2019年苏州市中考数学模拟试卷(一)

合集下载

苏州市2019年中考数学模拟试卷及答案

苏州市2019年中考数学模拟试卷及答案

苏州市2019年中考数学模拟试卷及答案(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

1. 一个数的绝对值是5,这个数是A.5 B 、-5 C .5和-5 D .02. 2017年我省粮食总产量695.2亿斤,居历史第二高位,695.2亿用科学记数法表示为A.695.2×108B.6.952×109C.6.952×1010D.6.952×10113. 下列运算正确的是 D A .2a 2•a 3=2a6B .(3ab )2=6a 2b2C .2abc +ab =2D .3a 2b +ba 2=4a 2b4.已知不等式组⎩⎨⎧≥+>-0103x x ,其解集在数轴上表示正确的是5.设一元二次方程(1x +)(3x -)=m (m >0)的两实数分别为α、β且α<β,则α、β满足 A.-1<α<β<3 B.α<-1且β>3 C.α<-1<β<3 D.-1<α<3<β 6. 如图,M 、N 、P 、Q 是数轴上的四个点,这四个点中最适合表示的点是A. 点MB. 点NC. 点PD. 点Q7. 如图,在⊙O 中,AB =AC ,∠AOB =40°,则∠ADC 的度数是 A .40° B .30° C .20° D .15°8.将A ,B 两位篮球运动员在一段时间内的投篮情况记录如下:下面有三个推断:① 投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.② 随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A 运动员投中的概率是0.750.③ 投篮达到200次时,B 运动员投中次数一定为160次. 其中合理的是N A .①B .②C .①③D .②③9.如图,菱形ABCD 的边长为4,∠DAB =60°,过点A 作AE ⊥AC ,AE =1,连接BE ,交AC 于点F ,则AF 的长度为A.B.C.D.10.. 甲车行驶30千米和乙车行驶40千米所用的时间相同,已知乙车每小时比甲车多行驶15千米. 设甲车的速度为x 千米/小时,依题意列方程正确的是 A.304015x x =+ B. 304015x x =+ C. 304015x x =- D. 304015x x =- 二、填空题(本大共6小题,每小题4分,满分24分) 11.分解因式:a 3-9a= ___________.12.在平面直角坐标系中,以原点为中心,把点A (4,5)逆时针旋转90°,得到的点A ′的坐标 为 .13.关于x 的不等式组2131x a x +>⎧⎨->⎩的解集为1<x <4,则a 的值为 .14.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .15.若一个等腰三角形有两边长为3和4,则它的周长为 .16.若圆锥的底面积为216cm π,母线长为cm 12,则它的侧面展开图的圆心角为 °第11题图三、(本大题共2小题 ,满分80分)17. (本题满分6分)计算:18. (本题满分10分)已知关于x 的方程(k +1)x 2-2(k -1)x +k =0有两个实数根x 1,x 2.(1)求k 的取值范围; (2)若12122x x x x +=+,求k 的值.19.(本题满分10分)如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,∠A =∠F ,∠1=∠2.(1)求证:四边形BCED 是平行四边形;(2)已知DE =2,连接BN ,若BN 平分∠DBC ,求CN 的长.20.(10分)某中学组织七、八、九年级学生参加全区作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)此次参赛的作文篇数共有 篇;(2)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图; (3)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率. 21. (本题满分12分)在正方形网格中,建立如图所示的平面直角坐标系的三个顶点都在格点上,点A 的坐标,请解答下列问题:画出关于y 轴对称的,并写出点、、的坐标;2021*******-⎪⎭⎫⎝⎛+---将绕点C逆时针旋转,画出旋转后的,并求出点A到的路径长.22.(本小题满分8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?23.(本题满分12分)如图,四边形ABCD是边长为4的菱形,且∠ABC=60°,对角线AC与BD相交点为O,∠MON=60°,N在线段BC上.将∠MON绕点O旋转得到图1和图2.(1)选择图1或图2中的一个图形,证明:△MOA∽△ONC;(2)在图2中,设NC=x,四边形OMBN的面积为y. 求y与x的函数关系式;当NC的长x为多少时,四边形OMBN面积y最大,最大值是多少?(根据材料:正实数a,b满足a+b≥2ab,仅当a=b时,a+b=2ab).24.(本题满分14分)给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2, ,22M ⎛ ⎝⎭,N ⎝⎭.在A (1,0),B (1,1),)C三点中, 是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N 122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °;②在第一象限内有一点E),m ,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;③点F 在直线2y x =+上,当∠MFN ≥∠MDN 时,求点F 的横坐标F x 的取值范围.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

2019年江苏省苏州市中考数学一模试题附解析

2019年江苏省苏州市中考数学一模试题附解析

2019年江苏省苏州市中考数学一模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,AB 切⊙O 于 B ,割线 ACD 经过圆心0,若∠BCD=70°,则∠A 的度数为( ) A .20°B .50°C .40°D .80°2.若tan (α+10°)=3,则锐角α的度数是( ) A .20° B .30° C .35° D .50° 3.若x 是3和6的比例中项,则x 的值为( )A . 23B . 23−C . 23±D .32± 4.如图,点D ,E ,F 分别是△ABC 三边的中点,且S △DEF =3,则△ABC 的面积等于( )A .6B .9C .12D .155. 已知 2 是关于y 的方程23202y a −=的一个解,则21a −的值是( ) A . 3B . 4C . 5D . 66.直线443y x =−−与两坐标轴围成的三角形面积是( ) A .3 B . 4 C . 6 D . 12 7.已知某样本的方差是4,则这个样本的标准差是( )A .2B .4C .8D .168.以下四种说法:①对顶角相等;②相等的角是对顶角;③不是对顶角的两个角不相等;④不相等的两个角,不是对顶角.其中正确的有( ) A .1个B .2个C .3个D .4个9.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯−=−;④(36)(9)4−÷−=−. 其中正确的有( ) A . 1个B . 2个C .3个D .4个二、填空题10.在 Rt △ABC 中,∠C= Rt ∠,AB=5 cm ,BC= 3 cm ,以 A 为圆心,4 cm 长为半径作圆,则:(1) 直线 BC 与⊙A 的位置关系是 ; (2)直线 AC 与⊙A 的位置关系是 .(3)以 C 为圆心,半径为 cm 的圆与直线 AB 相切.11.若y 是关于x 的反比例函数,当x=-3 时,y=4,则y 关于x 的函数解析式为 . 12.当a 时,二次根式3a −−−有意义. 13.二次根式14x −中,字母x 的取值范围是 .14.填空: (1)21122818323−+−= ; (2)2211()0.339+−= ; (3) 482375+− ; (4)3111212233−−= . 15.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为4cm,则其腰上的高为 .16.多项式24ax a −与多项式244x x −+的公因式是 .17.如图是一个个五叶风车示意图,它可以看做是由“基本图案” 绕着点O 通过 次旋转得到的.18.已知a 2-ab=15,ab-b 2= -10,则代数式a 2-b 2= .三、解答题19.已知二次函数y =x 2+ax +a -2,证明:不论a 取何值,抛物线的顶点总在x 轴的下方. Δ=(a-2)2+4>0,抛物线与x 轴有两个交点,又抛物线的开口向上,所以抛物线的顶点总在x 轴的下方.20.二次函数 y=ax 2+c(a,c 为已知常数),当x 取值x 1,x 2时(x 1≠x 2),函数值相等,求当x =x 1+x 2时函数的值21.某人骑自行车以10km/h 的速度由 A 地到B 地,路上用了 6 h.(1)如果以 v(km/h)的速度行驶,那么需t(h)到达,写出 t 与 v 之间的函数关系式; (2)如果返回时以 12 km/h 的速度行进,求路上所需的时间? (3)如果要求在 4 h 内到达,那么速度至少要多少?22.用反证法证明:在一个三角形中,如果两条边不等,那么它们所对的角也不等.23.解下列方程:(1)0252=−−x x ; (2)0)52(4)32(922=−−+x x (3)3)76(2)76(222=−−−x x x x24.作为一项惠农强农应对前国际金触危机、拉动国内消费需求重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在某市实施. 某市某家电公司营销点自2008 年 12 月份至2009年 5 月份销售两种不同品牌冰箱的数量如下图:(1)完成下表:平均数/台 方差甲品牌销售量/台 1O乙品牌销售量/台4325.如图,已知等腰直角三角形ABC中,∠BAC=90°,∠ABC的平分线交AC于D,过C 作BD的垂线交BD的延长线于E,交BA的延长线于F,请说明:(1)△BCF是等腰三角形;(2)△ABD≌△ACF;(3)BD=2CE.26.如图,在等边△ABC所在平面内求一点,使△PAB、△PBC、△PAC都是等腰三角形,你能找到这样的点吗?27.如图,地面上的电线杆 AB、CD 都与地面垂直,那么电线杆AB 和 CD 平行吗?为什么?28.⑴分析图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.⑵如图,由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.29.球的体积公式为343r π,求地球的体积.(地球的半径6371 km ,结果保留2个有效数字)30.求下列每对数在数轴上对应点之间的距离. (1)3 与-2. 2 (2)142与124(3)-4 与-4. 5 (4)132−与123你能发现两点之间的距离与这两数的差有什么关系吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.C5.C6.C7.A8.B9.B二、填空题10.(1)相切;(2)相交;(3)12 511.12y x=−12. 3≤−13. 4x >14.(12)0. 3;(34) 15..2x − 17.△0AB ,418.5三、解答题 19. 20.ax 12+c =ax 22+c ,则x 1+x 2=0,所以y =c .21.(1)设 t 与 v 之间的函数关系式为st v =,其中 s 为A 地、B 地间距离. ∵当 t=6 时,v= 10,∴s =60,∴60t v=(2)v= 12 时,60512t ==,∴路上要用 5 h . (3)t=4 时,60154v ==,∴速度至少要 15 km/h . 22.略23.⑴2335,233521+=−=x x ;⑵219,10121−==x x ; ⑶61,1,31,234321==−==x x x x . 24.(1)表中从左到右依次填10,133; (2)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,因此进货时可多进甲品牌冰箱.25.(1)利用△CBE≌△FBE来说明;(2)利用ASA说明;(3)利用CF=2CE而CF=BD来说明26.共有10个,等边三角形共有三条对称轴,每条对称轴上有4个点,有3个点重合27.AB∥CD(同位角相等,两直线平行)28.略.29.1.O8×lO12km330.(1)5.2 (2)124(3)0. 5 (4)556两点之间的距离等于两数之差的绝对值。

2019-2020苏州市数学中考第一次模拟试题附答案

2019-2020苏州市数学中考第一次模拟试题附答案

2019-2020苏州市数学中考第一次模拟试题附答案一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形 3.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( ) A .4B .3C .2D .1 4.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( ) A .2 B .3C .5D .7 5.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A .54k ≤B .54k > C .514k k ≠<且 D .514k k ≤≠且 6.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac <7.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D .8.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0) B .(0,2) C .(1,3) D .(3,﹣1)9.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x =<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-10.已知实数a ,b ,若a >b ,则下列结论错误的是A .a-7>b-7B .6+a >b+6C .55ab > D .-3a >-3b11.下列各式化简后的结果为32 的是( )A .6B .12C .18D .3612.8×200=x+40解得:x=120答:商品进价为120元.故选:B .【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是 .14.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.15.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________16.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x的图象上,则k 的值为________.17.如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_____.18.若ab=2,则222a ba ab--的值为________.19.已知M、N两点关于y轴对称,且点M在双曲线12yx=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A 型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?22.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?23.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈) 24.解方程:3x x +﹣1x=1. 25.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D 错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.3.A解析:A【解析】分析:先根据平均数的定义确定出x 的值,再根据方差公式进行计算即可求出答案. 详解:根据题意,得:67955x ++++=2x 解得:x=3,则这组数据为6、7、3、9、5,其平均数是6, 所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4, 故选A .点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数. 4.C解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C .考点:众数;中位数.5.D解析:D【解析】【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D .此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键6.A解析:A【解析】【分析】 根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】 解:a b =Q ,∴原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=,故选项A 错误,故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.7.A解析:A【解析】【分析】【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A .8.A解析:A【解析】【分析】把点(3,1)代入直线y =kx ﹣2,得出k 值,然后逐个点代入,找出满足条件的答案.【详解】把点(3,1)代入直线y =kx ﹣2,得1=3k ﹣2,解得k =1,∴y =x ﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y =x ﹣2中,只有(2,0)满足条件.故选A .本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.9.C解析:C【解析】【分析】【详解】∵A (﹣3,4),∴,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征. 10.D解析:D【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 11.C解析:C【解析】A 不能化简;BC ,故正确;D ,故错误;故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.12.无二、填空题13.【解析】【分析】连接BD 交AC 于点O 由勾股定理可得BO=3根据菱形的性质求出BD 再计算面积【详解】连接BD 交AC 于点O 根据菱形的性质可得AC ⊥BDAO=CO=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD ,交AC 于点O ,由勾股定理可得BO=3,根据菱形的性质求出BD ,再计算面积.【详解】连接BD ,交AC 于点O ,根据菱形的性质可得AC ⊥BD ,AO=CO=4,由勾股定理可得BO=3,所以BD=6, 即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.14.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.15.<a<-2【解析】【分析】【详解】解:∵关于x 的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a >−设f(x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.16.-6【解析】因为四边形OABC是菱形所以对角线互相垂直平分则点A和点C 关于y轴对称点C在反比例函数上设点C的坐标为(x)则点A的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,kx),则点A的坐标为(-x,kx),点B的坐标为(0,2kx),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 17.-3【解析】分析:由平行四边形面积转化为矩形BDOA 面积在得到矩形PDOE 面积应用反比例函数比例系数k 的意义即可详解:过点P 做PE⊥y 轴于点E∵四边形ABCD 为平行四边形∴AB=CD 又∵BD⊥x 轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.详解:过点P 做PE ⊥y 轴于点E ,∵四边形ABCD 为平行四边形∴AB=CD又∵BD ⊥x 轴∴ABDO 为矩形∴AB=DO∴S 矩形ABDO =S ▱ABCD =6∵P 为对角线交点,PE ⊥y 轴∴四边形PDOE 为矩形面积为3即DO•EO=3∴设P 点坐标为(x ,y )k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k 的几何意义以及平行四边形的性质.18.【解析】分析:先根据题意得出a=2b 再由分式的基本性质把原式进行化简把a=2b 代入进行计算即可详解:∵=2∴a=2b 原式==当a=2b 时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:32【解析】分析:先根据题意得出a =2b ,再由分式的基本性质把原式进行化简,把a =2b 代入进行计算即可. 详解:∵a b=2,∴a =2b , 原式=()()()a b a b a a b +-- =a b a+ 当a =2b 时,原式=22b b b +=32. 故答案为32. 点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.19.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代入相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )2+4ab=11a+b=∴y=-x2x∴顶点坐标为解析:( ,112). 【解析】【详解】∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a ①,a+3=b ②,∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=∴y=-12x 2,∴顶点坐标为(2b a -=244ac b a -=112),即(112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.20.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形 解析:43【解析】【分析】连接BD ,根据中位线的性质得出EF //BD ,且EF=12BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD,E F Q 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =Q8BD ∴=又Q 8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒∴tanC=BD DC =86=43. 故答案为:43.三、解答题21.(1)每台A 型机器每小时加工8个零件,每台B 型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A 型机器安排6台,B 型机器安排4台;方案二:A 型机器安排7台,B 型机器安排3台;方案三:A 型机器安排8台,B 型机器安排2台.【解析】【分析】(1)设每台B 型机器每小时加工x 个零件,则每台A 型机器每小时加工(x+2)个零件,根据工作时间=工作总量÷工作效率结合一台A 型机器加工80个零件与一台B 型机器加工60个零件所用时间相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设A 型机器安排m 台,则B 型机器安排(10m)-台,根据每小时加工零件的总量8A =⨯型机器的数量6B +⨯型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出各安排方案.【详解】(1)设每台B 型机器每小时加工x 个零件,则每台A 型机器每小时加工(x+2)个零件, 依题意,得:8060x 2x=+, 解得:x=6,经检验,x=6是原方程的解,且符合题意,x28∴+=.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)设A型机器安排m台,则B型机器安排(10m)-台,依题意,得:()() 861072 861076mm mπ⎧+-⎪⎨+-⎪⎩…„,解得:6m8剟,mQ为正整数,m678∴=、、,答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.22.(1)y=26(2040)24(40)x xx x⎧⎨>⎩剟;(2)该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.【解析】【分析】【详解】(1)批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式y=26(2040) 24(40)x xx x⎧⎨>⎩剟;(2)设该经销商购进乌鱼x千克,则购进草鱼(75﹣x)千克,所需进货费用为w元.由题意得:4089%(75)95%93%75 xx x>⎧⎨⨯-+⨯⎩…解得x≥50.由题意得w=8(75﹣x)+24x=16x+600.∵16>0,∴w的值随x的增大而增大.∴当x=50时,75﹣x=25,W最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.23.43米【解析】【分析】【详解】解:设CD = x.在Rt△ACD中,tan37AD CD︒=,则34ADx =,∴34 AD x=.在Rt△BCD中,tan48° =BD CD,则1110BDx=,∴1110 BD x=∵AD+BD = AB,∴31180 410x x+=.解得:x≈43.答:小明家所在居民楼与大厦的距离CD大约是43米.24.分式方程的解为x=﹣34.【解析】【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2,求出方程的解,再代入x(x+3)进行检验即可.【详解】两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣34,检验:当x=﹣34时,x(x+3)=﹣2716≠0,所以分式方程的解为x=﹣34.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键. 25.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有400100900bk b=⎧⎨+=⎩,解得5400kb=⎧⎨=⎩,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。

