第18讲 等腰三角形与轴对称

合集下载

中考数学复习高频考点知识讲解与练习18---等腰三角形

中考数学复习高频考点知识讲解与练习18---等腰三角形

中考数学复习高频考点知识讲解与练习第18讲等腰三角形【考点知识总汇】一、等腰三角形的判定与性质1.判定:如果一个三角形有两个角相等,那么这两个角所对的边也(简写“”)。

2.性质(1)等腰三角形的两个底角(简写为“”)。

(2)等腰三角形顶角的、底边上的高和底边上的互相重合(简写成“三线合一”)。

(3)等腰三角形是图形,底边上的中线(或底边上的高或顶角的平分线)所在的直线是它的对称轴。

知识点总结:二、等边三角形的判定与性质1.判定(1)三个角的三角形是等边三角形。

(2)有一个角等于60 的三角形是等边三角形。

2.性质(1)等边三角形的三个内角都,并且每一个角都等于。

(2)等边三角形是轴对称图形,并且有条对称轴。

21AB知识点总结: 1.由于等边三角形是特殊的等腰三角形,所以等边三角形具有等腰三角形的所有性质,但等边三角形具有的性质等腰三角形不一定具有。

2.等边三角形的性质和判定的题设和结论也正好相反,要注意区别。

三、线段的垂直平分线1.性质:线段垂直平分线上的点与这条线段两个端点的距离。

2.判定:与一条线段两个端点距离相等的点,在这条线段的上。

知识点总结:1.线段的垂直平分线的性质是证明线段相等或垂直的重要方法。

2.垂直平分线的性质与判定的题设和结论也正好相反,注意区别。

高频考点1、等腰三角形的性质与判定【范例】如图, 90=∠ABC ,E D ,分别在AC BC ,上,DE AD ⊥,且DE AD =,点F 是AE 的中点,FD 与AB 相交于点M 。

(1)求证:FCM FMC ∠=∠。

(2)AD 与MC 垂直吗?并说明理由。

得分要领:等腰三角形的“三线合一”,包括以下三个结论:如图,在△ABC 中,AC AB =。

1.若BC AD ⊥,则DC BD =,21∠=∠。

2.若DC BD =,则BC AD ⊥,21∠=∠。

3.若21∠=∠,则BC AD ⊥,DC BD =。

【考题回放】1.若等腰三角形的顶角为40 ,则它的底角数为( )A.40B.50C.60D.702.如图,在△ABC 中,AC AB =,且D 为BC 上一点,AD CD =,BD AB =,则B ∠的度数为( )A.30B.36C.40D.45第2题 第3题3.如图,在△ABC 中,AC AB =, 40=∠A ,点D 在AC 上,DC BD =,则ABD ∠的度数是。

初中数学:轴对称-等腰三角形知识点归纳总结

初中数学:轴对称-等腰三角形知识点归纳总结

初中数学轴对称、线段垂直平分线、角平分线、等腰三角形轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.•成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到.轴对称变换的性质(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样(2)•经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分.作一个图形关于某条直线的轴对称图形(1)作出一些关键点或特殊点的对称点.(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.关于坐标轴对称点P(x,y)关于x轴对称的点的坐标是(x,-y)点P(x,y)关于y轴对称的点的坐标是(-x,y)关于原点对称点P(x,y)关于原点对称的点的坐标是(-x,-y)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);等腰三角形有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.特别的:(1)等腰三角形是轴对称图形.(2)等腰三角形两腰上的中线、角平分线、高线对应相等.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).特别的:(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形.(2)有两边上的角平分线对应相等的三角形是等腰三角形.(3)有两边上的中线对应相等的三角形是等腰三角形.(4)有两边上的高线对应相等的三角形是等腰三角形.等边三角形三条边都相等的三角形叫做等边三角形,也叫做正三角形.等边三角形的性质等边三角形的三个内角都相等,•并且每一个内角都等于60°等边三角形的判定方法(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.角平分线的性质:在角平分线上的点到角的两边的距离相等.AB CP M N O角平分线的判定:到角的两边距离相等的点在角的平分线上.AB CP M N O三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离相等.添加辅助线口诀几何证明难不难,关键常在辅助线;知中点、作中线,倍长中线把线连.线段垂直平分线,常向两端来连线.线段和差及倍分,延长截取全等现;公共角、公共边,隐含条件要挖掘;平移对称加旋转,全等图形多变换.角平分线取一点,可向两边作垂线; 也可将图对折看,对称之后关系现;角平分线加平行,等腰三角形来添; 角平分线伴垂直,三线合一试试看。

第18讲等腰三角形(课件)-2025年中考数学一轮复习讲练测(全国通用)

第18讲等腰三角形(课件)-2025年中考数学一轮复习讲练测(全国通用)

D.12
【详解】解:如图所示:分三种情况:
①当 = 时,以点为圆心,以长为半径作圆,交网格线的格点为1 ,2 ,
②当 = 时,以点为圆心,以长为半径作圆,交网格线的格点为3 ,4 ,
③当 = 时,作的垂直平分线,交网格线的格点为5 ,6 ,7 ,8 ,
还是比较大的,多以选择填空题型出现,
但是因为等腰三角形可以放在很多模型
➢ 探索等边三角形的判定定理:三个角都相等的三角形(
中,所以等腰三角形结合其他考点出成
或有一个角是 60°的等腰三角形)是等边三角形.
➢ 理解线段垂直平分线的概念,
压轴题的几率特别大,所占分值也是比

的考点.
稿定PPT
探索并证明线段垂直平分线的性质定理:线段垂直平
【例5】(2023·陕西榆林·校考模拟预测)如图,在△ 中, = ,是边的中点,一个圆过点,交边
于点,且与相切于点,则该圆的圆心是(

A.线段的垂直平分线与线段的垂直平分线的交点
B.线段的垂直平分线与线段的垂直平分线的交点
C.线段的垂直平分线与线段的垂直平分线的交点
∵ ∥ ,∴△ ∼△

∴ =


2
= 3,即 = 2 如图:过D作 ⊥
1
1
∴△ = 2 ⋅ , △ = 2 ⋅ ,
∴△ : △ = : = 2: = 2: 1.
考点一 等腰三角形的性质与判定
故选:D.
考点一 等腰三角形的性质与判定
题型10 求与图形中任意两点构成等腰三角形的点
【例10】(2023·广东河源·统考一模)如图,在3 × 3的网格中,每个网格线的交点称为格点.已知图中,两个
格点,请在图中再寻找另一个格点,使△ 成为等腰三角形,则满足条件的点有(

轴对称图形与等腰三角形PPT课件

轴对称图形与等腰三角形PPT课件
2、在直线EF上再任取 两点M、N,MA与 MB、NA与NB的大 小呢?
问题:你能说说线段垂直平分线上点的特
征吗?
例:已知:如图,△ABC的边AB、AC的垂直平分线相
交于点P。 求证:点P在BC的垂直平分线上
操作:
(1)请你通过折叠的方 法找出一个锐角三 角形纸片每条边的 垂直平分线,观察 这三条垂直平分线, 你发现了什么?
线段、角、等腰三角形 、长方形、正方形、菱
形、圆、椭圆等
想一想:圆有几条对称轴?
圆有无数条对称轴!对称轴是经过圆心的直线
找一找:
有的图形的对称轴这么多哇!
以后找对称轴我可得好好想想呀!
下面的图形是轴对称图形吗?如果 是,有几条对称轴?
6条
12条
2条
1条
想一想:0-9十个数字中,
哪些是轴对称图形?
安庆四中 余婷
对于这部分的处理我借助了多媒体。我 把它定位四个部分 :
1、赏轴对称 2、识轴对称 3、辨轴对称 4、做轴对称
自然界物体
北京天坛祈年殿
中外建筑
北京故宫
美国白宫
欧洲风情
艾 菲 尔 铁 塔
剪纸艺术
车标设计
交通标志
这些图形有什么共同特征?
(1)它们都是对称的。 (2)它们沿着某条直线折叠后, 直线两旁的部分能完全重合。
轴对称图形:
如果一个图形沿着一条直线折叠,直 线两旁的部分能够完全重合,那么这个 图形叫做轴对称图形。
这条直线叫这个图形的对称轴。
动动手,试一试
1、取一张纸; 2、在纸的一侧上滴一滴墨水,将纸迅 速对折、压平;
3、将纸打开铺平,观察所得到的图案,位 于折痕两侧的墨迹图案彼此有什么联系?

