高中数学必修2圆与圆的位置关系ppt课件

合集下载

2.2.3.2 圆与圆的位置关系 课件(北师大必修2)

2.2.3.2 圆与圆的位置关系 课件(北师大必修2)

(1)试判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度. [思路点拨] 先把两圆方程化为标准方程,判断两圆 的位置关系,作差求公共弦所在直线方程,求公共弦的长
度.
[精解详析]
(1)将两圆方程配方化为标准方程,
C1:(x-1)2+(y+5)2=50,C2:(x+1)2+(y+1)2=10. 则圆C1的圆心为(1,-5),半径r1=5 2; 圆C2的圆心为(-1,-1),半径r2= 10. 又|C1C2|=2 5,r1+r2=5 2+ 10.r1-r2=5 2- 10. ∴r1-r2<|C1C2|<r1+r2,∴两圆相交.
[一点通]
判断两圆的位置关系有几何法和代数法两
种方法,几何法比代数法简便,解题时一般用几何法.
用几何法判断两圆位置关系的操作步骤
(1)将两圆的方程化为标准方程. (2)求两圆的圆心坐标和半径R、r. (3)求两圆的圆心距d. (4)比较d与|R-r|、R+r的大小关系.
1.两圆x2+y2-2x+4y+4=0和x2+y2-4x+2y+=0的
(2)将两圆方程相减,得公共弦所在直线方程为 x-2y+4=0. (3)法一:两方程联立,得方程组
x2+y2-2x+10y-24=0, 2 x +y2+2x+2y-8=0.
① ②Байду номын сангаас③
两式相减得x=2y-4,
把③代入②得 y2-2y=0,∴y1=0,y2=2.
x =-4, 1 ∴ y1=0, x =0, 2 或 y2=2.
2x-4y+12=0, 即x-2y+6=0. 故两圆相交弦方程为x-2y+6=0. 答案:C
5.(2011· 天津高考)若圆x2+y2=4与圆x2+y2+2ay-6

2.2.3.2 圆与圆的位置关系 课件(北师大必修2)

2.2.3.2 圆与圆的位置关系 课件(北师大必修2)

C2:x2+y2-2x-14y+k=0相交、相切、相离?
解:将两圆的一般方程化为标准方程: C1:(x+2)2+(y-3)2=1, C2:(x-1)2+(y-7)2=50-k. 所以圆C1的圆心为C1(-2,3),半径r1=1; 圆C2的圆心为C2(1,7),半径r2= 50-k(k<50). 从而|C1C2|= -2-12+3-72=5, 当1+ 50-k=5,即k=34时,两圆外切.
2 2
2λ ∵圆心( ,0)在直线x- 3y-6=0上, 1+λ 2λ ∴ -6=0. 1+λ 3 解得λ=-2. ∴所求圆的方程为x2+y2-12x+8=0.
[一点通] (1)法一是求出两已知圆的交点、所求圆的圆心及半 径,得出了圆的方程.法二是利用了过两曲线系方程的 特点,利用待定系数法求出λ得出圆的方程,需特别指出 的是法二中若取λ=-1,则曲线系方程变成直线的方程, 此方程即为经过两圆交点的直线方程.
a=1.
答案:1
[例3]
过两圆x2+y2-4=0和x2-4x+y2=0的交点,且
圆心在直线x- 3y-6=0上的圆的方程. [思路点拨] 求出交点,再求圆心和半径得圆的方程.
[精解详析]
法一:
x2+y2-4=0, 由 2 2 x +y -4x=0, x=1, 得 y= 3, x=1, 或 y=- 3,
2.求两圆的公共弦所在的直线方程,只需把两个
圆的方程相减即可.而在求两圆的公共弦长时,则应注 意数形结合思想方法的灵活运用. 3.过圆x2+y2+D1x+E1y+F1=0与圆x2+y2+D2x+ E2y+F2=0交点的圆方程可设为(x2+y2+D1x+E1y+F1) +λ(x2+y2+D2x+E2y+F2)=0(λ≠-1),这就是过两圆交 点的圆系方程,特别地,λ=-1时,为两圆公共弦的方 程.

