1.1 探索勾股定理(1)
1.1探索勾股定理第一课时
582 462 5480
∵ 742 5476
742 5476
荧屏对角线大约为74厘米 46厘米
∴售货员没搞错
58厘米
a 平方形式:
a2+b2=c2是勾股定理的基本表
Байду номын сангаас
达式,你可以写出那些它基本
的变化形式呢?把你的想法写
c
在草稿上,与同学交流一下.
a2+b2=c2
b
a2=c2-b2
b2=c2-a2
我们通常所说的29 英寸或74厘米的电视 机,是指其荧屏对角 线的长度
∵ 582 462 5480 742 5476
荧屏对角线大约为74厘米 ∴售货员没搞错
小明妈妈买了一部29英寸(74厘米) 的电视机.小明量了电视机的屏幕后,发现 屏幕只有58厘米长和46厘米宽,他觉得一 定是售货员搞错了.你同意他的想法吗?你 能解释这是为什么吗?
A
B
或AC2 AB2 BC2
勾
弦
股
三、简单应用
如图所示,一棵大树在一次强烈台 风中于离地面10米处折断倒下,树顶落 在离树根24米处. 大树在折断之前高多少 米?
B
C
A
P6
受台风麦莎影响,一棵树在离地面4米处断裂,树的 顶部落在离树跟底部3米处,这棵树折断前有多高?
4米
3米
问题解决4。书写
直角三角形
1.直角三角形记 Rt△ABC.
2.名称
3.角 4.边
角判定直角三角形
1.A B C
2.A B 1 C 45 , 45 ,90 , 2
3.A 1 B 1 C 30 ,60 ,90 ,
1-1探索勾股定理(1)
2
46
58
74 5476 ∵ 58 46 5480 荧屏对角线大约为74厘米 ∴售货员没搞错
1、一个圆桶,底面直径为24厘米,高为32厘米,则 桶内所能容下的最长木棒是( 40厘米 ) 2、等腰三角形的腰长为25,底为48,则它的 面积是( 168 ). 3、甲轮船以每小时16海里的速 度离开港口向东南方向航行,乙 O 轮船在同时同地向西南方向航行, 已知 他们离开港口一个半小时后 相距30海里,问乙轮船每小时航 B 行多少海里? 12海里 A 4、一个直角三角形的三边为三个连续偶数,则它的三 边长分别为 . 6、8、10
2.一天,小明买了一张底面是边长为260cm正 方形,厚30cm的床垫回家。到了家门口, 才发现门口只有242cm高,宽100cm。你认 为小明能拿进屋吗,为什么?
242
30
260
100
小结
由学生从以下方面进行总结:
1. 对自己本节课的学习情况进行评价。 2. 在探索问题过程中遇到挫折,你会怎么办? 3.对于本节课你还有疑问的地方吗?
八年级数学(上册)
探索勾股定理
大望学校 钟锋声
探索勾股定理
如图所示,一棵大树在一次强烈台风中于 离地面9米处折断倒下,树顶落在离树根 12米处. 大树在折断之前高多少米?
在直角三角形中,任意两边确定了,另 外一条边也就随之确定,三边之间存在 着一个特定的数量关系。让我们一起去 探索吧。
(1)观察图1-1
A
C
B
图1-3
C
A
B
图1-4
SA+SB=SC
即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积
幻灯片 7
议一议
北师大版八年级数学上册1.1 第1课时 勾股定理的认识 课件(共23张PPT)
探究新知
1.在纸上画若干个直角三角形,分别测量它们的
三条边,看看三边长的平方之间有怎么样的关系?
c
a
b
直角三角形的两直角边的平方和等于斜边的平方,这就是
著名的“勾股定理”。
如果直角三角形的两条直角边为a、b,斜边为c,那么有
a2+b2=c2.
数学小知识
我国古代称直角三角形的较短的直角边为勾,较长的直角
求 的长.
解:因为 ⊥ ,
所以 ∠ = ∠ = 90∘ .
在 Rt △ 中, 2 = 2 − 2 = 102 − 82 = 36 ,
所以 = 6 .
设 = = ,则 = − 6 .
在 Rt △ 中, 2 = 2 + 2 ,
所以 △ =
1
2
1
2
⋅ = × 25 × 12 = 150 .
6. 如图,直线 上有三个正方形 , , .若 , 的面积分别
为 5 和 11 ,则 的面积为( C )
A. 4
B. 6
C. 16
D. 55
7. 如图,在 △ 中, = , = 10 , ⊥ ,垂足为 , = 8 .
(2) 已知 = 12 , = 16 ,求 .
【解】在 Rt △ 中, ∠ = 90∘ , = 12 , = 16 ,
所以 2 = 2 + 2 = 122 + 162 = 400 .
所以 = 20 .
例2 如图,在 △ 中, ⊥ 于点 ,且 + = 32 ,
因为 ∠ = 90∘ ,所以 2 + 2 = 2 .
1.1探索勾股定理1
一、情景导入
如图,从电线杆离地面8米处向地面拉一条 钢索,如果这条钢索在地面的固定点距离电 线杆底部6m,那么需要多长的钢索? 在直角三角形中,任意两条边 确定了,另外一条边也随之确 定,三边之间存在着一种特定 的数量关系,事实上,古人发 现,直角三角形的三边长度的 平方存在着一种特殊的关系.