等腰三角形的轴对称性质

等腰三角形的轴对称性质

化学实验
生物学实验
在生物学实验中,等腰三角形可用于 模拟生物体的形态和结构,如细胞结 构和生物体的平衡。
在化学实验中,等腰三角形可用于表 示化学反应中的物质变化和能量转化。
04
等腰三角形与其他几何图形的关系
与直角三角形的关系
直角三角形可以是等腰的,即两个锐 角相等,两腰也相等。
等腰直角三角形是一种特殊的等腰三 角形,它的两个锐角都是45度,两腰 相等,并且斜边是两腰的平方和的平 方根。
THANK YOU
感谢聆听
角度判定
如果一个三角形有两个底角相 等,则它是等腰三角形。
综合判定
如果一个三角形同时满足边长 相等和角度相等,则它是等腰 三角形。
02
等腰三角形的轴对称性
轴对称的定义
轴对称
如果一个平面图形关于某一直线对称 ,那么这个图形叫做轴对称图形,这 条直线叫做对称轴。
轴对称的性质
轴对称图形是全等图形,对称轴两侧 的图形可以完全重合。
角度相等
等腰三角形的两个底角相等,顶角与底角也相等。
等腰三角形的性质
80%
轴对称
等腰三角形是轴对称图形,其对 称轴是穿过顶角的高线。
100%
角度恒定
等腰三角形的角度恒定,即两个 底角相等,顶角与底角也相等。
80%
面积恒定
等腰三角形的面积恒定,可以通 过底和高计算面积。
等腰三角形的判定
边长判定
如果一个三角形有两边长度相 等,则它是等腰三角形。
绘画和雕塑
等腰三角形在绘画和雕塑 中常被用来表现形式美感 和立体感,如人体结构和 自然形态。
服装设计
在服装设计中,等腰三角 形可以作为设计元素,用 于服装的款式和图案设计。

结论等腰三角形是轴对称图形课件

结论等腰三角形是轴对称图形课件

自然界中的对称美
等腰三角形是轴对称图形这一结论也可以帮 助人们更好地理解自然界中的对称美,如雪 花、蜂巢等自然现象。
THANKS
感谢观看
PART 02
轴对称图形的定义与性质
轴对称图形的定义
轴对称图形
如果一个图形关于一条直线对称,那 么这个图形被称为轴对称图形。
轴对称性质
轴对称图形具有对称性,即图形关于 对称轴对称,其形状和大小完全相同。
轴对称图形的性质
对称轴的性质
对称轴是一条直线,它将图形分为两 个完全相同的部分。
对称性的应用
等腰三角形具有明显的轴对称性,这使得它在几何图形中具有独特的地位。通 过对称轴,我们可以轻松地找到等腰三角形的其他重要性质,如高、中线等。
基础教学
在几何教学中,等腰三角形是讲解轴对称概念的重要工具。通过研究等腰三角 形,学生可以深入理解轴对称图形的性质和特点。
在建筑设计中的应用
结构稳定性
在建筑设计中,等腰三角形经常被用作结构元素,以增加结 构的稳定性。例如,在桥梁和高层建筑中,等腰三角形的设 计可以有效地分散压力和重量。
总结词:旋转对称
详细描述:将等腰三角形绕着底边中点旋转180度,观察旋转后的图形是否与原 图形重合,如果重合则证明是轴对称图形。
证明方法二:通过折叠证明
总结词:折叠对称
详细描述:将等腰三角形沿底边中线折叠,观察折叠后的两部分是否完全重合,如果重合则证明是轴 对称图形。
证明方法三:通过坐标证明
总结词:坐标对称
等腰三角形的对称性
等腰三角形是一种特殊的轴对称图形, 它具有两条对称轴,分别是底边上的 高和中线。因此,等腰三角形可以被 视为轴对称图形。
轴对称图形在几何、建筑、艺术等领 域中有着广泛的应用,因为它们具有 优美的外观和独特的性质。

中考数学一轮复习 第四单元 三角形 第18讲 等腰三角形课件

中考数学一轮复习 第四单元 三角形 第18讲 等腰三角形课件

2021/12/9
第十九页,共二十三页。
变式 等腰三角形ABC中,∠A=80°,求∠B的度数. (1)请你解答(jiědá)以上的变式题; (2)解答(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如 果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的
2021/12/9
第十八页,共二十三页。
(2018·绍兴(shào xīnɡ))数学课上,张老师举了下面的例题:
例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°) 例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)
张老师启发同学们进行变式,小敏编了如下一题:
综上所述,当0<x<90且x≠60时,∠B有三个不同的度数.
2021/12/9
第二十二页,共二十三页。
内容 总结 (nèiróng)
第18讲 等腰三角形。以学生熟悉的一副三角板为背景结合中点和垂线求线段的长度,看似简单实 则不易(bù yì),是考查能力的一道好题.。①当点C在线段OB上时,如图1,。②当点C在线段OB的延长线上时,如图2,。错误鉴定
或5
25
2

试真题·练易
命题(mìng tí)点 等腰三角形的性质
1.(2016·山西,15,3分)如图,已知点C为线段(xiànduàn)AB的中点,CD⊥AB且CD=AB=4,连 接AD,BE⊥AB,AE是∠DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD 于点H,则HG的长为3- .5
A.2 cm2 B.3 cm2 C.4 cm2 D.5 cm2
2021/12/9
第十一页,共二十三页。

数学复习-轴对称与等腰三角形PPT课件

数学复习-轴对称与等腰三角形PPT课件
讲师:XXXXXX XX年XX月XX日
D
C
等腰三角形的判定定理
等腰三角形的判定方法: 如果一个三角形有两个角相等,那么这两个角所对 的边也相等(简写成“等角对等边”).
A
B
C
等边三角形的性质
等边三角形的性质: 等边三角形的三个内角都相等,并且每一个角都等于60°.
A
B
C
等边三角形的判定:
判定等边三角形的方法: 从边的角度:等边三角形的定义; 从角的角度:等边三角形的两条判定定理.
l
A
40
C
B
D
65
F E
轴对称与坐标的关系
关于x 轴对称的每对对 C′ 称点的横坐标相等,纵坐标 互为相反数.
C
y
A′ B
1D
O
1
D′
B′
A
E E′
x
轴对称与坐标的关系
y
关于y 轴对称的每对对
称点的横坐标互为相反数,
B B〞
纵坐标相等.
E〞 D〞1 D E O1
x
C
A〞 A
C〞
线段垂直平分线的性质及逆定理
轴对称与等腰三角形知识网络
轴对称与等腰三角形知识网络
轴对称与轴性质

轴对称与坐标的关系


线段垂直平分线


等腰三角形的性质与判定

等腰三角形

等边三角形的性质与判定
轴对称与轴对称图形
l
A
40
C
B
D
65
F E
轴对称的性质
对应点所连接的线段被对称轴垂直平分
对应线段相等,对应角相等

第18讲 等腰三角形(解析版)

第18讲 等腰三角形(解析版)