江苏省苏州市2019-2020学年中考数学模拟试题(1)含解析

江苏省苏州市2019-2020学年中考数学模拟试题(1)含解析

江苏省苏州市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2﹣8x﹣2=0,配方的结果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=142.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是()A.60°B.65°C.70°D.75°3.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C.103m D.123m4.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°58的叙述正确的是()A835B8的点C8=±22D8 36.一、单选题在反比例函数4yx的图象中,阴影部分的面积不等于4的是()A. B.C.D.7.我国的钓鱼岛面积约为4400000m2,用科学记数法表示为()A.4.4×106B.44×105C.4×106D.0.44×1078.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()A.B.C.D.9.tan30°的值为()A.B.C.D.10.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为6,则GE+FH的最大值为()A.6 B.9 C.10 D.1211.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉()A.6.5千克B.7.5千克C.8.5千克D.9.5千克12.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.14.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.15.如图,在△ABC中,DE∥BC,1=2ADDB,则ADEBCEDV的面积四边形的面积=_____.16.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.17.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.18.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC 上的任意一点,那么a+b-2c= ______ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE .(1)求∠AEC 的度数;(2)请你判断AE 、BE 、AC 三条线段之间的等量关系,并证明你的结论.20.(6分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率. 21.(6分)解方程311(1)(2)x x x x -=--+. 22.(8分)如图,已知二次函数2y x bx c =-++与x 轴交于A 、B 两点,A 在B 左侧,点C 是点A 下方,且AC ⊥x 轴.(1)已知A(-3,0),B(-1,0),AC=OA .①求抛物线解析式和直线OC 的解析式;②点P 从O 出发,以每秒2个单位的速度沿x 轴负半轴方向运动,Q 从O 出发,以每秒2个单位的速度沿OC 方向运动,运动时间为t.直线PQ 与抛物线的一个交点记为M,当2PM=QM 时,求t 的值(直接写出结果,不需要写过程)(2)过C 作直线EF 与抛物线交于E 、F 两点(E 、F 在x 轴下方),过E 作EG ⊥x 轴于G ,连CG ,BF,求证:CG ∥BF23.(8分)在矩形ABCD 中,两条对角线相交于O ,∠AOB=60°,AB=2,求AD 的长.24.(10分)先化简,再求值:22124()(1)442a a a a a a a -+-÷--+-,其中a 为不等式组72230a a ->⎧⎨->⎩的整数解.25.(10分)如图,在等腰△ABC 中,AB =AC ,以AB 为直径的⊙O 与BC 相交于点D 且BD =2AD ,过点D 作DE ⊥AC 交BA 延长线于点E ,垂足为点F .(1)求tan ∠ADF 的值;(2)证明:DE 是⊙O 的切线;(3)若⊙O 的半径R =5,求EF 的长.26.(12分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?27.(12分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣2,1),B (﹣1,4),C (﹣3,2)画出△ABC 关于点B 成中心对称的图形△A 1BC 1;以原点O 为位似中心,位似比为1:2,在y 轴的左侧画出△ABC 放大后的图形△A 2B 2C 2,并直接写出C 2的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】x2-8x=2,x2-8x+16=1,(x-4)2=1.故选C.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.2.C【解析】试题分析:连接OB,根据PA、PB为切线可得:∠OAP=∠OBP=90°,根据四边形AOBP的内角和定理可得∠AOB=140°,∵OC=OB,则∠C=∠OBC,根据∠AOB为△OBC的外角可得:∠ACB=140°÷2=70°. 考点:切线的性质、三角形外角的性质、圆的基本性质.3.A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×3=1532,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=153×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.4.C【解析】【分析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.5.D【解析】【分析】根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.【详解】选项A B C=选项D.故选D.【点睛】本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.6.B【解析】【分析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=1.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.7.A【解析】4400000=4.4×1.故选A.点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.8.B【解析】【分析】由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.【详解】根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1.故选B.【点睛】此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.9.D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.10.B【解析】【分析】首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.【详解】解:如图,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为6,∴AB=OA=OB=6,∵点E,F分别是AC、BC的中点,∴EF=12AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:6×2=12,∴GE+FH的最大值为:12﹣3=1.故选:B.【点睛】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键. 11.C【解析】【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.【详解】设每个小箱子装洗衣粉x千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C.【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键. 12.A【解析】试题分析:充分利用图形,直接从图上得出x的取值范围.由图可知,当y<1时,x<-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.12.【解析】【分析】【详解】根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为12.考点:概率公式.14.AC=BC.【解析】分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.详解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.1 8【解析】【分析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题. 【详解】解:∵DE∥BC,AD1=DB2,∴AD 1=AB 3, 由平行条件易证△ADE ~△ABC, ∴S △ADE :S △ABC =1:9, ∴ADE S ADE BCED S ABC S ADE V V V V 的面积四边形的面积=-=18.【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键. 16.5 【解析】 【分析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张. 【详解】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3, 所以根据相似三角形的性质可设从顶点到这个正方形的线段为x , 则=,解得x=3,所以另一段长为18-3=15, 因为15÷3=5,所以是第5张. 故答案为:5. 【点睛】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答. 17.23【解析】试题解析:∵共6个数,小于5的有4个,∴P (小于5)=46=23.故答案为23. 18.1 【解析】∵点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点, ∴由中点公式得:c=2a b+, ∴a+b=2c , ∴a+b-2c=1. 故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)90°;(1)AE1+EB1=AC1,证明见解析.【解析】【分析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB=EC,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答.【详解】解:(1)∵点D是BC边的中点,DE⊥BC,∴DE是线段BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(1)AE1+EB1=AC1.∵∠AEC=90°,∴AE1+EC1=AC1,∵EB=EC,∴AE1+EB1=AC1.【点睛】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.(1)12(2)16【解析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1)12.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能. ∴P (两次都摸到红球)=212=16. 考点:概率统计 21.原分式方程无解. 【解析】 【分析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证. 【详解】方程两边乘(x ﹣1)(x+2),得x(x+2)﹣(x ﹣1)(x+2)=3 即:x 2+2x ﹣x 2﹣x+2=3 整理,得x =1检验:当x =1时,(x ﹣1)(x+2)=0, ∴原方程无解. 【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法. 22. (1)①y=-x 2-4x -3;y=x ;② 或6350±;(2)证明见解析.【解析】 【分析】(1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA 知C 点坐标为(-3,-3),故可求出直线OC 的解析式;②由题意得OP=2t,P(-2t ,0),过Q 作QH ⊥x 轴于H, 得OH=HQ=t,可得Q(-t,-t),直线 PQ 为y =-x -2t ,过M 作MG ⊥x 轴于G ,由12PG PM GH QM ==,则2PG=GH ,由2P G G H x x x x -=-,得2P M M Q x x x x -=-, 于是22M M t x x t --=+,解得533M M x t x t =-=-或,从而求出M(-3t,t)或M (51,33t t --),再分情况计算即可; (2) 过F 作FH ⊥x轴于H ,想办法证得tan ∠CAG=tan ∠FBH ,即∠CAG=∠FBH ,即得证. 【详解】2y x bx c =-++解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得09301b c b c =--+⎧⎨=--+⎩解得43b c =-⎧⎨=-⎩∴y=-x 2-4x -3;由AC=OA 知C 点坐标为(-3,-3),∴直线OC 的解析式y=x ; ②OP=2t,P(-2t ,0),过Q 作QH ⊥x 轴于H,∵,∴OH=HQ=t, ∴Q(-t,-t),∴PQ :y =-x -2t , 过M 作MG ⊥x 轴于G , ∴12PG PM GH QM ==, ∴2PG =GH∴2P G G H x x x x -=-,即2P M M Q x x x x -=-, ∴ 22M M t x x t --=+,∴533M M x t x t =-=-或,∴M(-3t,t)或M (51,33t t --)当M(-3t,t)时:29123t t t =-+-,∴t =当M (51,33t t --)时:2125203393t t t -=-+-,∴t =综上:t =t =(2)设A(m,0)、B(n,0),∴m 、n 为方程x 2-bx -c=0的两根,∴m+n=b,mn =-c,∴y =-x2+(m+n)x -mn =-(x -m)(x -n),∵E 、F 在抛物线上,设()()2111E x x m n x mn -++-,、()()2222,F x x m n x mn -++-, 设EF :y =kx+b, ∴E E F E y kx by kx b=+⎧⎨=+⎩ ,∴()E F E F y y k x x -=-∴()()2212121212E F E F x x m n x x y y k m n x x x x x x -+++--===+---- ∴()()()()12111:F y m n x x x x x m x n =+------,令x =m ∴()()()()12111c y m n x x m x x m x n =+------ =()()()()112112+m x m n x x x n m x m x -+---=-- ∴AC=()()12m x m x ---, 又∵1A E AG x x m x =-=-, ∴tan ∠CAG=2ACx m AG=-, 另一方面:过F 作FH ⊥x 轴于H ,∴()()22FH x m x n =--,2BH x n =-, ∴tan ∠FBH=2FHx m BH=- ∴tan ∠CAG=tan ∠FBH ∴∠CAG=∠FBH ∴CG ∥BF【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.23.【解析】 试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD ,再由∠AOB=60°可得△AOB 是等边三角形,从而得到OB=OA=2,则BD=4,最后在Rt △ABD 中,由勾股定理可解得AD 的长. 试题解析:∵四边形ABCD 是矩形, ∴OA=OB=OD ,∠BAD=90°, ∵∠AOB=60°,∴△AOB 是等边三角形, ∴OB=OA=2, ∴BD=2OB=4, 在Rt △ABD 中∴=24.()212a -,1【解析】 【分析】先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可. 【详解】 解:原式=[()212a a --﹣()22a a a +-]4aa-÷=()2442a a aa a -⋅-- =()212a -,∵不等式组的解为32<a <5,其整数解是2,3,4, a 不能等于0,2,4, ∴a =3, 当a =3时,原式=()2132-=1.【点睛】本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.25.(1)12;(2)见解析;(3)83【解析】【分析】(1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;(2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.【详解】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴∠BAD=∠CAD,∵DE⊥AC,∴∠AFD=90°,∴∠ADF=∠B,∴tan∠ADF=tan∠B==12;(2)连接OD,∵OD=OA,∴∠ODA=∠OAD,∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(3)设AD=x,则BD=2x,∴AB=x=10, ∴x=2, ∴AD=2,同理得:AF=2,DF=4, ∵AF ∥OD , ∴△AFE ∽△ODE , ∴, ∴=,∴EF=83. 【点睛】本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.26.(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析 【解析】分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案; (2)根据学校总人数乘以骑自行车所占的百分比,可得答案. 详解:(1)乘公交车所占的百分比60360=16, 调查的样本容量50÷16=300人, 骑自行车的人数300×120360=100人, 骑自行车的人数多,多100﹣50=50人; (2)全校骑自行车的人数2400×120360=800人, 800>600,故学校准备的600个自行车停车位不足够.点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.27.(1)画图见解析;(2)画图见解析,C 2的坐标为(﹣6,4). 【解析】试题分析:()1利用关于点对称的性质得出11,A C 的坐标进而得出答案;()2利用关于原点位似图形的性质得出对应点位置进而得出答案.试题解析:(1)△A1BC1如图所示.(2)△A2B2C2如图所示,点C2的坐标为(-6,4).。

2019年江苏省苏州市中考数学一模试卷(含答案解析)

2019年江苏省苏州市中考数学一模试卷(含答案解析)
【第6题】 【答案】 D 【 解析 】 解:∵ 四边形 ABCD 内接于⊙O,∠ C=130°, ∴ ∠ A=50°, ∵ DO=AO, ∴ ∠ ADO=∠ A=50°, ∴ ∠ AOD=80°, ∵ BC∥ OD, ∴ ∠ AOD=∠ B=80°. 故选:D. 直接利用圆内接四边形的性质得出∠ A=50°,进而利用等腰三角形的性质和平行线的性质分析得 出答案. 此题主要考查了圆内接四边形的性质以及等腰三角形的性质和平行线的性质,正确得出∠ A 的度 数是解题关键.
°
°
°
°
8、(3 分) 如图,一架无人机航拍过程中在 C 处测得地面上 A,B 两个目标点的俯角分别为 30°和 60°.若 A,B 两个目标点之间的距离是 120 米,则此时无人机与目标点 A 之间的距离(即 AC 的 长)为( )


B.


D. 米
9、(3 分) 已知,在 Rt△ ABC 中,∠ ACB=90°,点 D,E 分别是 AB,BC 的中点,延长 AC 到 F,使 得 CF= AC,连接 EF.若 EF=4,则 AB 的长为( )

27、(10 分) 如图 1,在平面直角坐标系中,一次函数 y=- x+8 的图象与 y 轴交于点 A,与 x 轴交 于点 B,点 C 是 x 轴正半轴上的一点,以 OA,OC 为边作矩形 AOCD,直线 AB 交 OD 于点 E,交 直线 DC 于点 F. (1)如图 2,若四边形 AOCD 是正方形. ①求证:△ AOE≌ △ COE; ②过点 C 作 CG⊥CE,交直线 AB 于点 G.求证:CG=FG. (2)是否存在点 C,使得△ CEF 是等腰三角形若存在,求该三角形的腰长;若不存在,请说明 理由.
!

2019年苏州市中考数学第一次模拟试卷及答案

2019年苏州市中考数学第一次模拟试卷及答案

2019年苏州市中考数学第一次模拟试卷及答案一、选择题1.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()6,0- B .()6,0 C .()2,0- D .()2,02.下列命题正确的是( ) A .有一个角是直角的平行四边形是矩形 B .四条边相等的四边形是矩形 C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形3.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( ) A .中位数B .平均数C .众数D .方差4.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )A .2B .4C .22D .25.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A .2个B .3个C .4个D .5个6.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( ) A .94 B .95分C .95.5分D .96分7.函数21y x =-中的自变量x 的取值范围是( )A .x ≠12 B .x ≥1C .x >12D .x ≥128.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :3x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .129.若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数ky x=(k >0)的图象上,且x 1=﹣x 2,则( ) A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 210.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .811.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .12.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S Vh h=≠,这个函数的图象大致是( ) A . B .C .D .二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表: 摸球实验次数 100 1000 5000 10000 50000 100000 “摸出黑球”的次数 36387201940091997040008“摸出黑球”的频率 (结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位). 15.已知62x =,那么222x x -的值是_____.16.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数 96 192 486 977 1946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号).17.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3=,那么tan∠DCF的值是____.18.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD =∠MAP+∠PAB,则AP=_____.19.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .20.二元一次方程组627x yx y+=⎧⎨+=⎩的解为_____.三、解答题21.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.(1)原来每小时处理污水量是多少m2?(2)若用新设备处理污水960m3,需要多长时间?22.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.23.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.25.已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD.(1)求证:△ADC≌△BEC;(2)如果EC⊥BE,证明:AD∥EC.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.2.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.3.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.4.C解析:C【解析】【分析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22OA OB=22.故选C.5.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质6.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.D解析:D【解析】【分析】由被开方数为非负数可行关于x的不等式,解不等式即可求得答案.【详解】由题意得,2x-1≥0,解得:x≥12,故选D.【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.A解析:A【解析】试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.9.D解析:D【解析】由题意得:1212k k y y x x ==-=- ,故选D. 10.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2)2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键11.D解析:D【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确. 故选D .12.C解析:C【解析】【分析】【详解】解:由题意可知:00v h >>, , ∴ (0)v s h h=≠中,当v 的值一定时,s 是h 的反比例函数, ∴函数 (0)v s h h =≠的图象当00v h >>,时是:“双曲线”在第一象限的分支. 故选C.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率 解析:4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.15.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确 解析:4【解析】【分析】将所给等式变形为x=【详解】∵x=,∴x-=x=,∴(22∴226x-+=,∴24x-=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.16.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 17.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD=2xCF=3x∴∴tan∠DCF=故答案为:【点【解析】【分析】【详解】解:∵四边形ABCD是矩形,∴AB=CD,∠D=90°,∵将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,∴CF=BC,∵AB2BC3=,∴CD2CF3=.∴设CD=2x,CF=3x,∴22DF=CF CD5x-=.∴tan∠DCF=DF5x5=CD=.故答案为:5.【点睛】本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.18.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=32,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=2AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=32,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=2AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.19.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15x y =⎧⎨=⎩【解析】【分析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21.(1)原来每小时处理污水量是40m 2;(2)需要16小时.【解析】试题分析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据原来处理1200m 3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可. ()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2, 根据题意得:1200120010,1.5x x-= 去分母得:1800120015x ,-= 解得:40x =,经检验40x = 是分式方程的解,且符合题意,则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时),则需要16小时.22.(1)证明见解析;(2)2 【解析】 【分析】 (1)在△CAD 中,由中位线定理得到MN ∥AD ,且MN=12AD ,在Rt △ABC 中,因为M 是AC 的中点,故BM=12AC ,即可得到结论; (2)由∠BAD=60°且AC 平分∠BAD ,得到∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到222BN BM MN =+,再由MN=BM=1,得到BN 的长.【详解】(1)在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,且MN=12AD ,在Rt △ABC 中,∵M 是AC 的中点,∴BM=12AC ,又∵AC=AD ,∴MN=BM ; (2)∵∠BAD=60°且AC 平分∠BAD ,∴∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN ∥AD ,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴222BN BM MN =+,而由(1)知,MN=BM=12AC=12×2=1,∴BN=2. 考点:三角形的中位线定理,勾股定理. 23.(1)(-8,0)(2)k=-19225 (3)(﹣1,3)或(0,2)或(0,6)或(2,6) 【解析】【分析】(1)解方程求出OB 的长,解直角三角形求出OA 即可解决问题;(2)求出直线DE 、AB 的解析式,构建方程组求出点C 坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB 的长是方程x 2﹣2x ﹣8=0的解,∴OB=4,在Rt △AOB 中,tan ∠BAO=12OB OA =, ∴OA =8,∴A (﹣8,0).(2)∵EC ⊥AB ,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.24.(1)200;(2)52;(3)840人;(4)1 6【解析】分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树状图方法,利用概率公式即可求解.详解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是21= 126.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据两锐角互余的关系可得∠ACD=∠BCE,利用SAS即可证明△ADC≌△BEC;(2)由△ADC≌△BEC可得∠ADC=∠E=90°,根据平行线判定定理即可证明AD//EC.【详解】(1)∵EC⊥DM,∴∠ECD=90°,∴∠ACB=∠DCE=90°,∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°,∴∠ACD=∠BCE,∵CD=CE,CA=CB,∴△ADC≌△BEC(SAS).(2)由(1)得△ADC≌△BEC,∵EC⊥BE,∴∠ADC=∠E=90°,∴AD⊥DM,∵EC⊥DM,∴AD∥EC.【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.。

2019年苏州市中考数学模拟试卷

2019年苏州市中考数学模拟试卷

2019年苏州市中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有 一项是符合题目要求的,请将正确选项前的字母代号琪涂在答题卡相应位置上) 1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A.正三角形B.平行四边形C.矩形D.等腰梯形 2.下列计算正确的是( )A.2233a a -=B.248a a a =gC.326()a a = D.623a a a ÷=3.若3,7a b a b +=-=,则22b a -的值为( )A.-21B. 21C. -10D. 10 4.在下列二次根式中,与2是同类二次根式的是( ) A.4 B.6 C. 12 D. 185.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上, 其平面展开图如图所示,那么在该正方体中,和 “一”相对的字是( )A.态B.度C.决D.切6.在某校“我的中国梦”演讲比赛中,有15名学生参加决赛.他们决赛的最终成绩各不相同. 其中一名学生想要知道自己能否进入前8名,他不仅要了解自己的成绩,还要了解这15 名学生成绩的( )A.众数B.方差C.平均数D.中位数 7.若二次函数2()1y x m =--.当3x ≤时,y 随x 的增大而减小,则m 的取值范围是( ) A. 3m = B. 3m > C. 3m ≥ D. 3m ≤8.如图①所示,将一个正四棱锥(底面为正方形,四条侧棱相等)的其中四条边剪开,得到图 ②,则被剪开的四条边有可能是( )A. ,,,PA PB AD BCB. ,,,PD DC BC ABC. ,,,PA AD PC BCD. ,,,PA PB PC AD9.如图,等边三角形ABC 的边长为3 cm ,动点P 从点A 出发,以每秒1 cm 的速度,沿 A B C →→的方向运动,到达点C 时停止,设运动时间为2(),x s y PC =,则y 关 于x 的函数图像大致为( )10.如图,在ABC ∆中,90,4,2C AC BC ∠=︒==,点,A C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动.在运动过程中,点B 到原点的最大距离是 ( )A. 6B. 6C. 25D. 222 二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填 写在答题卡相应位置上) 11.函数1y x=-中自变量x 的取值范围是 . 12.我国因环境污染造成的巨大经济损失每年高达680 000 000元,这个数用科学记数法表示 为 元.13.已知点1112(,),(3,)A x y B x y -在直线23y x =-+上,则1y (填“>”“<”或“=”) 2y . 14.若关于x 的二次方程230x ax a +++=有两个相等的实数根,则实数a = . 15.如图,点A 在双曲线上3y x =,点B 在双曲线5y x=上,且//AB x 轴,,C D 在x 轴上, 若四边形ABCD 为平行四边形,则它的面积为 .16.如图,方格纸中有三个格点,,A B C ,则点A 到BC 的距离为.17.如图,将边长为6的正方形ABCD 绕点C 顺时针旋转30︒得到正方形A B CD ''',则点A 的旋转路径长为 .(结果保留π)18.已知二次函数2y ax bx c =++与自变量x 的部分对应值如下表:现给出下列说法:①该函数开口向下,②该函数图像的对称轴为过点(1,0)且平行于y 轴的直线.③当2x =时,3y =.④方程22ax bx c ++=-的正根在3与4之间.其中正确的说法为 .(只需写出序号)三、解答题(本大题共10小题,共76分.请在答题卡指定区域内作答,解答时应写出文字说 明、证明过程或演算步骤) 19.(本题满分5分) 计算:21(3)()279tan 303π-+︒20.(本题满分6分)解不等式组2( 1.5)5532m m m +≥⎧⎪⎨<+⎪⎩并将解集在数轴上表示出来.21.(本题满分6分)先化简,再求代数式的值:222()111a aa a a +-÷-+-其中31a =.22.(本题满分6分)如图,,E F 是四边形ABCD 的对角线AC 上两点, ,,//AF CE DF BE DF BE ==求证: AB CD =.23.(本题满分7分)“校园安全”受到全社会的广泛关注.某中学对部分学生就校园安全知识 的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两 幅尚不完整的统计图.请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“了解”部分所对应扇形的圆心 角为 度; (2)补全条形统计图;(3)该中学共有学生1 200人,估计该中学学生对校园安全知识达到“了解”和“基本了 解”程度的总人数.24.(本题满分8分)如图,某大楼的顶部竖有一块广告牌CD ,小李在山坡的坡脚A 处测得广 告牌底部D 的仰角为60︒.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45︒,已 知山坡AB 的坡度1:3,8i AB ==米,10AE =米.( 1:3i =是指坡面的铅直高度 BH 与水平宽度AH 的比)(1)求点B 距水平面AE 的高度BH ; (2)求广告牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米)25.(本题满分8分)某景区门票价格为80元/人,为吸引游客,对门票价格进行动态管理,非 节假日打a 折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分 打b 折,设游客为x 人,门票费用为y 元,非节假日门票费用1y (元)及节假日门票费用2y (元)与游客x (人)之间的函数关系如图所示. (1) a = , b = ; (2)直接写出12,y y 与x 之间的函数关系式; (3)导游小王4月15日(非节假日)带A 旅游团, 5月1日带B 旅游团到该景区旅游,两团 共计50人,两次共付门票费用3 040元, 求,A B 两个旅游团各多少人?26.(本题满分9分)已知点O 是四边形ABCD 内一点,,,AB BC OD OC ==ABC DOC α∠=∠=.(1)如图1, 60α=︒,探究线段AD 与OB 的数量关系,并加以证明; (2)如图2, 120α=︒,探究线段AD 与OB 的数量关系,并说明理由;(3)结合上面的活动经验探究,请直接写出如图3中线段AD 与OB 的数量关系为 (直接 写出答案).27.(本题满分9分)已知,正方形ABCD ,(0,4),(1,4),(1,5),(0,5)A B C D ----,抛物线 224(y x mx m m =+--为常数),顶点为M .(1)抛物线经过定点坐标是 ,顶点M 的坐标是 (用m 的代数式表示); (2)若抛物线224(y x mx m m =+--为常数)与正方形ABCD 的边有交点,求m 的取值 范围;(3)若45ABM ∠=︒时,求m 的值.28.(本题满分12分)如图,在平面直角坐标系中,O 为坐标原点,直线6y x =-+交y 轴于 点A ,交x 轴于点B ,点,C B 关于原点对称,点P 在射线AB 上运动,连接CP 与y 轴 交于点D ,连接D .过,,P D B 三点作⊙Q 与y 轴的另一个交点为E ,延长DQ 交⊙Q 于 点F ,连接,EF BF . (1)求,,A B C 三点的坐标;(2)当点P 在线段AB (不包括,A B 两点)上时,求证: DE EF =;(3)请你探究:点DE EF =在运动过程中,是否存在以,,B D F 为顶点的直角三角形,满 足两条直角边之比为2:1?如果存在,求出此时点P 的坐标:如果不存在,请说明理由.。