(一)新知引入
黑 白 相 间 的 地 砖
毕达哥拉斯(公元前 572—前497年),古希 腊著名的哲学家、数学 家、天文学家.
数学小故事
相传两千多年前,古希腊著名的数学家毕达哥 拉斯去朋友家做客。在宴席上,其他的宾客都在尽 情欢乐,只有毕达哥拉斯却看着朋友家的方砖地发 起呆来。原来,朋友家的地是用一块块直角三角形 形状的砖铺成的,黑白相间,非常美观大方。主人 看到毕达哥拉斯的样子非常奇怪,就想过去问他, 谁知,毕达哥拉斯突然恍然大悟的样子,站起来, 大笑着跑回家去了。原来,他发现了地砖上的三个 正方形存在某种数学关系。
2 2
2
1.1 探索勾股定理(1)
八年级数学
张晓姣
伟大的公式
No.1 麦克斯韦方程组 Maxwell's equations No.2 欧拉公式 Eulers formula No.3 牛顿第二定律Newton's Second Law of Motion No.4 勾股定理、 毕达哥拉斯定理 Pythagorean theorem No.5 质能方程 mass-energy equation No.6 薛定谔方程 Schrodinger equation No.7 1+1=2 No.8 德布罗意方程组 No.9 傅里叶变换 No.10 圆的周长公式
请你数一数图中正方形A、B、C各占多少个小格子?完成表 格,探究规律。
1.1 探索勾股定理(第1课时) 八年级上册北师大版
(图中每个小方格代表一个单位面积)
探究新知
思考2 怎样求出C的面积?
C A
B
图1
分割成若干个直角边为整数的三角形 S正方形C = 4×12×3×3 =18(单位面积)
(图中每个小方格代表一个单位面积)
探究新知
练一练 通过对图1的学习,
求出图2正方形A,B,C中面积
各是多少?
C A
解:正方形A的面积是4个 单位面积,正方形B的面积 是4个单位面积,正方形C 的面积是8个单位面积.
探究新知
素养考点 1 利用勾股定理求直角三角形的边长
例1 如果直角三角形两直角边长分别为 BC=5厘米,AC=12厘米,
求斜边AB的长度.
A
解:在Rt△ABC中根据勾股定理, AC²+BC²=AB², AC=12,BC=5
b
c
所以12²+5²=AB²,
C aB
所以AB²=12²+5²=169, 所以AB=13厘米. 答:斜边AB的长度为13厘米.
勾股树
A
B
素养目标
3.学生初步运用勾股定理进行简单的计算和实际的 应用. 2.在探索过程中,学生经历了“观察-猜想-归纳” 的教学过程,将形与数密切联系起来. 1.通过数格子的方法探索勾股定理;学生理解勾股定 理反映的是直角三角形三边之间的数量关系.
探究新知
知识点 勾股定理的探索
做一做
在纸上画若干个直角边为整数的直角三角形, 分别测量它们的三条边长,并填入下表.看看三边长 的平方之间有怎样的关系?与同伴进行交流.
_2_4___,斜边为上的高为__4_._8__.
A D
C
B
课堂检测
基础巩固题
新北师大版八年级上册数学1.1探索勾股定理(1)课件
△ABC面积为2__4___,斜边为上的高为4_._8____.
A D
C
B
4.在△ABC中,∠C=90º, (1) 若a=5,b=12,则c=___1_3____; (2) 若a=15,c=25,则b=__2_0_____; (3) 若c=61,b=60,则a=___11_____; (4) 若a:b=3:4,c=10,则a=__6______,b=__8______; (5) 若a:c=3:5 ,b=8,则a=___6_____;
勾股定理在中国有着悠久的历史, “勾三,股四,弦五” 结论可以上溯到大禹治水时代(大约公元前21世纪),一般 勾股定理最晚到公元前6至7世纪己经明确并得到广泛的 应用.
勾股定理是数学中最重要的基本定理之一,20世纪80 代,科学界曾征集有史以来科学上的十大发现,结果数学只 有唯一的一条入选,它就是勾股定理.
5. 一高为2.5米的木梯,架在高为2.4米的墙 上(如图),这时梯脚与墙的距离是多少?
A
解:在Rt△ABC中,根据勾
股定理,得 BC2+AC2=AB2
即 BC2+2.42 = 2.52
∴ BC=0.7.
C
B
6.在等腰三角形ABC中, AC=BC=5cm,AB=6cm,
求三角形ABC的面积
重要的 思想方 法及数 学思想
格?它们的面积各是多少?
4,4,8
C
A
(3)你能发现两图中三个
B
C 图1-1 A
正方形A,B,C的面积之 间有什么关系吗?
