣c)(a2+b2)﹣c2(b﹣c)=0,∴(b﹣c)(a2+b2﹣c2)=0,∴b﹣c=0,a2+b2﹣c2=0,∴b=c或a2+b2=c2,∴△ABC是等腰三角形或直角三角形.故选D.7.B解析:B【解析】图(4)中,∵S正方形=a2-2b(a-b)-b2=a2-2ab+b2=(a-b)2,∴(a-b)2=a2-2ab+b2.故选B8.C解析:C【解析】【分析】利用角平分线的性质、等腰三角形的判定与性质逐一判定即可.【详解】∵在△ABC中,∠ABC和∠ACB的平分线相交于点O∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°-12∠A∴∠BOC=180°-(∠OBC+∠OCB)=90°+12∠A,故C错误;∵∠EBO=∠CBO,∠FCO=∠BCO,//EF BC∴∠EBO=∠EOB ,∠FCO=∠FOC ,∴BE=OE ,CF=OF∴EF=EO+OF=BE+CF ,故A 正确;由已知,得点O 是ABC ∆的内心,到ABC ∆各边的距离相等,故B 正确;作OM ⊥AB ,交AB 于M ,连接OA ,如图所示:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O∴OM=OD m = ∴()11112222AEF AOE AOF S S S AE OM AF OD OD AE AF mn =+=⋅+⋅=⋅+=△△△,故D 选项正确;故选:C.【点睛】此题主要考查运用角平分线的性质、等腰三角形的判定与性质,解题关键是注意数形结合思想的运用. 9.C解析:C【解析】【分析】根据三角形外心的作法,确定到三定点距离相等的点.【详解】解:因为到三角形各顶点的距离相等的点,需要根据垂直平分线上的点到线段两端点的距离相等,只有分别作出三角形的两边的垂直平分线,交点才到三个顶点的距离相等. 故选:C .【点睛】本题考查了垂直平分线的性质和三角形外心的作法,关键是根据垂直平分线的性质解答.10.C解析:C【解析】【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质求出CE=AE ,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE是边AC的垂直平分线,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选:C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.11.D解析:D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意.C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.∴C、D两点关于OE所在直线对称,正确,不符合题意.D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.12.C解析:C【解析】【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=12∠ABC=352,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【详解】∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°-17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【点睛】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题13.【解析】【分析】根据三角形的外角的性质判断即可【详解】解:根据三角形的外角的性质得∠2>∠1∠1>∠A∴∠2>∠1>∠A故答案为:∠2>∠1>∠A【点睛】本题考查了三角形的外角的性质掌握三角形的一个解析:21A∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A,故答案为:∠2>∠1>∠A.【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.14.40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数进而得出答案【详解】如图所示:∠1+∠2+∠6=180°∠3+∠4+∠7=180°∵∠1+∠2+∠3+∠4=220°∴∠1+∠2+∠解析:40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.15.且【解析】【分析】直接解分式方程进而利用分式方程的解是正数得出的取值范围进而结合分式方程有意义的条件分析得出答案【详解】去分母得:解得:解得:当时不合题意故且故答案为:且【点睛】此题主要考查了分式方 解析:5a <且3a ≠【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案.【详解】去分母得:122a x -+=-,解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意,故5a <且3a ≠.故答案为:5a <且3a ≠.【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.16.15【解析】∵x>5∴x 相当于已知调和数15代入得13-15=15-1x 解得x=15 解析:15【解析】∵x >5∴x 相当于已知调和数15,代入得,解得,x=15.17.x=2【解析】分析:根据分式值为0的条件:分子为0分母不等于0可得即可解得详解:因为分式的值为0所以解得:所以故答案为:点睛:本题主要考查分式值为0的条件解决本题的关键是要熟练运用分式值为0的条件列解析:x=2【解析】分析:根据分式值为0的条件:分子为0,分母不等于0,可得24020x x ⎧-=⎨+≠⎩,即可解得 2x =.