中考数学一轮复习资料五合一《核心考点+重点题型+高分秘籍+题组特训+过关检测》(全国通用版)第18讲等腰三角形题组特训详解一、选择题1.如图,在ABC V 中,AB AC =,AB 的垂直平分线交边AB 于D 点,交边AC 于E 点,若ABC V 与EBC V 的周长分别是20,12,则AB 为( )A .4B .6C .8D .10【答案】C 【分析】首先根据DE 是AB 的垂直平分线,可得AE BE =;然后根据ABC V 的周长AB AC BC =++,EBC V 的周长BE EC BC AE EC BC AC BC =++=++=+,可得ABC V 的周长EBC -V 的周长AB =,据此求出AB 的长度是多少即可.【详解】解:∵DE 是AB 的垂直平分线,∴AE BE =,∵ABC V 的周长AB AC BC =++,EBC V 的周长BE EC BC AE EC BC AC BC =++=++=+,∴ABC V 的周长EBC -V 的周长AB =,∴20128AB =-=.故选:C .【点睛】此题主要考查了垂直平分线的性质,要熟练掌握,解答此题的关键是要明确:垂直平分线上任意一点,到线段两端点的距离相等.此题还考查了等腰三角形的性质,以及三角形的周长的求法,要熟练掌握.2.已知边长为4的等边ABC、、的中点,P为线段DE上一动点,则V,D、E、F分别为边AB BC AC+的最小值为( )PF PCA.B.3C.4D.段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.如图,等腰ABC V 内接于O e ,点D 是圆中优孤上一点,连接DB DC 、,已知,70AB AC ABC =Ð=°,则BDC Ð的度数为( )A .10°B .20°C .30°D .40°【答案】D 【分析】先根据等边对等角和三角形内角和定理求出40A Ð=°,再由同弧所对的圆周角相等即可得解答.【详解】解:∵AB AC =,70ABC Ð=°,∴70ABC ACB Ð=Ð=°,∴18040A ABC ACB Ð=°-Ð-Ð=°,∴40BDC A Ð==°∠.故选D .【点睛】本题主要考查了同弧所对的圆周角相等、等腰三角形的性质、三角形内角和定理等知识点,掌握同弧所对的圆周角相等是解题的关键.4.如图,若50MON Ð=°,MON Ð内有一个定点P ,点A ,B 分别在射线OM ON ,上移动,当PAB V 周长最小时,则APB Ð的度数为( )A .60°B .80°C .100°D .120°【答案】B 【分析】作点P 关于OM 的对称点P ¢,点P 关于ON 的对称点P ¢¢,连接OP ¢,OP ¢¢,P P ¢¢¢,其中P P ¢¢¢交OM 于A ,交ON 于B ,此时PAB V 的周长最小值等于P P ¢¢¢的长,由轴对称性质可知:OP OP ¢=,OP OP ¢¢=,AOP AOP ¢Ð=Ð,BOP BOP ¢¢Ð=Ð,且2250100P OP AOB ¢¢¢Ð=Ð=´°=°,从而得出180100240P P ¢¢¢Ð=Ð=°-°¸=°(),即可得出答案.【详解】解:如图,作点P 关于OM 的对称点P ¢,点P 关于ON 的对称点P ¢¢,连接OP ¢,OP ¢¢,P P ¢¢¢,其中P P ¢¢¢交OM 于A ,交ON 于B ,此时PAB V 的周长最小值等于P P ¢¢¢的长,由轴对称性质可知:OP OP ¢=,OP OP ¢¢=,AOP AOP ¢Ð=Ð,BOP BOP ¢¢Ð=Ð,∴2250100P OP AOB ¢¢¢Ð=Ð=´°=°,∴180100240P P ¢¢¢Ð=Ð=°-°¸=°(),∴80APB P P ¢¢¢Ð=Ð+Ð=°,故选:B .【点睛】本题主要考查了轴对称的性质,等腰三角形的性质,三角形内角和定理等知识,将PAB V 的周长最小值转化为P P ¢¢¢的长是解题的关键.5.如图,等腰ABC V 中,AB AC =,70BAC Ð=°,D 是BC 边的中点,DE AB ^于点E ,延长DE 至点F ,使EF DE =,则F Ð的度数为( )A .45°B .50°C .55°D .60°∵DE AB ^,∴90BED Ð=°,∴903555ADE Ð=°-°=°,∵EF DE =,DE AB ^,∴AF AD =,∴55F ADE Ð=Ð=°,故答案为:C .【点睛】本题考查的知识点主要是等腰三角形的性质与线段垂直平分线的性质,理解性质并熟练的应用是解题的关键.6.如图,在ABC V 中,AB AC =,边BC 在x 轴上,且点()10B -,,点()24A ,,则AOC V 的面积为( )A .10B .12C .20D .26【答案】A 【分析】作AD x ^轴于点D,求得4=AD ,2OD =,利用等腰三角形的性质求得3BD CD ==,根据三角形的性质即可求解.【详解】解:作AD x ^轴于点D,∵()24A ,,∴()20D ,,4=AD ,2OD =,7.如图,在正方形ABCD中,4V沿AE折叠,使点B落在正方形内点AB=,E为BC的中点,将ABEF处,连接CF,则CF的长为()A.B C D.2.25∵四边形ABCD为正方形,8.如图,已知长方形ABCD 沿着直线BD 折叠,使点C 落在点C ¢处,BC ¢交AD 于点E ,168AD AB ==,,则DE 的长为( )A .9B .10C .11D .12【答案】B 【分析】由四边形ABCD 为长方形可知AD BC ∥,8CD AB ==,从而得出ADB CBD Ð=Ð,结合折叠的性质得出ADB C BD ¢Ð=Ð,进而得出BE DE =.设BE DE x ==,则16AE x =-,在Rt ABE △中,根据勾股定理可列出关于x 的等式,解出x 的值,即得出答案.【详解】∵四边形ABCD 为长方形,∴AD BC ∥,8CD AB ==∴ADB CBD Ð=Ð.由折叠的性质可知C BD CBD ¢Ð=Ð,8C D CD AB ¢===,∴ADB C BD ¢Ð=Ð,∴BE DE =.设BE DE x ==,则16AE AD DE x =-=-,在Rt ABE △中,222AE AB BE +=,∴()222168x x -+=,解得:10x =,∴10DE =.故选B .【点睛】本题主要考查折叠的性质,勾股定理等知识.利用数形结合的思想是解题关键.9.如图,在一个直角三角形中,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形,其作法不一定正确的是( )A .B .C .D .【答案】B【分析】对尺规作图进行分析,再利用等腰三角形的判定条件逐一进行判断即可得到答案.【详解】解:A 、如图1,由作法可知,BD BC =,即BCD △是等腰三角形,不符合题意,选项错误;B 、如图2,由作法可知,所做线段为AC 的垂直平分线,但不能证明线段相等,无法推出等腰三角形,符合题意,选项正确;C 、如图3,由作法可知,所做线段为AB 的垂直平分线,AD BD =,即ABD △是等腰三角形,不符合题意,选项错误;D 、如图4,由作法可知,所做线段为AC 的垂直平分线,AD CD =,即ACD V 是等腰三角形,不符合题意,选项错误,故选B .【点睛】本题考查了尺规作图,垂直平分线的性质,等腰三角形的判定,熟练掌握尺规作图的基本图形做法是解题关键.10.如图,将长方形ABCD 沿EF 折叠,B ,C 分别落在点H ,G 的位置,CD 与HE 交于点M .下列说法中,不正确的是( ).A .ME HG=B .ME MF =C .HM FM EB+=D .GFM MEAÐ=Ð【答案】A 【分析】由折叠的性质知BEF MEF Ð=Ð,BC HG =,AD AB ^,结合平行线的性质可证M MEF FE =ÐÐ,可证选项B 正确;由点到直线的距离可得ME HG ¹,故选项A 不正确;由折叠的性质知HE BE =,再由HE HM ME HM MF =+=+,可得选项C 正确,利用平行线的性质可得MEA HMD Ð=Ð,GFM HMD Ð=Ð,可证选项D 正确.【详解】解:如图,过点M 作MK AB ^,由折叠的性质知BEF MEF Ð=Ð,BC HG =,AD AB ^,由题意知CD AB ∥,AD BC HG ==,∴BEF MFE Ð=Ð,AD MK HG ==,∴M MEF FE =ÐÐ,∴ME MF =,故选项B 正确,不合题意;∵ME MK >,∴ME HG ¹,故选项A 不正确,符合题意;由折叠的性质得:HE BE =,∵HE HM ME HM MF =+=+,∴HM FM EB +=,故选项C 正确,不合题意;∵CD AB ∥,∴MEA HMD Ð=Ð,由题意知HE GF ∥,∴GFM HMD Ð=Ð,∴GFM MEA Ð=Ð,故选项D 正确,不合题意;故选A .【点睛】本题考查折叠的性质,平行线的性质等知识点,解题的关键是牢记折叠前后对应边相等、对应角相等.11.如图,在矩形ABCD 中,1AB =,2AD =,点M 在边BC 上,若MA 平分DMB Ð,则CM 的长是( )A .B .1C .D 【答案】D 【分析】由矩形的性质得出1CD AB ==,AD BC ∥,2BC AD ==,90C Ð=°,由平行线的性质得出DAM AMB Ð=Ð,再由角平分线证出AMB AMD Ð=Ð,又勾股定理求出CM 即可.【详解】∵四边形ABCD 是矩形,∴1CD AB ==,AD CB ∥,2BC AD ==,90C Ð=°,∴DAM AMB Ð=Ð,∵MA 平分DMB Ð,∴AMB AMD Ð=Ð,∴DAM AMD Ð=Ð,∴2DM AD ==,12.如图,ABC V 中,AB AC =,BD 平分ABC Ð交AC 于G ,DM ∥BC 交ABC Ð的外角平分线于M ,交AB 、AC 于F 、E ,下列结论正确的是( )A .EF ED=B .FD BC =C .EC MF =D .EC AG=【答案】C 【分析】通过证明BF EC =,BF FM =即可解决问题;【详解】解:∵AB AC =,∴ABC C Ð=Ð,∵DM ∥BC ,∴,AFE ABC AEF C Ð=ÐÐ=Ð,∴AFE AEF Ð=Ð,∴AF AE =,∴BF EC =,∵D DBC FBD Ð=Ð=Ð,∴DF BF =,同理可证:BF FM =,∴EC FM =,故选:C .【点睛】本题主要考查了等腰三角形的判定及其性质,平行线的性质,角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.如图,等边三角形ABC 中,D 、E 分别为AB BC 、边上的两个动点,且总使AD BE =,AE 与CD 交于点F ,AG CD ^于点G ,则:FG AF 等于( )A .1B .2C .13D .1214.如图,在平面直角坐标系xOy 中,直线MN 分别与x 轴,y 轴交于点M ,N ,且6OM =,30OMN Ð=°,等边AOB V 的顶点A ,B 分别在线段MN OM ,上,则OB 的长为( )A .1B .2C .3D .415.如图,在ABC V 中,以各边为边分别作三个等边三角形BCF ,ABD ,ACE ,若3AB =,4AC =,5BC =,则下列结论:①AB AC ^;②四边形ADFE 是平行四边形;③150DFE Ð=°;④5ADFE S =四边形,其中正确的有( )A .4个B .3个C .2个D .1个【答案】B 【分析】由222AB AC BC +=,得出90BAC Ð=°,则①正确;由等边三角形的性质得60DAB EAC Ð=Ð=°,则150DAE Ð=°,由SAS 证得ABC DBF V V ≌,得4AC DF AE ===,同理()SAS ABC EFC V V ≌,得3AB EF AD ===,得出四边形AEFD 是平行四边形,则②正确;由平行四边形\12AEFD S DF AM DF AD =×=×Y 故④不正确;\正确的个数是3个,故选:B .