9,9,18; 4,4,8
B
图1-2
SA+SB=SC
(图中每个小方格代表一个单位面积)
2.阅读课本P3做一做
八年级上数学.1探索勾股定理(1)
第一章 勾股定理 1.1探索勾股定理〔1〕学习目标:掌握勾股定理并能利用它来解决简单的实际问题。
预习案课前导学一、自主预习〔感知〕1、三角形的三边关系:三角形的任意两边之和;任意两边之差.2、自学感知:探索直角三角形三边的特殊关系:〔1〕画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表; 〔2〕猜测:直角三角形的三边满足什么关系? 尝试练习〔1〕直角三角形两直角边为3和4,那么另一边为. 〔2〕求出x 的值.学习案知识点拔 二、课堂探究如果以下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?图形 A 的面积 B 的面积 C 的面积A 、B 、C 面积的关系图1-1 图1-2 图1-3图1-4思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。
勾股定理:直角三角形等于;几何语言表述:如图1.1-1,在Rt ΔABC 中, C = 90°假设BC=a ,AC=b ,AB=c ,那么上面的定理可以表示为: 。
课内训练1、求以下图中字母所代表的正方形的面积2、求出以下各图中x 的值。
反应案根底训练1.在△ABC 中,∠C=90°,直角三角形1直角边a 直角边b 斜边c 三边关系满足关系3 4a 2b 2C 2直角三角形2直角边a 直角边b斜边c 三边关系满足关系513a 2b 2C 2图1.1-1〔1〕假设BC=5,AC=12,那么AB=;〔2〕假设BC=3,AB=5,那么AC=;2.在Rt△ABC中,∠C=90°,AC=5,AB=13,那么BC=,该直角三角形的面积为。
3.假设直角三角形的两直角边之比为3:4,斜边长为20㎝,那么斜边上的高为。
拓展提高1.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,那.么正方形A,B,C,D的面积之和为_______cm2C2.折叠长方形ABCD的一边AD,使点D落在BC边的F点处,假设AB=8cm,BC=10cm,求EC的长.。
1.1 探索勾股定理(第一课时题)
其中所有的四边形都是正方形,所
有的三角形都是直角三角形.若正
方形A、B、C、D的面积分别为2、
5、1、2,则最大的正方形E的面
积是
10
.
6.等腰△ABC中,AB=AC=10cm,BC=12cm,则BC
边上的高是 8 cm.
7.如图1-1-8,在△ABC中,∠ACB=90°, AB=10cm,BC=6cm,CD⊥AB交AB于点D.
基础过关精练
1.在Rt△ABC中,∠C=90°,
AB=10,AC=6,则BC为( C )
A.4
B.6
C.8
D.16
2.一个直角三角形中,两直角边长分别为3
和4,下列说法正确的是( C )
A.斜边长为25 B.三角形周长为25
C.斜边长为5 D.三角形面积为20
3.下列说法正确的是( D )
解:∵在Rt△ABC中,AC=30cm, BC=40cm,∴AB=50cm. 由折叠知AE=AC=30cm,CD=DE, ∠AED=90°,∴BE=50-30=20(cm). 在Rt△DEB中,设DE=xcm, 则DB=(40-x)cm, ∴DE2+BE2=DB2,即x2+202=(40-x) 2,解得x=15. ∴S =1/2×15×20=150(cm2).
第一章 勾股定理
1.1 探索勾股定理 (第一课时)
典型例题精析
例1 如图1-1-1,在Rt△ABC 中,∠ACB=90°,∠A、∠B、∠ACB所对的 边分别为a、b、c.
(1)若a:b=3:4,c=15,求b; (2)若a=6,b=8,求c的长及斜边上的高.
解:(1)设a=3x,b=4x, 在Rt△ABC中,c2=a2+b2, ∴(3x) 2+(4x) 2=152, 解得x=3. ∴a=9,b=12.
1.1 勾股定理学案
1.1 探索勾股定理(1)一、课前预习1、正方形面积的计算公式,边长为5时,面积为多少?2、三角形两边分别是2,5第三边是c ,求第三边的取值范围.3、直角三角形两直角边为3、4求则第三边斜边的取值范围,斜边与这两条直角边的长度之间还有什么关系?二、新课学习 1、观察下面两幅图:2、填表:A 的面积(单位面积) B 的面积(单位面积) C 的面积(单位面积)左图 右图(3)你是怎样得到正方形C 的面积的? 【小结】求面积常用方法: ____________________________(4)你能发现各图中三个正方形的面积之间有何关系吗?【结论】:以_______三角形两_______边为边长的小正方形的面积的和,等于以______边为边长的正方形的面积.AB CC BA思考:(1)若直角三角形两直角边长分别为a 、b ,斜边长为c ,则你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?★【勾股定理】如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么_________________ 即_______三角形两_____边的______和等于斜边的_______. 几何语言:∵在△ABC 中,∠____=900∴____2+____2=____2三、典型例题及练习:例1、如图所示,一棵大树在一次强烈台风中于离地面9m 处折断倒下,树顶落在离树根12m 处. 大树在折断之前高多少? 解:∵在△ABC 中,∠____ =900 ∴____2+____2=____2 即92 +122=AB 2∴AB 2=____ ∴AB =____∴大树在折断之前高 。