详解:因为分式242x x -+的值为0, 所以24020x x ⎧-=⎨+≠⎩, 解得:2,2x x =±≠-,所以2x =.故答案为: 2x =.点睛:本题主要考查分式值为0的条件,解决本题的关键是要熟练运用分式值为0的条件列出方程和不等式进行求解.18.5×10-6【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10﹣n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定解解析:5×10-6【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000015=1.5×10﹣6,故答案为1.5×10﹣6.考点:科学记数法—表示较小的数.19.85°【解析】试题分析:令A→南的方向为线段AEB→北的方向为线段BD 根据题意可知AEDB 是正南正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°考点:1方向角2三角解析:85°.【解析】试题分析:令A→南的方向为线段AE ,B→北的方向为线段BD ,根据题意可知,AE ,DB是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角. 2、三角形内角和.20.【解析】【分析】从已知条件结合图形认真思考通过构造全等三角形利用三角形的三边的关系确定线段和的最小值【详解】如图在AC上截取AE=AN连接BE∵∠BAC的平分线交BC于点D∴∠EAM=∠NAM∵AM解析:22【解析】【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】如图,在AC上截取AE=AN,连接BE∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,∵AM=AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=2即BE取最小值为22∴BM+MN的最小值是22【点睛】解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.三、解答题21.70°【解析】试题分析:由AD 是BC 边上的高可得出∠ADE =90°.在△ADE 中利用三角形内角和可求出∠AED 的度数,再利用三角形外角的性质即可求出∠BAE 的度数;根据角平分线的定义可得出∠BAC 的度数.在△ABC 中利用三角形内角和可求出∠C 的度数.试题解析:解:∵AD 是BC 边上的高,∴∠ADE =90°.∵∠ADE +∠AED +∠DAE =180°,∴∠AED =180°-∠ADE -∠DAE =180°-90°-15°=75°.∵∠B +∠BAE =∠AED ,∴∠BAE =∠AED -∠B =75°-40°=35°.∵AE 是∠BAC 平分线,∴∠BAC =2∠BAE =2×35°=70°.∵∠B +∠BAC +∠C =180°,∴∠C =180°-∠B -∠BAC =180°-40°-70°=70°.点睛:本题考查了三角形内角和定理以及三角形外角的性质,解题的关键是:在△ADE 中利用三角形内角和求出∠AED 的度数;利用角平分线的定义求出∠BAC 的度数.22.见解析【解析】【分析】根据全等三角形的判定即可判断△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).23.(1)﹣8x +29;(2)()4a b a b - 【解析】【分析】(1)根据整式的乘除进行去括号,然后合并同类项,即可得出答案.(2)根据积的乘方进行去括号,然后根据分式的混合运算进行化简,即可得出答案.【详解】解:(1)原式=4x 2﹣8x +4﹣4x 2+25=﹣8x +29;(2)原式=22222224a 1a 44a 4a 4a 4a (a b )4a ===a b b b b (a-b )b b (a b )b b (a-b )------g g 【点睛】本题主要考察了整式的乘除、积的乘方以及分式的混合运算,正确运用法则进行运算是解题的关键.24.3【解析】【分析】由已知可得a-b=-1,b-c=-1,c-a=2,所求式子提取12,利用完全平方公式变形后,代入计算即可求出值.【详解】 解:∵a=2014m +2012,b=2014m +2013,c=2014m +2014, ∴a-b=-1,b-c=-1,c-a=2,∴a 2+b 2+c 2-ab-bc-ca =12(2a 2+2b 2+2c 2-2ab-2bc-2ca ) =12[(a-b )2+(b-c )2+(c-a )2] =12×(1+1+4) =3.【点睛】本题考查因式分解的应用.25.详见解析.【解析】【分析】利用SSS 证明△ABC ≌△DEF ,根据全等三角形的性质可得∠B=∠DEF ,再由平行线的判定即可得AB ∥DE .【详解】证明:由BE =CF 可得BC =EF ,又AB =DE ,AC =DF ,故△ABC ≌△DEF (SSS ),则∠B=∠DEF ,∴AB ∥DE .考点:全等三角形的判定与性质.。
2019八年级上册数学期末考试卷(含答案)精品教育.doc
八年级上册数学期末考试卷(含答案)一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内.1.下列运算中,计算结果正确的是( ).A. B. C. D.2.23表示( ).A. 222B. 23C. 33D. 2+2+23.在平面直角坐标系中。
点P(-2,3)关于x轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC。
