数列通项的求解方法归纳与练习题
常见递推数列通项的求解方法练习题
常见递推数列通项的求解方法练习题类型一专项练习题:1、已知11a =,1n n a a n -=+(2≥n ),求n a 。
(12n n n a +=)2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。
(31)2n n n a +=3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。
21n a n =+4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。
21n n a =+5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式. 13122n n a -⎛⎫=- ⎪⎝⎭6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a ?(312n n a -=)7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式 1123n n a +=- 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。
31n n a n =+-9、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
312n a n =- 10、数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值; c=2(II )求{}n a 的通项公式. 22n a n n =-+11、设平面内有n 条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n 条直线交点的个数,则(4)f = 5 ;当4n >时,()f n = 222n n -+ (用n 表示).类型二专项练习题:1、已知11a =,111n n n a a n --=+(2n ≥),求n a 。
数列通项公式与求和讲解与习题(含答案)
数列通项与求和一.求数列通项公式1.定义法(①等差数列通项公式;②等比数列通项公式。
)例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.2项和为S ,满足3如,1对所有的4。
例.521a a ⋅⋅⋅(例.已知数列{}n a 满足31=a ,n n a n a 11+=+,求n a 。
答案:23n a n=6.已知递推关系求n a ,用构造法(构造等差.等比数列)。
(1)形如()n f pa a n n +=+1只需构造数列{}n b ,消去()n f 带来的差异.其中()n f 有多种不同形式①()n f 为常数,即递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
解法:转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。
例.已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 答案:123n n a +=-②()n f 为一次多项式,即递推公式为s rn pa a n n ++=+1 例③(n f (2)n rq ,其中p q1+ 例(3型(2)的方法求解。
例.已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。
答案:1731(443n n a -=--7.形如11n n n a a ka b--=+或11n n n n a ba ka a ---=的递推数列都可以用倒数法求通项。
例.1,13111=+⋅=--a a a a n n n答案:132n a n =- 8.利用平方法、开平方法构造等差数列例1.数列{}n a的各项均为正数,且满足11n n a a +=+,12a =,求n a 。
答案:2(1)n a n = 例2.已知()f x x =<,求:(1)9.n a +设n b =例.1.已知2.已知13a =且132n n n a a +=+,求n a 答案:1532n n n a -=⋅- 3.已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是n n a n n S )12(-=,试求通项公式n a 。
(完整版)求数列的通项公式方法总结
题型四:求数列的通项公式一.公式法:当题中已知数列是等差数列或等比数列,在求其通项公式时我们就可以直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。
二.当题中告诉了数列任何前一项和后一项的递推关系即:n a 和a n-1的关系时我们可以根据具体情况采用下列方法1、叠加法:一般地,对于型如)(1n f a a n n +=+类的通项公式,且)()2()1(n f f f +++Λ的和比较好求,我们可以采用此方法来求n a 。
即:11221()()()n n n n n a a a a a a a ---=-+-++-L 1a +(2)n ≥;【例1】已知数列{}n a 满足11211,2n n a a a n n +==++,求数列{}n a 的通项公式。
解:(1)由题知:121111(1)1n n a a n n n n n n +-===-+++ 112211()())n n n n n a a a a a +(a -a a ---∴=-+-++……1111111()()()121122n n n n =-+-++-+---…… 312n=- 2、叠乘法:一般地对于形如“已知a 1,且n1n a a +=f (n )(f (n )为可求积的数列)”的形式可通过叠乘法求数列的通项公式。
即:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅L (2)n ≥; 【例2】在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。
解:由(n+1)·1+n a =n ·n a 得11+=+n n a a n n , 1a a n =12a a ·23a a ·34a a …1-n n a a =n n n 11433221=-⋅⋅Λ 所以n a n 1= 3、构造法:当数列前一项和后一项即n a 和a n-1的递推关系较为复杂时,我们往往对原数列的递推关系进行变形,重新构造数列,使其变为我们学过的熟悉的数列(等比数列或等差数列)。
数列史上最全求通项公式10种方法并配大量习题及答案
数列通项公式的求法10种求数列的通项公式方法非常众多,而且这个问题基本上都是高考试卷中第一问,也就是说这一问题做不出来或没有思路,那么即使后面的问题比如求前N 项和的问题,会做也是无济于事的。
我们逐个讲解一下这些重要的方法。
递推公式法:递推公式法是指利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,这样的问题有两种类型,(1)题目中给出的是()n S f n =的形式,也就是n S 的表达式是一个关于n 的函数,要将n 改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。
这种情况是比较简单的,但是也有值得我们注意的地方,那就是求出的通项公式一定要检验是否需要写成分段的形式,即验证一下1a 和1S 是否相等,若不相等,则需要写成分段的形式,只要题中涉及到角标n 不能从n=1开始取值的,都需要检验。
(2)第二种情况是非常常见的,即11(,)n n n a a a -+与n S (1n S -,1n S +)同时存在于一个等式中,我们的思路是将n 改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。
累加法(迭、叠加法):累加法是在教材上推导等差数列通项公式和前n 项和公式的时候使用的一种方法,其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的,我们可以总结为,只要适合:1()n n a a f n -=+的形式,都是可以使用累加法的,基本的书写步骤是:21324312,(2)3,(3)4,(4)......,()n n n a a f n a a f n a a f n n a a f n -=-==-==-==-=将上述展开后的式子左边累加后总是得到1(2)(3)(4)......()n a a f f f f n -=++++所以重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。
数列通项公式和前n项和求解方法(有针对训练)