高中数学223圆与圆的位置关系课件苏教版必修

高中数学223圆与圆的位置关系课件苏教版必修

本题所求圆与已知圆半径差为 1,而两个圆心的纵 坐标之差的绝对值大于 3,故内切是不可能的,但解题中不考虑内 切情况是不严密的.
汇报结束
谢谢大家! 请各位批评指正
法二 由法一得直线 AB 为 4x+3y-10=0, C1 到直线 AB 的距离为 d=|20+155-10|=5, 而圆 C1 的半径为 r=5 2. 由圆的性质可知 AB=2 r2-d2=2 50-25=10. 法三 圆 C1 的圆心为(5,5),r1=5 2, 圆 C2 的圆心为(-3,-1),r2=5 2, ∴C1C2= 5+32+5+12=10. ∴四边形 AC1BC2 是正方形. ∴AB=C1C2=10.
解析 本题主要考查两圆的位置关系,两圆有公共点时,它 们只能是内切、外切或相交,因此圆心距 d 满足|r2-r1|≤d≤r1+ r2,即|6- m|≤5≤ m+6,从而 1≤ m≤11,1≤m≤121.
答案 1≤m≤121
题型二 两圆的相交弦问题与公切线问题 【例 2】 已知圆 C1:x2+y2-10x-10y=0 和圆 C2:x2+y2+ 6x+2y-40=0 相交于 A、B 两点,求弦 AB 的长. [思路探索] 本题主要考查两圆的相交弦问题,关键要寻找关 于弦 AB 的相关量.由于两圆方程已知,可先求 A、B 的坐标,再 求弦长;也可转化为直线 AB 与圆 C1 或圆 C2 的相交问题.
误区警示 忽视相切的含义 【示例】 求半径为 4,且与圆 x2+y2-4x-2y-4=0 和直线 y=0 都相切的圆的方程. [错解] 由题意,知所求圆与直线 y=0 相切且半径为 4,可设 圆心坐标为 O1(a,4), 则圆的方程为(x-a)2+(y-4)2=16. 圆 x2+y2-4x-2y-4=0 的标准方程为(x-2)2+(y-1)2=32, 则圆心为 O2(2,1),半径为 3. 若两圆相切,则|O1O2|=3+4=7, 所以 a-22+4-12=7, 解得 a=2±2 10.

2.5.2圆与圆的位置关系课件高二上学期数学人教A版选择性

2.5.2圆与圆的位置关系课件高二上学期数学人教A版选择性
5
24
.
5
∴AB 所在直线的方程为 3x-4y+6=0,公共弦 AB
24
的长为 5 .
探究三
两圆相切问题
【例 3】 求与圆 C:x2+y2-2x=0 外切,且与直线 l:x+ 3y=0 相切于点 M(3,
- 3)的圆的方程.
分析:要求圆的方程,需求出圆心坐标及半径,可利用直线与圆相切、圆与
圆外切,建立关于a,b,r的方程组求解.
距 d=|O1O2|= (1 -2 )2 + (1 -2 )2 ,则有
位置关系 外离
外切
相交
内切
d=r1+r2
|r1-r2|<d<r1+r2 d=|r1-r2|
内含
图示
d 与 r 1,
r2 的关系
d>r1+r2
d<|r1-r2|
(2)代数法:圆 O1:x2+y2+D1x+E1y+F1=0(12 + 12 -4F1>0),圆 O2:
为 x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).
【变式训练2】 已知圆C1:x2+y2+2x-6y+1=0与圆C2:x2+y2-4x+2y-11=0相
交于A,B两点,求AB所在直线的方程和公共弦AB的长.
解:由圆C1的方程减去圆C2的方程,得方程3x-4y+6=0,则两圆交点的坐标
高运算效率.
【变式训练3】 与圆O:x2+y2=25外切于点P(4,3),且半径为1的圆的方程