苏州市2019年中考数学模拟试卷(一)含答案解析

苏州市2019年中考数学模拟试卷(一)含答案解析

2019年江苏省苏州市中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.下列式子结果为负数的是()A.(﹣3)0B.﹣|﹣3| C.(﹣3)2D.(﹣3)﹣2【考点】负整数指数幂;绝对值;有理数的乘方;零指数幂.【试题解析】解:A、(﹣3)0=1>0;C、(﹣3)2=9>0;D、(﹣3)﹣2=>0;B、﹣|﹣3|=﹣3<0.【答案】B.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.0.21×10﹣5 D.2.1×10﹣5【考点】科学记数法—表示较小的数.【试题解析】解:一粒大米的质量约为0.000021千克,这个数用科学记数法表示为2.1×10﹣5;【答案】:D3.下列计算正确的是()A.(2a2)3=8a5B.()2=9 C.3﹣=3 D.﹣a8÷a4=﹣a4【考点】幂的乘方与积的乘方;算术平方根;同底数幂的除法;二次根式的加减法.【试题解析】解:A、(2a2)3=8a6,原式计算错误,故本选项错误;B、()2=3,原式计算错误,故本选项错误;C、3﹣=2,原式计算错误,故本选项错误;D、﹣a8÷a4=﹣a4,原式计算正确,故本选项正确.【答案】D.4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率【考点】全面调查与抽样调查.【试题解析】解:A、人数众多,应用抽样调查,故此选项错误;B、人数不多,应用全面调查,故此选项正确;C、数量众多,使用抽样调查,破坏性较强,故此选项错误;D、范围太大,应用抽样调查,故此选项错误;【答案】:B.5.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【试题解析】解:应该将②涂黑.【答案】B.6.已知是二元一次方程组的解,则a﹣b的值为()A.﹣1 B.1 C.2 D.3【考点】二元一次方程的解.【试题解析】解:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①﹣②,得b=3,∴a﹣b=﹣1;【答案】:A.7.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.【考点】简单几何体的三视图;截一个几何体.【试题解析】解:从上面看,图2的俯视图是正方形,有一条对角线.【答案】C.8.如图,在△ABC中,∠A=90°,AB=AC=2,点O是边BC的中点,半圆O与△ABC相切于点D、E,则阴影部分的面积等于()A.1﹣B.C.1﹣D.【考点】切线的性质;扇形面积的计算.【试题解析】解:连接OD,OE,∵半圆O与△ABC相切于点D、E,∴OD⊥AB,OE⊥AC,∵在△ABC中,∠A=90°,AB=AC=2,∴四边形ADOE是正方形,△OBD和△OCE是等腰直角三角形,∴OD=OE=AD=BD=AE=EC=1,∴∠ABC=∠EOC=45°,∴AB∥OE,∴∠DBF=∠OEF,在△BDF和△EOF中,,∴△BDF≌△EOF(AAS),∴S 阴影=S 扇形DOE =×π×12=.【答案】B .9.在△ABC 中,∠ABC=30°,AB 边长为10,AC 边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是( )A .3个B .4个C .5个D .6个【考点】勾股定理;含30度角的直角三角形.【试题解析】解:如图,过点A 作AD ⊥BC 于D ,∵∠ABC=30°,AB=10,∴AD=AB=5,当AC=5时,可作1个三角形,当AC=7时,可作2个三角形,当AC=9时,可作2个三角形,当AC=11时,可作1个三角形,所以,满足条件的互不全等的三角形共有1+2+2+1=6个.【答案】D .10.二次函数y=x 2+px+q 中,由于二次项系数为1>0,所以在对称轴左侧,y 随x 增大而减小,从而得到y 越大则x 越小,在对称轴右侧,y 随x 增大而减大,从而得到y 越大则x 也越大,请根据你对这句话的理解,解决下面问题:若关于x 的方程x 2+px+q+1=0的两个实数根是m 、n (m <n ),关于x 的方程x 2+px+q﹣5=0的两个实数根是d 、e (d <e ),则m 、n 、d 、e 的大小关系是( )A .m <d <e <nB .d <m <n <eC .d <m <e <nD .m <d <n <e【考点】抛物线与x 轴的交点.【试题解析】解:二次函数y=x 2+px+q+1图象如图所示:结合图象可知方程x2+px+q﹣5=0的两个实数根即为函数y=x2+px+q+1和y=6的交点,即d<m<n<e,【答案】B.二、填空题(本大题共8小题,每小题3分,共24分)11.在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.【考点】函数自变量的取值范围.【试题解析】解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.【答案】x≥﹣1且x≠0.12.若点P(a,a﹣2)在第四象限,则a的取值范围是0<a<2.【考点】点的坐标.【试题解析】解:∵点P(a,a﹣2)在第四象限,∴,解得0<a<2.【答案】0<a<2.13.分解因式:4x3﹣4x2y+xy2=x(2x﹣y)2.【考点】提公因式法与公式法的综合运用.【试题解析】解:4x3﹣4x2y+xy2=x(4x2﹣4xy+y2)=x(2x﹣y)2.【答案】x(2x﹣y)2.14.方程x(x﹣2)=﹣(x﹣2)的根是x1=2,x2=﹣1.【考点】解一元二次方程-因式分解法.【试题解析】解:x(x﹣2)=﹣(x﹣2)移项得:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1.【答案】x1=2,x2=﹣1.15.已知点P(a,b)在直线上,点Q(﹣a,2b)在直线y=x+1上,则代数式a2﹣4b2﹣1=1.【考点】一次函数图象上点的坐标特征.【试题解析】解:∵点P(a,b)在直线上,点Q(﹣a,2b)在直线y=x+1上,∴,解得,∴原式=﹣4×﹣1=1.【答案】1.16.某数学活动小组的20名同学站成一列做报数游戏,规则是:从前面第一位开始,每位同学一次报自己的顺序数的倒数加1,第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…这样得到的20个数的积为21.【考点】规律型:数字的变化类.【试题解析】解:∵第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…∴这样20个数据分别为:(+1)=2,(+1)=,(+1)=…(+1)=,(+1)=,故这样得到的20个数的积为:2×××…××=21,【答案】21.17.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是15°或165°.【考点】旋转的性质;等边三角形的性质;正方形的性质.【试题解析】解:①当正三角形AEF在正方形ABCD的内部时,如图1,∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,在△ABE与△ADF中,,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE+∠FAD=30°,∴∠BAE=∠FAD=15°,②当正三角形AEF在正方形ABCD的外部时.∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴AB=AD BE=DF AE=AF,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE=(360°﹣90°﹣60°)×+60°=165°,∴∠BAE=∠FAD=165°【答案】15°或165°.18.如图,圆心都在x轴正半轴上的半圆O1、半圆O2、…、半圆O n与直线相切,设半圆O1、半圆O2、…、半圆O n的半径分别是r1、r2、…、r n,则当r1=1时,r2019=32019.【考点】切线的性质;一次函数图象上点的坐标特征.【试题解析】解:设A、B、C是切点,由题意直线y=x与x轴的夹角为30°,在RT△OO1A中,∵AO1=1,∠AOO1=30°,∴OO1=2AO1=2,同理:OO2=2BO2,OO3=2CO3,∴3+r2=2r2,∴r2=3,9+r3=2r3,r3=9,∴r1=1,r2=3,r3=9…r n=3n﹣1,∴r2019=32019.【答案】32019.三、解答题(本大题共10小题,共76分)19.计算:﹣2cos30°+()﹣2﹣|1﹣|.【考点】特殊角的三角函数值;绝对值;负整数指数幂;二次根式的性质与化简.【试题解析】解:原式=3﹣2×+4﹣(﹣1),=3﹣+4﹣+1,=+5.【答案】+5.20.化简:÷(x+2﹣)【考点】分式的混合运算.【试题解析】解:÷(x+2﹣)=÷()=•=.【答案】.21.解不等式组:,并求它的整数解的和.【考点】一元一次不等式组的整数解.【试题解析】解:由①得x>﹣2由②得x≤1∴不等式组的解集为﹣2<x≤1∴不等式组的整数解的和为﹣1+0+1=0.【答案】022.如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);(2)记△ABC的外接圆的面积为S,△ABC的面积为S△,试说明>π.圆【考点】作图—复杂作图;勾股定理;三角形的外接圆与外心.【试题解析】解:(1)如图所示:,(2)∵△ABC的外接圆的面积为S圆=π×()2=π,∴S圆△ABC的面积S△ABC=×3a×4a=6a2,∴==π>π.【答案】见解析23.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?【考点】列表法与树状图法.【试题解析】解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是3时,|x|=0,不会有奖.【答案】见解析24.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(2019•常州)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.【考点】勾股定理;含30度角的直角三角形;等腰直角三角形.【试题解析】解:(1)过D点作DE⊥AB,过点B作BF⊥CD,∵∠A=∠C=45°,∠ADB=∠ABC=105°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=360°﹣45°﹣45°﹣105°=165°,∴∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADE与△BCF为等腰直角三角形,∵AD=2,∴AE=DE==,∵∠ABC=105°,∴∠ABD=105°﹣45°﹣30°=30°,∴BE===,∴AB=;(2)设DE=x,则AE=x,BE===,∴BD==2x,∵∠BDF=60°,∴∠DBF=30°,∴DF==x,∴BF===,∴CF=,∵AB=AE+BE=,CD=DF+CF=x,AB+CD=2+2,∴AB=+1【答案】见解析26.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.根据所给图表信息,解决下列问题:(1)m=60,解释m的实际意义:该停车场当日6:00时的自行车数;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.【考点】二次函数的应用.【试题解析】解:(1)m+45﹣5=100,解得m=60,即6点之前的存量为60.m表示该停车场当日6:00时的自行车数;(2)n=100+43﹣11=132,设二次函数的解析式为y=ax2+bx+c,把(1,100),(2,132)、(0,60)代入得,解得,所以二次函数的解析式为y=﹣4x2+44x+60(x为1﹣12的整数);(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得y=﹣4×32+44×3+60=156,把x=4代入y=﹣4x2+44x+60得y=﹣4×42+44×4+60=172,即此时段的存量为172,所以156﹣x+(3x﹣4)=172,解得x=10,答:此时段借出自行车10辆.【答案】见解析27.如图,A(5,0),B(3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P 从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位长度的速度运动,运动时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.【考点】圆的综合题.【试题解析】解:(1)∵A(5,0),B(3,0),∴OA=5,OB=3,∵∠CBO=45°,∴OC=OB=3,∴点C的坐标(0,3);(2)①当P在点B的左侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB﹣∠BCP=45°﹣15°=30°,∵CO=3,∴OP=CO=,∵Q(﹣4,0),∴QP=+4,∵点P沿x轴向右以每秒2个单位的速度运动,∴t=,②当P在点B的右侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB+∠BCP=45°+15°=60°,∵CO=3,∴OP=CO=3,∵Q(﹣4,0),∴QP=3+4,∵点P沿x轴向右以每秒2个单位的速度运动,∴t=,综上所述当∠BCP=15°时,t的值为或;(3)①如图1,当PC⊥BC时,⊙P与BC相切,∵∠CBO=45°,∴∠CPB=45°,CP=BC,∵CO=3,∴PO=3,∴QP=QO﹣PO=4﹣3=1,∵点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=0.5(秒),②如图2,当PC⊥CD时,⊙P与CD相切,∵QO=4,点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=4÷2=2(秒)③如图3,当PA⊥AD时,⊙P与AD相切,设PA=r∵OA=5,OC=3,∴OP2+OC2=PC2,即(5﹣r)2+32=r2,解得:r=,∴QP=4+5﹣=,∵点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=,综上所述t1=0.5秒,t2=2秒,t3=秒.【答案】见解析28.已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.【考点】相似三角形的判定与性质;勾股定理;正方形的性质;直角梯形.【试题解析】解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②如图④,当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t ﹣1,∵NL=AD=,∴FL=t ﹣,∴当<t ≤2时,S=S △FMN ﹣S △FKL =t 2﹣(t ﹣)(t ﹣1)=﹣t 2+t ﹣; ③如图⑤,当G 在CD 上时,B ′C :CH=B ′G :DH ,即B ′C :4=2:3,解得:B ′C=,∴EC=4﹣t=B ′C ﹣2=,∴t=,∵B ′N=B ′C=(6﹣t )=3﹣t ,∵GN=GB ′﹣B ′N=t ﹣1,∴当2<t ≤时,S=S 梯形GNMF ﹣S △FKL =×2×(t ﹣1+t )﹣(t ﹣)(t ﹣1)=﹣t 2+2t ﹣,④如图⑥,当<t ≤4时,∵B ′L=B ′C=(6﹣t ),EK=EC=(4﹣t ),B ′N=B ′C=(6﹣t ),EM=EC=(4﹣t ),S=S 梯形MNLK =S 梯形B ′EKL ﹣S 梯形B ′EMN =﹣t+.综上所述:当0≤t ≤时,S=t 2,当<t ≤2时,S=﹣t 2+t ﹣;当2<t ≤时,S=﹣t 2+2t ﹣,当<t ≤4时,S=﹣t+.【答案】见解析。

2019年最新江苏省中考数学第一次模拟试题1及答案解析

2019年最新江苏省中考数学第一次模拟试题1及答案解析
11.关于x的方程x2﹣4x+3﹣m=0有两个相等的实数根,则m=.
12.在平面直角坐标系xOy中,平行四边形OABC的顶点为O(0,0),A(1,1),B(3,0),则顶点C的坐标是.
13.分式方程 的解为.
14.如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为.
8.如图所示,在直角坐标系中放置一个矩形OABC,其中AB=2,AO=1,若将矩形OABC沿x轴的负方向无滑动地在x轴上翻滚,则当点O离开原点后第一次落在x轴上时,点O运动的路径与x轴围成的面积为( )
A. B. C. D.
二、填空题:本大题共8小题,每题3分,共24分.
9.4是的算术平方根.
10.分解因式ቤተ መጻሕፍቲ ባይዱa2﹣2mab+mb2=.
(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;
(2)你认为这个规则公平吗?请说明理由.
23.如图,一次函数y=kx+b与反比例函数y= 的图象交于A(n,3),B(3,﹣1)两点.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b> 的解集;
(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).
(2)若∠B=60°,AB=3,求⊙P的面积.
22.某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:
将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.

苏州市市区2019届中考数学一模试卷

苏州市市区2019届中考数学一模试卷

2019初三教学调研试卷数 学 2019.04一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上.) 1.13-的倒数是 A. 3- B. 13- C. 3 D. 132.下列计算正确的是A. 224a a a += B. 235()a a = C. 22a a -= D. 222()ab a b =3.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:则这30名同学每天使用的零花钱的众数和中位数分别是A. 4, 3B. 4, 3.5C. 3.5,3.5D. 3.5,4 4.已知2310x x -+=,则21xx x -+的值是A.12 B. 2 C. 13D. 3 5.如图,己知AB 、AD 是⊙O 的弦, 30B ∠=︒,点C 在弦AB 上,连接CO 并延长CO交于⊙O 于点D ,20D ∠=︒,则BAD ∠的度数是A. 30︒ B . 40︒ C. 50︒ D. 60︒6.某工厂进行技术创新,现在每天比原来多生产50台机器,并且现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设现在每天生产x 台机器,根据题意可得方程为: A.6004505x x =+ B . 6004505x x =- C. 60045050x x =+ D. 60045050x x =-7.已知二次函数2y ax bx c =++的图象如图所示,顶点为(1,0-),下列结论: ①0abc <; ②240b ac -=; ③2a >; ④420a b c -+> 其中正确结论的个数是A. 1B. 2C. 3D. 48.对于正数x ,规定()1x f x x =+, 例如133113(3),()11343413f f ====++,计算11111()()()()()(1)(2)(3)100099999832f f f f f f f f ++⋯++++++⋯ (998)(999)(1000)f f f ++的结果是A. 999B. 999.5C. 1000D. 1000.59.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形(两组邻边分别相等的四边形),再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是cm 2B.cm 2C. 2D. cm 210.如图,OA 在x 轴上,OB 在y 轴上,4,3OA OB ==,点C 在边OA 上,1AC =,⊙P 的圆心P 在线段BC 上 ,且⊙P 与边AB ,AO 都相切.若反比例函数(0)ky k x=≠的图象经过圆心P ,则k 的值是 A. 54-B. 53-C. 52- D. 2- 二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应题中横线上. 11.分解因式2a a -= . 12.函数y =x 的取值范围是 .13.世界文化遗产长城总长约为6700000m ,若将6700000用科学记数法表示为 . 14.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片己经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 . 15.圆锥底面圆的半径为3m ,其侧面展开图的圆心角为120︒,则圆锥的母线长为 m. 16.如图,ABC ∆中,2,4AB AC ==,将ABC ∆绕点C 按逆时针方向旋转得到A B C ''∆,使AB //B C ',分别延长AB 、CA '相交于点D ,则线段BD 的长为 .17.如图,CA AB ⊥,DB AB ⊥,己知2,6AC AB ==,点P 射线BD 上一动点,以CP 为直径作⊙O ,点P 运动时,若⊙O 与线段AB 有公共点,则BP 最大值为 . 18.如图(1)所示,E 为矩形ABCD 的边AD 上一点动点P 、Q 同时从点B 出发,点P 以1cm/ 秒的速度沿折线BE ED DC --运动到点C 时停止,点Q 以2cm/秒的速度沿BC 运动到点C 时停止.设P 、Q 同时出发t 秒时,BPQ ∆的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(其中曲线OG 为抛物线的一部分,其余各部分均为线段),则下列结论: ① 05t <≤时,245y t =; ② 当6t =秒时,ABE ∆≌PQB ∆; ③ 4cos 5CBE ∠=; ④ 当292t =秒时,ABE ∆∽QBP ∆; ⑤ 段NF 所在直线的函数关系式为:496y x =-+.其中正确的是 .(填序号)三、解答题(本大题共11小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(本题5分)计算:1301()(2)39-+-+-- 20.(本题5分)解不等式组:13x +≤34(1)1x --<21.(本题5分)先化简,再求值:22121()222a a a a a a -++÷---,其中1a = 22. (本题5分)解分式方程:—3323x x x x --=- 23.(本小题满分7分)如图,在ABC ∆中,90BAC ∠=︒,AD 是中线,E 是AD 的中点,过点A 作AF //BC 交BE 的延长线于点F ,连接CF . (1)求证:AD AF =;(2)如果AB AC =,试判断四边形ADCF 的形状,并证明你的结论.24.(本小题满分7分)某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家.为了解学生最喜欢哪一项校本课程,随机抽取 了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题: (1)这次被调查的学生共有____人; (2)请你将条形统计图补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).25.(本小题满分6分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角 仪测得塔顶D 的仰角为30︒,在A 、C 之间选择一点B (A 、B 、C 三点在同一直线上)用测角仪测得塔顶D 的仰角为75︒,且AB 间的距离为40m. (1)求点B 到AD 的距离; (2)求塔高CD (结果精确到0.1m.) (1.414 1.732≈≈).26.(本小题满分7分)如图,在直角坐标系xOy 中,一直线2y x b =+经过点(1,0)A -,与y 轴正半轴交于B 点,在x 轴正半轴上有一点D ,且OD OB =,过D 点作DC x ⊥轴交直线2y x b =+于C 点,反比例函数(0)ky x x=>经过点C . (1)求,b k 的值; (2)求BDC ∆的面积; (3)在反比例函数(0)ky x x=>的图像上 找一点P (异于点C ),使BDP ∆与BDC ∆的面积相等,求出P 点坐标.27.(本小题满分7分)如图,己知MN 是⊙O 的直径,P 为⊙O 上一点,NP 平分MNQ ∠,且NQ PQ ⊥.(1)求证:直线PQ 是⊙O 的切线;(2)若⊙O的半径2,R NP ==NQ 的长.28.(本小题满分10分)如图,二次函数23(0)2y ax x c a =++≠的图像与x 轴交于A 、B 两 点,与y 轴交于点C ,己知点(1,0)A -,点(0,2)C (1)求抛物线的函数解析式;(2)若点D 是抛物线在第一象限的部分上的一动点,当四边形OCDB 的面积最大时,求点D 的坐标;(3)若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以,,,B C E F 为顶点的四边 形是平行四边形时,写出满足条件的所有点E 的坐标.29.(本小题满分12分)如图①,四边形ABCD 中,AD // BC ,DC BC ⊥,6AD =cm ,8DC =cm ,12BC =cm.动点M 在CB 上运动,从C 点出发到B 点,速度每秒2cm;动点N 在BA 上运动,从B 点出发到A 点,速度每秒1cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒). (1)求线段AB 的长;(2)当t 为何值时,MN //CD ?(3)设三角形DMN 的面积为S ,求S 与t 之间的函数关系式;(4)如图②,连接BD ,是否存在某一时刻t ,使MN 与BD 互相垂直?若存在,求出这时 的t 值;若不存在,请说明理由.。