【跟踪练习】:1、如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.弦股勾ACBabc2、求图形中未知正方形的面积:3、若△ABC 中,∠C =90°,(1)若a =5,b =12,则c =________;(2)若a =6,c =10,则b =________;(3)若a ∶b =3∶4,c =10,则a =________,b =________.4.如图,阴影部分是一个半圆,则阴影部分的面积为多少?5.底边长6cm ,底边上的高为4cm 的等腰三角形的腰长为多少?6.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积的和是_________cm 2.1.1 探索勾股定理(2)一、课前复习:1、勾股定理:直角三角形_________________________ 几何语言:在△ABC 中,∵∠____ =900∴____2+____2=____22、在直角三角形ABC 中, ∠C =900,BC =12,CA =5,AB = ______.3、 如果直角三角形的一条直角边长为40,斜边长为41,那么另一条直角边的长为______.?2251002572577cmDACB二、典型例题:例1、飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?例2、受台风麦莎影响,一棵高18m 的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?(提示:方程思想)三、课堂练习:1.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木板的长为多少?2.我方侦查员小王在距离东西向公路400米处侦察,发现一辆敌方汽车在公路上疾驶,他赶紧拿出红外测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?6米5000m4000mC B A500m400m C B A“路”4m3m3、一棵9m 高的树被风折断,树顶落在离树根3m 之处,若要查看断痕,要从树底开始爬多高?4.等腰三角形的腰长为13cm ,底边长为10cm ,则面积为( ). A .30cm 2 B .130cm 2 C .120cm 2 D .60cm 25、轮船从海中岛A 出发,先向北航行9km ,又往西航行9km ,由于遇到冰山,只好又向南航行4km ,再向西航行6km ,再折向北航行2km ,最后又向西航行9km ,到达目的地B ,求AB 两地间的距离.6、如图学校有一块长方形花铺,有极少数人为了避开 拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅 少走了 步路(假设2步为1米),却踩伤了花 草.7、一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 也外移4m 吗?A BOCD3米9km AB9km 4km6km9km 2km8、△ABC中,∠C=900,AC=6,BC=8,沿AD折叠,使C点与AB边上的E点重合,求CD的长。
探索勾股定理(第1课时)课件
知
探
索
新
知
解:设另两个正方形中大的为M,小的为N,
由勾股定理和正方形的面积公式,
得E = M + N ,
而M = A + B ,N = C + D ,
∴ E = A + B + C + D
= 122 + 162 + 92 + 122 = 625.
知
二 利用勾股定理进行计算
例1:分别以直角三角形三边为边长的正方形的面积如下
图,问另外一个正方形的面积.
81
∟
625
A
∟
400
144
B
225
225
规律:以直角三角形两直角边为边长的正方形的面积
和等于以斜边长的正方形面积。
探
索
新
例2:如图,图中所有的三角形都是直
角三角形,四边形都是正方形.已知正方
形 A,B,C,D 的边长分别为12,16,
你是如何得到呢?
探
索
新
知
思考:等腰直角三角形的三边之间有什么关系?
斜边的平方等于两直
a
b
c
角边的平方和.
c2=a2+b2
你能说一形有上述性质,其他的直角三角形也有这
个性质吗?
如图,每个小方格的面积均为1,
请分别算出图中正方形A,B,C,
A' , B' , C' 的面积,看看能得出
解:∵在Rt△ADC中,AD=12,AC=13,
∴由勾股定理,得CD2=AC2-AD2=132-122=52,
∵CD=5.BC=14,
修改版:1.1探索勾股定理(1)雒萍
换个角度来看呢?
A B
C
你 发 现 了 什 么 ?
以等腰直角三角形两直角边为边长的小 正方形的面积的和,等于以斜边为边长的 正方形的面积.
SA+SB=SC C
B B 图甲 图甲 图乙 4 9 A的面积 4 16 B的面积 C的面积 8 25 SA+SB=SC
A
图乙
A
C C
?
图甲 c
Aa
C
A a
A B C B C
A
“割”
分割为四个直角三角 形和一个小正方形
“补”
补成大正方形,用大正 方形的面积减去四个直 角三角形的面积
两个图的启示
a
c
b
C C
C
你可以用边长分别为a、b、c的四个直 角三角形纸片和一个边长为c的正方形纸片 拼接成上面图案吗?并且表示它的面积。
?
验证a、b、c 之间的关系?
启示1
a2 +b2 =c2
用拼图法证明1: a2+b2=c2 ∵S大正方形=(a+b)2=a2+b2+2ab
S大正方形=4S直角三角形+ S小正方形
a
b
a b c
b c
a
a
1 =4〃 ab+c2 2
=c2+2ab
c b
2 2 2+2ab 2 2 a +b +2ab c ∴ =c2+2ab
2 ∴a
2 +b
如图,折叠长方形的一边,使点D落 在BC边上的点F处,若AB=8,AD=10. (1)你能说出图中哪些线段的长? (2)求EC的长.
A
10
D
1.1 探索勾股定理(1)教学课件(共23张PPT) 八年级数学上册北师大版
探究新知
数格子法探索勾股定理
A
B
图1
C
C A
B
图2
16
9
25
4
9
13
SA SB SC
两直角边的平方和等于斜边的平方
探究新知
数格子法探索勾股定理
以直角三角形两直角边为边长的小正方形的面积的和,等 于以斜边为边长的大正方形的面积. 也就是:两直角边的平方和等于斜边的平方
C A
B SA SB SC
随堂练习
6.如图,有一块直角三角形纸片,两直角边AC=6 cm,BC=8
cm,现将直角边AC沿直线AD折叠,使它恰好落在斜边AB上,且
与AE重合,求CD的长.