二、解答题16.如图,ABC V 是等腰三角形,AB AC =,060BAC °<Ð<°,分别在AB 的右侧,AC 的左侧作等边三角形ABD 和等边三角形ACE ,BD 与CE 相交于点F .(1)求证:BF CF =;(2)作射线AF 交BC 于点G ,交射线DC 于点H .①补全图形,当40BAC Ð=°时,求AHD Ð的度数;②当BAC Ð的度数在给定范围内发生变化时,AHD Ð的度数是否也发生变化?若不变,请直接写出AHD Ð的度数;若变化,请给出AHD Ð的度数的范围.17.如图,在ABCÐ的平V中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交DAC分线于E,交BC于G,且AE BC∥.(1)求证:ABC V 是等腰三角形;(2)若8AE =,2GC BG =,求BC 长.【答案】(1)答案见解析(2)12【分析】(1)先根据平行线的性质证明B DAEC CAE ÐÐÐÐ=,=,然后根据角平分线的定义得出B C Ð=Ð,则可证明ABC V 为等腰三角形;(2)证明AFE CFG △≌△,从而得到CG 的长,则可求得BC 的长.【详解】(1)解:AE BC Q ∥,B D A E ,C C A E \Ð=ÐÐ=Ð,AE Q 平分DAC Ð,DAE CAE \Ð=Ð,B C \Ð=Ð,AB AC \=,ABC \V 是等腰三角形;(2)F Q 是AC 的中点,AF CF \=,在AFE △和CFG △中,C FAE CF AFGFC EFA Ð=Ðìï=íïÐ=ÐîA FE C FG \V V ≌,8G C A E \==,2GC BG =Q ,4BG \=,12B C B G G C \=+=.【点睛】本题考查了等腰三角形的性质和三角形全等的判定,解题的关键是熟练运用等腰三角形的性质和三角形全等的判定定理.18.在ABCV中,AB BC=,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE OF,.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当90Ð=°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由;ABC(3)若2,POFCF AE EF-==V为等腰三角形时,请直接写出线段OP的长.19.如图,在Rt ABC △中,90ACB Ð=°,30BAC Ð=°,E 为AB 边的中点,以BE 为边作等边BDE V ,连接AD ,CD .(1)求证:ACD V 为等边三角形;(2)若3BC =,在AC 边上找一点H ,使得BH EH +最小,并求出这个最小值.由作图可知:最小值为∴60EAE¢Ð=°,∴EAE¢△为等边三角形,∴12EE EA AB¢==,∴90AE BТ=°,20.在ABC V 中,AB AC =,120BAC Ð=°,AD BC ^,垂足为G ,且AD AB =.60EDF Ð=°,其两边分别交边AB ,AC 于点E ,F .(1)求证:ABD △是等边三角形;(2)求证:AE CF =.60DBE DAF BD ADBDE ADF Ð=Ð=°ìï=íïÐ=Ðî,∴()ASA BDE ADF △△≌.∴BE AF =.又∵AB AC =,∴AB BE AC AF -=-,∴AE CF =.【点睛】本题考查了等腰三角形的性质、全等三角形的判定与性质、等边三角形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.过关检测详细解析一.选择题1.如图,在ABC V 中,AC BC =,边AC 的垂直平分线分别交,AC BC 于点D 、E .若45BAE Ð=°,3DE =,则AE 的长为( )A .2B .4C .6D .82.已知等腰三角形一边长为4,另一边长为6,则这个等腰三角形的面积等于()A.B.C.D.3.如图,四边形ABCD 是O e 的内接四边形,连接AC .若AC AD =,40CAD Ð=°,则B Ð的大小为( )A .70°B .100°C .110°D .120°【答案】C 【分析】根据AC AD =,40CAD Ð=°,得到70ACD D Ð=Ð=°,根据+180B D ÐÐ=°计算选择即可.【详解】∵AC AD =,40CAD Ð=°,∴70ACD D Ð=Ð=°,∵+180B D ÐÐ=°,∴110B Ð=°,故选C .【点睛】本题考查了等腰三角形的性质,圆内接四边形的性质,熟练掌握两个性质是解题的关键.4.如图,在正方形ABCD 中,4AB =,E 为BC 的中点,将ABE V 沿AE 折叠,使点B 落在正方形内点F 处,连接CF ,则CF 的长为( )A .BCD .2.25∵四边形ABCD 为正方形,∴4AB BC ==,∵E 为BC 的中点,∴122BE CE BC ===,在Rt ABE △中,根据勾股定理可得:5.如图1为一张正三角形纸片ABC ,其中D 点在AB 上,E 点在BC 上.以DE 为折痕将B 点往右折如图2所示,BD BE 、分别与AC 相交于F 点、G 点.若10AD =,16AF =,14DF =,8BF =,则CG 长度为( )A .7B .8C .9D .106.如图,已知ABC V 是等边三角形,2BDC BAC Ð=Ð,BD CD =,点M ,N 分别是B ,AC 边上的点,且60MDN Ð=°.连接MN ,若AMN V 的周长是6,则ABC V 的边长是( )A .2B .3C .3.5D .4【答案】B 【分析】延长AB 至F ,使BF CN =,连接DF ,由“SAS ”可证BDF CDN V V ≌,V V ≌DMN DMF ,可得Ð=ÐBDF CDN ,DF DN =,MN MF =,即可求解.【详解】解:延长AB 至F ,使BF CN =,连接DF ,∵ABC V 是等边三角形,∴60Ð=Ð=Ð=°ABC BAC BCA ,∵BD CD =,2BDC BAC Ð=Ð,∴BDC V 是等腰三角形,120BDC Ð=°,∴30Ð=Ð=°BCD DBC ,∴90Ð=Ð=°DBA DCA ,在DBF V 和CND △中,BF CN DBF DCN DB DC =ìïÐ=Ðíï=î,∴()SAS BDF CDN V V ≌,∴Ð=ÐBDF CDN ,DF DN =,∵60MDN Ð=°,∴60Ð+Ð=°BDM CDN ,∴60BDM BDF FDM MDN Ð+Ð=°=Ð=Ð,在DMN V 和V DMF 中,DN DF MDN MDF DM MD =ìïÐ=Ðíï=î,∴()SAS DMN DMF V V ≌,∴MN MF =,∴MF BF BM BM CN MN =+=+=,∴AMN V 的周长2AM AN MN AM MB BF AN AB AN CN AB AC AB ++=+++=++=+=.∵AMN V 的周长是6∴3AB =故选:B .【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.7.如图,已知点D E 、分别是等边ABC V 边BC AB 、的中点,6AD =,点F 是线段AD 上一动点,则BF EF +的最小值为( )A .3B .6C .9D .12【答案】B 【分析】连接CE 交AD 于点F ,连接BF ,此时BF EF +的值最小,最小值为CE .【详解】解:连接CE 交AD 于点F ,连接BF ,如下图:∵ABC V 是等边三角形,D 是BC 的中点,∴BF CF =,∴BF EF CF EF CE +=+=,此时BF EF +的值最小,最小值为CE ∵D E 、分别是等边ABC V 边BC AB 、的中点,∴AD CE =,∵6AD =,∴6CE =,∴BF EF +的值最小值为6.故选:B .【点睛】此题主要考查了轴对称求最短距离,解题关键是掌握轴对称求最短距离的方法,等边三角形的性质.8.如图,在等边ABC V 中,4BC cm =,动点D 从点B 出发,以1cm/s 的速度沿BA 方向运动.同时动点E 从点B 出发以相同的速度沿BC 方向运动,当点D 运动到点A 时,点E 也随之停止运动.连接DE ,将BDE V 沿DE 折叠,点B 的对称点为点F ,设点D 的运动时间为t 秒,DEF V 与ABC V 重叠部分的面积为y ,则下列图象能大致反映y 与t 之间函数关系的是( )A .B .C .D .【答案】A【分析】根据等边三角形的性质和折叠的性质,利用分类讨论的思想方法求得y 与t 的函数关系式,再结合自变量的取值范围判定出函数的大致图象.【详解】解:由折叠的性质可得:BDE DEF S S =△△,①当02t ££时,DEF V 与ABC V 重叠部分的面积为BDE y S =V ,由题意得:cm BD BE t ==,过点D 作DH BE ^于点H ,如图,∵ABC V 是等边三角形,由题意得:cm==,则BD BE t∵60,,B BD BEÐ=°=∴BDEV是等边三角形,4综上,y 与t 之间函数关系式为由二次函数图象的性质可知,第一个函数的图象是开口向上的抛物线的一部分,第二个函数的图象是开9.点D 是等边三角形ABC 的边AB 上的一点,且12AD BD ==,,现将ABC V 折叠,使点C 与点D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,若54BF =,则CE 的长为( )A .53B .75C .125D .3510.如图,在等边三角形ABC 中,10cm AB AC ==,4cm DC =.如果点M ,N 都以1cm/s 的速度运动,点M 在线段CB 上由点C 向点B 运动,点N 在线段BA 上由点B 向点A 运动.它们同时出发,当两点运动时间为t 秒时,BMN V 是一个直角三角形,则t 的值为( )A .103B .209C .103或203D .53或103【答案】C【分析】根据题意,用含t 的式子表示出,,10CM t BN t BM t -===,分两种情况讨论,当90BMN Ð=°时,2BN BM =,求出t 的值;当90BNM Ð=°时,2BM BN =,求出t 的值.【详解】解:∵ABC V 是等边三角形,10AB AC ==cm ,∴10BC =cm ,∵点M 、N 都以1cm/s 的速度运动,设CM t =,BN t =,线PQ,切点为Q,则PQ的最小值为()A.5B C.D.6【答案】A【分析】连接CQ、CP,过点C作CH AB^,根据勾股定理求出^于H,根据切线的性质得到CQ PQPQ,根据等边三角形的性质求出CH,根据垂线段最短解答即可.【详解】解:连接CQ、CP,过点C作CH AB^于H,∵PQ 是C e 的切线,∴CQ PQ ^,∴22PQ CP CQ =-=当CP AB ^时,CP 最小,12.如图,O 为ABC V 的外心,OCP △为正三角形,OP 与AC 相交于D 点,连接OA .若70BAC Ð=°,AB AC =,则ADP Ð为( )A .110°B .90°C .85°D .80°【答案】C 【分析】由三角形的外心可知OA OC =,结合AB AC =,70BAC Ð=°先求出ACO Ð,再利用OCP △是正三角形以及外角的性质即可求解ADP Ð的度数.【详解】解:O Q 是ABC V 的外心,AB AC=OA OC BAO CAO ACO\=Ð=Ð=Ð,=70BAC аQ =35CAO ACO \Ð=аOCP Q △是正三角形60PCO P \Ð=Ð=°25PCD PCO ACO \Ð=Ð-Ð=°256085ADP PCD P \Ð=Ð+Ð=°+°=°故选C .【点睛】本题主要考查外心的性质,等边三角形的性质及三角形外角性质,熟练掌握外心的性质及外角的性质是解决本题的关键.13.