2019年江苏省苏州市中考数学一模试卷 解析版

2019年江苏省苏州市中考数学一模试卷  解析版

2019年江苏省苏州市中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应位置上)1.(3分)﹣2的相反数是()A.2B.﹣2C.D.2.(3分)苏州奥体中心体育场可容纳45000名观众,数据45000用科学记数法表示为()A.4.5×103B.4.5×104C.4.5×105D.4.5×1063.(3分)下列运算结果等于x6的是()A.x2•x3B.x6÷x C.x2+x4D.(x3)24.(3分)关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,则实数m 的取值范围是()A.B.C.D.5.(3分)如图,△ABC是一把直角三角尺,∠ACB=90°,∠B=30°.把三角尺的直角顶点放在一把直尺的一边上,AC与直尺的另一边交于点D,AB与直尺的两条边分别交于点E,F.若∠AFD=58°,则∠BCE的度数为()A.20°B.28°C.32°D.88°6.(3分)如图,四边形ABCD内接于⊙O,AB是直径,BC∥OD,若∠C=130°,则∠B 的度数为()A.50°B.60°C.70°D.80°7.(3分)某校为了了解学生到校的方式,随机抽取了部分学生进行问卷调查,并将调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,则扇形统计图中“步行”对应的圆心角的度数为()A.54°B.60°C.72°D.108°8.(3分)如图,一架无人机航拍过程中在C处测得地面上A,B两个目标点的俯角分别为30°和60°.若A,B两个目标点之间的距离是120米,则此时无人机与目标点A之间的距离(即AC的长)为()A.120米B.米C.60米D.米9.(3分)已知,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,延长AC到F,使得CF=AC,连接EF.若EF=4,则AB的长为()A.8B.C.4D.10.(3分)如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.B.13C.D.18二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应位置上.)11.(3分)若在实数范围内有意义,则x的取值范围是.12.(3分)分解因式2x2﹣4x+2=.13.(3分)分式方程的解是.14.(3分)某校随机调查了八年级20名男生引体向上的个数,统计数据如表所示,则这些男生引体向上个数的中位数与众数之和为.个数678910人数23465 15.(3分)若一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(1,3)和点(﹣1,2),则k2﹣b2的值为.16.(3分)在2019年春节期间,某商场开展迎春大酬宾活动,对一次性购物不超过200元和超过200元分别设置了两种不同的优惠办法,顾客一次性购物实际付款y(元)是所购物品的原价x(元)的函数,其图象如图所示.已知小明一次性购物实际付款236元,则他所购物品的原价为元.17.(3分)如图,一张扇形纸片OAB中,半径OA为2,点C是的中点,现将这张扇形纸片沿着弦AB折叠,点C恰好与圆心O重合,则图中阴影部分的面积为.18.(3分)如图,正方形ABCD的边长为,点E是正方形ABCD内一点,将△BCE 绕着点C顺时针旋转90°,点E的对应点F和点B,E三点在一条直线上,BF与对角线AC相交于点G,若DF=6,则GF的长为.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(5分)计算:.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣1.22.(6分)如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:CG=FG.23.(8分)有三张正面分别写有数字﹣1,2,3的卡片,它们背面完全相同.(1)将这三张卡片背面朝上洗匀后随机抽取一张,则抽到的卡片为正面写有正数的卡片的概率为.(2)小明将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为平面直角坐标系内点P的横坐标,然后将此卡片放回、洗匀,再由小丽从三张卡片中随机抽取一张,以其正面数字作为平面直角坐标系内点P的纵坐标,请用树状图或表格列出点P所有可能的坐标,并求出点P在第一象限内的概率.24.(8分)我市某中学为推进书香校园建设,在全校范围开展图书漂流活动,现需要购进一批甲、乙两种规格的漂流书屋放置图书.已知一个甲种规格的漂流书屋的价格比一个乙种规格的漂流书屋的价格高80元;如果购买2个甲种规格的漂流书屋和3个乙种规格的漂流书屋,一共需要花费960元.(1)求每个甲种规格的漂流书屋和每个乙种规格的漂流书屋的价格分别是多少元?(2)如果学校计划购进这两种规格的漂流书屋共15个,并且购买这两种规格的漂流书屋的总费用不超过3040元,那么该学校至多能购买多少个甲种规格的漂流书屋?25.(8分)如图,四边形ABCD是菱形,对角线AC⊥x轴,垂足为A.反比例函数y=的图象经过点B,交AC于点E.已知菱形的边长为,AC=4.(1)若OA=4,求k的值;(2)连接OD,若AE=AB,求OD的长.26.(10分)如图,AB是⊙O的直径,点P在BA的延长线上,过点P作⊙O的切线,切点为D,BC垂直于PD,垂足为C,BC与⊙O相交于点E,连接OE,交BD于点F.(1)求证:BD平分∠ABC;(2)若BC=6,tan P=,①求线段BD的长;②求线段BF的长.27.(10分)如图1,在平面直角坐标系中,一次函数y=﹣x+8的图象与y轴交于点A,与x轴交于点B,点C是x轴正半轴上的一点,以OA,OC为边作矩形AOCD,直线AB 交OD于点E,交直线DC于点F.(1)如图2,若四边形AOCD是正方形.①求证:△AOE≌△COE;②过点C作CG⊥CE,交直线AB于点G.求证:CG=FG.(2)是否存在点C,使得△CEF是等腰三角形?若存在,求该三角形的腰长;若不存在,请说明理由.28.(10分)如图,在平面直角坐标系中,一次函数y=x﹣3的图象与x轴交于点A,与y 轴交于点B,点B关于x轴的对称点是C,二次函数y=﹣x2+bx+c的图象经过点A和点C.(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第四象限的图象上,点C 的对应点E落在直线AB上,求此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交CD轴于点M,点P为直线AC上方抛物线上一动点,过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求点P的横坐标;若不存在,请说明理由.2019年江苏省苏州市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应位置上)1.(3分)﹣2的相反数是()A.2B.﹣2C.D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)苏州奥体中心体育场可容纳45000名观众,数据45000用科学记数法表示为()A.4.5×103B.4.5×104C.4.5×105D.4.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:45000=4.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列运算结果等于x6的是()A.x2•x3B.x6÷x C.x2+x4D.(x3)2【分析】直接利用合并同类项法则以及同底数幂的乘除法运算法则分别化简得出答案.【解答】解:A、x2•x3=x5,故此选项错误;B、x6÷x=x5,故此选项错误;C、x2与x4=不是同类项,不能合并,故此选项错误;D、(x3)2=x6,故此选项正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除法运算,正确化简各式是解题关键.4.(3分)关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,则实数m 的取值范围是()A.B.C.D.【分析】根据根的判别式,可知△>0,据此即可求出m的取值范围.【解答】解:∵关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,∴△=(2m+1)2﹣4m2=4m2+4m+1﹣4m2=4m+1>0,解得m>﹣.故选:C.【点评】此题考查了根的判别式,解题时要注意一元二次方程成立的条件:二次项系数不为0.5.(3分)如图,△ABC是一把直角三角尺,∠ACB=90°,∠B=30°.把三角尺的直角顶点放在一把直尺的一边上,AC与直尺的另一边交于点D,AB与直尺的两条边分别交于点E,F.若∠AFD=58°,则∠BCE的度数为()A.20°B.28°C.32°D.88°【分析】由平行线的性质得出∠AEC=∠AFD=58°,再由三角形的外角性质即可得出∠BCE的度数.【解答】解:∵CE∥DF,∴∠AEC=∠AFD=58°,∵∠AEC=∠B+∠BCE,∴∠BCE=∠AEC﹣∠B=58°﹣30°=28°;故选:B.【点评】本题主要考查了平行线的性质以及三角形的外角性质,解题时注意:两直线平行,同位角相等.6.(3分)如图,四边形ABCD内接于⊙O,AB是直径,BC∥OD,若∠C=130°,则∠B 的度数为()A.50°B.60°C.70°D.80°【分析】直接利用圆内接四边形的性质得出∠A=50°,进而利用等腰三角形的性质和平行线的性质分析得出答案.【解答】解:∵四边形ABCD内接于⊙O,∠C=130°,∴∠A=50°,∵DO=AO,∴∠ADO=∠A=50°,∴∠AOD=80°,∵BC∥OD,∴∠AOD=∠B=80°.故选:D.【点评】此题主要考查了圆内接四边形的性质以及等腰三角形的性质和平行线的性质,正确得出∠A的度数是解题关键.7.(3分)某校为了了解学生到校的方式,随机抽取了部分学生进行问卷调查,并将调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,则扇形统计图中“步行”对应的圆心角的度数为()A.54°B.60°C.72°D.108°【分析】根据统计图中的数据可以求得本次调查的学生数,进而求得扇形统计图中“步行”对应的圆心角的度数.【解答】解:由图可得,本次抽查的学生有:15÷30%=50(人),扇形统计图中“步行”对应的圆心角的度数为:360°×=72°,故选:C.【点评】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.8.(3分)如图,一架无人机航拍过程中在C处测得地面上A,B两个目标点的俯角分别为30°和60°.若A,B两个目标点之间的距离是120米,则此时无人机与目标点A之间的距离(即AC的长)为()A.120米B.米C.60米D.米【分析】设CE=x米,根据正切的定义用x分别表示出AE、BE,根据题意列方程,解方程得到答案.【解答】解:设CE=x米,在Rt△ACE中,tan∠CAE=,则AE==x,在Rt△BCE中,tan∠CBE=,则BE==x,由题意得,x﹣x=120,解得,x=60,即CE=60,则AC=2CE=120(米)故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.9.(3分)已知,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,延长AC到F,使得CF=AC,连接EF.若EF=4,则AB的长为()A.8B.C.4D.【分析】连接CD,证明四边形CDEF是平行四边形,则CD=EF=4,再利用直角三角形斜边上的中线性质可求AB长.【解答】解:连接CD,∵点D,E分别是AB,BC的中点,∴DE∥AC,DE=AC.∵延长AC到F,使得CF=AC,∴DE∥CF且DE=CF,∴四边形CDEF是平行四边形.∴CD=EF=4.∵∠ACB=90°,CD为斜边AB中线,∴AB=2CD=8.故选:A.【点评】本题主要考查了平行四边形的判定和性质、直角三角形斜边上的中线性质,解题的关键是利用平行四边形的性质进行线段的转化.10.(3分)如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.B.13C.D.18【分析】过A作AH⊥OB于H,连接AD,根据MN垂直平分AB,即可得到AD=BD,当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,根据勾股定理求得AC的长,即可得到△BCD周长的最小值为13+5=18.【解答】解:如图,过A作AH⊥OB于H,连接AD,∵点A坐标为(10,12),AO=AB,∴OH=BH=10,AH=12,又∵OC=3BC,∴BC=5,CO=15,∴CH=15﹣10=5,∵MN垂直平分AB,∴AD=BD,∴BD+CD=AD+CD,∴当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,此时,Rt△ACH中,AC===13,∴△BCD周长的最小值=13+5=18,故选:D.【点评】本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应位置上.)11.(3分)若在实数范围内有意义,则x的取值范围是x≥﹣3.【分析】根据二次根式有意义的条件可得x+3≥0,再解即可.【解答】解:由题意得:x+3≥0,解得:x≥﹣3,故答案为:x≥﹣3.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.(3分)分解因式2x2﹣4x+2=2(x﹣1)2.【分析】先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.【点评】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.13.(3分)分式方程的解是x=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+x﹣2=﹣1,解得:x=,经检验x=是分式方程的解,故答案为:x=【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.(3分)某校随机调查了八年级20名男生引体向上的个数,统计数据如表所示,则这些男生引体向上个数的中位数与众数之和为18.个数678910人数23465【分析】根据众数和中位数的概念求解.【解答】解:数据9出现了6次,最多,故众数为:9,中位数为:=9,所以二者的和为9+9=18.故答案18.【点评】本题考查了众数和中位数的知识,解答本题的关键是熟练掌握众数和中位数的定义.15.(3分)若一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(1,3)和点(﹣1,2),则k2﹣b2的值为﹣6.【分析】将点(1,3)和点(﹣1,2)代入解析式可求k,b的值,即可求k2﹣b2的值.【解答】解:根据题意得:解得:∴k2﹣b2=﹣=﹣6故答案为:﹣6【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握图象上点的坐标满足图象解析式是本题的关键.16.(3分)在2019年春节期间,某商场开展迎春大酬宾活动,对一次性购物不超过200元和超过200元分别设置了两种不同的优惠办法,顾客一次性购物实际付款y(元)是所购物品的原价x(元)的函数,其图象如图所示.已知小明一次性购物实际付款236元,则他所购物品的原价为270元.【分析】根据图象得出(200,180)和(300,260)两点,利用待定系数法得出解析式,进而代入解答即可.【解答】解:由图象可得(200,180)和(300,260),设解析式为:y=kx+b,可得:,可得:,所以解析式为:y=0.8x+20,把y=236代入y=0.8x+20,解得:x=270,故答案为:270.【点评】此题考查函数图象,关键是根据图象得出(200,180)和(300,260)两点,利用待定系数法得出解析式.17.(3分)如图,一张扇形纸片OAB中,半径OA为2,点C是的中点,现将这张扇形纸片沿着弦AB折叠,点C恰好与圆心O重合,则图中阴影部分的面积为π﹣2.【分析】连接OC交AB于点P,根据折叠的性质求出OP=PC=1,根据勾股定理求出AP,根据垂径定理求出AB,根据扇形的面积公式和三角形的面积求出即可.【解答】解:连接OC交AB于点P,由题意知,OC⊥AB,且OP=PC=2=1,在Rt△AOP中,∵OA=2,OP=1,∴cos∠POA==,∴∠POA=60°,同理∠BOP=60°,∴∠AOB=120°,AP===,由垂径定理得:AB=2PM=2,∴阴影部分的面积=S扇形AOB ﹣2S△AOB=﹣2××21=π﹣2,故答案为:π﹣2.【点评】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.18.(3分)如图,正方形ABCD的边长为,点E是正方形ABCD内一点,将△BCE 绕着点C顺时针旋转90°,点E的对应点F和点B,E三点在一条直线上,BF与对角线AC相交于点G,若DF=6,则GF的长为.【分析】作CH⊥BF于H,GK⊥BC于K.证明△BCE≌△DCF(SAS),推出BE=DF =6,易知CH=HE=HF,设CH=HE=HF=a,在Rt△BCH中,根据BC2=BH2+CH2,构建方程求出a,再由tan∠CBH===,设GK=k,BK=7k,则GK=CK=k,构建方程求出k,求出BG即可解决问题.【解答】解:作CH⊥BF于H,GK⊥BC于K.∵四边形ABCD是正方形,∴CB=CD,∠BCD=90°,∵∠ECF=90°,∴∠BCD=∠ECF,∴∠BCE=∠DCF,∵CE=CF,∴△BCE≌△DCF(SAS),∴BE=DF=6,∵CE=CF,∠ECF=90°,CH⊥EF,∴EH=HF,∴CH=HE=HF,设CH=HE=HF=a,在Rt△BCH中,∵BC2=BH2+CH2,∴50=(6+a)2+a2,解得a=1或﹣7(舍弃),∴CH=HE=HF=1,BF=8,∵tan∠CBH===,设GK=k,BK=7k,则GK=CK=k,∴8k=5,∴k=,∴BG==5k=,∴FG=BF﹣BG=8﹣=,故答案为.【点评】本题考查正方形的性质,旋转变换,勾股定理,全等三角形的判定和性质,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(5分)计算:.【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣(2﹣)+=1﹣2++=﹣1+2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.20.(5分)解不等式组:.【分析】分别求出各不等式的解集,再求出其公共解集.【解答】解:解不等式3x﹣2<x,得:x<1,解不等式≤2x+1,得:x≥﹣2,则不等式组的解集为﹣2≤x<1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣1.【分析】先根据分式混合元算的法则把原式进行化简,再代入进行计算即可.【解答】解:原式=•=,当x=﹣1时,原式=【点评】本题考查了分式的化简求值.解题的关键是对分式的分子分母要因式分解.22.(6分)如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:CG=FG.【分析】由“SAS”可证△ABC≌△DEF,可得∠ACB=∠DFE,可得结论.【解答】证明:∵BF=CE∴BF+CF=CE+CF∴BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS)∴∠ACB=∠DFE∴CG=FG【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定和性质是本题关键.23.(8分)有三张正面分别写有数字﹣1,2,3的卡片,它们背面完全相同.(1)将这三张卡片背面朝上洗匀后随机抽取一张,则抽到的卡片为正面写有正数的卡片的概率为.(2)小明将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为平面直角坐标系内点P的横坐标,然后将此卡片放回、洗匀,再由小丽从三张卡片中随机抽取一张,以其正面数字作为平面直角坐标系内点P的纵坐标,请用树状图或表格列出点P所有可能的坐标,并求出点P在第一象限内的概率.【分析】(1)直接根据概率公式计算可得.(2)列表得出有放回的所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得【解答】解:(1)抽到的卡片为正面写有正数的卡片的概率为,故答案为:;(2)列表如下:﹣123﹣1(﹣1,﹣1)(2,﹣1)(3,﹣1)2(﹣1,2)(2,2)(3,2)3(﹣1,3)(2,3)(3,3)由表知,共有9种等可能结果,其中点P在第一象限内的有4种结果,所以点P在第一象限内的概率为.【点评】本题考查了列表法与树状图法:列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.24.(8分)我市某中学为推进书香校园建设,在全校范围开展图书漂流活动,现需要购进一批甲、乙两种规格的漂流书屋放置图书.已知一个甲种规格的漂流书屋的价格比一个乙种规格的漂流书屋的价格高80元;如果购买2个甲种规格的漂流书屋和3个乙种规格的漂流书屋,一共需要花费960元.(1)求每个甲种规格的漂流书屋和每个乙种规格的漂流书屋的价格分别是多少元?(2)如果学校计划购进这两种规格的漂流书屋共15个,并且购买这两种规格的漂流书屋的总费用不超过3040元,那么该学校至多能购买多少个甲种规格的漂流书屋?【分析】(1)设每个甲种规格的漂流书屋的价格为x元,每个乙种规格的漂流书屋的价格为y元,根据“一个甲种规格的漂流书屋的价格比一个乙种规格的漂流书屋的价格高80元;如果购买2个甲种规格的漂流书屋和3个乙种规格的漂流书屋,一共需要花费960元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该学校购买m个甲种规格的漂流书屋,则购买(15﹣m)个乙种规格的漂流书屋,根据总价=单价×数量结合总价不超过3040元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.【解答】解:(1)设每个甲种规格的漂流书屋的价格为x元,每个乙种规格的漂流书屋的价格为y元,依题意,得:,解得:.答:每个甲种规格的漂流书屋的价格为240元,每个乙种规格的漂流书屋的价格为160元.(2)设该学校购买m个甲种规格的漂流书屋,则购买(15﹣m)个乙种规格的漂流书屋,依题意,得:240m+160(15﹣m)≤3040,解得:m≤8.答:该学校至多能购买8个甲种规格的漂流书屋.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.25.(8分)如图,四边形ABCD是菱形,对角线AC⊥x轴,垂足为A.反比例函数y=的图象经过点B,交AC于点E.已知菱形的边长为,AC=4.(1)若OA=4,求k的值;(2)连接OD,若AE=AB,求OD的长.【分析】(1)利用菱形的性质得出AH的长,再利用勾股定理得出BH的长,得出B点坐标即可得出答案;(2)首先表示出B,E两点坐标进而利用反比例函数图象上的性质求出D点坐标,再利用勾股定理得出DO的长.【解答】解:(1)连接BD交AC于点H,∵四边形ABCD是菱形,AC=4,∴BD⊥AC,AH=2,∵对角线AC⊥x轴,∴BD∥x轴,∴B、D的纵坐标均为2,在Rt△ABH中,AH=2,AB=,∴BH=,∵OA=4,∴B点的坐标为:(,2),∵点B在反比例函数y=的图象上,∴k=11;(2)设A点的坐标为(m,0),∵AE=AB=,CE=,∴B,E两点的坐标分别为:(m+,2),(m,).∵点B,E都在反比例函数y=的图象上,∴(m+)×2=m,∴m=6,作DF⊥x轴,垂足为F,∴OF=,DF=2,D点的坐标为(,2),在Rt△OFD中,OD2=OF2+DF2,∴OD=.【点评】此题主要考查了菱形的性质以及勾股定理和反比例函数图象上的性质,正确得出D点坐标是解题关键.26.(10分)如图,AB是⊙O的直径,点P在BA的延长线上,过点P作⊙O的切线,切点为D,BC垂直于PD,垂足为C,BC与⊙O相交于点E,连接OE,交BD于点F.(1)求证:BD平分∠ABC;(2)若BC=6,tan P=,①求线段BD的长;②求线段BF的长.【分析】(1)连接OD,证明OD∥BC,再由OB=OD证明∠OBD=∠ODB,进而得结论;(2)①解Rt△PBC得PC与PB,设⊙O的半径为x,由相似三角形列出x的方程求得x,进而求得CD,便可用勾股定理求得BD;②过点O作OM⊥BE于点M,得四边形ODCM为矩形,得到BM的长度,再得BE,由△ODF∽△EBF便可求得结果.【解答】解:(1)证明:连接OD,如图1,∵PD是⊙O的切线,∴OD⊥PC,∵BC⊥PC,∴OD∥BC,∴∠ODB=∠CBD,∵OB=OD,∴∠ODB=∠OBD,∴∠CBD=∠OBD,即BD平分∠ABC;(2)①∵∠PCB=90°,BC=6,tan P=,∴PC=,∴PB=,设⊙O的半径为x,则OA=OB=OD=x,PB=10﹣x,∵OD∥BC,∴△POD∽△PBC,∴,即,解得,x=,∴PD=,∴CD=PC﹣PD=8﹣5=3,∴BD=;②过点O作OM⊥BE于点M,如图2,则四边形ODCM为矩形,∴CM=OD=,∴BM=BC﹣CM=,∵OB=OE,∴BE=2BM=,∵OD∥BE,∴△ODF∽△EBF,∴,即,解得BF=.【点评】本题是圆的综合题,主要考查了圆周角定理,圆的切线的性质,平行线的判定与性质,等腰三角形的性质,解直角三角形,勾股定理,相似三角形的性质与判定,矩形的性质与判定,有一定难度,第(1)题关键是过切点连半径,第(2)题的突破口是构造矩形与相似三角形.27.(10分)如图1,在平面直角坐标系中,一次函数y=﹣x+8的图象与y轴交于点A,与x轴交于点B,点C是x轴正半轴上的一点,以OA,OC为边作矩形AOCD,直线AB 交OD于点E,交直线DC于点F.(1)如图2,若四边形AOCD是正方形.①求证:△AOE≌△COE;②过点C作CG⊥CE,交直线AB于点G.求证:CG=FG.(2)是否存在点C,使得△CEF是等腰三角形?若存在,求该三角形的腰长;若不存在,请说明理由.【分析】(1)①由四边形AOCD是正方形知AO=CO,∠AOD=∠EOC,据此依据“SAS”可证得△AOE≌△COE;②∠ECB+∠CBG=90°,∠CBG=∠BCG,在Rt△BCF中,∠BCG+∠FCG=90°,∠CBG+∠CFB=90°,利用角的代换得到∠GCF=∠CFG,即可解题;(2)设C(m,0),则可表示出F(m,﹣m+8),D(m,8),E(,),利用勾股定理分别求出EC2=,CF2=,EF2=;然后分三种情况进行讨论:①当EC=EF时,=;②当CF=EF时,=;③当EC=EF时,=;【解答】解:(1)①∵四边形AOCD是正方形.∴AO=CO,∠AOD=∠EOC,∴△AOE≌△COE(SAS);②∴△AOE≌△COE,∴∠OAB=∠ECB,∵∠OAB+∠OBA=∠OAB+∠CBG=90°,∴∠ECB+∠CBG=90°,∵CG⊥CE,∴∠CBG=∠BCG,∴BG=CG,在Rt△BCF中,∠BCG+∠FCG=90°,∠CBG+∠CFB=90°,∴∠GCF=∠CFG,∴CG=GF;(2)设C(m,0),F(m,﹣m+8),D(m,8),直线OD的解析式为y=x,两直线y=x与y=﹣x+8的交点为E,x=﹣x+8,∴x=,∴E(,),∴EC2=,CF2=,EF2=,当EC=EF时,=,∴m=;当CF=EF时,=,∴m=4;当EC=EF时,=,∴m=6;此时C与F重合,不合题意;综上所述:m=4或m=时△CEF是等腰三角形;【点评】本题考查一次函数图象与性质;等腰三角形的性质;三角形全等;动点问题;能够熟练用三角形的判定方法证明三角形全等,利用勾股定理结合等腰三角形的性质求点的坐标,计算准确是解题的关键.28.(10分)如图,在平面直角坐标系中,一次函数y=x﹣3的图象与x轴交于点A,与y 轴交于点B,点B关于x轴的对称点是C,二次函数y=﹣x2+bx+c的图象经过点A和点C.(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第四象限的图象上,点C 的对应点E落在直线AB上,求此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交CD轴于点M,点P为直线AC上方抛物线上一动点,过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求点P的横坐标;若不存在,请说明理由.【分析】(1)由一次函数的解析式求出A、B两点坐标,再根据A、C两点坐标求出b、c即可确定二次函数解析式;(2)由平移的性质设E(m,m﹣3),则D(m+3,m﹣6),代入抛物线的解析式则可求出点D的坐标;(3)分两种情况讨论:①△COM∽△PFC,②△COM∽△CFP,可求得点P的横坐标.【解答】解:∵一次函数y=x﹣3的图象与x轴、y轴分别交于点A、B两点,∴A(3,0),B(0,﹣3),。