新课标高中数学人教A版必修二全册课件4.2.2圆与圆的位置关系

新课标高中数学人教A版必修二全册课件4.2.2圆与圆的位置关系
设两圆的圆心距为d,两圆半径 分别为R、r. 当d>R+r时,两圆 , 当d=R+r时,两圆 , 当|R-r|<d<R+r时,两圆 , 当d=|R-r|时,两圆 , 当d<|R-r|时,两圆 .
第四页,编辑于星期日:十三点 十六分。
讲授新课
例1. 已知圆C1: x2+y2+2x+8y-8=0, 圆C2: x2+y2-4x-4y-2=0,试判断 圆C1与圆C2的位置关系.
第五页,编辑于星期日:十三点 十六分。
探讨: 问题如何根据圆的方程,判断
两圆之间的位置关系?
第六页,编辑于星期日:十三点 十六分。
探讨: 问题如何根据圆的方程,判断
两圆之间的位置关系?
方法:通常是通过解方程或不等式
等方法加以解决.
第七页,编辑于星期日:十三点 十六分。
例2.圆C1的方程是: x2+y2-2mx+4y+m2 -5=0, 圆C2的方程是: x2+y2+2x-2my+m2 -3=0,
4.2.2圆与圆 的位置关系
第一页,编辑于星期日:十三点 十六分。
复习引入
1. 两圆的位置关系有哪几种?
第二页,编辑于星期日:十三点 十六分。
复习引入
2. 如何利用半径与圆心距之间的关系 来判断两圆的位置关系?
第三页,编辑于星期日:十三点 十六分。
复习引入
2. 如何利用半径与圆心距之间的关系 来判断两圆的位置关系?
第十三页,编辑于星期日:十三点 十六分。
2. 已知圆C与圆x2 y2 2x 0相外切, 并 且与直线x 3 y 0相切于点Q(3, 3), 求圆C的方程 .
3. 求两圆x2+y2=1和(x-3)2+y2=4的外 公切线方程.
第十二页,编辑于星期日:十三点 .129到P.130; 2. 《习案》二十八.

圆与圆的位置关系(必修2)

圆与圆的位置关系(必修2)

(2)C1 : x2 y2 9 C2 : (x 2)2 y2 1
解:C1(0, 0) r1 3
C2 (2, 01 r2 内切
(3) C1:x2 y2 2x 8y 8 0 C2:x2 y2 4x 4 y 1 0
相交
几何方法
两圆心坐标及半径 (配方法)
思考
C1 : x2 y2 2x 8y 8 0 C2 : x2 y2 4x 4 y 2 0
把C1与C2两式相减,得到的方程表示什么图形? 这条直线与两圆的公共弦所在直线又有什么关系?
我们是否可以用这种方法求任意两个圆的公共弦 所在的直线呢? 结论:只能在已知两圆位置关系是相交、相切 时才可以用来求公共弦所在直线,和过公共点 的切线方程。
直线与圆的三种位置关系
d
d
d
公共点个数 判别式
d与r的关系
相交
相切
相离
2个
1个
方程有两个 方程只有一 解 △>0 个解 △=0
dr d r
0个
方程无解 △<0
dr
小结:判断直线和圆的位置关系
方法一
方法二
求圆心坐标及半径r (配方法)
圆心到直线的距离d (点到直线距离公式)
(x a)2 ( y b)2 r 2
❖ 解:联立两个方程组得
x2 y2 2x 8 y 8 0 ①
x2
y2
4x
4y
2
0

①-②得
x 2y 1 0 ③
把上式代入①
x2 2x 3 0 ④
(2)2 41 (3) 16
得 x1=-1,x2=3 把x1,x2代入方程③得到 y1=1,y2=-1
所以圆C1与圆C2有两个不同的交点A(-1,1),B(3,-1) 最后得到公共弦所在直线:x+2y-1=0,