专题一:数列通项公式的求法 一.观察法(关键是找出各项与项数n 的关系.)例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) ,52,21,32,1一、 公式法公式法1:特殊数列公式法2: 知n s 利用公式 ⎩⎨⎧≥-==-2,1,11n S S n s a n n n例2:已知数列}{n a 的前n 项和n S 的公式12-+=n n S n ,求}{n a 的通项公式.例3:已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *). (1)求a 1,a 2;(2)求证:数列{a n }是等比数列.三、 累加法 【型如)(1n f a a n n +=+的递推关系】简析:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的二次函数,累加后可分组求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得。
例: 若在数列{}n a 中,31=a ,n n n a a 21+=+,求通项n a例4:已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.四、累乘法 【 形如1+n a =f (n)·n a 型】(1)当f(n)为常数,即:q a a nn =+1(其中q 是不为0的常数),此时数列为等比数列,n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法.例5:在数列{n a }中,1a =1, n n a n a n ⋅=⋅++1)1( ,求n a 的表达式.五、构造特殊数列法 【形如0(,1≠+=+c d ca a n n ,其中a a =1)型】(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法如下:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得)0(,1≠-=c c d λ, 所以:)1(11-+=-+-c d a c c d a n n ,即⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列. 例6:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a .六、迭代法【一般是递推关系含有的项数较多】例7:(1)数列{n a }满足01=a ,且)1(2121-=++++-n a a a a n n ,求数列{a n }的通项公式.解析:由题得 )1(2121-=++++-n a a a a n n ①2≥n 时, )2(2121-=+++-n a a a n ②由①-②得⎩⎨⎧≥==2,21,0n n a n .(2)数列{n a }满足11=a ,且2121n a a a a n n =⋅⋅- ,求数列{n a }的通项公式。
数列求通项公式常用方法与典型题目(附答案)
数列求通项公式常用方法与典型题目(附答案)(一)题型一累加法1.数列{}n a 中,11a =,()12,nn n a a n n n N --=≥∈,则na=___________.2.已知数列{}n a 满足112a =,121n n a a n n+=++,则n a =__________.3.如果数列{}n a 满足:()1111,22n n n a a a n --=-=≥,则n a =()A .121n +-B .1(1)21n n --⋅+C .21n -D .12n -4.在数列{}n a 中,10a =,11ln 1n n a a n +⎛⎫=++ ⎪⎝⎭,则{}n a 的通项公式为().A .ln n a n =B .()()1ln 1n a n n =-+C .ln n a n n=D .ln 2n a n n =+-5.设数列{}n a 中,112,1+==++n n a a a n ,则通项n a =___________.6.已知数列{}n a 满足10a =,12n n a a n +=+,则2018a =()A .20182019⨯B .20172018⨯C .20162017⨯D .20182018⨯(二)题型二累乘法1.已知数列{}n a 满足11a =,()12311111231n n a a a a a n n -=+++⋅⋅⋅+>-.数列{}n a 的通项公式是______.2.已知11a =,()()1n n n a n a a n N ++=-∈,则数列{}n a 的通项公式是()A .21n -B .11n n n -+⎛⎫ ⎪⎝⎭C .2n D .n3.已知12a =,12nn n a a +=,则数列{}n a 的通项公式n a 等于()A .2122n n -+B .2122n n ++C .2222n n -+D .2222n n --4.在数列{}n a 中,11a =,()32122223n n a a a a a n n*++++=∈N ,则n a =______.(三)题型三公式法1.数列{a n }的前n 项和为S n ,若()11,1,31n n a a S n +=≥=则n a =____________.2.数列{}n a 满足,123231111212222n n a a a a n ++++=+ ,写出数列{}n a 的通项公式__________.3.已知数列{a n }的前n 项和S n =n 2+n ,则a n =_____.4.若数列的前n 项和2133n n S a =+,则的通项公式是n a =________5.数列{}n a 的前n 项和23nn S =+,则其通项公式n a =________.6.数列{}n a 的前n 项和210n S n n =-,则该数列的通项公式为__________.7.若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式是a n =______.8.已知n S 为数列{}n a 的前n 项和,若111,23n n a a S +==+,则数列{}n a 的通项公式为___________.9.已知数列{}n a 满足23123222241nnn a a a a ++++=- ,则{}n a 的通项公式___________________.10.数列{a n }满足()21*1232222n n na a a a n N -+++⋯+=∈,则a 1a 2a 3…a 10=()A .551(2B .1011()2-C .911()2-D .601()211.如果数列{}n a 的前n 项和为332n n S a =-,则这个数列的通项公式是()A .()221n a n n =++B .23nn a =⋅C .32nn a =⋅D .31n a n =+(四)题型四构造法1.数列{}n a 中,若11a =,()1231n n a a n +=+≥,则该数列的通项n a =()A .123n +-B .23n -C .23n +D .123n --2.已知数列{}n a 中,112,21n n a a a +==+则n a =___________.3.已知数列{}n a 满足11a =132n n a a +=+,则{}n a 的通项公式为__________________.(五)题型五倒数法1.在数列{n a }中,已知12a =,1122n n n a a a --=+,(2)n ≥,则n a 等于()A .21n +B .2n C .3nD .31n +2.若数列{}n a 满足11n n n a a a +=+,且123a =,则10a =___________.3.设数列{}n a 的前n 项和n S 满足11n n n n S S S S ++=⋅-()n N *∈,且11a=,则n a =_____.4.已知数列{}n a 满足12,a =11n n n n a a a a ++-=,那么31a 等于()A .130-B .261-C .358-D .259-5.已知数列{}n a 满足递推关系111,12n n n a a a a +==+,则2017a =()A .12016B .12018C .12017D .120196.若数列{}n a 满足1121n n n a a a --=+(2n ≥,*n N ∈),且112a =,则n a =()A .12nB .2n C .1122n +-D .222n +7.已知数列{}n a 满足11a =,()*11nn n a a n N a +=∈+,则2020a =()A .12018B .12019C .12020D .12021(六)题型六周期数列1.在数列{}n a 中,112a =,111n n a a -=-(2n ≥,n ∈+N ),则2020a =()A .12B .1C .1-D .22.已知数列{}n a 中,13=4a ,111n n a a -=-(,2n N n +∈≥),那么2020a 等于()A .13-B .34C .2D .43.已知数列{}n a 中,12213,6,n n n a a a a a ++===-,则2016a =()A .6B .6-C .3D .3-参考解析(一)题型一累加法1.