A
解:由勾股定理,得
E
AB
10 ,S△ABC
1 68 2
24 ,
CD
B
S△ABC
S△ABD
S△ACD
1 10DE+ 1 6CD
2
2பைடு நூலகம்
24.
(3)三个正方形的面积之间有什么关系?
探究新知
数格子法探索勾股定理
9
9
18
4
4
8
SA SB SC
两直角边的平方和等于斜边的平方
探究新知
数格子法探索勾股定理
以等腰直角三角形两直角边为边长的小正方形的面积的和,
等于以斜边为边长的大正方形的面积.
也就是:两直角边的平方和等于斜边的平方
AB
C SA SB SC
如果直角三角形的两直角边分别为1.6个单位长度和2.4个 单位长度,上面所猜想的数量关系还成立吗?说明你的理由.
问题思考:(1)运用此定理的前提条件是什么? (2)公式a2+b2=c2有哪些变形公式?
1.1 探索勾股定理(1)
课题:1.1探索勾股定理 (1)【教学目标】(1) 经历“探索—发现—猜想—证明”的过程,进一步发展学生的推理能力.(2)掌握勾股定理,并能运用它解决一些实际问题1、课前练习:1、三角形的三个内角的比为1:2:3, 则这个三角形是____________ 三角形.2、一个三角形的其中两边为5和8 , 则第三边x 的取值范围是_______________3、等腰三角形的其中两边为5和1, 则这个三角形的周长为___________4、已知a = 3, b = 4, 则a 2 + b 2=______, ( a + b ) 2=________。
5、如果a 2 = 25, 则 a = _____2课前预习:(阅读书本P 1—5页)(1) 直角三角形三边有什么关系?你是怎样得到的? (2)勾股定理的内容?勾、股各是什么?【知识点一】出示投影(课本 P3 图1一2 1--3)并回答:1、观察图1一2中的左上图,正方形A 中有 个小方格,即A 的面积为个 面积单位。
正方形 B 中有 个小方格.即B 的面积为 个面积单位。
正方形 C 中有 个小方格,即C 的面积为 个面积单位。
2、你是怎样得出上面结果的?3、图 l 一2中,A 、B 、C 之间的面积之间有什么关系?_______________4、图1一 3中,A 、B 、C 之间有什么关系?【练习一】1、右图中字母所代表的正方形的面积,A=_____________B=______________【知识点二】小结:以直角三角形两直角边为边的正方形面积_____,等于以_____为边的正方形面积。
勾股定理: 直角三角边的________的平方和等于______的平方。
也就是说:如果直角三角形的两直角边为a 、b ,斜边为c 。
那么a 2+____=______【练习二】2、已知在Rt △ABC 中,∠C=90°,a=6 ,b =8 ,则c 2=__________a3、若一个直角三角形的的两条直角边长分别为3、4,以第三边的长向外作正方形,则这个正方形的面积是( )A 、25B 、49C 、 7D 、25或74、 已知在Rt △ABC 中,∠C=90°。
八年级数学上册 第一章 勾股定理 1.1 探索勾股定理(第1课时)课件
(píngfāng)
么
a2+b2=c2 .
3.在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长的平方为(
A.2 B.24 C.74 D.12
为
第四页,共九页。
.如果(rúguǒ)
)
B
1.若直角三角形的三边(sān biān)长分别为6,8,m,则m2的值为( D
A.10
C.28
)
B.100
2
即阴影部分(bùfen)的面积为72π cm2.
第八页,共九页。
内容(nèiróng)总结
第一章 勾股定理。A.2 B.24
C.74
D.12。1.若直角三角形的三边长分别为
6,8,m,则m2的值为(
)。2.如图,在边长为1个单位(dānwèi)长度的小正方形组成的网格中,点
A,B都是格点,则线段AB的长度为(
C.76
D.80
C
第六页,共九页。
4.在△ABC中,∠C=90°,AB=25,AC=20,求△ABC的周长(zhōu chánɡ).
解:∵AB2=AC2+BC2,
∴BC2=AB2-AC2=252-202=152.
∴BC=15.
∴△ABC的周长(zhōu chánɡ)是25+20+15=60.
第七页,共九页。
5.求下列图中阴影(yīnyǐng)部分的面积:
(1)
(2)
解:(1)由题图,得132-122=25(cm2),则阴影部分的面积为25 cm2.