如图,点B 是线段AC 上任意一点(点B 与点A ,C 不重合),分别以AB 、BC 为边在直线AC 的同侧作等边三角形ABD 和等边三角形BCE ,AE 与BD 相交于点G ,CD 与BE 相交于点F ,AE 与CD 相交于点H ,则下列结论:①AE CD =;②120AHC Ð=°;③ABG DBF ≌△△;④连接GF ,则GBF V 是等边三角形,以上结论正确的有( )A .4个B .3个C .2个D .1个【答案】A 【分析】利用等边三角形,ABD BCE V V 的性质,证明 ,ABE DBC V V ≌ 从而可判断①,由,ABE DBC V V ≌可得,EAB CDB Ð=Ð 再利用三角形的内角和定理可判断②,得出60ABG DBF Ð=Ð=°,进而证明ABG DBF ≌△△,判断③,得出BG BF =,即可判断④【详解】解:,ABD BCE QV V 为等边三角形,,60,60BA BD ABD BC BE CE CBE \=Ð=°==Ð=°,,,ABD DBE CBE DBE \Ð+Ð=Ð+Ð 即,ABE DBC Ð=Ð()SAS ,ABE DBC \V V ≌,AE DC \= 故①正确;Q ,ABE DBC V V ≌,EAB CDB \Ð=Ð,DGH AGB Ð=ÐQ180,180,DHG CDB DGH ABD EAB AGB Ð=°-Ð-ÐÐ=°-Ð-ÐQ60DHG ABD \Ð=Ð=°,120AHC \Ð=°,故②正确;60ABD EBC Ð=Ð=°Q ,60DBF \Ð=°,,EAB CDB Ð=ÐQ 则GAB FDBÐ=Ð在,ABG DBF V V 中GAB FDB AB DBABG DBF Ð=Ðìï=íïÐ=Ðî()ASA ABG DBF \V V ≌,故③正确;BF BG\=又60DBF Ð=°Q ,\GBF V 是等边三角形,故④正确故选:A .【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等边三角形的判定与性质,掌握以上知识是解题的关键.14.如图,P 为O e 外一点,PA PB 、分别切O e 于点A 、B ,AC 是O e 的直径,若10AC =,30BAC Ð=°,则PAB V 的周长为( )A.8B.C.20D.【点睛】本题主要考查了切线的性质,切线长定理,等边三角形的性质与判定,勾股定理,直径所对的圆周角是直角,含30度角的直角三角形的性质等等,正确作出辅助线构造直角三角形是解题的关键.15.如图,在Rt ABC △中,90ACB Ð=°,60A Ð=°,10AC =,将ABC V 绕点C 按逆时针方向旋转得到A B C ¢¢△,此时点A ¢恰好在AB 边上,则点B ¢与点B 之间的距离为( )A .10B .20C .D .【答案】D 【分析】连接BB ¢,证明ACA ¢V 是等边三角形,得出60ACA ¢Ð=°,从而得出60BCB ¢Ð=°,证明BCB ¢V 是等边三角形,得出BB BC ¢=,根据勾股定理,结合含30°角的直角三角形性质,求出BC 即可.【详解】解:如图,连接BB ¢,∵将ABC V 绕点C 按逆时针方向旋转得到A B C ¢¢△,∴BCB ACA ¢¢Ð=Ð,CB CB ¢=,CA CA ¢=,∵60A Ð=°,∴ACA ¢V 是等边三角形,∴60ACA ¢Ð=°,∴60BCB ¢Ð=°,二、解答题16.在AOB V 中,已知90AOB Ð=°,OA OB =,点P 、D 分别在AB OB 、上.(1)如图1,若45PO PD OPD =Ð=°,,则POB Ð=______°(直接写答案)(2)如图1,在(1)的条件下,求证:BOP △是等腰三角形.(3)如图2中,若12AB =,点P 在AB 上移动,且满足PO PD =,DE AB ^于点E ,试问:此时PE 的长度是否变化?若变化,说明理由:若不变,请予以证明.【答案】(1)67.5°(2)见解析(3)PE 的值不变,6PE =,理由见解析【分析】(1)根据等腰三角形的性质和三角形内角和定理求解即可;(2)首先根据等腰直角三角形的性质得到45B A Ð=Ð=°,然后利用三角形内角和定理和067.5BOP P D Ð=Ð=°得到BOP BPO Ð=Ð,进而求解即可;(3)解:PE的值不变,如图,过点O作OM∵90Ð=°,AOB AO∴BOMV是等腰直角三角形,1∴()AAS POM DPE ≌V V ,∴6OM PE ==,∴PE 的值不变,PE 的值为6.【点睛】此题考查了全等三角形的性质和判定,等腰直角三角形的性质,三角形内角和定理等知识,解题的关键是熟练掌握以上知识点.17.如图,ABC V 中, 15AB AC ==,AB 的垂直平分线DE 交AB 、AC 于E 、D .(1)若BCD △的周长为21,求BC 的长;(2)若42A Ð=°,求DBC Ð的度数.【答案】(1)6(2)27DBC Ð=°【分析】(1)通过垂直平分线的性质判断边等,将三角形周长换成边的和,据此求解即可.(2)等腰三角形推出角等,通过角度的数量关系求解即可.【详解】(1)Q AB 的垂直平分线DE 交AB 、AC 于E 、D .\BD AD =,Q BCD △的周长是21,15AB AC ==,\BCD △的周长21BD CD BC AD CD BC AC BC =++=++=+=,\6BC =;(2)Q AB 的垂直平分线DE 交AB 、AC 于E 、D .\AD BD =,ABD A Ð=Ð,Q ABC V 中,AB AC =,\ABC C Ð=Ð,Q 42A Ð=°,\69ABC C Ð=Ð=°,\27DBC Ð=°.【点睛】此题考查垂直平分线的性质,解题关键是找到等角和等边的数量关系求解.18.已知,点P 为等边三角形ABC 所在平面内一点,且120BPC Ð=°.(1)如图(1),90ABP Ð=°,求证:BP CP =;(2)如图(2),点P 在ABC V 内部,且90APB Ð=°,求证:2BP CP =;(3)如图(3),点P 在ABC V 内部,M 为BC 上一点,连接PM ,若180BPM APC Ð+Ð=°,求证:BM CM =.【答案】(1)见解析(2)见解析(3)见解析【分析】(1)证明BPC BCP Ð=Ð即可;(2)将ABP V 绕A 逆时针旋60°转,得到ACE △,点P 的对应点为E ,连接PE ,首先证明EAP V 是等边三角形,从而得出3090CEP CPE Ð=°Ð=°,,再利用含30°角的直角三角形的性质,可得答案;(3)将ABP V 绕A 逆时针旋60°转,得到ACE △,点P 的对应点为E ,连接PE ,同理得EAP V 是等边三角形,过点C 作CN 平行于BP ,交PM 的延长线于点N ,再利用ASA 证明CPE CPN @V V ,得CE CN =,再证明()AAS CMN BPM @V V ,从而解决问题.【详解】(1)ABC QV 是等边三角形,60ABC ACB A \Ð=Ð=Ð=°,90,ABP Ð=°Q 90906030,PBC ABP ABC °\Ð=-Ð-Ð=°-°=°30BPC °Ð=Q ,180PBC BPC BCP Ð+Ð+Ð=°,1801801203030PCB BPC PBC \Ð=°-Ð-Ð=°-°-°=°,,PBC BPC \Ð=Ð,BP CP \=;(2)AP BP ^Q ,90APB \Ð=°,将ABP V 绕A 逆时针旋转60°,得到ACE △,点P 的对应点为E ,连接PE ,则90AE AP CE BP CAE BAP AEC APB ==Ð=ÐÐ=Ð=°,,,,∴EAP CAE CAP Ð=Ð+Ð60BAP CAP BAC =Ð+Ð=Ð=°,∴EAP V 是等边三角形,∴60APE AEP Ð=Ð=°,∴906030CEP AEC AEP Ð=Ð-Ð=°-°=°,∵360360906012090CPE APB APE BPC Ð=°-Ð-Ð-Ð=°-°-°-°=°,∴2CE CP =,∴2BP CP =;(3)将ABP V 绕A 逆时针旋60°转,得到ACE △,点P 的对应点为E ,连接PE ,同理可知,EAP V 是等边三角形,∴60APE AEP Ð=Ð=°,180,APC BPM Ð+Ð=°Q 180APE EPC BPM \Ð+Ð+Ð=°,120EPC BPM \Ð+Ð=°,又120,BPC CPM BPM Ð=Ð+Ð=°.FPC CPD \Ð=Ð,过点C 作,CN BP ∥交PM 的延长线于点N ,则,PBC NCB Ð=Ð120,BPC Ð=°Q 18012060,PBC PCB \Ð+Ð=°-°=°又60,60ACP PCB ABP PBC Ð+Ð=°Ð+Ð=°,,ACP PBC \Ð=Ð由旋转得,,ACE ABP BP CEÐ=Ð=∴60ACE ACP PBC ABP Ð+Ð=Ð+Ð=°又60NCB BCP PBC BCP Ð+Ð=Ð+Ð=°,∴PCE PCN Ð=Ð,在PCE V 和PCN △中,EPC NPC PC PCPCE PCN Ð=Ðìï=íïÐ=Ðî,∴PCE PCN @V V ,∴CE CN =,∴BP CN =,在BPM △和CNM V 中,PBM NCM PMB CMN BP CN Ð=ÐìïÐ=Ðíï=î,∴BM CM=【点睛】本题主要考查了等边三角形的判定与性质,旋转的性质,全等三角形的判定与性质,含30°角的直角三角形的性质等知识,利用旋转将分散条件集中到一个三角形中是解题的关键.19.在ABC V 中,90B Ð=°,1AB =,D 为BC 延长线上一点,点E 为线段AC ,CD 的垂直平分线的交点,连接EA ,EC ,ED .(1)如图1,当50BAC Ð=°时,则AED Ð的大小;(2)当60BAC Ð=°时,①如图2,连接AD ,AED △的形状是 三角形;②如图3,直线CF 与ED 交于点F ,满足CFD CAE Ð=Ð.P 为直线CF 上一动点.说明P 点在什么位置时,PE PD -有最大值;请直接写出这个最大值.(提示:作点D 关于直线CF 的对称点)【答案】(1)80AED Ð=°(2)①等边②点P 在ED ¢的延长线上时,PE PD -的值最大,最大值为2,理由见解析【分析】(1)利用线段的垂直平分线的性质以及三角形内角和定理,四边形内角和定理解决问题即可;(2)①ADE V 是等边三角形,证明EA ED =,60AED Ð=°即可;②结论:2PE PD AB -=.如图3中,作点D 关于直线CF 的对称点D ¢,连接CD ¢,DD ¢,ED ¢.当点P 在ED ¢的延长线上时,PE PD -的值最大,此时PE PD ED -=¢,利用全等三角形的性质证明ED AC ¢=,可得结论.【详解】(1)解:如图1中,Q 点E 是线段AC ,CD 的垂直平分线的交点,EA EC ED \==,EAC ECA \Ð=Ð,ECD EDC Ð=Ð,90ABC Ð=°Q ,50BAC Ð=°,905040ACB \Ð=°-°=°,18040140ACD \Ð=°-°=°,280EAC ACD EDC \Ð+Ð+Ð=°,36028080AED \Ð=°-°=°.(2)解:①如图2中,Q 点E 是线段AC ,CD 的垂直平分线的交点,EA EC ED \==,EAC ECA \Ð=Ð,ECD EDC Ð=Ð,90ABC Ð=°Q ,60BAC Ð=°,906030°°\Ð=-°=ACB ,18030150ACD \Ð=°-°=°,300EAC ACD EDC \Ð+Ð+Ð=°,36030060AED \Ð=°-°=°,ADE \V 是等边三角形;②如图3中,作点D 关于直线CF 的对称点D ¢,连接CD ¢,DD ¢,ED ¢.当点P 在ED ¢的延长线上时,PE PD -的值最大,此时PE PD ED -=¢,180CFD CFE Ð+Ð=°Q ,CFD CAE Ð=Ð,。