()12n n +【解析】()112,1,nn n a a n n n Na -=≥=-∈ ,()()()112211n n n n n a a a a a a a a ---∴=-+-++-+ ()()()()112122n n n n n n +=+-+-++=≥ ,验证1n =时成立.()12n n n a +∴=.故答案为:()12n n +2.31,1,2n n N n*-≥∈【解析】因为121n n a a n n +=++,所以121111n n a a n n n n +-==-++,则当2,n n N *≥∈时,213211121123...111n n a a a a a a n n -⎧-=-⎪⎪⎪-=-⎪⎨⎪⎪⎪-=-⎪-⎩,将1n -个式子相加可得11111111...12231n a a n n n -=-+-++-=--,因为112a =,则1131122n a n n=-+=-,当1n =时,1311212a =-=符合题意,所以31,1,2n a n n N n *=-≥∈.故答案为:31,1,2n n N n*-≥∈.3.C 【解析】由题意可得,112n n n a a ---=,212a a ∴-=,2322a a -=,…112n n n a a ---=,以上1n -个式子相加可得,21122 (2)n n a a --=+++()12122212n n --==--,21n n a ∴=-,故选B .4.A 【解析】由已知得()11ln ln 1ln n n n a a n n n ++⎛⎫-==+- ⎪⎝⎭,所以()1ln ln 1n n a a n n --=--()()12ln 1ln 2n n a a n n ---=---32ln 3ln 2a a -=-21ln 2ln1a a -=-将上述1n -个式子相加,整理的1ln ln1ln n a a n n -=-=又因为10a =,所以ln n a n =.故选A .5.()112++n n 【解析】∵112,1+==++n n a a a n ∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,⋯,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n ⎡⎤=-+-+-+++++⎣⎦ ()()()()11111111222n n n nn n n n ⎡⎤--+-+⎣⎦=++=++=+故应填()112++n n ;6.B 【解析】 数列{}n a 满足10a =,12n n a a n +=+,∴12n n a a n +-=,∴()121n n a a n --=-,()1222n n a a n ---=-,()2323n n a a n ---=-,……212a a -=,累加得:()()()112123 (1212)n n n a a n n n --=++++-=⋅=-⎡⎤⎣⎦,又 10a =,∴()1n a n n =-,∴201820182017a =⋅.故选B .(二)题型二累乘法1.1,1,22n n a n n =⎧⎪=⎨≥⎪⎩【解析】1231111(1)231n n a a a a a n n -=++++>- ,11a =当2n =时,211a a ==当2n >时,112311111231n n n a a a a a a n n+-∴=+++++- ,两式相减得:11n n n a a a n +-=,即11n n n a a n++=,∴11n n a n a n++=,11n n a n a n -=-,1212n n a n a n ---=-,⋯3232a a =,累乘得:22n a n a =,所以2n na =,()2n >1,1,22n n a n n =⎧⎪∴=⎨≥⎪⎩,故答案为:1,1,22n n a nn =⎧⎪=⎨≥⎪⎩2.D 【解析】由()()1n n n a n a a n N ++=-∈得:()()11n n n a na n N +++=∈,即()11n n a n n N a n+++=∈,则11n n a n a n -=-,1212n n a n a n ---=-,2323n n a n a n ---=-,……..,2121a a =,由累乘法可得1na n a =,又因为11a =,所以n a n =.故选:D .3.C 【解析】1122nn n n n n a a a a ++=∴= 当n ≥2时,2212122112122222nn n n n n n n n a a a a a a a a -+-----=⋅⋅⋅⋅=⋅⋅⋅⋅= ,经检验,1a 也符合上述通项公式.本题选择C 选项.4.21n n +【解析】由题意得:当2n ≥时,()31211222231n n a a a a a n --++++=- ,所以12n n n a a a n-=-,即()2211n n na n a --=,也即是11+1n n n n n a a n --=,所以121+1221211n n n n n a n n n a a a n ---===-=-= ,所以21n n a n =+,故答案为:21nn +.(三)题型三公式法1.21,134,2n n n a n -=⎧=⎨⋅≥⎩.【解析】()13,1n n a S n N n ++=∈∴= 时,23,2a n =≥时,13n n a S -=,可得13n n n a a a +-=,即14,n n a a +=∴数列{}n a 从第二项起为等比数列,2n ≥时,=n a 234n -⋅,故答案为21,134,2n n n a n -=⎧=⎨⋅≥⎩.2.16,12,2n n n a n +=⎧=⎨≥⎩【解析】因为123231111212222n n a a a a n ++++=+ ,所以()12312311111121122222n n n n a a a a a n +++++++=++ ,两式相减得11122n n a ++=,即12,2n n a n +=≥,又1132a =,所以16a =,因此16,12,2n n n a n +=⎧=⎨≥⎩3.2n 【解析】由题,当1n =时,21112a =+=,当2n ≥时,()()1112nn n a S S n n n n n -=-=+--=.当1n =时也满足.故2n a n =.故答案为:2n4.()12n --【解析】当n =1时,1112133a S a ==+,解得11a =,当n ≥2时,1n n n a S S -=-121213333n n a a -⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭12233n n a a -=+,整理可得12313n n a a -=-,即12n n a a -=-,故数列{}n a 以1为首项,2-为公比的等比数列,所以()12n n a -=-,故答案为:()12n --.5.15,12,2n n n -=⎧⎨≥⎩【解析】当1n =时,11235a =S =+=;当2n ≥时,11123232n n n n n n a S S ---=-=+--=;故15,12,2n n n a n -=⎧=⎨≥⎩故答案为:15,12,2n n n -=⎧⎨≥⎩6.211n a n =-【解析】221110,11019,n S n n a S =-∴==-⨯=- 当2n ≥时()()221101101211,n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦当1n =时也适合,故211n a n =-.即答案为211n a n =-.7.1(2)n n a -=-;【解析】当n=1时,a 1=S 1=23a 1+13,解得a 1=1,当n≥2时,a n =S n -S n-1=(2133n a +)-(12133n a -+)=23n a -123n a -整理可得13a n =−23a n−1,即1n n a a -=-2,故数列{a n }是以1为首项,-2为公比的等比数列,故a n =1×(-2)n-1=(-2)n-1故答案为(-2)n-1.8.21,153,2n n n a n -=⎧=⎨⋅≥⎩【解析】n S Q 为数列{}n a 的前n 项和,111,23n n a a S +==+——①2n ≥时,123n n a S -=+——②①-②,得:12n n n a a a +=-,13n na a +∴=13n na a +∴=,21235a a =+= ,∴数列{}n a 的通项公式为21,153,2n n n a n -=⎧=⎨⋅≥⎩.故答案为:21,153,2n n n a n -=⎧=⎨⋅≥⎩.9.a n =3•2n ﹣2【解析】∵数列{a n }满足2a 1+22a 2+23a 3+…+2n a n =4n ﹣1,∴当n ≥2时,2n a n =(4n ﹣1)﹣(4n ﹣1﹣1),化为a n =3•2n ﹣2.当n =1时,2a 1=4﹣1,解得132a =,上式也成立.∴a n =3•2n ﹣2.