高中数学 4.2圆与圆的位置关系课件1 理 新人教A版必修2

高中数学 4.2圆与圆的位置关系课件1 理 新人教A版必修2

精选ppt
1
6.圆系方程:
②设圆C∶x2+y2+Dx+Ey+F=0与直线l: Ax+By+C=0,若直线与圆相交,则过交点的圆 系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0 (λ为参 数).
精选ppt
2
例1.求以圆C1∶x2+y2-12x-2y-13=0和 圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆方程.
∵圆心C应在公共弦AB所在直线上,
∴ 所求圆的方程为x2+y2-4精x选+pp4t y-17=0.
4
• 完成圆系题单:例题2,7 作业: • 圆系题单剩下的
精选ppt
6
6.圆系方程:
①设圆C1∶x2+y2+D1x+E1y+F1=0和 圆C2∶x2+y2+D2x+E2y+F2=0.
若两圆相交,则过交点的圆系方程为 x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ为 参数,圆系中不包括圆C2,λ=-1为两圆的公共弦 所在直线方程).
若两圆相切呢?
解法
相减得公共弦所在直线方程为4x+3y-2=0.
∵所求圆以AB为直径,
于是圆的方程为(x-2)2+(y+2)2=25 .
精选ppt
3
例1.求以圆C1∶x2+y2-12x-2y-13=0和 圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆方程. 解法二: 设所求圆的方程为: x2+y2-12x-2y-13+λ(x2+y2+12x+16y-25)=0(λ为参数)

【高中数学必修二】4.2.2圆与圆的位置关系.

【高中数学必修二】4.2.2圆与圆的位置关系.

Rr
O1
O2
外离
O1O2>R+r
Rr
O1
O2
外切
O1O2=R+r
Rr O1 O2
相交
R-r<O1O2<R+r
R
O1 O2r
内切
O1O2=R-r
R
O1 O2r
内含
0≤O1O2<R-r
R
O
1O
r
2
同心圆 (一种特殊的内含)
O1O2=0
判断两圆位置关系 外离 d>R+r
Rr
O1
O2
外切 d=R+r 内切 d=R-r
外切
O1O2=R+r
R
O1 O2r
内含
Rr O1 O2
相交
R-r<O1O2<R+r
从图形上看圆与圆的五种位置关系:
Rr
O1
O2
外离
O1O2>R+r
Rr
O1
O2
外切
O1O2=R+r
R
O1 O2r
内切
O1O2=R-r
R
O1 O2r
内含
0≤O1O2<R-r
Rr O1 O2
相交
R-r<O1O2<R+r
从图形上看圆与圆的五种位置关系:
Rr
O1
O2
R
O1 O2r
内含 0≤d<R-r
R
O1 O2r
相交 R-r<d<R+r
Rr O1 O2
判断两圆位置关系 外离 d>R+r
几何方法

2.5.2圆与圆位置关系 课件(共18张PPT)

2.5.2圆与圆位置关系 课件(共18张PPT)
2.5.2圆与圆的位置
关系
人教A版(2019)
选择性必修第一册
学习目标
1.理解圆与圆的位置关系的种类.
2.掌握圆与圆的位置关系的代数判断方法与几何判断方法.
3.能够利用上述方法判断两圆的位置关系.
4.体会根据圆的对称性灵活处理问题的方法和它的优越性.
核心素养:逻辑推理、数学建模
探索新知 两个大小不等的圆的位置关系
所以,方程(4)有两个不相等的实数根1, 2,
因此圆1与圆2有两个不同的公共点.
所以圆1与圆2相交,它们有两个公共点, .
典例剖析
判断两圆位置关系的方法
例1 已知圆1: 2 + 2 + 2 + 8 − 8 = 0和圆2:2 + 2 − 4 − 4 − 2 = 0,试判断圆1与圆2的位置关系.
A