BEAC于E,CFAB于F,BE、CF交于点D,则下列结论中不正确的是( ).A. △ABE≌△ACFB. 点D在BAC的平分线上C. △BDF≌△CDED. 点D是BE的中点6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).A. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式与是同类项,则 = .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 .11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.AOB画在方格纸上,请在小方格的顶点上标出一个点P。
使点P落在AOB的平分线上.13.数的运算中有一些有趣的对称,请你仿照等式12231=13221的形式完成:(1)18891 = (2)24231 = .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ;(2)第n个图案中白色瓷砖块数是 .第1个图案第2个图案第3个图案三、耐心求一求(本大题共4小题.每小题6分。
2019年八年级上学期期末数学试卷(有答案)
2019年八年级上学期期末数学试卷(有答案)一、选择题1.若分式有意义,则x的取值应满足()A. x≠3B. x≠4C. x≠﹣4D. x≠﹣32.若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A. 1B. 5C. 7D. 93.下列运算中正确的是()A. (a2)3=a5B. a2•a3=a5C. a6÷a2=a3D. a5+a5=2a104.如图,△ABC沿AB向下翻折得到△ABD,若∠ABC=30°,∠ADB=100°,则∠BAC的度数是()A. 100°B. 30°C. 50°D. 80°5.如果分式的值为零,那么x等于()A. 1B. ﹣1C. 0D. ±16.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A. ∠A=∠DB. BC=EFC. ∠ACB=∠FD. AC=DF7.若点P(1,a)与Q(b,2)关于x轴对称,则代数式(a+b)2017的值为()A. ﹣1B. 1C. ﹣2D. 28.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A. abB. (a+b)2C. (a﹣b)2D. a2﹣b29.小强是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:北、爱、我、河、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A. 我爱美B. 河北游C. 爱我河北D. 美我河北10.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A. = ﹣5B. = +5C. =8x﹣5D. =8x+511.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A. SSSB. SASC. ASAD. AAS12.若a+b=﹣3,ab=1,则a2+b2=()A. ﹣11B. 11C. ﹣7D. 713.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A. 3B. 4C. 5D. 614.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A. 等腰三角形B. 等边三角形C. 不等边三角形D. 不能确定形状15.若m=2100,n=375,则m、n的大小关系正确的是()A. m>nB. m<nC. 相等D. 大小关系无法确定16.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题17.分解因式:3a3﹣12a2+12a=________.18.若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是________.19.我们知道;;;…根据上述规律,计算=________.20.如图,在等边△ABC中,AD⊥BC于D,若AB=4cm,AD=2 cm,E为AB的中点,P为AD上一点,PE+PB 的最小值为________.三、解答题21.先简化,再求值:(1+ )÷,其中x=3.22.解方程:.23.如图1为L形的一种三格骨牌,它是由三个全等的正方形连接而成.请以L形的三格骨牌为基本图形,在图2和图3中各设计1个轴对称图形.要求如下:a、每个图形由3个L形三格骨牌组成,骨牌的顶点都在小正方形的顶点上.b、设计的图形用斜线涂出,若形状相同,则视为一种.24.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.25.某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(i)甲队单独完成这项工程刚好如期完成;(ii)乙队单独完成这项工程要比规定日期多用6天;(iii)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.26.情境观察:(1)如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形________;②线段AF与线段CE的数量关系是________.(2)如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.(3)如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC= ∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.求证:DF=2CE.要求:请你写出辅助线的作法,并在图3中画出辅助线,不需要证明.