故答案为a n =3•2n ﹣2.10.A 【解析】n =1时,a 1=12,∵211232222n n n a a a a -+++⋯+=,∴2n ≥时,22123112222n n n a a a a ---+++⋯+=,两式相减可得2n -1a n =12,∴12n n a =,n =1时,也满足∴12310a a a a = 55231012310111111222222++++⎛⎫⨯⨯⨯⨯== ⎪⎝⎭,故选A11.B 【解析】由332n n S a =-,当2n ≥时,1113333332222n n n n n n n a S S a a a a ---⎛⎫⎛⎫=-=---=- ⎪ ⎪⎝⎭⎝⎭,所以13nn a a -=,当1n =时,111332S a a ==-,此时16a =,所以,数列{}n a 是以6为首项,3为公比的等比数列,即16323n n n a -=⋅=⋅.故选:B .(四)题型四构造法1.A 【解析】因为()1231n n a a n +=+≥,所以132(3)n n a a ++=+,即数列{3}n a +是以4为首项,2为公比的等比数列,所以1342n n a -+=⋅,故1142323n n n a -+=⋅-=-,故选:A2.1321n -⋅-【解析】因为121n n a a +=+,所以()112221n n n a a a ++=+=+且1130a +=≠,所以1121n n a a ++=+,所以{}1n a +是以3为首项,2为公比的等比数列,所以1132n n a -+=⋅,所以1321n n a -=⋅-,故答案为:1321n -⋅-.3.1231n -⨯-【解析】因为132n n a a +=+,11a =,所以()113331n n n a a a ++=+=+,即1131n n a a ++=+所以{}1n a +以2为首项,3为公比的等比数列,所以1123n n a -+=⨯所以1231n n a -=⨯-故答案为:1231n -⨯-(五)题型五倒数法1.B 【解析】将等式1122n n n a a a --=+两边取倒数得到11112n n a a -=+,11111=,2n n n a a a -⎧⎫-⎨⎬⎩⎭是公差为12的等差数列,11a =12,根据等差数列的通项公式的求法得到()1111222n nn a =+-⨯=,故n a =2n.故答案为:B .2.219【解析】11n n n a a a +=+ 11111n n n n a a a a ++∴==+,即1111n na a +-=∴数列1n a ⎧⎫⎨⎬⎩⎭是以1132a =为首项,1为公差的等差数列()131211222n n n n a -∴=+-=-=221n a n ∴=-10219a ∴=故答案为:2193.1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【解析】由11n n n n S S S S ++=⋅-,得1111n nS S +-=()n N *∈1n S ⎧⎫∴⎨⎬⎩⎭是以11111S a ==为首相,1为公差的等差数列,11(1)1nn n S ∴=+-⨯=,1n S n ∴=,当2n ≥时,11111(1)n n n a S S n n n n -=-=-=---,1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩故答案为:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩4.D 【解析】11n n n n a a a a ++-= ,1111n n a a +∴-=,即1111n n a a +-=-,又12,a =所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为12,公差为1-的等差数列,132n n a ∴=-+,3113593122a ∴=-+=-,故31259a =-,故选:D .5.B 【解析】由11n n n a a a +=+,所以11111n n n n a a a a ++==+则1111n n a a +-=,又112a =,所以112a =所以数列1n a ⎧⎫⎨⎬⎩⎭是以2为首项,1为公比的等差数列所以11n n a =+,则11n a n =+所以201712018a =故选:B6.A 【解析】当2n ≥且n *∈N ,在等式1121n n n a a a --=+两边取倒数得11121112n n n n a a a a ---+==+,1112n n a a -∴-=,且112a =,所以,数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,且首项为2,公差为2,因此,()12212n n n a =+-=.12n a n∴=故选:A .7.C 【解析】11n n n a a a +=+ ,∴两边同时取倒数得11111n n n n a a a a ++==+,即1111n n a a +-=,即数列1n a ⎧⎫⎨⎬⎩⎭是公差1d =的等差数列,首项为111a =.则11(1)1n n n a =+-⨯=,得1n a n =,则202012020a =,故选:C (六)题型六周期数列1.A 【解析】2111121a a =-=-=-,3211112a a =-=+=,431111122a a =-=-=,可得数列{}n a 是以3为周期的周期数列,202036731112a a a ⨯+∴===.故选:A .2.B 【解析】因为13=4a ,111n n a a -=-,所以211113a a =-=-,32114a a =-=,431314a a =-=,…所以数列{}n a 是以3为周期的数列,所以202067331134a a a ⨯+===,故选:B 3.B 【解析】因为21n n n a a a ++=-,①则321n n n a a a +++=-,②①+②有:3n n a a +=-,即63n n a a ++=-,则6n n a a +=,即数列{}n a 的周期为6,又123,6a a ==,得3453,3,6a a a ==-=-,63a =-,则2016a =633663a a ⨯==-,故选:D .。
【智博教育原创专题】高中数学数列通项求解方法大全(题型超全)
高中数学数列通项求解方法大全1.观察归纳法【例1】根据数列的前几项写出下列各数列的一个通项公式: ⑴14916,,,,251017 ;⑵11111,,,,,371531-- ;⑶315171,,,,,,23456【解析】⑴221n n a n =+;⑵1(1)21n n n a +-=+;⑶11(1)2nn a n +-=+2.二阶等差或等比数列求法【例2】根据数列的前几项写出下列各数列的一个通项公式: ⑴1,3,7,15,31 ;⑵3,7,13,21,31, ;⑶1,2,4,7,11,16,【解析】⑴21nn a =-;⑵21n a n n =++;⑶222n n n a -+=3.辅助数列法【题型1】1(,)n n a ka b p q R +=+∈⑴1k =时,{}1n n n a a b a +-=⇒是等差数列,1()n a bn a b =+-;⑵1k ≠时,(构造法):设1()n n a x k a x ++=+,即(1)x k b -=得1bx k =-,数列{}n a x +是以1a x +为首项、k 为公比的等比数列,则1111n n b b a a k k k -⎛⎫+=+ ⎪--⎝⎭,即1111n n b b a a k k k -⎛⎫=++ ⎪--⎝⎭。
【例3】已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。
【解析】设12()n n a x a x ++=+,即3x =,∴数列{}3n a +是以134a +=为首项、2为公比的等比数列,则113422n n n a -++=⋅=,即123n n a +=-。
【题型2】1()n n a ka f n +=+【类型1】1k =时,1()n n a a f n +-=,若()f n 可求和,则可用累加消项的方法。
【思路】(叠加法):1(1)n n a a f n --=-,依次类推有:1223(2),(3),n n n n a a f n a a f n -----=--=-21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑。
(完整版)数列求通项专题(总复习专题-方法全面-有答案)全
求数列通项专题题型一:定义法(也叫公式法)直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目例:等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项。