先动手后动脑
x
1.画出两圆的图象和方程 + 2 − 1 = 0表示的直线的图象
2.你发现了什么?你能说明什么吗?
2
B
1
理论迁移
例1
设圆1: 2 + 2 + 2 + 8 − 8 = 0,圆2: 2 + 2 − 4 − 4 − 2 = 0,试判断圆1与圆2的关系.
1.求两圆的公共弦所在的直线方程.
几何法判断两圆的位置关系的一般步骤
(1)把两圆的方程化成标准方程;
(2)求出两圆的圆心坐标及半径,;
(3)求两圆的圆心距;
(4)比较与 − , + 的大小关系,得出结论:
①若 > + ,则两圆外离;
②若 = + ,则两圆外切;
③若 − < < + ,则两圆相交;

2.2.3.2 圆与圆的位置关系 课件(北师大必修2)

2.2.3.2 圆与圆的位置关系 课件(北师大必修2)

位置关系
满足条件
图示
两圆内含
d < |r1-r2|
[小问题·大思维]
1.当两圆的方程组成的方程组无解时,两圆是否一定相离? 只有一组解时,一定外切吗? 提示:不一定.当两圆组成的方程组无解时,两圆无公共
点,两圆可能相离也可能内含;只有一组解时,两圆只有
一个公共点,两圆相切,可能外切,也可能内切. 2.圆A:x2+y2-8x+7=0和圆B:x2+y2+8x+7=0的位置 关系如何? 提示:外离.圆A,圆心(4,0),半径3.圆B,圆心(-4,0),半
[通一类] 4.已知直线l:4x+3y-2=0和圆C:x2+y2-12x- 2y-13=0相交于A、B两点,求过A、B两点的圆 中面积最小的圆的方程.
4x+3y-2=0, 解:法一:联立方程 2 2 x +y -12x-2y-13=0, x=-1, 解得 y=2, x=5, 或 y=-6,
(3)法一:两方程联立,得方程组
x2+y2-2x+10y-24=0, 2 x +y2+2x+2y-8=0,
① ② ③
两式相减得 x=2y-4.
把③代入②得 y2-2y=0,∴y1=0,y2=2.
x =-4, 1 ∴ y1=0, x =0, 2 或 y2=2,
求半径为4,与圆x2+y2-4x-2y-4=0相切,且和直
线y=0相切的圆的方程.
[错解] 由题意知,所求圆与直线y=0相切且半
径为4,设其圆心C的坐标为(a,4),且其方程为 (x-a)2+(y-4)2=42, 又圆x2+y2-4x-2y-4=0,
即(x-2)2+(y-1)2=32, 其圆心为A(2,1),半径为3. 由两圆相切,得|CA|=3+4, 所以(a-2)2+(4-1)2=72, 解得a=2± 10, 2 所以所求圆的方程为(x-2-2 或(x-2+2 10)2+(y-4)2=16. 10 )2+(y-4)2=16