2019年江苏省苏州市中考数学一模试卷附解析

2019年江苏省苏州市中考数学一模试卷附解析

2019年江苏省苏州市中考数学一模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图所示,AB 、CD 是两根木棒,它们在同一平面内的同一直线 MN 上,下列有关叙述不正确的是( )A .若在射线 BM 的上方有一盏路灯,则 AB 、CD 的影子都在射线 BN 上B .若在线段 BD 的上方有一盏路灯,则 AB 的影子在射线 BM 上,而CD 的影子在射线 DN 上C .若在射线DN 的上方有一盏路灯,则AB 、CD 的影子都在射线 DM 上D .若太阳处在 BD 的上方,则 AB 的影子在射线 BM 上,而 CD 的影子在射线DN 上2. 相交两圆的公共弦长为 6,两圆的半径分别为32 5,则这两个圆的圆心距等于( ) A .1B .2 或 6C .7D .1 或73.张华的哥哥在西宁工作,今年“五.一”期间,她想让哥哥买几本科技书带回家,于是发短信给哥哥,可一时记不清哥哥手机号码后三位数的顺序,只记得是0,2,8三个数字,则张华一次发短信成功的概率是( ) A .16B .13C .19D .124.抛物线2321y x x −=−与x 轴的交点坐标是( )A . (13−,0)(1,0) B .(13,0)(-1,0)C .(3,0)(1,0)D .(-3,0)(-1,0)5.把抛物线226y x =−+平移后所得的新抛物线在 x 轴上截得的线段长为 2,则原抛物线应( )A . 向上平移 4 个单位B .向下平移4个单位C . 向左平移 4 个单位D .向右平移4 个单位6.抛物线2y ax =和22y x =的形状相同,则 a 的值是( ) A .2B .-2C .2±D . 不确定7.判断两个直角三角形全等,下列方法中,不能应用的是( )A . AASB .HLC .SASD . AAA 8.计算(6a n+2-9a n+1+3a n-1)÷3a n-1的结果是( ). A .2a 3-3a 2B .2a 3-3a 2+1C . 3a 3-6a 2+1D .以上都不对9.下列图形中不是轴对称图形的是 ( )二、填空题10.如图所示,一株高为(633+)m 的树被台风吹断,树顶者地面后与地面恰成60°角,则树顶着地处与树根的距离为 m .11.升国旗时,某同学站在离旗杆底部 24m 处行注目礼,当国旗升至旗杆顶端时,该同学 视线的仰角 (视线与水平线的夹角 )恰为60°,若双眼离地面 1.5m ,则旗杆的高度为 m .(精确到 1 m)12.钝角三角形的外心在三角形的 部(填“内、外”);锐角三角形的外心在三角形的 部.(填“内、外”)13.如图,四边形ABCD 是菱形,△AEF 是正三角形,点E ,F 分别在BC ,CD 上,且AB=AE ,则∠B= .解答题14. 完成下列配方过程. (1)26x x ++( )=2(3)x +; (2)2x - +916=23()4x −; (3)25x x −+ =2(___)x − (4)222x x −+ =2(__)x −.15.如果1−+y x 与2)1(+−y x 互为相反数,求)(66923y x +的值.16.如图AD 与BC 相交于点O ,, AB ∥CD, ∠B=20°,∠D = 40°,那么∠BOD = .17.必然发生的事件的概率为 ,不可能发生的事件的概率为 ,不确定事件发生的概率介于 与 之间.18.已知:△ABC 中,∠A=100°,∠B -∠C =60°,则∠C=__________.19.由一个图形改变为另一个图形,在改变的过程中保持形状不变(大小可以改变).这样的图形改变叫做图形的 ;原图形和经过相似变换后得到的像.我们称它们为 . 20.用“☆”定义新运算:对于任意实数a 、b ,都有a ☆b=2b +1.例如7☆4=42+1=17,那么5☆3=_________;当m 为实数时,m ☆(m ☆2)=_________. 21.下列各代数式是整式的是 . ①1;②r ;③343r π ;④11x +;⑤213x +;⑥22x π三、解答题22.将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上. (1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数中恰好是13的概率.23.如图所示是一个四棱柱,小红同学画出了它的三种视图. 请你判断小红画得对吗?如果不对,指出其错误,并画出正确的视图.24.如图,六边形ABCDEF 的每个内角都是120°,AF=AB=2,BC=CD=3,求DE ,EF 的长.25.举反例说明下列命题是假命题:(1)如果ac bc=;=,那么a b(2)如果一个整数能被5整除,那么这个整数的个位数字是5.26.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)152025…y (件)252015…若日销售量y(件)是销售价x(元)的一次函数.(1)求出日售量y(件)与销售价x(元)的函数析式;(2)求销售价定为 30天时,每日的销售利润.27.(1)画出如图所示的几何体的三视图;(2)在如图所示的4×4的方格(小正方形的边长为1)上画出长度为5的线段.28.用简便方法计算:(1) 8825⨯;(2) 200820081()22−⨯;(3) 202180.125⨯;(4)14300.252−⨯29.根据题意列出方程:某校组织活动,共有100人参加,要把参加活动的人分成两组,已知第一组的人数比第二组多6人,问这两组各有多少人?30.如图,△OAB 中,OA=OB ,以O 为圆心的圆交BC 于点C 、D ,求证:AC=BD.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.A4.A5.B6.C7.D8.B9.A二、填空题10.311.412.外,内13.80°14.(1)9;(2)32x ;(3)254,52;(4) 15.669.16.60°17.1,0,0,118.10°19.相似变换,相似图形20.10,2621.①⑦③③⑥三、解答题 22.解:(1)P (抽到奇数)=34. (2)解法一:列表所以组成的两位数恰好是13的概率为EDCBA O21126P ==. 解法二:树状图 开始1 123 1 2 3 1 2 3 1 1 3 1 1 2 所以组成的两位数是13的概率为21126P ==. 23.小红画的三视图中,左视图,俯视图都是正确的;主视图是错误的,因为少画了两条看不见的轮廓虚线.如解图所示是正确的主视图.24.把边AB ,CD ,EF 向两方延长,构成等边三角形,可得EF=4,DE=125.(1)如:若a=1,b=2,c=0时,ac=bc ,但a ≠b ;(2)如:l0能被5整除,但它的个位数字是026.(1)40y x =−+ (2)200元27.略28.(1)810;(2)1;(3)18;(4)-429.第一组 53 人,第二组 47 人30.证:如图过O 作OE ⊥AB 于E ,∵OA=OB ,OE ⊥AB 于E ,∴AE=BE . 又∵CD 是⊙O 的弦,OE ⊥CD ,∴CE=DE ,∴AE-CE=BE-DE ,即AC=BD .。