(2)设半圆的直径(zhíjìng)为d cm,由勾股定理,得d2=252-72=576,则d=24,
S
1
2
半圆= π
1.1 探索勾股定理 教案学案练习测试全
第一章勾股定理1.探索勾股定理(一)在两千多年前我国古算术上记载有“勾三股四弦五”.你知道它的意思吗?它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52.(1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢?(2)请你观察下列图形,直角三角形ABC的两条直角边的长分别为AC=7,BC=4,请你研究这个直角三角形的斜边AB的长的平方是否等于42+72?测验评价等级:A B C ,我对测验结果(满意、一般、不满意)参考答案(1)边长的平方即以此边长为边的正方形的面积,故可通过面积验证.分别以这个直角三角形的三边为边向外做正方形,如右图:AC =4,BC =3,S 正方形ABED =S 正方形FCGH -4S Rt △ABC=(3+4)2-4×21×3×4=72-24=25即AB 2=25,又AC =4,BC =3, AC 2+BC 2=42+32=25 ∴AB 2=AC 2+BC 2(2)如图(图见题干中图)S 正方形ABED =S 正方形KLCJ -4S Rt △ABC =(4+7)2-4×21×4×7=121-56=65=42+722.探索勾股定理(二)下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.①图乙和图丙中(1)(2)(3)是否为正方形?为什么?②图中(1)(2)(3)的面积分别是多少?③图中(1)(2)的面积之和是多少?④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?测验评价等级:A B C,我对测验结果(满意、一般、不满意)参考答案①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a为边长的正方形,(2)是以b为边长的正方形,(3)的四条边长都是c,且每个角都是直角,所以(3)是以c为边长的正方形.②图中(1)的面积为a2,(2)的面积为b2,(3)的面积为c2.③图中(1)(2)面积之和为a2+b2.④图中(1)(2)面积之和等于(3)的面积.因为图乙、图丙都是以a+b为边长的正方形,它们面积相等,(1)(2)的面积之和与(3)的面积都等于(a+b)2减去四个Rt△ABC的面积.由此可得:任意直角三角形两直角边的平方和等于斜边的平方,即勾股定理.2.探索勾股定理(二)班级:________ 姓名:________1.填空题(1)某养殖厂有一个长2米、宽1.5米的矩形栅栏,现在要在相对角的顶点间加固一条木板,则木板的长应取米.(2)有两艘渔船同时离开某港口去捕鱼,其中一艘以16海里/时的速度向东南方向航行,另一艘以12海里/时的速度向东北方向航行,它们离开港口一个半小时后相距海里.(3)如图1:隔湖有两点A、B,为了测得A、B两点间的距离,从与AB方向成直角的BC方向上任取一点C,若测得CA=50 m,CB=40 m,那么A、B两点间的距离是_________.图12.已知一个等腰三角形的底边和腰的长分别为12 cm和10 cm,求这个三角形的面积.3.在△ABC中,∠C=90°,AC=2.1 cm,BC=2.8 cm(1)求这个三角形的斜边AB的长和斜边上的高CD的长.(2)求斜边被分成的两部分AD和BD的长.4.如图2:要修建一个育苗棚,棚高h=1.8 m,棚宽a=2.4 m,棚的长为12 m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图3,已知长方形ABCD中AB=8 cm,BC=10 cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.测验评价结果:_____________;对自己想说的一句话是:______________________.参考答案1.(1)2.5 (2)30 (3)30米2.如图:等边△ABC 中BC =12 cm ,AB =AC =10 cm作AD ⊥BC ,垂足为D ,则D 为BC 中点,BD =CD =6 cm 在Rt △ABD 中,AD 2=AB 2-BD 2=102-62=64 ∴AD =8 cm ∴S △ABD =21BC ·AD =21×12×8=48(cm 2)3.解:(1)∵△ABC 中,∠C =90°,AC =2.1 cm ,BC =2.8 cm ∴AB 2=AC 2+BC 2=2.12+2.82=12.25 ∴AB =3.5 cm ∵S △ABC =21AC ·BC =21AB ·CD∴AC ·BC =AB ·CD ∴CD =ABBC AC ⋅=5.38.21.2⨯=1.68(cm)(2)在Rt △ACD 中,由勾股定理得: AD 2+CD 2=AC 2∴AD 2=AC 2-CD 2=2.12-1.682 =(2.1+1.68)(2.1-1.68)=3.78×0.42=2×1.89×2×0.21=22×9×0.21×0.21∴AD =2×3×0.21=1.26(cm)∴BD =AB -AD =3.5-1.26=2.24(cm)4.解:在直角三角形中,由勾股定理可得:直角三角形的斜边长为3 m,所以矩形塑料薄膜的面积是:3×12=36(m 2)5.解:根据题意得:Rt △ADE ≌Rt △AEF∴∠AFE =90°,AF =10 cm,EF =DE设CE =x cm ,则DE =EF =CD -CE =8-x 在Rt △ABF 中由勾股定理得: AB 2+BF 2=AF 2,即82+BF 2=102, ∴BF =6 cm∴CF =BC -BF =10-6=4(cm)在Rt △ECF 中由勾股定理可得: EF 2=CE 2+CF 2,即(8-x )2=x 2+42 ∴64-16x +x 2=x 2+16 ∴x =3(cm),即CE =3 cm参考例题[例1]如下图所示,△ABC 中,AB =15 cm ,AC =24 cm ,∠A =60°,求BC 的长.分析:△ABC 是一般三角形,若要求出BC 的长,只能将BC 置于一个直角三角形中. 解:过点C 作CD ⊥AB 于点D 在Rt △ACD 中,∠A =60° ∠ACD =90°-60°=30° AD =21AC =12(cm)CD 2=AC 2-AD 2=242-122=432, DB =AB -AD =15-12=3. 在Rt △BCD 中,BC 2=DB 2+CD 2=32+432=441BC =21 cm.评注:本题不是直角三角形,而要解答它必须构造出直角三角形,用勾股定理来解. [例2]如下图,A 、B 两点都与平面镜相距4米,且A 、B 两点相距6米,一束光线由A 射向平面镜反射之后恰巧经过B 点.求B 点到入射点的距离.分析:此题要用到勾股定理,全等三角形,轴对称及物理上的光的反射的知识.解:作出B 点关于CD 的对称点B ′,连结AB ′,交CD 于点O ,则O 点就是光的入射点.因为B ′D =DB .所以B ′D =AC .∠B ′DO =∠OCA =90°, ∠B ′=∠CAO所以△B ′DO ≌△ACO (SSS ) 则OC =OD =21AB =21×6=3米.连结OB ,在Rt △ODB 中,OD 2+BD 2=OB 2 所以OB 2=32+42=52,即OB =5(米).所以点B到入射点的距离为5米.评注:这是以光的反射为背景的一道综合题,涉及到许多几何知识,由此可见,数学是学习物理的基础.。