等腰三角形的轴对称性ppt课件

等腰三角形的轴对称性ppt课件
A
F NE
B
M
C
27.如图,在△ABC中,∠C=900,
∠ABD=2∠EBC,AD∥BC,
求证:DE=2AB.
A
D
F E
BC
那么∠A=1_2_0_ °,∠B=_3_0_ °,∠C =_3_0_ °.
(4)如果有一个角等于50°,那么另两个角等于多少
度?若顶角为50°,
若底角为50°,
则另外两角为65°、65° 则另外两角为50°、80°
3.(1)等腰三角形的两边长分别为3cm和6cm, 则它的周长为__15_c_m__.
定相等吗?为什么?
连接BD
∵AB=AD
B
∴∠ABD=∠ADB
又∠ABC=∠ADC
∴∠DBC=∠BDC
∴BC=DC
A D
C
13.如图,在△ABC中,BC=5cm,BP,CP分 别是∠ABC 和∠ACB的角平分线 ,PD∥AB, PE∥AC ,则△PDE的周长是_____cm
5
A
P
B
1 2
3
D
645 C E
例1.如图,在△ABC中,AB=AC,
点D在BC上,且AD=BD,求证: ∠ADB=∠BAC.
∠ADB=180°-∠B-∠BAD
A
∠ADB=180°-2∠B
AD=BD ∠B=∠BAD
∠BAC=180°-∠B-∠C
B
D
C
AB=AC
∠B=∠C ∠BAC=180°-2∠B
4.如图,△ABC中,AB=AC,AD=AE.
若测得AM的长为1.2 km,则M,C两点之间的距离为 ( D )
A.0.5 km
B.0.6 km
C.0.9 km

11、轴对称与等腰三角形

11、轴对称与等腰三角形

轴对称与等腰三角形知识点1、等腰三角形1、等腰三角形的定义:有两边相等的三角形叫做等腰三角形。

相等的两边叫做等腰三角形的腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

注意:①等腰三角形的顶角不一定是锐角,但是底角一定是锐角;②钝角三角形也可以是等腰三角形2、等腰三角形的性质①等边对等角:等腰三角形的两底角相等;②三线合一:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合;③等腰三角形两腰上的高、中线分别相等,两底角的平分线相等;④等腰三角形是轴对称图形,对称轴为顶角角平分线(三线合一)所在直线。

注意:①等腰三角形的性质是指在同一个等腰三角形而言的;②三线合一要注意位置,在等腰三角形中所有的中线、角平分线等并不是合一的。

3、等腰三角形的判定①有两个角相等的三角形是等腰三角形。

(等角对等边)②三线合一也能作为判定等腰三角形的依据③推论在直角三角形中,30°所对的直角边是斜边的一半1-9、如图,已知在等腰三角形ABC 中,AC AB =,BC AE //.求证:AE 平分∠DAC .例2、等腰三角形的判定2-1、如图,OC 平分∠AOB ,OB CD //,若cm OD 3=,则CD 等于.2-2、已知:如图,在△ABC 中,∠ACB =90°,CD 是AB 上的高,AE 分别交CB 、CD 于E 、F ,且CF CE =,求证:AE 平分∠BAC .2-3、如图,△ABC 中,∠ACB =90º,CD ⊥BA 于D ,AE 平分∠BAC 交CD 于F ,交BC 于E ,求证△CEF 是等腰三角形。

DC AB 02-5、如图,在△ABC中,AB知识点2、等边三角形1、等边三角形的定义三边相等的三角形叫做等边三角形,也叫正三角形2、等边三角形性质:①每个角都是60°;②轴对称图形;③有3条对称轴。

3、等边三角形的判定定理①三边相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角是60°的等腰三角形是等边三角形。

轴对称与等腰三角形

轴对称与等腰三角形

轴对称与等腰三角形知识点1、生活中的轴对称(1)轴对称图形与轴对称的定义①轴对称图形:将一个图形沿某条直线对折,对折的两部分完全重合,那么就称这样的图形为轴对称图形。

这条直线叫做这个图形的对称轴②轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即对折后互相重合的点)叫做对称点。