苏州2019中考数学模拟题①详解

苏州2019中考数学模拟题①详解

苏州2019中考数学模拟题①详解一、选择题(共10小题,满分30分,每小题3分)1.下列四个数中,是负数的是()A.|﹣2|B.(﹣2)2C.﹣(﹣2)D.﹣|﹣2|【分析】先化简,再利用负数的意义判定.解:A、|﹣2|=2,是正数;B、(﹣2)2=4,是正数;C、﹣(﹣2)=2,是正数;D、﹣|﹣2|=﹣2,是负数.【答案】D【点评】此题考查绝对值、相反数以、乘方以及负数的意义等基础知识.2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.【答案】A【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.解:44亿=4.4×109.【答案】B【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.【答案】D【点评】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.5.如图,要测量被池塘隔开的A,B两点的距离,小明在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,并分别找出它们的中点D,E,连接DE,现测得DE=45米,那么AB等于()A.90米B.88米C.86米D.84米【分析】根据中位线定理可得:AB=2DE=90米.解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=45米,∴AB=2DE=90米,【答案】A【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.6.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4D.BD=4【分析】由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC﹣∠AOB=60°﹣35°=25°,故B选项正确;【答案】D【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.7.下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.解:众数为85,极差:85﹣75=10,【答案】A【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.8.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A 正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.【答案】D【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.9.若a<b,则下列各式一定成立的是()A.a+3>b+3B.C.a﹣1<b﹣1D.3a>3b【分析】利用不等式的基本性质化简,判断即可.解:由a<b,得到a+3<b+3,<,a﹣1<b﹣1,3a<3b,【答案】C【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.10.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3C.D.5【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.解:过点D做DF⊥BC于F由已知,BC=5∵四边形ABCD是菱形∴DC=5∵BE=3DE∴设DE=x,则BE=3x∴DF=3x,BF=x,FC=5﹣x在Rt△DFC中,DF2+FC2=DC2∴(3x)2+(5﹣x)2=52∴解得x=1∴DE=1,FD=3设OB=a则点D坐标为(1,a+3),点C坐标为(5,a)∵点D、C在双曲线上∴1×(a+3)=5a∴a =∴点C 坐标为(5,)∴k =【答案】C【点评】本题是代数几何综合题,考查了数形结合思想和反比例函数k 值性质.解题关键是通过勾股定理构造方程.二、填空题(共8小题,满分24分,每小题3分)11.函数y = 22+-x x 中,自变量x 的取值范围是 . 【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.解:根据题意,得:⎩⎨⎧≠+≥-0202x x , 解得:x ≤2且x ≠﹣2,【答案】x ≤2且x ≠﹣2【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.已知x 1,x 2是一元二次方程x 2﹣2x ﹣5=0的两个实数根,则x 12+x 22+3x 1x 2= .【分析】根据根与系数的关系得到x 1+x 2=﹣,x 1x 2=﹣2,把x 12+x 22+3x 1x 2变形为(x 1+x 2)2+x 1x 2,然后利用整体代入的方法计算;解:根据题意得x 1+x 2=2,x 1x 2=﹣5,x 12+x 22+3x 1x 2=(x 1+x 2)2+x 1x 2=22+(﹣5)=﹣1.【答案】﹣1【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣,x 1x 2=.13.有4根细木棒,长度分别为2cm ,3cm ,4cm ,5cm ,从中任选3根,恰好能搭成一个三角形的概率是 .【分析】根据题意,使用列举法可得从4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种; 【答案】43. 【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.14.已知a 2+a ﹣1=0,则a 3+2a 2+2018= .【分析】将已知条件变形为a 2=1﹣a 、a 2+a =1,然后将代数式a 3+2a 2+2018进一步变形进行求解.解:∵a 2+a ﹣1=0,∴a 2=1﹣a 、a 2+a =1,∴a 3+2a 2+3,=a •a 2+2(1﹣a )+2018,=a (1﹣a )+2﹣2a +2020,=a ﹣a 2﹣2a +2020,=﹣a 2﹣a +2020,=﹣(a 2+a )+2020,=﹣1+2020,=2019.【答案】2019.【点评】本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.15.如图,六边形ABCDEF 的六个角都是120°,边长AB =1cm ,BC =3cm ,CD =3cm ,DE =2cm ,则这个六边形的周长是: .【分析】凸六边形ABCDEF ,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.解:如图,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、P . ∵六边形ABCDEF 的六个角都是120°,∴六边形ABCDEF 的每一个外角的度数都是60°.∴△APF 、△BGC 、△DHE 、△GHP 都是等边三角形.∴GC =BC =3cm ,DH =DE =2cm .∴GH =3+3+2=8cm ,FA =PA =PG ﹣AB ﹣BG =8﹣1﹣3=4cm ,EF =PH ﹣PF ﹣EH =8﹣4﹣2=2cm .∴六边形的周长为1+3+3+2+4+2=15cm .【答案】15cm .【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.16.一组按规律排列的式子:,﹣,,﹣,…(a ≠0),其中第10个式子是 .【分析】式子的符号:第奇数个是正号.偶数个是负号,分子等于序号的平方,分母中a 的指数是:序号的3倍减去1,据此即可求解. 解:∵ 21a =(﹣1)1+1•11321-⨯a, ﹣54a =(﹣1)2+1•12322-⨯a, 89a =(﹣1)3+1•13323-⨯a,…第10个式子是(﹣1)10+1• 1103210-⨯a,=- 29100a . 【答案】- 29100a【点评】本题主要考查了式子的特征,正确理解式子的规律是解题的关键.17.如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC 的直角顶点C 在l 1上,另两个顶点A 、B 分别在l 3、l 2上,则tan α的值是 .【分析】过点A 作AD ⊥l 1于D ,过点B 作BE ⊥l 1于E ,根据同角的余角相等求出∠CAD =∠BCE ,然后利用“角角边”证明△ACD 和△CBE 全等,根据全等三角形对应边相等可得CD =BE ,然后利用勾股定理列式求出AC ,然后利用锐角的正切等于对边比邻边列式计算即可得解.解:如图,过点A 作AD ⊥l 1于D ,过点B 作BE ⊥l 1于E ,设l 1,l 2,l 3间的距离为1, ∵∠CAD +∠ACD =90°,∠BCE +∠ACD =90°,∴∠CAD =∠BCE ,在等腰直角△ABC 中,AC =BC ,在△ACD 和△CBE 中,⎪⎩⎪⎨⎧==∠=∠∠=∠BC AC BEC ADC BCE CAD 090,∴△ACD ≌△CBE (AAS ),∴CD =BE =1,∴DE =3,∴tan ∠α=31. 【答案】31【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.18.已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且﹣4≤x ≤1时,y 的最大值为7,则a 的值为 .【分析】根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x ≥2时,y 随x 的增大而减小,且﹣4≤x ≤1时,y 的最大值为7,可以判断a 的正负,得到关于a 的方程,从而可以求得a 的值.解:∵二次函数y =ax 2+2ax +3a 2+3=a (x +1)2+3a 2﹣a +3,∴该函数的对称轴为直线x =﹣1,∵当x ≥2时,y 随x 的增大而减小,且﹣4≤x ≤1时,y 的最大值为7,∴a <0,当x =﹣1时,y =7,∴7=a (x +1)2+3a 2﹣a +3,解得,a 1=﹣1,a 2=(舍去),【答案】﹣1【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.三、解答题(共10小题,满分96分)19.(10分)(1)计算﹣(﹣1)0+12×3﹣1﹣|﹣5| (2)化简1﹣xx 1-. 【分析】(1)利用零指数幂、负整数指数幂的意义和绝对值的意义进行计算;(2)先把分子分母因式分解,再把除法运算化为乘法运算,然后约分后进行通分即可.解:(1)原式=8﹣1+12×31﹣5 =8﹣1+4﹣5=6;(2)原式=1﹣xx 1-• )1)(1()2(-++x x x x =1﹣12++x x=1)2(1++-+x x x =﹣11+x . 【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了分式的混合运算.20.(8分)解不等式组:⎪⎩⎪⎨⎧+>+≥+-2)2(3323x x x x 把不等式组的解集在数轴上表示出来,并写出不等式组的整数解.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可. 解:⎪⎩⎪⎨⎧+>+≥+-)()(22)2(31323x x x x ,由①得,x ≤3,由②得,x >﹣2,故不等式组的解集为:﹣2<x ≤3,在数轴上表示为:.其整数解为:﹣1,0,1,2,3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)小亮一家到桃林口水库游玩.在岸边码头P 处,小亮和爸爸租船到库区游玩,妈妈在岸边码头P 处观看小亮与爸爸在水面划船,小船从P 处出发,沿北偏东60°方向划行,划行速度是20米/分钟,划行10分钟后到A 处,接着向正南方向划行一段时间到B 处,在B 处小亮观测到妈妈所在的P 处在北偏西37°的方向上,这时小亮与妈妈相距多少米?(精确到1m ,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)【分析】作PQ⊥AB于Q,根据已知,∠APQ=30°.解直角三角形求出PB即可;解:作PQ⊥AB于Q,根据已知,∠APQ=30°.则AQ=AP∵AP=20×10=200∴AQ=100∴PQ==100,在Rt△BPQ中,sin B=,∴PB=100÷0.60≈288米∴此时,小亮与妈妈相距288米.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(8分)我校为了迎接体育中考,了解学生的体育成绩,从全校1000名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表(1)中,a=,b=c =;(2)补全图(2);(3)“跳绳”数在180(包括180)以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?【分析】(1)根据成绩段160≤x<170的频数与频率求出抽取学生总数,进而求出a,b,c的值即可;(2)根据成绩段180≤x<190的频数,补全图2即可;(3)根据)“跳绳”数在180(包括180)以上人数的频率乘以1000即可得到结果.解:(1)根据题意得:5÷0.1=50;a=10÷50=0.2;b=50×0.14=7;c=16÷50=0.32;【答案】50;0.2;7;0.32(2)成绩段180≤x<190的频数为7,补全图2,如图所示:;(3)根据题意得:1000×(0.14+0.32+0.24)=700(名),则估计全校九年级有700名学生在此项成绩中获满分.【点评】此题考查了频数分布直方图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.23.(8分)不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、4(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率(2)随机摸出两个小球,直接写出“两次取出的球标号和等于4”的概率.【分析】(1)画树状图展示所有16种等可能的结果数,找出两次取的球标号相同的结果数,然后根据概率公式求解(2)画树状图展示所有12种等可能的结果数,再找出两次取出的球标号和等于4的结果数,然后根据概率公式求解.解:(1)画树状图为:共有16种等可能的结果数,其中两次取的球标号相同的结果数为4,所以“两次取的球标号相同”的概率==;(2)画树状图为:共有12种等可能的结果数,其中两次取出的球标号和等于4的结果数为2,所以“两次取出的球标号和等于4”的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.(8分)如图,等腰△ABC内接于半径为5的⊙O,AB=AC,tan∠ABC=.求BC的长.【分析】连接AO,交BC于点E,连接BO,求出=,根据垂径定理得出OA⊥BC,BC=2BE,设AE=x,则BE=3x,OE=5﹣x,根据勾股定理得出方程(3x)2+(5﹣x)2=52,求出方程的解即可.解:连接AO,交BC于点E,连接BO,∵AB=AC,∴=,又∵OA是半径,∴OA⊥BC,BC=2BE,在Rt△ABE中,∵tan∠ABC=,∴=,设AE=x,则BE=3x,OE=5﹣x,在Rt△EO中,BE2+OE2=OB2,∴(3x)2+(5﹣x)2=52,解得:x1=0(舍去),x2=1,∴BE=3x=3,∴BC=2BE=6【点评】本题考查了圆心角、弧、弦之间的关系,垂径定理,解直角三角形,勾股定理的应用,解此题的关键是构造直角三角形,用了方程思想,难度适中.25.(9分)已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点M 和N,连接MN.(1)求证:△ABM∽△NDA;(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.【分析】(1)由正方形ABCD,BM、DN分别是正方形的两个外角平分线,可证得∠ABM=∠ADN=135°,又由∠MAN=45°,可证得∠BAM=∠AND=45°﹣∠DAN,即可证得△ABM∽△NDA;(2)证出四边形BMND是平行四边形,再证出∠BDN=90°,继而求得答案.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:当∠BAM=22.5°时,四边形BMND为矩形;理由如下:∵∠BAM=22.5°,∠EBM=45°,∴∠AMB=22.5°,∴∠BAM=∠AMB,∴AB=BM,同理AD=DN,∵AB=AD,∴BM=DN,∵四边形ABCD是正方形∴∠ABD=∠ADB=45°,∴∠BDN=∠DBM=90°∴∠BDN+∠DBM=180°,∴BM∥DN∴四边形BMND为平行四边形,∵∠BDN=90°,∴四边形BMND为矩形.【点评】此题考查了相似三角形的判定与性质、正方形的性质以及矩形的性质.注意能证得当四边形BMND为矩形时,△ABM是等腰三角形是难点.26.(10分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器超出5个的部分按原价的七折销售,设购买x 个A品牌的计算器需要y 1元,购买x (x >5)个B 品牌的计算器需要y 2元,分别求出y 1、y 2关于x 的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?【分析】(1)根据题意列出二元一次方程组,解方程组即可得到答案;(2)根据题意用含x 的代数式表示出y 1、y 2即可;(3)把x =50代入两个函数关系式进行计算,比较得到答案.解:(1)设A 、B 两种品牌的计算器的单价分别为x 、y 元,由题意得,⎩⎨⎧=+=+122315632y x y x , 解得⎩⎨⎧==3230y x . 答:A 、B 两种品牌的计算器的单价分别为30元、32元;(2)y 1=24x ,y 2=160+(x ﹣5)×32×0.7=22.4x +48;(3)当x =50时,y 1=24x =1200,y 2=22.4x +48=1168,∵1168<1200,∴买B 品牌的计算器更合算.【点评】本题考查的是二元一次方程组的应用和一次函数的应用,正确找出等量关系列出方程组并正确解出方程组、掌握一次函数的性质是解题的关键.27.(13分)如图,已知A (﹣2,0),B (4,0),抛物线y =ax 2+bx ﹣1过A 、B 两点,并与过A 点的直线y =﹣21x ﹣1交于点C . (1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P ,使四边形ACPO 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由;(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N .问:是否存在这样的点N ,使以点M 、N 、C 为顶点的三角形与△AOC 相似,若存在,求出点N 的坐标,若不存在,请说明理由.【分析】(1)由待定系数法求解即可;(2)将四边形周长最小转化为PC +PO 最小即可;(3)利用相似三角形对应点进行分类讨论,构造图形.设出点N 坐标,表示点M 坐标代入抛物线解析式即可.解:(1)把A (﹣2,0),B (4,0)代入抛物线y =ax 2+bx ﹣1,得⎩⎨⎧-+=--=141601240b a b a 解得⎪⎪⎩⎪⎪⎨⎧-==4181b a ∴抛物线解析式为:y =81x 2-41x -1, ∴抛物线对称轴为直线x =﹣a b 2=﹣81241⨯-=1 (2)存在使四边形ACPO 的周长最小,只需PC +PO 最小∴取点C (0,﹣1)关于直线x =1的对称点C ′(2,﹣1),连C ′O 与直线x =1的交点即为P 点.设过点C ′、O 直线解析式为:y =kx∴k =﹣21 ∴y =﹣21x 则P 点坐标为(1,﹣21) (3)当△AOC ∽△MNC 时,如图,延长MN 交y 轴于点D ,过点N 作NE ⊥y 轴于点E∵∠ACO =∠NCD ,∠AOC =∠CND =90° ∴∠CDN =∠CAO由相似,∠CAO =∠CMN∴∠CDN =∠CMN∵MN ⊥AC∴M 、D 关于AN 对称,则N 为DM 中点设点N 坐标为(a ,﹣21a ﹣1) 由△EDN ∽△OAC∴ED =2a∴点D 坐标为(0,﹣25a -1) ∵N 为DM 中点 ∴点M 坐标为(2a ,23a -1) 把M 代入y = 81x 2-41x -1,解得 a =0(舍去)或a =4∴a =4则N 点坐标为(4,﹣3)当△AOC ∽△CNM 时,∠CAO =∠NCM∴CM ∥AB 则点C 关于直线x =1的对称点C ′即为点M由(2)M 为(2,﹣1)∴由相似CN =554,MN =552 由面积法求N 到MC 距离为54 则N 点坐标为(58,﹣59) ∴N 点坐标为(4,﹣3)或(58,﹣59) 【点评】本题为代数几何综合题,考查了待定系数、两点之间线段最短的数学模型构造、三角形相似.解答时,应用了数形结合和分类讨论的数学思想.28.(14分)如图1,抛物线y =ax 2+bx +3交x 轴于点A (﹣1,0)和点B (3,0). (1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y 轴交于点C ,顶点为F ,点D (2,3)在该抛物线上. ①求四边形ACFD 的面积;②点P 是线段AB 上的动点(点P 不与点A 、B 重合),过点P 作PQ ⊥x 轴交该抛物线于点Q ,连接AQ 、DQ ,当△AQD 是直角三角形时,求出所有满足条件的点Q 的坐标.【分析】(1)由A 、B 两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD ,则可知CD ∥x 轴,由A 、F 的坐标可知F 、A 到CD 的距离,利用三角形面积公式可求得△ACD 和△FCD 的面积,则可求得四边形ACFD 的面积;②由题意可知点A 处不可能是直角,则有∠ADQ =90°或∠AQD =90°,当∠ADQ =90°时,可先求得直线AD 解析式,则可求出直线DQ 解析式,联立直线DQ 和抛物线解析式则可求得Q 点坐标;当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,则可用t 表示出k ′,设直线DQ 解析式为y =k 2x +b 2,同理可表示出k 2,由AQ ⊥DQ 则可得到关于t 的方程,可求得t 的值,即可求得Q 点坐标.解:(1)由题意可得⎩⎨⎧=++=+-033903b a b a ,解得可得⎩⎨⎧=-=21b a , ∴抛物线解析式为y =﹣x 2+2x +3;(2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴F (1,4),∵C (0,3),D (2,3),∴CD =2,且CD ∥x 轴,∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =21×2×3+21×2×(4﹣3)=4; ②∵点P 在线段AB 上,∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°,i .当∠ADQ =90°时,则DQ ⊥AD ,∵A (﹣1,0),D (2,3),∴直线AD 解析式为y =x +1,∴可设直线DQ 解析式为y =﹣x +b ′,把D (2,3)代入可求得b ′=5,∴直线DQ 解析式为y =﹣x +5, 联立直线DQ 和抛物线解析式可得⎩⎨⎧++-=+-=3252x x y x y ,解得⎩⎨⎧==41y x 或⎩⎨⎧==32y x , ∴Q (1,4);ii .当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,把A 、Q 坐标代入可得⎩⎨⎧++-=+=+-32021111t t b tk b k ,解得k 1=﹣(t ﹣3), 设直线DQ 解析式为y =k 2x +b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=253±,当t=253-时,﹣t2+2t+3=255+,当t=253+时,﹣t2+2t+3=255-,∴Q点坐标为(253-,255+)或(253+,255-);综上可知Q点坐标为(1,4)或(253-,255+)或(253+,255-).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

最新江苏省苏州市重点学校2019年最新中考数学一模试题及答案(已审阅)

最新江苏省苏州市重点学校2019年最新中考数学一模试题及答案(已审阅)

2019年初中毕业暨升学模拟考试试卷数 学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0. 5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0. 5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效. 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上. 1.―4的倒数是( )A. 4B. ―4C. 14D. 14- 2.数据―1,0,1, 2,3的平均数是( )A. ―1B. 0C. 1D. 53.过度包装既浪费资源又污染环境,据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A. 3.12×104B. 3.12×105C. 3.12×106D. 0.312×107 4.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过1 5min 的频率为( )A. 0B. 0.4C. 0.5D. 0.9 5.下列关于x 的方程中一定有实数根的是( )A. 220x x -+= B. 220x x +-= C. 220x x ++= D. 210x +=6.在半径为1的⊙O 中,弦1AB =,则弧AB 的长是( ) A.6π B. 4πC. 3πD. 2π7.如图,已知60AOB ∠=︒,点P 在边OA 上,12OP =,点,M N 在边OB 上,PM PN =,若2MN =,则OM =( )A .3 B. 4 C. 5 D .68.如图,在菱形ABCD 中,DE AB ⊥,3cos ,25A BE ==,则tan DBE ∠的值是( ) A .12B. 2C.D .9.对任意实数x,点2(,2)P x x x -一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限 10.如图,四边形ABCD 的对角线交于点O ,且//AB CD .有以下四个结论: ①AOB COD ∆∆: ②AOD ACB ∆∆: ③::DOC AOD S S DC AB ∆∆= ④AOD BOC S S ∆∆=其中,始终正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上. 11.计算: 42a a ÷= .12.小丽近6个月的手机话费(单位:元)分别为: 18,24,37,28,24,26.这组数据的中位数是 元.13.如图,点,,B C D 在同一条直线上,//,54CE AB A ∠=︒,如果36ECD ∠=︒,那么ACB ∠ = º.14.已知点(,)P a b 在一次函数43y x =+的图象上,则代数式42a b --的值等于 .15.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 . 16.如图,已知//,30,AB CD A BC AD ∠=︒⊥于O .若5BC =,则AD =.17.如图,点,,,A B C D 在⊙O 上,点O 在D ∠的内部,四边形OABC 为平行四边形,则OAD OCD ∠+∠= 度.18.如图,将ABC ∆沿边AC 翻折得到ADC ∆,在边AB 上取一点E (非A 和B 点),连结,DE F 为DE 中点,FH DE ⊥交AC 于H .若2tan 5BAC ∠==,则DH DE的值= .三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)计算: 01)2+-20.(本题满分5分)解不等式组: 221212x x x x -≤⎧⎪⎨+>--⎪⎩21.(本题满分6分)先化简,再求值: 22(1)(1)1a a a -+÷++,其中1a =.22.(本题满分6分)西南五省持续干旱,旱情牵动着全国人民的心.“一方有难、八方支援”,某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?23.(本题满分8分)在“六一国际儿童节”来临之际,某初级中学开展了向山区“希望小 学”捐赠图书活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例分 布扇形统计图如图①所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生, 进行了捐赠情况的统计调查,绘制成如图②的频数分布直方图.根据以上信息解答下列问题: (1)从图②中,我们可以看出人均捐赠图书最多的是 年级; (2)估计九年级共捐赠图书多少册? (3)全校大约共捐赠图书多少册?24.(本题满分8分)如图,AOB ∆和COD ∆均为等腰直角三角形,90,AOB COD D ∠=∠=︒ 在AB 上. (1)求证: AOC BOD ∆≅∆;(2)若20ACD ∠=︒,求ADC ∠的度数.25.(本题满分8分)已知直线112y x =+与x 轴交于点A ,与反比例函数(0)ky x x=>的图像交于点,E B 为该直线上不同于E 的一点,BC x ⊥轴于(6,0)C ,交(0)ky xx=>的图像于点D .(1)求点B 的坐标;(2)连结ED ,若EB ED =,求k 的值.26.(本题满分10分)为了考前放松心情,小明利用清明小长假上山游玩,设小明出发x min 后行走的路程为y m.图中的折线表示小明在整个行走过程中y 与x 的函数关系. (1)小明途中体息了 min .(2)求y 与x 的函数关系式;(并写出自变量的取值范围)(3)一名挑山工(搬运物品上山的工人)在小明出发15分钟后挑担上山,途中他与小明相遇了两次。

苏州市吴中区2019届中考第一次模拟数学测试卷含答案解析

苏州市吴中区2019届中考第一次模拟数学测试卷含答案解析

初三年级教学质量调研测试(一)数 学 2019.04本试卷有选择题、填空题和解答题三部分组成,共28题,满分100分,考试时间120分钟注意事项:1. 答题前,考生务必将学校、班级、姓名、考试号等信息用0.5毫米黑色墨水签字笔填写在答题卷的相应位置上;2.答选择题必须用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生必须答在答题卡相应的位置上,保持卷面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。