探索勾股定理练习题
1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刚搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,则梯脚与墙角的距离应为米.2.如图1-1-1,小张为测量校园内池塘A,B两点的距离,他在池塘边选定一点C,使∠ABC=90°,并测得AC长26m,BC长24m,则A,B两点间的距离为m.3.如图1-1-2,阴影部分是一个半圆,则阴影部分的面积为.(π不取近似值)4.底边长为16cm,底边上的高为6cm的等腰三角形的腰长为cm.5.一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h的速度向东南方向航行,它们离开港口半小时后相距km.提高训练6.一个长为10m为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m,梯子的顶端下滑2m后,底端滑动m.7.如图1-1-3所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积的和是cm2.8.已知Rt△ABC中,∠C=90°,若14=+ba cm,10=c cm,则Rt△ABC的面积为().(A)24cm2(B)36cm2(C)48cm2(D)60cm29.如图1-1-4,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是().(A)321SSS>+(B)321SSS=+(C)321SSS<+(D)无法确定10.暑假中,小明和同学们到某海岛去探宝旅游,按照如图所示的路线探宝. 他们登陆后先往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅走1km就找到了宝藏,则登陆点到埋宝藏点的直线距离为km.知识拓展12.如图1-1-7,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它恰好落在斜边AB上,且与AE重合,求CD的长.BAE5米3米31.斜边为cm 17,一条直角边长为cm 15的直角三角形的面积是( )(A) 60 (B) 30 (C) 90 (D) 120 2. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )64 3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )(A )25 (B )14(C )7 (D )7或25 4. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______.5. 直角三角形的三边长为连续偶数,则其周长为 .6. 如图1-1-8为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.提高训练7. 如图1-1-9,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.8. 如图1-1-10,小李准备建一个蔬菜大棚,棚宽4米,高3米,长20米,棚的斜面用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积.9.伽菲尔德(Garfield ,1881年任美国第20届总统)利用两个全等的三角形拼成如图图形,Rt Rt ABC CDE △≌△,90B D ∠=∠=,且B C D ,,三点共线,证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现请你尝试该证明过程.知识拓展10.如图,已知长方形ABCD 中AB =8 cm,BC =10 cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.12. 已知,如图1-1-22,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90积。
第一章《勾股定理》(全章)
第一章勾股定理1.1.1 探索勾股定理(一)学习目标:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
学习重点:勾股定理的内容及证明。
学习难点:勾股定理的证明。
学习过程:一、自主学习画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
(勾3,股4,弦5)。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42_____52,52+122_____132,那么就有_____2+_____2=_____2。
(用勾、股、弦填空)对于任意的直角三角形也有这个性质吗?勾股定理内容文字表述:几何表述:二、交流展示例1、已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:⑴准备多个三角形模型,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4S△+S小正=S大正即4×21×+﹝﹞2=c2,化简可证。
⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷勾股定理的证明方法,达300余种。