2.5.2 圆与圆的位置关系(PPT)-

2.5.2 圆与圆的位置关系(PPT)-

2.代数法判断圆与圆的位置关系的注意点 (1)由 Δ=0 得两圆相切,但无法区分内切或外切. (2)由 Δ<0 得两圆相离,但无法区分内含或外离.
定向训练 已知圆 C1:x2+y2-2ax-2y+a2-15=0,圆 C2:x2+y2-4ax -2y+4a2=0(a>0).试求 a 为何值时,两圆 C1,C2 的位置关系为: (1)相切;(2)相交;(3)外离;(4)内含.
探究题 2 2 解析:由题意将圆 C1 与圆 C2 的方程相减,可得
圆 C1 和圆 C2 公共弦所在的直线 l 的方程为 x+y-1=0,对于圆 C1: x2 + y2 = 1 , 该 圆 的 圆 心 到 直 线 x + y - 1 = 0 的 距 离 为 d =
|1×0+121+×102-1|=
(1)证明:由题意得,将圆 C1 和圆 C2 的一般方程化为标准方程, 得(x-1)2+(y-3)2=11,(x-5)2+(y-6)2=16,则圆心 C1(1,3),半 径 r1= 11,
圆心 C2(5,6),半径 r2=4, 两圆圆心距 d=|C1C2|=5,r1+r2= 11+4,|r1-r2|=4- 11, 所以|r1-r2|<d<r1+r2, 所以圆 C1 和圆 C2 相交.
a2+(-a-2)2= (a+4)2+a2=r, 解得 a=-3,r= 10, 因此,圆的方程为(x+3)2+(y-3)2=10.
方法二:同方法一,得两已知圆的交点坐标为(0,2),(-4,0),
设所求圆的方程为 x2+y2+Dx+Ey+F=0,
4+2E+F=0,
D=6,
则有16-4D+F=0,解得E=-6,
3.已知圆 C1:x2+y2+D1x+E1y+F1=0 与圆 C2:x2+y2+D2x +E2y+F2=0 相交,则过两圆交点的圆的方程可设为 x2+y2+D1x +E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0 ▲当 λ=-1时,表示经过两相交圆两交点的直线方程
3. 过两圆x2 + y2 + 6x –4 = 0 和 x2 + y2 + 6y –28 = 0
的交点且圆心在直线x-y-4=0上的圆方程是( C )
(A) x2+y2+x-5y+2=0 (B) x2+y2-x-5y-2=0
y
求公共弦所在的直线方程
A
c2
o
B
x
c1
.
• 研究两圆的位置关系可以有两种方 法:
• 一是几何法,判断圆心距与两圆半径的和与 差的绝对值的大小关系.
• 一是代数法,联立两者方程看是否有解.
• P130练习
.
• 练习
• 点M在圆心为C1的圆x2+y2+6x-2y+1=0上,点
N在圆心为C2的圆x2+y2+2x+4y+1=0上,求
相交
R-r<d<R+r 2
内切
d=R-r 1
内含
0≤d<R-r
0
.
结束 返回 下一页
解:把圆的方程都化成标准形式,为
(x+3)2+(y-1)2=9
(x+1)2+(y+2)2=4
如图,C1的坐标是(-3,1),半径是3;C2的坐标是(-1,-2), 半径是2,所以,
|C1C2|= (31)2(12)2 = 13
y
因此,|MN|的最大值是 13 +5. M
•Hale Waihona Puke c1 Oxc2
.
N
(C) x2+y2-x+7y-32=0
(D) x2+y2+x+7y+32=0
λ=-7
.
2.过点M(2,-2)以及圆x2+y2-6x=0 与x2+y2=4圆交点的圆的方程
.
直线与圆的位置关系圆和圆的位置关系
两圆的位 置关系
图形
d与R, 公切线 r的关系 的条数
公切线长
外离
d>R+r 4
外切
d=R+r 3
圆与圆的位置关系
.
直线和圆的位置关系
rB dA EC F
直线 l与⊙A
相交 d <r
rB
A
d
C
直线 l与⊙A
相切 d =r
rB
A
d
Cl 直线 l与⊙A
相离 d >r
两个公共点△>0
直线 l是⊙A的
割线
唯一公共点△=0
直线 l是⊙A的
切线 点. C是切点
没有公共点△<0
圆和圆的五种位置关系
Rr
O1
O2
外离
|O1O2|>|R+r|
Rr
O1
O2
外切
|O1O2|=|R+r|
Rr O1 O2
相交
|R-r|<|O1O2|<|R+r|
R
O1
O
r
2
内切
|O1O2|=|R-r|
R
O1 O2r
内含
0≤|O1O2|<.|R-r|
R
O1O
r
2
同心圆 (一种特殊的内含)
|O1O2|=0
例1 设圆C1:x2+y2+2x+8y-8=0,圆 C2:x2+y2-4x-4y-2=0,试判断圆C1与圆 C2的关系.
|MN| 的最大值.
y
M
c1 O
x
c2
.
N
1.已知C1:x2+y2=9,C2: (x-2)2+y2=r2,若C1与C2内切, 求r的值 2.已知C1:x2+y2=9,C2: (x-5)2+y2=r2,若C1与C2内切, 求r的值
.
圆系方程
▲经过圆C1:x2+y2+D1x+E1y+F1=0和 C2:x2+y2+D2x+E2y+F2=0的交点的圆可设为
相关文档
最新文档