解:设数列}a {n 公差为)0d (d > ∵931a ,a ,a 成等比数列,∴9123a a a =,即)d 8a (a )d 2a (1121+=+,得d a d 12= ∵0d ≠,∴d a 1=………①∵255S a = ∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d = ∴n 5353)1n (53a n =⨯-+=题型二:已知的关系求通项公式(或)n n S a 与()n n S f a =这种类型一般利用与消去⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n )()(11---=-=n n n n n a f a f S S a n S )2(≥n 或与消去进行求解。
)(1--=n n n S S f S )2(≥n n a 例:(1)已知数列的前项和,求数列的通项公式}{n a n 22+=n S n }{n a 解:当时,;1=n 311==S a 当时,; 2≥n 122)1(2221-=---+=-=-n n n S S a n n n ⎩⎨⎧≥-==∴)2(12)1(3n n n a n (2)已知数列的前项和满足,求数列的通项公式}{n a n n S 1)1(log 2+=+n S n }{n a 解:由,得,1)1(log 2+=+n S n 121-=+n n S ⎩⎨⎧≥==∴)2(2)1(3n n a nn 练习:1、已知数列{}的前n 项和为, 求.n a 32nn S =-n a 2、数列的前n 项和为,,,求的通项公式{}n a n S 11=a )(1121≥+=+n S a n n {}n a题型三:形如用累加法(也叫逐差求和法):)(1n f a a n n +=+(1)若f(n)为常数,即:,此时数列为等差数列,则=.d a a n n =-+1n a d n a )1(1-+(2)若f(n)为n 的函数时,用累加法. 方法如下: 由 得:)(1n f a a n n =-+时,,2≥n )1(1-=--n f a a n n ,)2(21-=---n f a a n n )2(23f a a =-以上各式相加得)1(12f a a =- 即:.)1()2()2()1(1f f n f n f a a n +++-+-=- ∑-=+=111)(n k n k f a a 为了书写方便,也可用横式来写:时,,2≥n )1(1-=--n f a a n n ∴112211)()()(a a a a a a a a n n n n n +-++-+-=--- =.1)1()2()2()1(a f f n f n f ++++-+- 例1:已知数列{a n }中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a .解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得 n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+=1121n -+, 3121n a n ∴=-+例2:已知数列满足,求数列的通项公式。
数列通项公式的常用方法及例题
数列通项公式的常用方法及例题一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.二、n s 与n a 的关系式法:⎩⎨⎧≥-==-2,1,11n S S n S a n n n 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a .例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a .三、累加法:()n f a a n n =--1,()的函数是一个关于n n f例4:12,011-+==+n a a a n n ,求通项n a四、累乘法:()1n n a f n a -=,()的函数是一个关于n n f 例5:111,1n n n a a a n -==- ()2,n n N *≥∈ 求通项n a五、构造法: ㈠、两边加常数:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:处理方法:设1n n a ka b λλ-+=++ 则1()n n b a k a kλλ-++=+ b k λλ+=令 1b k λ∴=- 111111n n n n b b a k a k k b a k k b a k --⎛⎫∴+=+ ⎪--⎝⎭+-∴=⎛⎫+ ⎪-⎝⎭ ∴数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 为公比,11b a k +-以为首项的等比数列,借助它去求n a 例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a(二)两边加指数函数式:在数列{}n a 中有m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)型的数列求通项n a . 处理方法:两边同除以1+n c,得到一个“1n n a ka b -=+”型的数列,再用上面(一)方法处理,便可求出nn c a 的通式,从而求出n a . 例7:{}1113,232,.n n n n n a a a a a ++==+数列满足:求(三)、取倒数法:适用于11n n n ka a ma p --=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例8:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a(四)、取对数法:适用于1(2)p q n n a a n -=≥(,p q 为非零常数) 例9:已知()2113,2n n a a a n -==≥ 求通项n a能力提升1.设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .642.已知数列{a n }满足a 1=0,a n +1=a n +2n ,则a 2 013等于( )A .2 013×2 014B .2 012×2 013C .2 011×2 012D .2 013×2 0133.已知数列{x n }满足x 1=1,x 2=23,且1x n -1+1x n +1=2x n(n ≥2),则x n 等于( ) A .(23)n -1 B .(23)n C.n +12 D.2n +14.已知数列{a n }中a 1=1,a n =12a n -1+1(n ≥2),则a n =( ) A .2-(12)n -1 B .(12)n -1-2 C .2-2n -1 D .2n -1 5.若数列{a n }的前n 项和为S n =32a n -3,则这个数列的通项公式a n =( ) A .2(n 2+n +1) B .2·3n C .3·2n D .3n +16.在数列{a n }中,a 1=3,a n +1=a n +()11+n n ,则通项公式a n =________. 7.已知数列{a n }的首项a 1=12,其前n 项和S n =n 2a n (n ≥1),则数列{a n }的通项公式为 8.在数列{a n }中,a 1=1,当n ≥2时,有a n =3a n -1+2,则a n =________.9.在数列{a n }中,a 1=2,a n =2a n -1+2n +1(n ≥2),则a n =________.10.若数列{a n }满足a 1=1,a n +1=2n a n ,则数列{a n }的通项公式a n =________.11.已知{a n }满足a 1=1,且a n +1=a n 3a n +1(n ∈N *),则数列{a n }的通项公式为________. 12.数列{a n }的前n 项和为S n ,且S n =n (n +1)(n ∈N *).(1)求数列{a n }的通项公式;(2)若数列{b n }满足: a n =b 13+1+b 232+1+b 333+1+…+b n 3n +1,求数列{b n }的通项公式.。
数列通项公式、前n项和求法总结(全)
数列通项公式、前n项和求法总结(全)⼀.数列通项公式求法总结:1.定义法 —— 直接利⽤等差或等⽐数列的定义求通项。
特征:适应于已知数列类型(等差或者等⽐).例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等⽐数列,255a S =.求数列{}n a 的通项公式.变式练习:1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式2. 在等⽐数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的⾸项、公⽐及前n 项和.2.公式法求数列{}n a 的通项n a 可⽤公式≥?-=?=-2111n S S n S a n n n 求解。
特征:已知数列的前n 项和n S 与n a 的关系例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。