(2)轴对称图形与轴对称的区别:①轴对称图形指的是一个图形的两部分之间的关系,而轴对称则是指两个图形之间的关系。

②轴对称图形有一条或多条对称轴,而成轴对称的两个图形只有一条对称轴。

2、等腰三角形的性质:(1)两腰相等.(2)两底角相等.(3)“三线合一”,即顶角平分线、底边上的中线、底边上的高互相重合.(4)是轴对称图形,底边的垂直平分线是它的对称轴.3、等腰三角形的判定:(1)有两条边相等的三角形是等腰三角形.(2)有两个角相等的三角形是等腰三角形.4、线段的垂直平分线:性质定理:线段的垂直平分线上的点到线段的两个端点距离相等判定定理:与线段的两个端点距离相等的点在这条线段的垂直平分线上,线段的垂直平分线可以看做是和线段两个端点距离相等的所有点的集合.5、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.判定定理:在角的内部,且到角的两边距离相等的点在这个角的角平分线上.6、等边三角形的性质:三边都相等,三个角都相等,每一个角都等于60.7、等边三角形的判定:(1)三条边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60的等腰三角形是等边三角形.8、含30︒角的直角三角形的重要结论在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半.1.下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4B.3C.2D.12.下列说法正确的是()A.等腰三角形底边上的高是它的对轴称B.等腰三角形底边中垂线是它的对称轴C.等腰三角形的顶角平分线是它的对称轴D.等腰三角形一个角的平分线所在直线是它的对称轴3.下列说法错误的是()A.关于某直线成轴对称的两个图形一定能完全重合B.线段是轴对称图形C.全等的两个三角形一定关于某直线成轴对称D.轴对称图形的对称轴至少有一条4.在44⨯的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与ABC∆关于某条直线对称的格点三角形,最多能画()个.A.5B.6C.7D.85.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________。

等腰三角形与轴对称PPT教学课件

等腰三角形与轴对称PPT教学课件

1、创作: 剪一个轴对称图形;
折一个轴对称图形;
画一个轴对称图形;
形,
用笔尖扎纸孔扎一个轴对称图
用水彩涂染一个轴对称图形;
以上任选两项完成。
2、课后上网查找关于轴对称图形的有关资 料,写写你的感受寄给老师 (liaolijie1@)记得要写上你的
谢谢指导!
教师:翟刚
轴对称现象
轴对称现象
温州市第二十一中学 廖利洁
蝴你 蝶能 风想 筝办 修法 复将 吗这 ?个
对于两个图形,如果沿某条 直线对折后,两个图形能够完全 重合,那么这两个图形成轴对称。
折痕所在的直线叫做对称轴。
你能设计一个 轴对称图形吗?
作品展示
你能谈谈这节课的感受吗?
证法二:作AF⊥AC交BC于F 可证△ABD≌△ACF 则AF=AD 又∠ADB=60° 所以△AFD是等边三角形 且有∠BAF=30° 即BD=2AD
练习
1如图,△ABC中,AB=AC, CD平分∠ACB,若∠BDC=150° 求角A?
2如图,△ABC中,AB=AC,BD=BC, AD=DE=BE,求∠A. 3如图,△ABC中,AB=AC, ∠A=180°,BD平分∠ABC 求证:BC=AB+CD
B
D
C
方法二、在三角形中还有边相等的三角形,利
用它也可以证明
如图,在AB有∠ADC=∠ACD且∠ACB>∠ACD,
故∠ACB>∠B.
A
D
B
C
等腰三角形的性质:等边对等角, 等边三角形,每个内角都等于60°; 顶角的平分线也是底边上的高和中 线(三线合一).
判定:等角对等边.
例1:如图,四边形ABCD中,AB=AD,CB=CD, 问∠B与∠D 的关系?

《等腰三角形的判定》轴对称

《等腰三角形的判定》轴对称

轴对称在等腰三角形中的应用
应用一
利用轴对称的性质进行证明。例如,要证明一个三角形是等腰三角形,可以将其沿着底边的垂直平分线进行对 折,然后证明两个侧面的三角形全等即可。
应用二
在几何题目中,可以利用轴对称的性质来寻找隐藏的条件。例如,在求解一个复杂图形的最短路径问题时,可 以通过将图形进行轴对称变换来寻找最短路径。
对未来学习的展望与建议
深入理解轴对称
对于初学者来说,深入理解轴对称的概念和性质是非常重要的, 这有助于他们更好地掌握等腰三角形和轴对称的相关知识。
掌握判定方法
学生应该掌握等腰三角形的各种判定方法,并能够灵活运用,解 决相关问题。
与其他几何知识联系
等腰三角形和轴对称是几何学中的基本概念,学生可以将这些知识 与后续学习的其他几何知识联系起来,如两个重 要概念,将它们结合起来可以解决一些复 杂的几何问题。
详细描述
我们可以利用等腰三角形的性质和判别方 法,以及轴对称的变换方式,来证明一些 涉及等腰三角形和轴对称的几何定理。例 如,我们可以利用等腰三角形的中线定理 和轴对称的性质来证明一个四边形是轴对 称的。
案例二:轴对称在几何证明中的应用
总结词
轴对称是几何学中的一个重要概念,其在几何证明中具有广泛的应用。
详细描述
轴对称可以通过平移、旋转、反射等方式改变图形的形状和大小,这些变换可以用于证明几何定理和 解决几何问题。在证明过程中,我们可以通过构造对称图形来简化证明过程或者寻找新的证明方法。
案例三:等腰三角形与轴对称的综合应用
《等腰三角形的判定》轴对称
2023-11-06
contents
目录
• 等腰三角形简介 • 轴对称简介 • 等腰三角形与轴对称的关系 • 案例分析 • 总结与展望

《等腰三角形》轴对称

《等腰三角形》轴对称

二次函数图像中的顶点可以构成等腰三角形,通过分析函 数图像的对称性,可以进一步研究等腰三角形的性质。
拓展应用三:等腰三角形与实际生活
等腰三角形与建筑学
建筑物的某些部分可以设计成等腰三角 形的形状,以实现美观和稳定的效果。
VS
等腰三角形与物理学
在物理学中,等腰三角形可以作为某些物 理模型的简化形式,如力学中的简支梁模 型。
04
等腰三角形与轴对称、中心对 称的综合应用
综合应用一:等腰三角形与轴对称
等腰三角形与垂直平分线
等腰三角形具有垂直平分线,该线也是其对称轴,通过该轴可以将等腰三角形分为两个完全相同的部 分。
轴对称性质的应用
利用等腰三角形的轴对称性质,可以解决一些与距离、角度和面积相关的问题。
综合应用二:等腰三角形与中心对称
等腰三角形与旋转对称
等腰三角形具有旋转对称性,即绕其 中心旋转180度后,两个部分可以完 全重合。
中心对称性质的应用
利用等腰三角形的中心对称性质,可 以解决一些与角度、边长和面积相关 的问题。
综合应用三
综合应用实例
在解决实际问题时,可以将等腰三角形的轴对称和中心对称性质结合起来,以获得更全 面的解题思路和方法。
等腰三角形的中心对称性
等腰三角形可以关于其顶角的角平分线所在的直线进行中心对称。
中心对称的应用
01
02
03
几何作图
通过中心对称性质,可以 方便地作出等腰三角形的 轴对称图形。
图案设计
中心对称的图案具有平衡 和美感,常用于服装、家 居用品和艺术品的设计。
数学证明
在数学中,可以利用中心 对称性质证明一些等腰三 角形的性质和定理。
轴对称的应用