一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.)1. 2的倒数是A. -2B. -12C. 2D. 122.下列运算正确的是A. 236a a a ⋅=B. 32a a a ÷=C. 329()a a =D. 235a a a +=3.PM2.5是指大气中直径小于或等于0.0000025 m 的颗粒物,将0.0000025用科学记数法表示为A. 50.2510-⨯B. 60.2510-⨯C. 52.510-⨯D. 62.510-⨯4.如图,△ABC ,∠B=90°,AB=3,BC=4,则cosA 等于 A. 43 B. 34 C. 45D. 35 5.如图,直线AC//BD ,AO 、BO 分别是 ∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为A. 互余B. 相等C. 互补D. 不等6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15-20,包括15,不包括20,以下同),请根据统计计算成绩在20-30次的频率是A. 0.7B. 0.6C. 0.5D. 0.4 7.如果x a y b⎧=⎨=⎩是方程x-3y=-3的一组解,那么代数5-a+3b 的值是 A. 8 B.5 C.2 D.08.关于x 的一元二次方程2210kxx +-=有两个不相等实数根,则k 的取值范围是A. k >-1B. k >-1且k ≠0C. k ≠0D. k ≥-19.如图,已知ABCD 的对角线BD=4cm ,将ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为A. 4π cmB. 3π cmC. 2π cmD. π cm10.给出下列命题及函数y x =,2y x =和1y x =的图像 ①如果21a a a>>时,那么01a <<; ②如果21a a a >>时,那么1a >;③如果21a a a>>时,那么10a -<<; ④如果21a a a >>时,那么 1a <-.A.正确的命题是①②B.错误..的命题是②③④ C.正确的命题是①④D.错误..的命题只有③二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)11.计算:1(3)3-⨯=_________________________. 12.有一组数据:3,5,5,6,7,这组数据的中位数是________________________.13.如图,AB 是O 上,若∠A=40°,则∠B 的度数为___________.14.在平面直角坐标系中,点A 的坐标是(3,-2),则点A 关于原点O 的对称点的坐标是__________.15.抛物线223y x x =++的顶点左边是____________.16.热气球的探测器显示,从热气球A 处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,这栋高楼是100米,A 处与高楼的水平距离是______________米(结果保留根号).17.如图,半圆O 的直径AE=4,点B ,C, D 均在半圆上,若AB=BC ,CD=DE ,连接OB ,OD ,则图中阴影部分的面积为_____________.18.如图,在矩形ABCD 中,AB=10,BC=5,若点M 、N 分别是线段AC 、AB 上的两动点,则BM+MN 的最小值为________________.三、解答题(本大题共10小题,共76.解答时应写出文字说明、证明过程或演算步骤.)19.(本题满分5分)— | —1| + (—π)020.(本题满分5分) 解不等式组:312(1)312x x x ⎧-<+⎪⎨+≥⎪⎩21.(本题满分6分) 先化简,再求值:232()224xxxx x x -÷+--,其中4x =-.22.(本题满分6分)某商场销售A、B两种型号的U盘,两种U盘的进货价格分别为每只30元,40元.商场销售5只A型号和1只B型号U盘,可获利润76元;销售6只A型号和3只B型号U盘,可获利润120.求商场销售A、B两种型号的U盘的销售价格分别是多少元?(利润=销售价-进货价)23.(本题满分8分)有3个完全相同的小球,把他们分别标号为1,2,3,放在一个口袋中,随机摸出一个小球不放回,再随机地摸出一个小球.(1)采用树形图法(或列表法)列出两次摸球出现的所有可能结果;(2)求摸出的两个球号码之和等于5的概率.24. (本题满分8分)已知:如图,AB=AC,点D是BC的中点,AD=AE, AE⊥BE,垂足为E,连接DE.(1)求证:AB平分∠DAE;(2)若△ABC是等边三角形,且边长为2cm,求DE的长.25.(本题满分8分)(2019泸州)如图,一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求该一次函数的解析式;(2)若反比例函数y= m/x的图象与该一次函数的图象交于二、四象限内的A、B两点,且AC=2BC,求m的值.26. (本题满分10分)如图,AB 是⊙O 的直径,弦CD⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F .切点为G ,连接AG 交CD 于K .(1)求证:KE=GE ;(2)若KG2=KD•GE,试判断AC 与EF 的位置关系,并说明理由;(3)在(2)的条件下,若3sin 5E ∠=,AK =求圆O 的半径.27.(本题满分10分)如图,二次函数2y axbx c =++(0a ≠)的图像经过A(0,3)、C(3,0)、D (2,3)三点.(1)求过A 、D 、C 三点的抛物线的解析式;(2)设Q为x轴上任意一点,点P是抛物线上的点,且在抛物线对称轴左侧,满足∠QCP=45°,问是否存在这样的点P、Q,使得以P、Q、C为顶点的三角形与△ADC相似?若存在,求出点P、Q的坐标;若不存在,则说明理由.28.(本题满分10分)(2019•衢州)如图,在△ABC中,AB=5,AC=9,S△ABC=272,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A运动,当Q点运动到A点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.(1)求tanA的值;(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH的边上,请直接写出t的值.江苏省吴中市2019届中考第一次模拟数学测试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.)1. 2的倒数是A. -2B. -12C. 2D. 12考点:有理数混合运算分析: 有理数四则运算法则解答: D2.下列运算正确的是A. 236a a a ⋅=B. 32a a a ÷=C. 329()a a =D.235a a a +=考点: 幂的运算分析: 幂的的乘除运算解答:B3.PM2.5是指大气中直径小于或等于0.0000025 m 的颗粒物,将0.0000025用科学记数法表示为A. 50.2510-⨯B. 60.2510-⨯C. 52.510-⨯D. 62.510-⨯考点: 科学计算法分析: 用科学技术发表示数解答:D4.如图,△ABC ,∠B=90°,AB=3,BC=4,则cosA 等于A. 43B. 34C. 45D. 35 考点: 三角函数与勾股定理分析: 勾股定理求边的长以及特殊三角函数的值解答:cosA=邻边/斜边=3/55.如图,直线AC//BD ,AO 、BO 分别是 ∠BAC 、∠ABD的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为A. 互余B. 相等C. 互补D. 不等考点: 角平分线的性质,平行线的性质分析: 先用平行线的性质,再结合平行线的性质去求解解答:A6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15-20,包括15,不包括20,以下同),请根据统计计算成绩在20-30次的频率是A. 0.7B. 0.6C. 0.5D. 0.4考点: 统计分析: 条形统计图解答:A7.如果x a y b⎧=⎨=⎩是方程x-3y=-3的一组解,那么代数5-a+3b 的值是A. 8B.5C.2D.0考点: 代数式求值分析: 方程的解含义以及真题思想,代入求值。

2019年苏州市中考数学模拟试题(含答案)

2019年苏州市中考数学模拟试题(含答案)

2019年苏州市中考数学模拟试题(满分:120分 时间:120分钟)一、 选择题(每小题2分,共20分) 1. 计算327的结果是( )A. ±3B. 3C. 33D. 3 2. 下列计算正确的是( )A. x 6÷x 3=x 3B. x 3·x 3=x 9C. (a 7)2=a 9D. 2y 2-6y 2=-43. 一个正常人的心跳平均每分70次,一天大约跳100 800次,将100 800用科学记数法表示为( )A. 0.100 8×106B. 1.008×106C. 1.008×105D. 10.08×1044. 某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如表所示:那么20名学生决赛成绩的众数和中位数分别是( )A. 85,90B. 85,87.5C. 90,85D. 95,905. 一个多边形的每一个内角均为108°,那么这个多边形是( )A. 七边形B. 六边形C. 五边形D. 四边形6. 我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A. ⎩⎪⎨⎪⎧x +y =100,3x +3y =100B. ⎩⎪⎨⎪⎧x +y =100,x +3y =100 C. ⎩⎪⎨⎪⎧x +y =100,3x +y =100 D. ⎩⎪⎨⎪⎧x +y =100,3x +13y =100 7. 已知圆锥的底面半径为4 cm ,母线长为5 cm ,则这个圆锥的侧面积是( ) A. 20π cm 2 B. 20 cm 2 C. 40π cm 2 D. 40 cm 28. 如图,在矩形ABCD 中,AB =2,BC =3.若E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 于点F ,则BF 的长为( )A.3102 B. 3105 C. 105 D. 3559. 已知抛物线y =ax 2+bx +c (b>a>0)与x 轴最多有一个交点,现有以下三个结论: ①该抛物线的对称轴在y 轴右侧;②关于x 的方程ax 2+bx +c +1=0无实数根; ③4a +2b +c>0.其中,正确结论的个数为( )A. 0B. 1C. 2D. 310. 如图,△ABC 中,∠BAC =90°,AB =5,AC =12,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连接CE ,则线段CE 的长等于( )A.1322 B. 9 C. 12013 D. 11913二、 填空题(每小题3分,共24分) 11. -23的相反数是 .12. 函数y =3-x 中,自变量x 的取值范围是 .13. 一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为 .14. 如图,点A 、B 、C 在⊙O 上,∠AOB =72°,则∠ACB 等于 .(第14题) (第15题) (第16题)15. 如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx的图像上,则k 的值为 .16. 在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A 、B 、C 、D 都在格点处,AB 与CD 相交于O ,则sin ∠BOD 的值等于 .17. 如图①,四边形ABCD 中,AB ∥CD ,∠ADC =90°,P 从A 点出发,以每秒2个单位长度的速度,按A →B →C →D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图像如图②所示,当P 运动到BC 中点时,△PAD 的面积为 .(第17题) (第18题)18. 如图,在△ABC 中,∠ACB =90°,BC =12,AC =9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则23AD +BD 的最小值是 .三、 解答题(本大题共10小题,共76分)19. (5分)计算:cos 60°-(π-3)0-|-2|+⎝⎛⎭⎫13-1.20. (5分)解不等式组:⎩⎪⎨⎪⎧x -3(x -2)≤4,1+2x 3>x -1.21. (6分)先化简,再求值:⎝⎛⎭⎫1x +1+1x -1÷x 2-xx 2-2x +1,其中x =2-1.22. (6分)甲、乙两公司为“见义勇为基金会”各捐款30 000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?23.(8分)如图①,在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠DCE=90°,AB 与CE交于F,ED与AB、BC分别交于M、H.(1)求证:CF=CH;(2)如图②,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,求证:四边形ACDM是菱形.24.(8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列表法(或画树状图法)求所选取的2名学生中恰好有1名男生、1名女生的概率.25.(8分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中线段AB、CD、EF表示支撑角钢,太阳能电池板紧贴在支撑角钢AB上且长度均为300 cm,AB的倾斜角为30°,BE=CA=50 cm,支撑角钢CD、EF与地面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.点A到地面的垂直距离为50 cm,求支撑角钢CD和EF的长度各是多少.(结果保留根号)26.(10分)如图,已知一次函数y1=kx+b的图像与反比例函数y2=4x的图像交于点A(-4,m),且与y轴交于点B,第一象限内点C在反比例函数y2=4x的图像上,且以点C为圆心的圆与x轴,y轴分别相切于点D,B.(1)求m的值;(2)求一次函数的表达式;(3)根据图像,写出当y1<y2<0时,x的取值范围.27. (10分)如图①,AB 是⊙O 的直径,AC ︵=BC ︵,连接AC. (1)求证: ∠CAB =45°;(2)如图②,直线l 经过点C ,在直线l 上取一点D ,使BD =AB ,BD 与AC 相交于点E ,连接AD ,且AD =AE .①求证:直线l 是⊙O 的切线; ②求CDEB的值.28. (10分)如图,已知抛物线y =ax 2-23ax -9a 与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AD 交BC 于点D ,交第一象限的抛物线于点E. (1)求a 的值;(2)抛物线上两点C 、E 间的一动点F 关于AD 的对称点F′恰好落在线段BD 上,求F 点坐标; (3)若动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N.试问:抛物线上是否存在点Q ,使得△PQN 的面积是△APM 面积的2倍,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.参考答案5. C 解析:本题考查了多边形的内角和.设这个多边形是n 边形,根据题意得(n -2)·180=108n ,解得n =5,所以这个多边形是五边形,故选C.【一题多解】根据多边形的内角与相邻的外角互补,可得每个外角的度数为180°-108°=72°,因为任何多边形的外角和都等于360°,所以这个多边形的边数为360°72°=5,故选C.6. D 解析:本题考查了二元一次方程组的应用.根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,由①,②可得方程组⎩⎪⎨⎪⎧x + y =100,3x + 13y =100,故选D. 7. A 解析:本题考查了圆锥的侧面积公式.因为底面半径为r ,母线长为l 的圆锥的侧面积为πrl ,所以这个圆锥的侧面积为π×4×5=20π(cm 2),故选A.8. B 解析:本题考查了矩形的性质、勾股定理及等积变换思想.连接BE ,∵四边形ABCD是矩形,∴∠D =90°,CD =AB =2,AD =BC =3.∵E 是CD 的中点,∴DE =12CD =1.在Rt △ADE中,AE =AD 2+DE 2=32+12=10.又∵S △ABE =12AE ·BF =12AB ·AD ,∴102·BF =12×2×3,解得BF =3105,故选B.9. C 解析:本题考查了二次函数的图像与性质及二次函数与方程、不等式的关系.∵b >a>0,∴对称轴x =-b2a<0,∴该抛物线的对称轴在y 轴左侧,故①不正确;∵抛物线y =ax 2+bx+c (b >a >0)与x 轴最多有一个交点,且a >0,∴y ≥0,∴两函数⎩⎪⎨⎪⎧y =ax 2+ bx + c ,y =-1没有交点,即关于x 的方程ax 2+bx +c +1=0无实数根,故②正确;∵当x =2时,y =ax 2+bx +c =4a+2b +c ,又∵对称轴-b2a<0且y ≥0,∴4a +2b +c >0,故③正确.故选C.10. D 解析:本题考查了翻折变换、勾股定理及直角三角形斜边上中线的性质、线段垂直平分线的性质等.如图,连接BE 交AD 于O ,作AH ⊥BC 于H ,在Rt △ABC 中,∴BC =AB 2+AC 2=52+122=13.∵点D 是BC 的中点,∴AD =DC =DB =12BC =6.5.∵S △ABC =12BC ·AH=12AB ·AC ,∴12×13×AH =12×5×12,解得AH =6013.∵AE =AB ,∴点A 在BE 的垂直平分线上.∵DE =DB ,∴点D 在BE 的垂直平分线上,∴AD 是BE 的垂直平分线,即AD ⊥OB .∵S △ABD=12AD ·BO =12BD ·AH ,∴12×6.5×OB =12×6.5×6013,解得BO =6013,∴BE =2BO =12013.∵DE =DB =DC ,∴△BCE 是直角三角形,即∠BEC =90°,∴EC =BC 2-BE 2=132-⎝⎛⎭⎫120132=11913,故选D.11. 23 12. x ≤3 13. 1314. 36° 解析:本题考查了圆周角定理.∵∠AOB 、∠ACB 分别是AB ︵所对的圆心角、圆周角,∴∠ACB =12∠AOB =12×72°=36°.15. -6 解析:本题考查了菱形的性质及反比例函数中“k”的几何意义.连接AC 交OB 于D ,∵四边形OABC 是菱形,∴OB ⊥AC ,∴S △COD =14S 菱形OABC =14×12=3.∵点C 在反比例函数y =k x 上,CD ⊥y 轴,∴S △COD =12|k|,即12|k|=3,解得k =±6,又∵函数y =k x 的图像在第二、四象限内,∴k<0,即k =-6.16.31010解析:本题考查了勾股定理、平行线的性质、锐角三角函数及转化思想.如图,连接AE 、EF ,设小正方形的边长为1,在Rt △EFG 中,EF =EG 2+GF 2=32+32=32,在Rt △AHF 中,AF =2 5.在Rt △AME 中, AE =AM 2+ME 2= 2.∵在△AEF 中,(2)2+(32)2=(25)2,即AE 2+EF 2=AF 2,∴∠AEF =90°.∵∠AEM =∠CDM =45°,∴AE ∥CD ,∴∠BOD =∠EAF ,∴sin ∠BOD =sin ∠EAF =EF AF =31010.17. 20 解析:本题考查了动点问题的函数图像、全等三角形的判定和性质及数形结合思想、方程思想.如图可知点P 在AB 、BC 、CD 段运动所对应的函数图像分别是OE 、EF 、FG ,∴点P 从A →C 用时6秒,AB +BC =6×2=12,同理AB +BC +CD =10×2=20,∴CD =8.又∵当P 点运动到C 点时,S △PAD 最大,最大为12×AD ×DC =32,∴AD =8.易知点E 对应的函数值为S △ABD ,∴S △ABD =8,∴AB =2.所以梯形ABCD 的面积=12(AB +CD)×AD =12×(2+8)×8=40.当点P 为BC 中点时,延长AP 交DC 的延长线于点M ,如图②,易证△ABP ≌△MCP ,∴S △ADM=S 梯形ABCD =40,AP =PM ,∴此时S △APD =12S △ADM =20.18. 410解析:本题考查了相似三角形的判定和性质、勾股定理及两点之间线段最短.如图,在CA上截取一点E ,使CE =4,连接DE ,BE ,则有CE CD =CD CA =23,又∵∠DCE =∠ACD ,∴△DCE ∽△ACD ,∴DE AD =23,∴DE =23AD ,∴23AD +BD =DE +BD.要使23AD +BD 最小,只要DE +BD 最小,当点B 、D 、E 在同一条直线上时,DE +BD 最小,为BE 的长.在Rt △BCE中,CE =4,BC =12,∴BE =CE 2+BC 2=42+122=410,即23AD +BD 的最小值为410.【技法点拨】通过添加辅助线构造相似三角形,并利用相似三角形的性质把23AD 转化成线段DE 是解答本题的关键.19. 解:原式=12-1-2+3=12.20. 解:⎩⎪⎨⎪⎧x -3(x -2)≤4, ①1+2x 3>x -1, ② 由①,得x ≥1,由②,得x<4,∴不等式组的解集为1≤x<4.21. 解:原式=2x (x +1)(x -1)·(x -1)2x (x -1)=2x +1.当x =2-1时,原式=22-1+1=22= 2.22. 解析:本题考查了分式方程的应用.设乙公司有x 人,则甲公司有1.2x 人,根据人均捐款钱数=捐款总数÷人数,结合乙公司比甲公司人均多捐20元,即可得出关于x 的分式方程,经检验后即可得出结论.解:设乙公司有x 人,则甲公司有(1+20%)x 人.根据题意得30 000x -30 000(1+20%)x=20,解得x =250,经检验x =250是原分式方程的解,所以(1+20%)x =300.答:甲公司有300人,乙公司有250人.23. 解析:本题考查了等腰三角形的性质、全等三角形的判定与性质、平行线的判定及菱形的判定.(1)先根据等腰直角三角形的性质得出∠B =∠E =45°,再由“ASA ”证得△BCF ≌△ECH ,进而得出结论;(2)因为四边形ACDM 已经有一组邻边AC =CD ,要证其为菱形,只需要证明这个四边形为平行四边形即可.解:(1)∵AC =CE =CB =CD ,∠ACB =∠DCE =90°,∴∠A =∠B =∠D =∠E =45°.在△BCF 和△ECH 中,⎩⎪⎨⎪⎧∠B =∠E ,BC =EC ,∠FCB =∠HCE ,∴△BCF ≌△ECH ,∴CF =CH .(2)∵∠ACB =∠ECD =90°,∠BCE =45°,∴∠ACF =∠DCH =45°.又∵∠E =∠B =45°,∴∠ACF =∠E ,∠DCH =∠B ,∴AC ∥MD ,CD ∥AM ,∴四边形ACDM 是平行四边形.又∵AC =CD ,∴平行四边形ACDM 是菱形.24. 解析:本题考查了统计表、扇形统计图以及列表法与画树状图法求概率.(1)根据航模项目人数确定全班的总人数为410%=40,得出3D 打印的人数为40×30%=12,从而求出m =12-4=8,则n =40-7-9-8-4-2-2-5=3;(2)机器人项目所占的比例为7+940=25,扇形统计图中机器人项目所对应扇形的圆心角度数为360°×25=144°;(3)用列表法或画树状图的方法,表示出所有可能结果,从中确定恰好有1名男生、1名女生的结果数,然后计算概率.解:(1)8 3 (2)144(3)将选航模项目的2名男生编上号码1、2,2名女生编上号码3、4,用表格列出所有可能出名女生”的结果有8种.∴P (1名男生、1名女生)=812=23.25. 解析:本题考查了解直角三角形的应用.延长BA 交FD 的延长线于点G 、过点A 作AH ⊥DG 于点H ,根据题意,先求出AG 、CG ,再由CD =12CG ,求得CD 的长;由EG =AB -BE +AG ,再根据EF =EGtan ∠EGF 求出答案即可.解:如图所示,延长BA 交FD 的延长线于点G ,过点A 作AH ⊥DG 于点H ,由题意知,AB =300 cm ,BE =AC =50 cm ,AH =50 cm ,∠AGH =30°,在Rt △AGH 中,∵AG =2AH =100 cm ,∴CG =AC +AG =150 cm ,则CD =12CG =75 cm.∵EG =AB -BE +AG =300-50+100=350(cm),∴在Rt △EFG 中,EF =EG tan ∠EGF =350×tan 30°=350×33=350 33 (cm),所以支撑角钢CD 的长度为75 cm ,EF 的长度为350 33cm. 26. 解析:本题考查了反比例函数与一次函数的图像与性质、圆的切线性质、正方形的判定与性质及用待定系数法求函数表达式等.(1)直接将A 点坐标代入反比例函数表达式即可求得m 的值;(2)首先利用切线的性质、正方形的判定与性质得出C 、B 点坐标,再利用待定系数法求出一次函数表达式;(3)利用A 点坐标结合函数图像得出x 的取值范围.解:(1)把点A(-4,m)的坐标代入y 2=4x ,则m =4-4=-1.(2)如图,连接CB ,CD ,∵⊙C 与x 轴,y 轴相切于点D ,B ,∴∠CBO =∠CDO =∠BOD=90°,BC =CD .∴四边形BODC 是正方形.∴BO =OD =DC =CB .设C (a ,a ),代入y 2=4x得a 2=4.∵a >0,∴a =2,∴C (2,2),B (0,2).把A (-4,-1)和(0,2)的坐标代入y 1=kx +b 中,得⎩⎪⎨⎪⎧-4k +b =-1,b =2,解得 ⎩⎪⎨⎪⎧k =34,b =2.∴一次函数的表达式为y 1=34x +2. (3)∵A (-4,-1),∴当y 1<y 2<0时,x 的取值范围是x <-4.27. 解析:本题考查了圆周角定理、等腰三角形的判定与性质、矩形的判定与性质、切线的判定及相似三角形的判定与性质等.(1)连接BC ,由“等弧对等角”知∠CAB =∠ABC ,根据AB 为⊙O 的直径得∠ACB =90°,据此可得答案;(2)①连接OC 、过D 作DM ⊥AB 于M ,设∠DAE =x °,先根据AB =BD ,AD =AE 求得∠DAE =∠DBA =30°,由此得DM =12BD =12AB =OC ,再根据等腰三角形的性质,得CO ⊥AB ,据此证得四边形OCDM 为矩形,继而得证;②先证△CAD ∽△ABE ,得AE =2CD ,再借助桥梁AE ,得BE =2CD ,由此可得CDEB 的值.解:(1)连接BC ,如图①.∵AB 是⊙O 的直径,∴∠ACB =90°,又∵AC ︵=BC ︵,∴AC =BC ,∴∠CAB =∠CBA =180°-90°2=45°.(2)①如图②,连接OC ,过D 作DM ⊥AB 于M ,设∠DAE =x °.∵AB =BD ,AD =AE ,∴∠ADB =∠BAD =∠AED ,∴∠DAE =∠DBA ,∴∠ADE =∠AED =∠DAB =∠CAB +∠ABD =45°+x °.∵∠DAE +∠ADE +∠AED =180°,∴2(45+x )+x =180,解得x =30,∴∠DAE =∠DBA =30°.∵DM ⊥AB ,∴DM =12BD =12AB =OC .∵DM ⊥AB ,CO ⊥AB ,∴四边形OCDM 为矩形,∴∠DCO =90°,∴直线l 是⊙O 的切线.②由①可知,CD ∥AB ,∴∠DCA =∠CAB .又∵∠CAD =∠DBA =30°,∴△CAD ∽△ABE ,∴AC AB =CD AE =22,∴AE =2CD .如图②,过E 作EN ⊥AB 于N ,∵∠EAN =45°,∴EN =22AE .又∵∠EBN =30°,∴ BE =2EN =2×22AE =2AE =2×2CD =2CD ,∴CD EB =12.28. 解析:本题考查了待定系数法求函数表达式、锐角三角函数、二次函数的图像与性质、线段垂直平分线的性质及方程思想、分类讨论思想.(1)把点C 的坐标代入二次函数表达式,可得关于a 的方程,解之可得答案;(2)连接FD ,过D 作DH ⊥AB 交x 轴于H ,先分别求出∠BDH =60°、∠FDE =∠F ′DE =60°,再证点F 、D 、H 在一条直线上,据此易得点F 的坐标;(3)假设存在满足条件的点Q ,作QR ⊥PN 于N ,设点P 坐标为(n ,0),用n 的代数式表示Q 点的坐标,然后分点Q 在PN 左侧或右侧两种情况,求n 的值,如果求出这样的符合题意的n ,则存在,并据此易得点Q 的坐标;反之,则不存在.解:(1)∵C (0,3),∴-9a =3,∴a =- 13. (2)如图①,连接FD ,过D 作DH ⊥AB 于H ,∵B (33,0),C (0,3),∴在Rt △OCB 中,BO =33,CO =3.∴tan ∠CBO =33,∠CBO =30°.同理∠CAB =60°,∠ACB =90°.①∵AE 平分∠CAB ,∴∠EAB =30°,∴∠EDF ′=60°.∵DH ⊥AB ,∴∠BDH =60°.∵F 关于AD 的对称点F ′恰好落在线段BD 上,∴AE 垂直平分FF ′,∴FD =F ′D ,∴∠FDE =∠F ′DE =60°,∴F 、D 、H 三点共线,∴H (3,0),∴F (3,4).(3)假设存在点Q ,使得△PQN 的面积是△APM 面积的2倍,且线段NQ 的长度最小.作QR ⊥PN ,设P (n ,0),∵B (33,0),C (0,3),∴BC 的表达式为y =-33x +3,∴M ⎝⎛⎭⎫n ,-33n +3,N ⎝⎛⎭⎫n ,-13n 2+233n +3,∴S △PQN =12PN ·QR .又∵△PQN 的面积是△APM 面积的2倍,即12×⎝⎛⎭⎫-13n 2+233n +3·QR =2×12(n +3)⎝⎛⎭⎫-33n +3,∴QR =2 3.①若Q 在PN 左侧,如图②,∴Q (n -23,-13n 2+23n -5),∴NQ 2=12+19(24-43n )2,∴当n =23时,NQ 2最小值为12,∴Q (0,3).②若Q 在PN 右侧,如图③,∴Q (n +23,-13n 2-233n +3),∴NQ 2=12+19×(43n )2,∴当n =0时,NQ 2最小值为12,∴Q (23,3).综上存在这样的点Q ,且Q 点的坐标为(0,3)或(23,3).。