(1)13-+=n n S n 。
(2)12-=n s n变式练习:1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2+n ,n ∈N ﹡,数列{b }n 满⾜n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。
2. 已知数列{}n a 的前n 项和212n S n kn =-+(*k N ∈),且S n 的最⼤值为8,试确定常数k 并求n a 。
3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,22.求数列{}n a 的通项公式。
3.由递推式求数列通项法类型1 特征:递推公式为)(1n f a a n n +=+对策:把原递推公式转化为)(1n f a a n n =-+,利⽤累加法求解。
例3. 已知数列{}n a 满⾜211=a ,a a n n +=+211,求n a 。
变式练习:1. 已知数列{}n a 满⾜11211n n a a n a +=++=,,求数列{}n a 的通项公式。
通项及前N项和的求法的方法总结(全)
常见数列通项公式的求法1、 定义法若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或11-=n n q a a 中即可. 2、 累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法.例1、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.练习1:已知数列{}n a 满足11322,.n n n a a n a a +=++=且求练习2:已知数列{}n a 中,111,32n n n a a a n +=-=-, 求{}n a 的通项公式.练习3:已知数列{}n a 满足11211,,2n n a a a n n +==++求求{}n a 的通项公式.3、 累乘法形如()1n n a f n a +=()1a 已知型的的递推公式均可用累乘法求通项公式.例2、已知数列{}n a 满足11,2,31n n n n a a a a n +==+求.练习1:数列{}n a 中已知1121,n n a n a a n++==, 求{}n a 的通项公式.练习2:设{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,求{}n a 的通项公式.3、待定系数法(构造法)例3、已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .练习:已数列{}n a 中,11a =且111,____.2n n n a a a +=+=则 例4、已知数列{}n a 中,1113,33n n n a a a ++==+, 求{}n a 的通项公式.练习1:已知数列{}n a 中,113,22n n n a a a -=-=+,则=n a ________.练习2:已知数列{}n a 中,112,3433n n n a a a +==+⋅, 求{}n a 的通项公式.例5、已知数列{}n a 满足11162,1,n n n a a a ++=+=求.n a练习1:设数列{n a }满足n n n a a a 23,111+==+,则=n a ________.练习2:已知数列{}n a 中,111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求n a .4、利用n a 与n S 的关系如果给出条件是n a 与n S 的关系式,可利用111,2n n n an a S S n -=⎧=⎨-≥⎩求解.例6、已知数列{}n a 的前n 项和为322+-=n n S n ,求{}n a 的通项公式.练习1:已知数列{}n a 的前n 项和为2134n S n n =-+,求{}n a 的通项公式.练习2:若数列{}n a 的前n 项和为33,2n n S a =-求{}n a 的通项公式.5、倒数法例7、已知数列{}n a 满足1=1a ,1232nn n a a a +=+,求{}n a 的通项公式.练习:已知数列{}n a 中,113,,12nn na a a a +==+则n a ________.=例8、已知数列{}n a 满足1=1a ,11234n n n a a a --=+,求{}n a 的通项公式.练习:已知数列{}n a 中,1122,,31n n na a a a +==+则n a ________.=数列前n项和的求法总结一、公式法(1)等差数列前n项和: S n=n(a1+a n)2=na1+n(n+1)2d(2)等比数列前n项和: q=1时, S n=na1;q≠1时, S n=a1(1−q n)1−q(3)其他公式: S n=1+2+3+⋯+n=12n(n+1)S n=12+22+32+⋯+n2=16n(n+1)(2n+1)S n=13+23+33+⋯+n3=[12n(n+1)]2二、倒序相加法3、设等差数列{an },公差为d,求证:{an}的前n项和Sn=n(a1+an)/2三、裂项相消法4、求数列(n∈N*)的和四、错位相减法错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。
数列的通项公式的求法以及典型习题练习
数列的通项公式的求法以及典型习题练习数列解题方法与研究顺序一、累加法累加法是最基本的两个数列解题方法之一,适用于广义的等差数列,即an+1=an+f(n)。
1.若an+1-an=f(n)(n≥2),且a2-a1=f(1),则可得an+1-a1=∑f(n)(k=1至n)。
例1:已知数列{an}满足an+1=an+2n+1,a1=1,求数列{an}的通项公式。
解:由题可知,f(n)=2n+1,故an+1-an=f(n)=2n+1,且a2-a1=f(1)=3.根据累加法得an+1-a1=∑f(n)=∑(2n+1)=n(n+1)+n= n^2+2n,即an=n^2+2n。
所数列{an}的通项公式为an=n^2+2n。
2.若an+1-an=f(n),则可得an+1/an=f(n)。
例2:已知数列{an}满足an+1=an+2×3+1,a1=3,求数列{an}的通项公式。
解:由题可知,f(n)=2×3+1=7,故an+1-an=f(n)=7.根据累乘法得an+1/an=f(n)=7,即an=3×7^(n-1)。
所以数列{an}的通项公式为an=3×7^(n-1)。
二、累乘法累乘法是最基本的两个数列解题方法之二,适用于广义的等比数列,即an+1=f(n)×an。
1.若an+1/an=f(n),则可得an+1/an=∏f(k)(k=1至n)。
例3:已知数列an=an-1/n,a1=2,求数列的通项公式。
解:由题可知,f(n)=1/n,故an+1/an=f(n)=1/n。
根据累乘法得an+1/an=∏f(k)=∏(1/k)=1/n。
即an=n!/n。
所以数列的通项公式为an=n!/n。
2.若an+1/an=f(n),则可得an+1×an=f(n)。
例4:已知数列{an}满足an+1=2(n+1)5×an,a1=3,求数列{an}的通项公式。
解:由题可知,f(n)=2(n+1)5,故an+1/an=f(n)=2(n+1)5.根据累乘法得an+1×an=∏f(k)=∏2(k+1)5=2^(n+1)×3^(n(n+1)/2),即an=3^n×2^(n-1)。
求数列通项的方法总结
求数列通项的方法总结求数列的通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,分享了求数列通项的方法,一起来看看吧!一、累加法:利用an=a1+(a2-a1)+…(an-an-1)求通项公式的方法称为累加法。
累加法是求型如an+1=an+f(n)的递推数列通项公式的基本方法(f (n)可求前n项和).例1.已知数列an满足an+1=an+2n+1,a1=1,求数列an的通项公式。
解:由an+1=an+2n+1得an+1-an=2n+1则an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+ (a2-a1)+a1=[2(n-1)+1]+[2(n-2)+1]+…+(2×2+1)+(2×1+1)+1=2[(n-1)+(n-2)+…+2+1]+(n-1)+1=2+(n-1)+1=(n-1)(n+1)+1=n2所以数列an的通项公式为an=n2。
例2:在数列{an}中,已知an+1= ,求该数列的通项公式.备注:取倒数之后变成逐差法。
解:两边取倒数递推式化为:=+,即-=所以-=,-=,-=…-=.…,将以上n-1个式子相加,得:-=++…+即=+++…+==1-故an==二、累乘法:利用恒等式an=a1…(an≠0,n?叟n)求通项公式的方法称为累乘法,累乘法是求型如:an+1=g(n)an的递推数列通项公式的基本方法(数列g(n)可求前n项积).例3.已知数列{an}中a1=,an=an-1(n?叟2)求数列{an}的通项公式。