参考答案一、选择题1.C2.B3. B4.C5.B6.D7.A8.C9.C 10.B11.A 12.D 13.A 14.B 15. B 16.C二、填空题17.3a(a﹣2)218.90°19.20.2三、解答题21.解:原式= • = •= ,当x=3时,原式= =22.解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解23.解:如图所示:24.解:∵DE=EB ∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x,∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x,∵BD=BC,∴∠C=∠BDC=3x,∵AB=AC,∴∠ABC=∠C=3x,在△ABC中,3x+3x+2x=180°,解得x=22.5°,∴∠A=2x=22.5°×2=45°.25.解:设规定日期为x天.由题意得+ + =1,.3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(i):1.2×6=7.2(万元);方案(ii)比规定日期多用6天,显然不符合要求;方案(iii):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款26.(1)△ABE≌△ACE,△ADF≌△CDB;AF=2CE 问题探究:(2)证明:延长AB、CD交于点G,如图2‘所示:∵AD平分∠BAC,∴∠CAD=∠GAD,∵AD⊥CD,∴∠ADC=∠ADG=90°,,在△ADC和△ADG中,∴△ADC≌△ADG(ASA),∴CD=GD,即CG=2CD,∵∠BAC=45°,AB=BC,∴∠ABC=90°,∴∠CBG=90°,∴∠G+∠BCG=90°,∵∠G+∠BAE=90°,∴∠BAE=∠BCG,在△ABE和△CBG中,,∴△ADC≌△CBG中(ASA),∴AE=CG=2CD拓展延伸:(3)解:作DG⊥BC交CE的延长线于G,如图3所示.。
2019年八年级上学期期末考试数学试卷(含答案)
2019年上期八年级期末考数学试卷(一)学校 班级 考号 姓名一、精心选一选(每小题3分,共24分)1.由线段a 、b 、c 组成的三角形不是直角三角形的是 ( ) A. a =6,b =8,c =10 B. a =12,b =15,c =2C. a =13,b =12,c =5D. a =3,b =4,c =52.如图,点D 、E 、F 分别为△ABC 三边的中点,若△DEF 的周长为5,则△ABC 的周长为 ( ) A.25 B.15 C.10 D.53.已知矩形的一条对角线的长度为2cm ,两条对角线的一个夹角为60°,则矩形的长、宽分别为 ( ) A.3 , 1 B.13, C. 5 ,2 D. 4, 24.在平面直角坐标系中,点P (﹣3,4)关于x 轴的对称点的坐标是 ( ) A. (-4,-3) B. (-3,-4) C. (-3,4) D. (3,-4)5. 下列图案中不是中心对称图形的是 ( )A B C D6. 在纸上画一个三角形,把它剪下来,再用纸剪三个与它全等的三角形,用这四 个三角形拼成一个大三角形,如图所示,平行四边形共有 ( ) A .1个 B . 2个 C .3个 D .4个第2题图第3题图7.如图所示,EF 过□ABCD 对角线AC ,BD 的交点O ,且分别交AD 、BC 于点E ,F 那么图中阴影部分的面积是□ABCD 面积的 ( )A .41 B .31C .51 D .1038.一个正多边形的一个内角等于150°,则这个正多边形的边数是 ( ) A.6 B. 8 C.10 D.12二、细心填一填(每小题3分,共24分)9.在Rt △ABC 中,斜边上的中线CD=3cm ,则斜边AB 的长是 。
10.如图10,把菱形ABCD 沿直线DB 对折(即作直线DB 的轴反射) 点A 的像是 , 点B 的像是 ,11.正比例函数图象过点(1,﹣5),则函数表达式为.12.把40个数据分在4个组内,第一、二、四组中的数据 分别为7,6,15,则第三组的频数为 .13.菱形ABCD 的两条对角线AC ,BD 的长度分别为 4cm ,8cm ,菱形的面积为 。
2019年初二数学上期末试卷(及答案)
【解析】
【分析】
由等腰三角形三线合一的性质得出AD⊥BC,BD=CD= BC=5.
【详解】
解:∵AB=AC,AD是∠BAC平分线,
∴AD⊥BC,BD=CD= BC=5.
故答案为:5.
【点睛】
本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解决问题的关键.
16.-2【解析】【分析】根据分式值为零的条件可得x2-4=0且x﹣2≠0求解即可【详解】由题意得:x2-4=0且x﹣2≠0解得:x=﹣2故答案为:-2【点睛】此题主要考查了分式的值为零的条件需同时具备两
解析:6×10﹣3
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
15.5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BCBD=CD=BC=5【详解】解:∵AB=ACAD是∠BAC平分线∴AD⊥BCBD=CD=BC=5故答案为:5【点睛】本题考查了等腰三角形的性
C、根据作图得到OC=OD,
又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.
∴C、D两点关于OE所在直线对称,正确,不符合题意.
D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,பைடு நூலகம்
∴O、E两点关于CD所在直线不对称,错误,符合题意.
故选D.
4.C
解析:C
【解析】
【分析】
将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.