图形的轴对称等腰三角形ppt

图形的轴对称等腰三角形ppt
等腰三角形的定义
有两条边相等的三角形是等腰三角形
等腰三角形的特点
两边相等,两个角相等,顶角平分线也是底边上的中线
轴对称的定义和特点
轴对称的定义
一个图形沿着一条直线折叠后,直线两旁的部分能够互相重 合,那么这个图形叫做轴对称图形
轴对称的特点
图形对称,美观,具有很强的视觉冲击力,在自然界和日常 生活中很常见
06
回顾与展望
对轴对称等腰三角形的回顾
轴对称等腰三角形 的定义和性质
轴对称等腰三角形 与其他几何图形习的展望
深入学习轴对称等腰三角形的 各种证明方法
探索轴对称等腰三角形在其他 领域的应用
了解其他类型的轴对称几何图 形
THANKS
谢谢您的观看
在图案设计中的应用
• 轴对称在图案设计中也有着广泛的应用,如一些常见的图 案花边、背景等都采用了轴对称的设计方法。利用轴对称 设计出的图案,具有很强的视觉效果和艺术感,能够给人 们带来美丽和舒适的感受。
在工程中的应用
• 轴对称在工程中也有着广泛的应用,如机械零件的设计、建筑物的设 计等都利用了轴对称的性质。在机械零件的设计中,轴对称可以使得 零件的形状更加规则、对称,从而使得零件的制作更加简单,且能够 提高零件的使用寿命。在建筑物的设计中,轴对称可以使得建筑物更 加稳定、美观,从而让人们感受到建筑的艺术魅力。
图形的轴对称等腰三角形ppt
xx年xx月xx日
contents
目录
• 引言 • 等腰三角形的轴对称性质 • 轴对称的几何变换 • 轴对称的性质及证明 • 轴对称的应用 • 回顾与展望
01
引言
课程背景
当前小学数学教材中涉及轴对称图形和等腰三角形的内容 轴对称图形和等腰三角形在实际生活中的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)作CH⊥BQ交BQ于H,则PQ=2HQ,
在Rt△BHC中,由已知和(1)得∠CBH=∠CAO=30°, ∴CH=4. 在Rt△CHQ中,HQ= CQ2 CH 2 52 42 =3,
∴PQ=2HQ=6.
【对点训练】
7.(2011·茂名中考)如图,已知△ABC 是等边三角形,点B,C,D,E在同 一直线上,且CG=CD,DF=DE, 则∠E=______度. 【解析】∵DF=DE,∴∠E=∠DFE= 1 ∠GDC.同理,
பைடு நூலகம்
特 折叠问题是轴对称变换,折痕所在的直线就是对称轴,折叠 别 前后的图形全等. 提 醒
【例1】(2011·昭通中考)如图所示,将矩形纸片ABCD折叠, 使点D与点B重合,点C落在点C′处,折痕为EF,若 ∠EFC′=125°,那么∠ABE的度数为( )
(A)15°
(B)20°
(C)25°
(D)30°
180 80 50 . 2
4.(2012·宁波中考)如图,AE∥BD,C是BD
上的点,且AB=BC,∠ACD=110°,则∠EAB =________度. 【解析】∵∠ACD=110°,∴∠ACB=70°. ∵AB=BC,∴∠BAC=∠ACB=70°.
∵AE∥BD,∴∠EAC=∠ACD=110°,
2.等边三角形的性质和判定 相等 60° (1)性质:①等边三角形的三条边_____,三个角都等于_____. 三条 ②等边三角形是轴对称图形,有_____对称轴. ③三线合一. (2)判定:
等边 ①三个内角都是60°的三角形是_____三角形.
②有一个内角是60°的等腰三角形是等边三角形.
【即时应用】
垂直且平分 (1)定义:___________一条线段的直线,叫做这条线段的垂直平 分线.
MN AB PA=PB ⇒_______. AC BC
(2)性质定理:直线
(3)逆定理:_______⇒点P在线段AB PA=PB 的垂直平分线MN上.
2.角平分线
1 2 (1)性质定理:PD OA ⇒_______. PD=PE PE OB PD PE PD OA ⇒∠1=∠2. (2)逆定理: PE OB
线MN对称的△A'B'C'.
【解析】分别作出点A,B,C关于直线MN的对称点A',B',C',
再依次连结即得到图形.如图所示:
等腰三角形的性质与判定 ◆中考指数: ★★★★★
知 识 点 睛 1.等腰三角形常用的“辅助线”——作底边的高. 2.证明三角形是等腰三角形的“两种方法” (1)证明三角形的两边相等; (2)证明有两个角相等,等角对等边. 1.“等边对等角”和“等角对等边”的前提条件是必须在同 特 别 提 醒 一个三角形中; 2.一边上的高、这边上的中线及这边所对角的平分线三条线 段中,有两条重合,则该三角形为等腰三角形; 3.含有36°角的等腰三角形很特别,在其中可以构造出很多 等腰三角形.
(3)如果一个图形关于某一条直线做轴反射,能够与另一个图形
重合 _____,那么就说这两个图形关于这条直线对称,也称这两个 轴对称 图形成_______.
2.性质
大小 形状 (1)轴反射不改变图形的_____与_____; (2)如果两点A,A′关于直线l对称,则l是线段AA′的
垂直平分线 __________;
对称 (3)如果l是线段AA′的垂直平分线,则点A,A′关于直线l_____.
【即时应用】
1.如图,∠A=30°,∠C′=60°,△ABC 与△A′B′C′关于 90° 直线l对称,则∠B=_____.
四 2.正方形是轴对称图形,它有___条对称轴.
二、线段的垂直平分线与角平分线
1.线段的垂直平分线
【即时应用】
1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一
点,已知线段PA=5,则线段PB的长度为__. 5
2.如图,在△ABC中,AB=5 cm,AC=3 cm,BC的垂直平分线
8 分别交AB,BC于D,E,则△ACD的周长为__ cm.
三、等腰三角形、等边三角形
1.等腰三角形的性质和判定
∴AE=CE,DE⊥AC,∴AD=CD.△ABD的周长
=AB+BD+AD=AB+BD+CD=AB+BC=△ABC的周长-AC=308=22(cm).
【对点训练】
10.(2012·邵阳中考)如图所示,在Rt△ABC中,∠ACB=90°, ∠B=30°,ED是BC的垂直平分线,请写出图中两条相等的线段 是__________.
2 (3)外接圆半径为 3 a ,内切圆半径为 3 a . 6 3
特别 等边三角形常转化为有一个角为30°的直角三角形. 提醒
【例3】(2011·綦江中考)如图,等边 △ABC中,AO是∠BAC的角平分线, D为AO上一点,以CD为一边且在CD 下方作等边△CDE,连结BE.
(1)求证:△ACD≌△BCE;
重合 相_____,那么这个图形叫做轴对称图形,这条直线叫做它的
对称轴 ______. 翻折 (2)把图形(a)沿着直线l_____并将图形“复印”下来得到图形 直线l (b),就叫做该图形关于_____做了轴反射,图形(a)叫做 原像 轴反射 _____,图形(b)叫做图形(a)在这个_______下的像.
3 2 a 4.边长为a的等边三角形面积为________ . 4
4 5.在△ABC中,AB=AC=4,∠A=60°,则BC=__.
【核心点拨】 1.等腰三角形的“三线合一”中的这条线段是解决等腰三角形 中的问题时常作的辅助线. 2.等边三角形是特殊的等腰三角形,除具备等腰三角形的一切 性质外,还有一些其他性质. 3.利用三角形全等和等腰三角形的性质与判定是证明两边或两 角相等的常用方法.二者的区别主要看待证的线段或角是否在
【例4】(2011·济宁中考)如图,△ABC的
周长为30 cm,把△ABC的边AC对折,
使顶点C和点A重合,折痕交BC边于点D, 交AC边于点E,连结AD,若AE=4 cm, 则△ABD的周长是( (A)22 cm 【思路点拨】 ) (C)18 cm (D)15 cm
(B)20 cm
【自主解答】选A.把△ABC的边AC对折,顶点C和点A重合,
9.(2012·湘潭中考)如图,△ABC是边长为3的等边三角形,将
△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连
结BD,交AC于F.
(1)猜想AC与BD的位置关系,并证明你的结论 ; (2)求线段BD的长.
【解析】(1)AC⊥BD.
∵△DCE由边长为3的等边△ABC平移而成,
∴AC∥DE,DC=AB=BC=CE, ∴△BDE为直角三角形, ∴∠BDE=90°,∴∠BFC=90°, ∴AC⊥BD. (2)在Rt△BED中,∵BE=6,DE=3, ∴BD=
∴∠EAB=110°-70°=40°. 答案:40
5.(2012·滨州中考)如图,在△ABC中,AB=AD=DC,
∠BAD=20°,则∠C=________.
【解析】∵∠BAD=20°,AB=AD, ∴∠ABD=∠ADB=80°. ∵AD=CD,∴∠C= ∠ADB =40°. 答案:40°
1 2
6.(2012·益阳中考)如图,已知AE∥
【例2】(2012·怀化中考)等腰三角形的底边长为6,底边上的 中线长为4,它的腰长为( (A)7 (B)6 (C)5 ) (D)4
【教你解题】
【对点训练】 3.(2012·江西中考)等腰三角形的顶角为80°,则它的底角 是( (A)20° ) (B)50° (C)60° (D)80°
【解析】选B.底角=
BE 2 DE 2 62 32 3 3

线段的垂直平分线的性质的应用 ◆中考指数:★★★★☆
线段垂直平分线与角平分线的区别与联系: 知 1.都有“平分、距离相等”的特点; 识 2.线段的垂直平分线是一条直线,角平分线是一条射线; 点 3.线段的垂直平分线是线段的对称轴,角的对称轴是角平分 睛 线所在的直线. 特 涉及线段垂直平分线时,利用线段垂直平分线上的点到线段 别 两个端点的距离相等求解,因此常构造线段的垂直平分线的 提 图形. 醒
BC,AE平分∠DAC.求证:AB=AC.
【证明】∵AE平分∠DAC, ∴∠1=∠2. 又∵AE∥BC,∴∠1=∠B,∠2=∠C, ∴∠B=∠C,∴AB=AC.
等边三角形的性质与判定 ◆中考指数: ★★★★☆ 1.等边三角形具有等腰三角形的所有性质,同时还具有自己 独特的性质:三条边相等,三个角都等于60°,有三条对称 知 轴. 识 2.有关等边三角形的计算:当一个等边三角形的边长为a时, 3 点 (1)它的面积为 a 2 ; 4 睛 (2)一边上的高为 3 a;
两底角 (1)性质:①等腰三角形的_______相等.简称“等边对等角”. 垂直平分线 ②等腰三角形关于底边上的___________轴对称,从而它是
轴对称 _______图形.
中线 ③等腰三角形的顶角平分线也是底边上的_____和底边上的 三线合一 高 ___(通常简称为“_________”) 相等 (2)判定:有两个角_____的三角形是等腰三角形,简称为“等 角对等边”.
(2)延长BE至Q,P为BQ上一点,连结CP, CQ,使CP=CQ=5,若BC=8时,求PQ的 长.
【思路点拨】
【自主解答】(1)∵△ABC和△CDE均为等边三角形,
∴AC=BC,CD=CE且∠ACB=∠DCE=60°, 即∠ACD+∠DCB=∠DCB+∠BCE=60°, ∴∠ACD=∠BCE,∴△ACD≌△BCE.
【解析】选D.选项A,汉字“田”上下或左右对折能够互相重合,
是轴对称图形;选项B,汉字“中”左右对折能够互相重合,是
相关文档
最新文档