这个古老而精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例2已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=_____________右边S=_____________左边和右边面积相等,即_________________________化简可得_______________________三、合作探究bbbccccaabbbaaccaabcc1.已知在Rt△ABC中,∠B=90°,a、b、c是△ABC的三边,则⑴c= 。
1.1 探索勾股定理(1)(含答案)
1.1 探索勾股定理(1)【学习目标】了解勾股定理的探索过程,掌握勾股定理. 【基础知识演练】1.在△ABC 中,若∠C =90°,则它的三边满足关系式a 2+b 2=c 2. 在此关系式中,涉及到三个量,利用方程的思想,可“知二求一”. (1)若a =3,b =4,则c =_________; (2)若 c =10,b =6,则a =_________;(3)若a ∶b =3∶4,c =20,则a =_________,b =_________. 2.已知等腰ABC ∆的腰AB =AC =10cm ,底边BC=12cm,则A∠的平分线的长是 cm.3.如图,在△ABC 中,∠C=900,AD 平分∠CAB ,AD=10cm ,AC=8cm ,那么D 点到直线AB 的距离是 cm. 4.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.5.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A.25B.14C.7D.7或256.若线段a ,b ,c 能组成直角三角形,则它们的长度之比可能是( ) A.2∶3∶4 B.3∶4∶6 C.5∶12∶13 D.4∶6∶77.在Rt △ABC 中,∠B =9O°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且a =12,b =13,求c .D C BA8.请你取两个同样的直角三角板,并按如图所示摆放.(1)连结AE ,请你判断△ACE 和四边形ABDE 的形状.(2)设AB =CD =a ,BC =DE =b ,AC =CE =c ,请用两种不同的方法求四边形ABDE 的面积. (3)由(2)你能得到什么结论?DC B AE【思维技能整合】9.如果直角三角形的斜边与一条直角边的长分别是13cm 和5cm ,那么这个直角三角形的面积是 cm 2.10.如图,分别以直角△ABC 的三边AB 、BC 、CA 为直径向外作半圆,设直线AB 左边阴影部分面积为S 1,右边阴影部分面积为S 2,则( ) A .S 1 =S 2 B .S 1 <S 2 C .S 1>S 2 D .无法确定11.图中的螺旋形由一系列直角三角形组成,则以第n 个三角形的斜边长为边长的正方形的面积为 .12.请你作一个直角三角形ABC ,使它的两条直角边AB =6 cm,AC =8 cm.(1)请你先测量斜边BC 的长.(2)你能用其他方法探索这个直角三角形斜边的长吗?这个直角三角形的三边长有什么关系吗?(3)若使AB =AC =3 cm ,请你探索这个直角三角形的三边长有什么关系?A A A A O01231111【发散创新尝试】13.有一根70 cm 的木棒,要放在长、宽、高分别是50 cm 、40 cm 、30 cm 的木箱中,能放进去吗?请说明理由.【回顾体会联想】14.直角三角形三边之间有怎样的关系?生:如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a ,b, c 的关系是 .即直角三角形两直角边的平方和等于 的平方.参考答案1. (1) 5.(2) 8.(3) 12,16 2.8 3.6 4.4 5.D 6.C 7.5 8.(1)∵△ABC ≌△CDE ,∴∠ACB =∠DEC ,而∠DCE +∠DEC =90°,∴∠ACB +∠DCE =90°,∴∠ACE =90°, ∴△ACE 为直角三角形.又∵∠ABC -90°=∠EDC , ∴四边形ABDE 为直角梯形. (2)方法一:S 梯形=21(AB +DE )·(BC +CD )=21(a +b )(a +b )=21(a +b )2.方法二:S 梯形=S △ABC +S △ECD +S △ACE =21ab +21ab +21c ·c =ab +21c 2.(3)∵S 梯形相等,∴21(a +b )2=ab +21c 2,∴a 2+b 2=c 2.9.30 10.A 11.n+112.(1)10 cm (2)AB2+AC2=BC2,另参考课本方法(3)AB2+AC2=BC2,探索方法同(2) 13.由下图可得,AA′=30 cm,A′B′=50 cm,B′C′=40 cm.△A′B′C′,△AA′C′都为直角三角形.由勾股定理,得A′C′2=A′B′2+B′C′2.在Rt△AA′C′中.AC′最长,则AC′2=AA′2+A′B′2+B′C′2=302+402+502=5000>702.故70 cm的棒能放入长、宽、高分别为50 cm,40 cm,30 cm的大箱中.14.a2+b2=c2,斜边.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自主学习:
前的内容,解决问题;
1、自学课本P2“做一做”
2、解决自学课本P2“做一 做”中的三个问题; 3、在“做一做”的(2)中, 你是如何求每一个正 方形的面 积的?
自主学习: 4、P3勾股定理是 怎么叙述的,字母表达 式是如何表示的? 5、完成P3的“想一 想”
练习
1、勾股定理是怎么叙述的?
直角三角形两直角边的平方和等于斜边的 平方。 如果直角三角形两直角边分别为
2 2
2
a
c
b
2、完成课本P3随堂练习1、2
3、在ΔABC中,∠A=90°, 三边分别为a、b、c,且b=3,c=4, 5。 则a=__
观看动画
北 京 欢 迎 您 !
请大家观察右图,我 国科学家曾向太空发射如 右图所示的图形试图与外 星人沟通。2002年在北京 召开的国际数学家大会上 也采用此图作为会标。它 为什么有如此大的魅力呢? 它蕴含着怎样迷人的奥妙 呢?这节课我们大家一起 来探索这个问题。
1.1 探索勾股定理(1)
学习目标:
4、求斜边长25厘米、一 条直角边长20厘米的直角三角 形的面积.
课堂小结:
本节课你学到了什么?
练习
(1)在图1、2中, 正方形A,B,C中各 含有多少个小方格? 它们的面积各是多少? (2)你能发现图1中 三个正方形A,B,C 的面积之间有什么关 系吗?图2中呢?
A的面 积
图(1) 图(2)
B的面 积
C的面 积
A的面积+B的面积=C的面积
两条直角边上的正方形面积之和等于斜边上的正方形的面积