2019年江苏省苏州市中考数学一模试卷(含答案解析)

2019年江苏省苏州市中考数学一模试卷(含答案解析)

2019年江苏省苏州市中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5B.﹣0.6C.+0.7D.+52.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个5.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB 外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC6.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°7.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个8.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.9.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2B.由a>b,得|a|>|b|C.由a>b,得﹣2a<﹣2b D.由a>b,得a2>b210.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标为()A.(5,8)B.(5,10)C.(4,8)D.(3,10)二.填空题(共8小题,满分24分,每小题3分)11.函数y=中,自变量x的取值范围是.12.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=.13.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.14.已知a2+a﹣1=0,则a3+2a2+2018=.15.如图,六边形ABCDEF的六个角都是120°,边长AB=1cm,BC=3cm,CD=3cm,DE=2cm,则这个六边形的周长是:.16.一组按规律排列的式子:,﹣,,﹣,…(a≠0),其中第10个式子是.17.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC 的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.18.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,则a的值为.三.解答题(共10小题,满分96分)19.(10分)(1)计算:(﹣1)(+1)+(﹣1)0﹣(﹣)﹣2.(2)化简:.(3)解方程:.20.(8分)解不等式组:,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.21.(8分)一艘轮船由南向北航行,如图,在A处测得小岛P在北偏西15°方向上,两个小时后,轮船在B处测得小岛P在北偏西30°方向上,在小岛周围18海里内有暗礁,问若轮船按20海里/时的速度继续向北航行,有无触礁的危险?22.(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.征文比赛成绩频数分布表请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.23.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.24.(8分)已知:如图,在⊙O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD =30°,且BE=2,求弦CD的长.25.(9分)已知:如图,正方形ABCD,BM、DN分别是正方形的两个外角平分线,∠MAN=45°,将∠MAN绕着正方形的顶点A旋转,边AM、AN分别交两条角平分线于点M、N,联结MN.(1)求证:△ABM∽△NDA;(2)联结BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.26.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?27.(13分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE 交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.28.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【解答】解:|+5|=5,|﹣3.5|=3.5,|+0.7|=0.7,|﹣2.5|=2.5,|﹣0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是﹣0.6,故选:B.【点评】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.4.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.6.【分析】由旋转性质知△ABC≌△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.【解答】解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.7.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.【分析】根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.【解答】解:∵小李距家3千米,∴离家的距离随着时间的增大而增大,∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C符合,故选:C.【点评】本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.9.【分析】根据不等式的性质进行分析判断.【解答】解:A、在不等式a>b的两边同时减去2,不等式仍成立,即a﹣2>b﹣2,故本选项错误;B、当a>b>0时,不等式|a|>|b|成立,故本选项错误;C、在不等式a>b的两边同时乘以﹣2,不等式的符号方向改变,即﹣2a<﹣2b成立,故本选项正确;D、当a>b>0时,不等式a2>b2成立,故本选项错误;故选:C.【点评】考查了不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标即可.【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF===8,在Rt△OCF中,∵OC=10,CF=8,∴OF===6,∴C(6,8),∵点D是线段AC的中点,∴D点坐标为(,),即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),∵CF=8,∴直线CB的解析式为y=8,∴,解得:,∴E点坐标为(4,8).【点评】此题考查了反比例函数图象上点的坐标特征,菱形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.二.填空题(共8小题,满分24分,每小题3分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+x1x2,然后利用整体代入的方法计算;【解答】解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.13.【分析】根据题意,使用列举法可得从4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】将已知条件变形为a2=1﹣a、a2+a=1,然后将代数式a3+2a2+2018进一步变形进行求解.【解答】解:∵a2+a﹣1=0,∴a2=1﹣a、a2+a=1,∴a3+2a2+3,=a•a2+2(1﹣a)+2018,=a(1﹣a)+2﹣2a+2020,=a﹣a2﹣2a+2020,=﹣a2﹣a+2020,=﹣(a2+a)+2020,=﹣1+2020,=2019.故答案为:2019.【点评】本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.15.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴GC=BC=3cm,DH=DE=2cm.∴GH=3+3+2=8cm,FA=PA=PG﹣AB﹣BG=8﹣1﹣3=4cm,EF=PH﹣PF﹣EH =8﹣4﹣2=2cm.∴六边形的周长为1+3+3+2+4+2=15cm.故答案为:15cm.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.16.【分析】式子的符号:第奇数个是正号.偶数个是负号,分子等于序号的平方,分母中a的指数是:序号的3倍减去1,据此即可求解.【解答】解:∵=(﹣1)1+1•,﹣=(﹣1)2+1•,=(﹣1)3+1•,…第10个式子是(﹣1)10+1•=.故答案是:.【点评】本题主要考查了式子的特征,正确理解式子的规律是解题的关键.17.【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正切等于对边比邻边列式计算即可得解.【解答】解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.18.【分析】根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,可以判断a的正负,得到关于a的方程,从而可以求得a的值.【解答】解:∵二次函数y=ax2+2ax+3a2+3=a(x+1)2+3a2﹣a+3,∴该函数的对称轴为直线x=﹣1,∵当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,∴a<0,当x=﹣1时,y=7,∴7=a(x+1)2+3a2﹣a+3,解得,a1=﹣1,a2=(舍去),故答案为:﹣1.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.三.解答题(共10小题,满分96分)19.【分析】(1)根据零指数幂和负整数指数幂的意义得到原式=3﹣1+1﹣9,然后进行加减运算;(2)先把分母因式分解和除法运算化为乘法运算,然后约分后进行同分母的加法运算;(3)先去分母得到整式方程,再解整式方程,然后检验即可.【解答】解:(1)原式=3﹣1+1﹣9=﹣6;(2)原式=+•=+=;(4)x(x+2)+6(x﹣2)=(x﹣2)(x+2),x2+2x+6x﹣12=x2﹣4,x=1,经检验,x=1是原方程的解.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.20.【分析】先求出两个不等式的解集,再求其公共解,即可求得正整数解.【解答】解:解不等式①,得x<4,解不等式②,得x≥﹣2,所以,原不等式组的解集是﹣2≤x<4在数轴上表示如下:所以,原不等式组的正整数解是1,2,3.【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.【分析】作PD⊥AB交AB延长线于D点,依据直角三角形的性质求得PD的长,即可得出结论.【解答】解:如图,作PD⊥AB交AB延长线于D点,∵∠PBC=30°,∴∠PAB=15°,∴∠APB=∠PBC﹣∠PAB=15°,∴PB=AB=20×2=40 (海里),在Rt△BPD中,∴PD=PB=20(海里),∵20>18,∴不会触礁.【点评】此题考查了等腰三角形的判定与性质,三角形的外角性质,以及含30°直角三角形的性质,其中轮船有没有危险由PD的长与18比较大小决定.22.【分析】(1)依据1﹣0.38﹣0.32﹣0.1,即可得到c的值;(2)求得各分数段的频数,即可补全征文比赛成绩频数分布直方图;(3)利用80分以上(含80分)的征文所占的比例,即可得到全市获得一等奖征文的篇数.【解答】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案为:0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).【点评】本题考查了频数(率)分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有9种等可能的结果数,再找出小红和小亮诵读两个不同材料的结果数,然后根据概率公式计算.【解答】解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.【分析】连接OD,设⊙O的半径为r,则OE=r﹣2,再根据圆周角定理得出∠DOE =60°,由直角三角形的性质可知OD=2OE,由此可得出r的长,在Rt△OED中根据勾股定理求出DE的长,进而可得出结论.【解答】解:连接OD,设⊙O的半径为r,则OE=r﹣2,∵∠BAD=30°,∴∠DOE=60°,∵CD⊥AB,∴CD=2DE,∠ODE=30°,∴OD=2OE,即r=2(r﹣2),解得r=4;∴OE=4﹣2=2,∴DE===2,∴CD=2DE=4.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.25.【分析】(1)由正方形ABCD,BM、DN分别是正方形的两个外角平分线,可证得∠ABM=∠ADN=135°,又由∠MAN=45°,可证得∠BAM=∠AND=45°﹣∠DAN,即可证得△ABM∽△NDA;(2)由四边形BMND为矩形,可得BM=DN,然后由△ABM∽△NDA,根据相似三角形的对应边成比例,可证得BM2=AB2,继而求得答案.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:∵四边形BMND为矩形,∴BM=DN,∵△ABM∽△NDA,∴=,∴BM2=AB2,∴BM=AB,∴∠BAM=∠BMA==22.5°.【点评】此题考查了相似三角形的判定与性质、正方形的性质以及矩形的性质.注意能证得当四边形BMND为矩形时,△ABM是等腰三角形是难点.26.【分析】(1)根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.【解答】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.27.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A、①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.28.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),设△DMN的面积为S,+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,∴S=S△DEN(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x+)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年苏州市中考数学模拟试卷本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的。

) 1. 12019-的倒数是 ( ) A .-2019 B .12019 C .2019 D .12019- 2.从2018年起,俄罗斯开始向我国供气,最终达到每年380亿立方米.380亿这个数据用科学记数法表示为 ( )A .3.8×109B .3.8×1010C .3.8×1011D .3.8×1012 3.下列运算正确的是 ( )A .236a a a =gB .523a a a ÷= C .33(3)9a a -=- D .224235x x x +=4.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率 ( ) A .大于12 B .等于12 C .小于12D .不能确定 5.如图,AB ∥CD ,则根据图中标注的角,下列关系中成立的是 ( ) A .∠1=∠3 B .∠2+∠3=180° C .∠2+∠4<180° D .∠3+∠5 =180°6.“科学用眼,保护视力”是青少年珍爱生命的具体表现,科学证实:近视眼镜的度数y (度)与镜片焦距x(m)成反比例,如果500度近视眼镜片的焦距为0.2 m ,则表示y 与x 函数关系的图像大致是 ( )A .B .C .D .7.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,甲、乙、丙、丁的成绩分析如表所示,请从他们的成绩平均数(环)及方差两个因素综合分析,参赛选手应选( )甲乙丙丁平均数7.9 7.9 8.0 7.4方差 3.29 0.49 1.8 0.12A.甲B.乙C.丙D.丁8.如图,∠AOB =60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM的值为( )A.3 B.4 C.5 D.6第8题第9题9.如图是抛物线y=ax2+bx+c(c≠0)的部分图像,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0; ②3a+b=0;③b2=4a (c-n);④一元二次方程ax2 +bx +c=n-l有两个不相等的实数根.其中正确结论的个数是( )A.1 B.2 C.3 D.410.如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数kyx=在第一象限内的图像经过点D,交BC于点E.若AB=4,CE=2BE,3tan4AOD∠=.则是的值为( )A.3 B.23C.6 D.12二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.若式子112x有意义,则x的取值范围是_____________.12.分解因式:2x2-8y2=_____________.13.一次数学测试后,某班50名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是_____________.14.关于x的方程x2+2x-2m+1=0有两个实数根,则实数m的取值范围是_____________.15.如图,□ABCD中,AE⊥BD于E,∠EAC =30°,AE=3,则AC的长等于___________.第15题第16题16.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A =30°,给出下面3个结论:①AD =CD;②BD=BC;③AB=2BC,其中正确的结论有___________.(填正确的序号)17.如图,在Rt△ABC中,∠B=90°,AB =25,BC=5.将△ABC绕点A按逆时针方向旋转90°得到△AB'C',连接B'C,则sin∠ACB'=___________.18.如图,一次函数y=2x与反比例函数y=kx(k>0)的图像交于A,B两点,点P在以C(-2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最小值为32,则k的值为_________.三、解答题(本大题共10小题,共76分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)(第18题图)OyxCQ ABP19.(本题满分5分)计算:0212(2019)()2π----+.20.(本题满分5分) 解不等式组2102323x x x +>⎧⎪-+⎨≥⎪⎩.21.(本题满分6分)先化简,再求值:2344(1)11x x x x x ++-+÷++,其中22x =-.22.(本题满分6分)如图,点B ,F ,C ,E 在同一条直线上,,//,//FB CE AB ED AC FD =,AD 交BE 于点O .求证:AD 与BE 互相平分.23.(本题满分8分)小明、小林是三河中学九年级的同班同学.在四月份举行的自主招生 考试中,他俩都被同一所高中提前录取,并将被编。

入A ,B ,C 三个班,他俩希望能 再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果; (2)求两人再次成为同班同学的概率.24.(本题满分8分)如图,将矩形纸片ABCD(AD>AB)折叠,使点C 刚好落在线段AD 上, 且折痕分别与边BC ,AD 相交,设折叠后点C ,D 的对应点分别为点G ,H , 折痕分别与边BC ,AD 相交于点E ,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.25.(本题满分8分)如图所示,一幢楼房AB 背后有一台阶CD,台阶每层高0. 2米,宽0. 6 米,且AC =16. 3米.设太阳光线与地面的夹角为α,当α= 60°时,测得楼房在地面上的影长AE = 10米.3 1.73)(1)求楼房的高度约为多少米?(2)当α= 45°时,问两只小猫是否都能晒到太阳?请说明理由.26.(本题满分10分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB、DC、DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=25,求tan∠ABD的值.27.(本题满分10分)如图,在矩形ABCD中,AB =6 cm,BC=8 cm,对角线AC,BD 交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1 cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由.28.(本题满分10分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l 向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE= x米(其中x>0),GA =y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.参考答案一、1.C 2.B 3.B 4.B 5.D 6.B 7.B 8.C 9.C 10.A二、11.12x<12.2(x+2y)(x-2y)13. 0.28 14.m≥0 15. 4316.①②③17.4518.8三、19.520.10 2x-<≤21.原式=22212xx--=-+22.证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.23.(1)树状图或列表略,所有等可能结果为AA,AB,AC,BA,BB,BC,CA,CB,(2)1 324.(1)菱形,证明略(2)CE的取值范围3≤CE≤5 25.(1)17.3米(2)26.(1) ∠CDE=90° (2)略 (3)tan ∠ABD =2 27.(1)当t 为等或5时,△AOP 是等腰三角形 (2)21112(06)22S t t t =-++<< (3)t= 3或 32t = S 五边形OECQF :S △ACD =9:16 28.(1)设线段MN 所在直线的函数表达式为y =kx +b , 将M (30,230)、N (100,300)代入y =kx +b ,,解得:,∴线段MN 所在直线的函数表达式为y =x +200. (2)分三种情况考虑:①考虑FE =FG 是否成立,连接EC ,如图所示. ∵AE =x ,AD =100,GA =x +200,∴ED =GD =x +100.又∵CD ⊥EG ,∴CE =CG ,∴∠CGE =∠CEG ,∴∠FEG >∠CGE , ∴FE ≠FG ;②考虑FG =EG 是否成立. ∵四边形ABCD 是正方形, ∴BC ∥EG ,∴△FBC ∽△FEG .假设FG =EG 成立,则FC =BC 成立,∴FC =BC =100. ∵AE =x ,GA =x +200,∴FG =EG =AE +GA =2x +200, ∴CG =FG ﹣FC =2x +200﹣100=2x +100.在Rt △CDG 中,CD =100,GD =x +100,CG =2x +100,∴1002+(x+100)2=(2x+100)2,解得:x1=﹣100(不合题意,舍去),x2=;③考虑EF=EG是否成立.同理,假设EF=EG成立,则FB=BC成立,∴BE=EF﹣FB=2x+200﹣100=2x+100.在Rt△ABE中,AE=x,AB=100,BE=2x+100,∴1002+x2=(2x+100)2,解得:x1=0(不合题意,舍去),x2=﹣(不合题意,舍去).综上所述:当x=时,△EFG是一个等腰三角形.。

相关文档
最新文档