2019年初二数学上期末试卷(及答案)
一、选择题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年初二数学上期末试卷(附答案)一、选择题1.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上( )根木条.A .1B .2C .3D .4 2.若b a b -=14,则a b 的值为( ) A .5 B .15 C .3 D .133.如图,AB ∥CD ,BC ∥AD ,AB=CD ,BE=DF ,图中全等的三角形的对数是( )A .3B .4C .5D .64.如图①,在边长为a 的正方形中剪去一个边长为b (b <a )的小正方形,把剩下部分拼成一个梯形(如图②),利用这两个图形的面积,可以验证的等式是( )A .a 2+b 2=(a +b )(a -b )B .(a -b )2=a 2-2ab +b 2C .(a +b )2=a 2+2ab +b 2D .a 2-b 2=(a +b )(a -b )5.等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为( )A .30B .30或150C .60或150D .60或120 6.下列计算正确的是( ) A .235+=B .a a a +=222C .(1)x y x xy +=+D .236()mn mn = 7.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A .30°B .45°C .50°D .75°8.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg 货物,则可列方程为A .B .C .D .9.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ 10.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .3211.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)12.已知a 是任何实数,若M =(2a ﹣3)(3a ﹣1),N =2a (a ﹣32)﹣1,则M 、N 的大小关系是( )A .M ≥NB .M >NC .M <ND .M ,N 的大小由a 的取值范围 二、填空题13.如图ABC ,24AB AC ==厘米,B C ∠=∠,16BC =厘米,点D 为AB 的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动,若点Q的运动速度为v厘米/秒,则当BPD△与CQP全等时,v的值为_____厘米/秒.14.等腰三角形的一个内角是100︒,则这个三角形的另外两个内角的度数是__________.15.如图,在△ABC中,AB = AC,BC = 10,AD是∠BAC平分线,则BD = ________.16.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,若AB=20,则BD的长是.17.因式分解:3x3﹣12x=_____.18.分式293xx--当x__________时,分式的值为零.19.若n边形内角和为900°,则边数n= .20.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第_____块.三、解答题21.某公司计划购买A、B两种型号的机器人搬运材料,已知A型机器人比B型机器人每小时多搬运15kg材料,且A型机器人搬运500kg的材料所用的时间与B型机器人搬运400kg材料所用的时间相同.(1)求A、B两种型号的机器人每小时分别搬运多少材料?(2)该公司计划采购A、B两种型号的机器人共10台,要求每小时搬运的材料不得少于700kg ,则至少购进A 型机器人多少台?22.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=12. 23.如果230x x +-=,求代数式321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭的值. 24.先化简,再求值:(442a a --﹣a ﹣2)÷2444a a a --+.其中a 与2,3构成△ABC 的三边,且a 为整数.25.已知a=2014m +2012,b=2014m +2013,c=2014m +2014,求a 2+b 2+c 2-ab-bc-ca 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】从一个多边形的一个顶点出发,能做(n-3)条对角线,把三角形分成(n-2)个三角形.【详解】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;要使一个n 边形木架不变形,至少再钉上(n-3)根木条.故选:C.【点睛】本题考查了多边形以及三角形的稳定性;掌握从一个顶点把多边形分成三角形的对角线条数是n-3.2.A解析:A【解析】 因为b a b -=14, 所以4b=a-b .,解得a=5b , 所以a b =55b b=. 故选A. 3.A解析:A【解析】解:∵AB∥CD,BC∥AD,∴∠ABD=∠CDB,∠ADB=∠CBD.在△ABD和△CDB中,∵,∴△ABD≌△CDB(ASA),∴AD=BC,AB=CD.在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS),∴AE=CF.∵BE=DF,∴BE+EF=DF+EF,∴BF=DE.在△ADE和△CBF中,∵,∴△ADE≌△CBF(SSS),即3对全等三角形.故选A.4.D解析:D【解析】【分析】根据左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),利用面积相等即可解答.【详解】∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b).故选D.