解:当n?叟2时,=,=,=,…=将这n-1个式子累乘,得到=,从而an=×=,当n=1时,==a1,所以an= 。
注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错.三、公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有an=Sn-Sn-1(n?叟2),等差数列或等比数列的通项公式。
数列通项公式的完整求法,还有例题详解
一.观察法之答禄夫天创作例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,……∴通项公式为:110-=n n a(2);122++=n n n a n(3);12+=n a n (4)1)1(1+⋅-=+n na n n .点评:关键是找出各项与项数n的关系。
二、公式法:当已知条件中有a n 和s n 的递推关系时,往往利用公式:a n =1*1(1)(2,)n n s n s s n n N -=⎧⎪⎨-≥∈⎪⎩来求数列的通项公式。
例1: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d ,∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3=f (q -1)=(q -2)2,∴2213)2(q q b b -==q 2,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·qn -1=4·(-2)n -1例 2. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A)122-=n a n (B)42+=n a n (C)122+-=n a n(D)102+-=n a n解析:设等差数列的公差位d ,由已知⎩⎨⎧==+⋅⋅+12348)()(3333a d a a d a , 解得⎩⎨⎧±==243d a ,又{}n a 是递减数列, ∴2-=d,81=a ,∴=--+=)2)(1(8n a n 102+-n ,故选(D)。
数列通项公式求法大全(配练习测试及参考答案)
数列通项公式的十种求法一、公式法二、累加法)(1n f a a n n +=+例1已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
2n a n =例2已知数列{}n a 满足112313n n n a a a +=+´+=,,求数列{}n a 的通项公式。
(3 1.n n a n =+-)三、累乘法n n a n f a )(1=+例3已知数列{}n a 满足112(1)53n n n a n a a +=+´=,,求数列{}n a 的通项公式。
((1)12325!.n n n n a n --=´´´)评注:本题解题的关键是把递推关系12(1)5n n na n a +=+´转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---×××××,即得数列{}n a 的通项公式。
例4已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-³,,求{}na 的通项公式。
(!2n n a =)评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+³转化为11(2)n na n n a +=+³,进而求出132122nn n n a a a a a a a ---××××,从而可得当2n n a ³时,的表达式,最后再求出数列{}na 的通项公式。
四、待定系数法q pa a n n +=+1()n f pa a n n +=+1n n n qa pa a +=++12(其中p ,q均为常数)。
例5已知数列{}n a 满足112356n n n a a a +=+´=,,求数列{}n a 的通项公式。
数列通项公式解法总结及习题(附详解答案)
数列通项公式解法总结及习题训练(附答案)1.定义法:①等差数列通项公式;②等比数列通项公式。
2.公式法:已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。
3.作商法:已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
4.累加法:若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥。
5.累乘法:已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅(2)n ≥。
6.已知递推关系求n a ,用构造法(构造等差、等比数列)。
1)递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。
先把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中s ,t 满足⎩⎨⎧-==+q st pt s2)形如11n n n a a ka b--=+的递推数列都可以用倒数法求通项。
7.数学归纳法 先根据已知条件结合具体形式进行合理的猜想,然后证明。
8.换元法 换元的目的是简化形式,以便于求解。
9、不动点法 对于某些特定形式的数列递推式可用不动点法来求10定系数法 适用于1()n n a qa f n +=+解题基本步骤:1、确定()f n 2、设等比数列{}1()n a f n λ+,公比为? 3、列出关系式)]([)1(1211n f a n f a n n λλλ+=+++4、比较系数求1λ,2λ 5、解得数列{}1()n a f n λ+的通项公式 6、解得数列{}n a 的通项公式习题1.(2010全国卷2)(6)如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +•…+7a = (A )14 (B) 21 (C) 28 (D) 352.(2010安徽)(5)设数列{}n a 的前n 项和2n S n =,则8a 的值为(A ) 15 (B) 16 (C) 49 (D )643. (2011年高考四川)数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈ .若则32b =-,1012b =,则8a =( ) A )0 (B )3 (C )8 (D )114.(2011年高考全国卷设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224A n S S +-=,则k = A )8 (B )7 (C )6 (D )55.(2009广东卷理)已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=A. (21)n n -B. 2(1)n + C. 2n D. 2(1)n - 6.(2009陕西卷)设等差数列{}n a 的前n 项和为n s ,若6312a s ==,则n a = 7. (2011广东卷)等差数列{}n a 前9项的和等于前4项的和.若141,0k a a a =+=,则k = 8.1,13111=+⋅=--a a a a n n n 则其通项为9(2009宁夏海南卷理)等差数列{n a }前n 项和为n S 。
求数列通项公式的十种方法(例题+详解)
求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、利用{1(2)1(1)n n S S n S n n a --≥==例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式;解:22(1)4231a n a d S n n n n =-+∴=-=-=--23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2)当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3三、累加法例3 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
求数列通项公式提升练习题(附答案和方法归纳)
数列11、 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
2、 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
3、 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
4、 已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
5、 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