【点睛】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.5.B解析:B【解析】【分析】等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为【详解】解:如图1,∵∠ABD=60°,BD 是高,∴∠A=90°-∠ABD=30°;如图2,∵∠ABD=60°,BD 是高,∴∠BAD=90°-∠ABD=30°,∴∠BAC=180°-∠BAD=150°;∴顶角的度数为30°或150°.故选:B .【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.6.C解析:C【解析】解:A 、不是同类二次根式,不能合并,故A 错误;B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .7.B解析:B【解析】试题解析:∵AB =AC ,∠A =30°,∴∠ABC =∠ACB =75°,∵AB 的垂直平分线交AC 于D ,∴AD =BD ,∴∠A =∠ABD =30°,∴∠BDC =60°,∴∠CBD =180°﹣75°﹣60°=45°.故选B .8.B解析:B【解析】甲种机器人每小时搬运x 千克,则乙种机器人每小时搬运(x+600)千克, 由题意得:,故选B .【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程是关键.9.D解析:D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D .【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.10.C解析:C【解析】【分析】把x+1x =6两边平方,利用完全平方公式化简,即可求出所求. 【详解】把x+1x =6两边平方得:(x+1x )2=x 2+21x +2=36, 则x 2+21x =34, 故选:C .【点睛】本题考查了分式的混合运算以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.11.B解析:B【解析】【分析】根据四边形的内角和为360°、平角的定义及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【详解】∵在四边形ADA′E 中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+(180°-∠2)+(180°-∠1)=360°,∴可得2∠A=∠1+∠2.故选:B【点睛】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.12.A解析:A【解析】【分析】将M,N代入到M-N中,去括号合并得到结果为(a﹣1)2≥0,即可解答【详解】∵M=(2a﹣3)(3a﹣1),N=2a(a﹣32)﹣1,∴M﹣N=(2a﹣3)(3a﹣1)﹣2a(a﹣32)+1,=6a2﹣11a+3﹣2a2+3a+1=4a2﹣8a+4=4(a﹣1)2∵(a﹣1)2≥0,∴M﹣N≥0,则M≥N.故选A.【点睛】此题考查整式的混合运算,解题关键是在于把M,N代入到M-N中计算化简得到完全平方式为非负数,从而得到结论.二、填空题13.4或6【解析】【分析】此题要分两种情况:①当BD=PC时△BPD与△CQP 全等计算出BP的长进而可得运动时间然后再求v;②当BD=CQ时△BDP≌△QCP 计算出BP的长进而可得运动时间然后再求v【详解析:4或6【解析】【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.【详解】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=12AB=12cm,∵BD=PC,∴BP=16-12=4(cm),∵点P在线段BC上以4厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=4cm,∴v=4÷1=4厘米/秒;当BD=CQ时,△BDP≌△QCP,∵BD=12cm,PB=PC,∴QC=12cm,∵BC=16cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=12÷2=6厘米/秒.故答案为:4或6.【点睛】此题主要考查了全等三角形的判定,关键是要分情况讨论,不要漏解,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.14.40°40°【解析】【分析】因为等腰三角形的两个底角相等且三角形内角和为180°100°只能为顶角所以剩下两个角为底角且为40°40°【详解】解:∵三角形内角和为180°∴100°只能为顶角∴剩下两解析:40° 40°【解析】【分析】因为等腰三角形的两个底角相等,且三角形内角和为180°,100°只能为顶角,所以剩下两个角为底角,且为40°,40°.【详解】解:∵三角形内角和为180°,∴100°只能为顶角,∴剩下两个角为底角,且它们之和为80°,∴另外两个内角的度数分别为40°,40°.故答案为:40°,40°.【点睛】本题考查了等腰三角形的性质和三角形的内角和,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15.5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BCBD=CD=BC=5【详解】解:∵AB=ACAD是∠BAC平分线∴AD⊥BCBD=CD=BC=5故答案为:5【点睛】本题考查了等腰三角形的性解析:5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BC,BD=CD=12BC=5.【详解】解:∵AB=AC,AD是∠BAC平分线,∴AD⊥BC,BD=CD=12BC=5.故答案为:5.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解决问题的关键.16.5【解析】【分析】【详解】试题分析:根据同角的余角相等知∠BCD=∠A=30°所以分别在△ABC和△BDC中利用30°锐角所对的直角边等于斜边的一半即可求出BD解:∵在直角△A BC中∠ACB=90°解析:5【解析】【分析】【详解】试题分析:根据同角的余角相等知,∠BCD=∠A=30°,所以分别在△ABC和△BDC中利用30°锐角所对的直角边等于斜边的一半即可求出BD.解:∵在直角△ABC中,∠ACB=90°,∠A=30°,且CD⊥AB∴∠BCD=∠A=30°,∵AB=20,∴BC=12AB=20×12=10,∴BD=12BC=10×12=5.故答案为5.考点:含30度角的直角三角形.17.3x(x+2)(x﹣2)【解析】【分析】先提公因式3x然后利用平方差公式进行分解即可【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案为3x (x+2)(x﹣2)【点睛】本题考查解析:3x(x+2)(x﹣2)【解析】【分析】先提公因式3x,然后利用平方差公式进行分解即可.3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.18.=-3【解析】【分析】根据分子为0分母不为0时分式的值为0来解答【详解】根据题意得:且x-30解得:x=-3故答案为:=-3【点睛】本题考查的是分式值为0的条件易错点是只考虑了分子为0而没有考虑同时解析:= -3【解析】【分析】根据分子为0,分母不为0时分式的值为0来解答.【详解】根据题意得:290x且x-3 0解得:x= -3故答案为:= -3.【点睛】本题考查的是分式值为0的条件,易错点是只考虑了分子为0而没有考虑同时分母应不为0.19.【解析】【分析】利用多边形内角和公式建立方程求解【详解】根据题意得:180(n﹣2)=900解得:n=7故答案为7【点睛】本题考查多边形内角和公式熟记公式是解题的关键解析:【解析】【分析】利用多边形内角和公式建立方程求解.【详解】根据题意得:180(n﹣2)=900,解得:n=7.故答案为7.【点睛】本题考查多边形内角和公式,熟记公式是解题的关键.20.2【解析】【分析】本题应先假定选择哪块再对应三角形全等判定的条件进行验证【详解】解:134块玻璃不同时具备包括一完整边在内的三个证明全等的要素所以不能带它们去只有第2块有完整的两角及夹边符合ASA满解析:2【解析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的. 故答案为:2.【点睛】本题考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .三、解答题21.(1)A 型每小时搬动75kg ,B 型每小时搬动60kg ;(2)至少购进7台A 型机器人【解析】【分析】(1)设B 型机器人每小时搬运x 千克材料,则A 型机器人每小时搬运(x+15)千克材料,根据A 型机器人搬运500kg 材料所用的时间与B 型机器人搬运400kg 材料所用的时间相同建立方程求出其解就可以得出结论;(2)设购进A 型机器人a 台,根据每小时搬运材料不得少于700kg 列出不等式并解答.【详解】(1)设B 型机器人每小时搬运xkg 材料,则A 型机器人每小时搬运()15x kg +, 依题意得:50040015x x=+, 解得:60x =,经检验,60x =是原方程的解,答:A 型每小时搬动75kg ,B 型每小时搬动60kg ;(2)设购进A 型a 台,B 型()10a -台,由题意,得7560(10)700a a +-≥, 解得:263a ≥, 答:至少购进7台A 型机器人.【点睛】本题考查了分式方程的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.22.4ab ,﹣4.【解析】【分析】原式利用平方差公式,以及完全平方公式进行展开,去括号合并得到最简结果,把a 与b的值代入计算即可求出值.【详解】(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2=a 2﹣4b 2﹣a 2+4ab ﹣4b 2+8b 2=4ab ,当a=﹣2,b=12时,原式=﹣4. 【点睛】本题考查了整式的混合运算﹣化简求值,熟练掌握乘法公式以及整式混合运算的运算顺序及运算法则是解本题的关键. 23.13【解析】【分析】 先根据分式的混合运算得到21x x+,再把230x x +-=变形为2=3x x +,再代入到化简结果中计算即可.【详解】321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭, =21(1)(1)1(1)x x x x x x x -++-⎛⎫÷ ⎪--⎝⎭ =1(1)1(1)x x x x -⎛⎫⋅ ⎪-+⎝⎭ =1(1)x x + =21x x+ 当230x x +-=,即23+=x x 时,原式=13. 【点睛】 本题考查了分式的化简求值,在分式的化简过程中要注意运算顺序,化简后的最后结果要化成最简分式或整式.24.﹣a 2+2a ,-3【解析】分析:先算减法,再把除法变成乘法,算乘法,求出a ,最后代入请求出即可. 详解:原式22(44)(4)(2)24a a a a a ----=⋅--,22(4)(2)2.24a a a a a a a ---=⋅=-+-- ∵a 与2,3构成△ABC 的三边,且a 为整数,∴a 为2、3、4,当a =2时,a −2=0,不行舍去;当a =4时,a −4=0,不行,舍去;当a =3时,原式=−3.点睛:考查分式混合运算以及三角形的三边关系,掌握分式混合运算的法则是解题的关键. 25.3【解析】【分析】由已知可得a-b=-1,b-c=-1,c-a=2,所求式子提取12,利用完全平方公式变形后,代入计算即可求出值.【详解】 解:∵a=2014m +2012,b=2014m +2013,c=2014m +2014, ∴a-b=-1,b-c=-1,c-a=2,∴a 2+b 2+c 2-ab-bc-ca =12(2a 2+2b 2+2c 2-2ab-2bc-2ca ) =12[(a-b )2+(b-c )2+(c-a )2] =12×(1+1+4) =3.【点睛】本题考查因式分解的应用.。