6、 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥ ,,求{}n a 的通项 公式。
数列2 1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a3、已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项4、已知在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a5、 已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。
6、已知数列{}n a 中,11=a,22=a ,n n n a a a 313212+=++,求na7、已知数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a .8、已知数列{n a }中,2111,1n n a aa a ⋅==+)0(>a ,求数列{}.的通项公式n a9、已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n }的通项公式。
求数列通项公式的十种方法,例题答案详解
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学xx、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其xx形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于: ----------这是xx 的等差数列 累加法是最基本的二个方法之一。
2.若,则两边分别相加得例1 已知数列满足,求数列的通项公式。
解:由得则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列的通项公式为。
例2 已知数列满足,求数列的通项公式。
解法一:由得则所以解法二:两边除以,得,则,故112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++ 因此,则评注:已知,,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项.①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;④若f(n)是关于n 的分式函数,累加后可裂项求和。
求数列通项方法归纳总结
求数列通项公式的方法一、公式法:适用于求符合定义的等差数列或等比数列的通项公式。
例1.已知数列{}n a 满足112,3,n n a a a +==求数列{}n a 的通项公式。
解:∵112,3,n n a a a +==∴数列{}n a 是首项为2,公比为3的等比数列∴数列{}n a 的通项公式是123n n a -=g。
练习1.已知数列{}n a 满足112,3(2)n n a a a n -==+≥,求数列{}n a 的通项公式。
解:∵13(2)n n a a n -=+≥ ∴13(2)n n a a n --=≥∴数列{}n a 是首项为2,公差为3的等差数列 ∴数列{}n a 的通项公式为23(1)31n a n n =+-=-二、累加法:适用于1()n n a a f n +=+------这是广义的等差数列例2. 已知数列{}n a 满足1121,1,n n a a n a +=++=求数列{}n a 的通项公式。
解:∵121,n n a a n +=++∴121,n n a a n +-=+∴2n ≥时,112211()()()n n n n n a a a a a a a a ---=-+-++-+L[][]2(1)12(2)1(211)1n n =-++-+++⨯++L []2(1)(2)111n n n =-+-+++-+L(11)(1)22n n n -+-=+g2n =1n =时,11a =适合上式∴数列{}n a 的通项公式为2n a n =。
练习2.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,求数列{}n a 的通项公式.解:∵11ln(1)n n a a n+=++∴1ln(1)ln n n a a n n +-=+-∴2n ≥时,112211()()()n n n n n a a a a a a a a ---=-+-++-+L[ln ln(1)][ln(1)ln(1)](ln 2ln1)2n n n n =--+---++-+Lln 2n =+又1n =时,11a =适合上式∴数列{}n a 的通项公式是2ln n a n =+评注:已知11,()n n a a a a f n +=-=,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若()f n 是关于n 的一次函数,累加后可转化为等差数列求和;②若()f n 是关于n 的二次函数,累加后可分组求和;③若()f n 是关于n 的指数函数,累加后可转化为等比数列求和;④若()f n 是关于n 的分式函数,累加后可裂项求和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的通项求解方法归纳总结与练习題
【知识要点】
1、通项公式:数列的通项公式是数列的一个重要内容之一,它把数列各项的性质集于一身.常用的求通项的方法有观察法、公式法、叠加法、叠乘法、前n 项和作差法、辅助数列法
2、常见方法和基本结构形式:
(1)、观察法:根据给定数列的几项观察规律,直接猜测结论;
(2)、叠加法:数列的基本形式为))((*1N n n f a a n n ∈=-+的解析式,而)()2()1(n f f f +++Λ的和可求出.
(3)、叠乘法:数列的基本形式为))((*1N n n f a a n
n ∈=+的解析关系,而)()2()1(n f f f ⋅⋅⋅Λ的积可求出. (4)、前n 项和作差法:利用⎩⎨⎧≥-==-)2()1(11n S S n S a n n n ,
,,能合则合.
(5)、待定系数法:数列有形如)1(1≠+=+k b ka a n n 的关系,可用待定系数法求得}{t a n +为等比数列,再求得n a .
【典例精析】
例1、根据数列的前4项,写出它的一个通项公式:
(1)-1,3,-5,7
(2)2,6,12,20 (3)17
81,1027,59,23
例2、已知}{n a 的首项11=a ,)(2*1N n n a a n n ∈+=+,
,求}{n a 的通项公式.
例3、已知}{n a 中,n n a n n a 2
1+=
+,且21=a ,求数列}{n a 的通项公式.
例4、已知下列各数列}{n a 的前n 项和n S 的公式为)(23S 2*∈-N n n n n =,求}{n a 的通项公式。
例5、已知数}{n a 的递推关系为231+=+n n a a ,且11=a ,求通项n a .
例6、设数列}{n a 满足21=a ,)N (3*1∈+=+n a a a n n n ,求n a
【巩固提高】
一、填空题:
1. 数列
的通项n a = .
2.数列1111,,,12233445
--⨯⨯⨯⨯L 的通项n a = . 3.数列222213571,1,1,12468
+-+-L 的通项n a = 4. 已知数列{}n a 的前n 项和21()2n S n n =+,则n a = .
5. 已知数列{}n a 的前n 项和32n n S =+,则n a = .
6. 已知数列{}n a 的首项11a =,且13(2)n n a a n -=+≥,则n a = .
7.已知数列{}n a 的首项11a =,且123(2)n n a a n -=+≥,则n a = .
8. 已知数列{}n a 的11a =,22a =且212n n n a a a ++=-,则n a = .
二、解答题:
1、已知等差数列{}n a 中,,51,28610==S a 求数列{}n a 的通项公式。
2、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式
3、数列{a n }的前n 项和 S n =3·2n -3,求数列的通项公式
4、已知数列{a n }的前n 项和S n =10n +1,求通项公式a n
5、数列{}n a 中,111,n n a a a n +==+,求{}n a 的通项公式 .
6、数列{}n a 中,1111,3n n n a a a -+==+,求{}n a 的通项公式 .
7、已知数列{}n a 满足11=a ,1111=-+n n a a ,求n a .
8、数列{}n a 中,1121,2n n n a a a a +==+,求{}n a 的通项公式 .
9、已知数列{}n a 满足112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式。