第五章 抽样分布

合集下载

chapter5 抽样分布.

chapter5 抽样分布.
并且X1,X2 相互独立,则X1+X2 ~2(n1+n2)
2分布表及有关计算
(1)构成 P{2(n)<λ}=p,已知n,p可查表求得λ;
(2)有关计算
P 2 (n) p



2 p
(n)
上侧分位数
λ
2分布的极限分布
• 2分布的极限分布是正态分布
5.3.2 t分布
f (t)
1、定义 若X~2(n1),Y~2(n2) ,X,Y独立,则
F

X Y
n1 n2
~
F (n1,
n2 )
称为第一自由度为n1 ,第二自由度为n2的F—分布, 其概率密度为
h(
y)


(
n1
2
n
2
)(n1
/
(
n1 2
)(
n2 2
)(1

0,
n2
n1 n2
) y n1 / 2
lim f (t) (t)
1
t2
e 2 , x
n
2

t分布表及有关计算
上侧分位数:
P{t(n)>λ}=p
双侧分位数:
p
P{|t(n)|>λ}=2p,λ=tp(n)
t1 p (n)
t p (n)
t1 p (n) t p (n)
t分布的极限分布是正态分布
5.3.3 F分布
分层抽样的适用情形
分层随机抽样是判断抽样和随机抽样相结合的一种混合型抽样 方法。 分层抽样适宜于由差异较大的单位所组成的总体。它将分组法 与随机原则结合起来,减少了各组内标志值的差异程度,使各组都有 抽取样本单位的机会,有利于提高样本的代表性,能得到比简单抽样 更为准确的结果,因此在实际工作中应用较广泛。

曾五一《统计学导论》配套题库【章节题库】第五章 抽样分布与参数估计 【圣才出品】

曾五一《统计学导论》配套题库【章节题库】第五章 抽样分布与参数估计 【圣才出品】

12.样本均值的抽样标准差 x ,( ).
A.随着样本量的增大而变小 B.随着样本量的增大而变大
5 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台

C.与样本量的大小无关
D.大于总体标准差
【答案】A
【解析】根据样本均值的抽样分布可知,样本均值抽样分布的标准差 x
D.服从 2 分布
【答案】B
【解析】当 n 比较大时,样本均值的抽样分布近似服从正态分布。题中 n 36 30 为
大样本,因此样本均值的抽样分布近似服从正态分布。
5.估计量的含义是指( )。 A.用来估计总体参数的统计量的名称
2 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台

圣才电子书 十万种考研考证电子书、题库视频学习平台

第五章 抽样分布与参数估计
一、单项选择题 1.抽样分布是指( )。 A.一个样本各观测值的分布 B.总体中各观测值的分布 C.样本统计量的分布 D.样本数量的分布 【答案】C 【解析】统计量是样本的函数,它是一个随机变量。样本统计量的分布称为抽样分布。
2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布, 其分布的均值为( )。
A.
B. X C. 2
2 D.
n 【答案】A
【解析】根据中心极限定理,设从均值为 ,方差为 2 的任意一个总体中抽取样本量 为 n 的样本,当 n 充分大时,样本均值的抽样分布近似服从均值为 ,方差为 2 n 的正
n
,样本
量越大,样本均值的抽样标准差就越小。
13.在用正态分布进行置信区间估计时,临界值 1.645 所对应的置信水平是( )。 A.85% B.90% C.95% D.99% 【答案】B 【解析】置信水平是指总体参数值落在样本统计值某一区内的概率;而置信区间是指在

抽样与抽样分布(试题及答案)

抽样与抽样分布(试题及答案)

第五章抽样与抽样分布一、单项选择题(以下每小题各有四项备选答案,其中只有一项是正确的。

)1.抽样推断的主要目的是( )。

A.用统计量来推算总体参数B.对调查单位作深入研究C.计算和控制抽样误差D.广泛运用数学方法[答案] A[解析] 抽样调查是指从总体中按随机原则抽取部分单位作为样本,进行观察研究,并根据这部分单位的调查结果来推断总体,以达到认识总体的一种统计调查方法,因此,抽样推断的主要目的是用已知的统计量来推算未知的总体参数。

2.抽样调查中,无法消除的误差是( )。

A.抽样误差B.责任心误差C.登记误差D.系统性误差[答案] A[解析] 抽样误差是指在遵循了随机原则的条件下,不包括登记误差和系统性误差在内的,用样本指标代表总体指标而产生的不可避免的误差。

3.在其他条件相同的情况下,重复抽样的抽样平均误差和不重复抽样相比,( )。

A.前者一定小于后者B.前者一定大于后者C.两者相等D.前者可能大于,也可能小于后者[答案] B[解析] 以抽样平均数的抽样平均误差为例进行说明:在重复抽样条件下,抽样平均数的平均误差的计算公式:;在不重复抽样条件下,抽样平均数的平均误差的计算公式:。

因为,故。

4.拟分别对甲、乙两个地区大学毕业生在试用期的工薪收入进行抽样调查。

据估计甲地区大学毕业生试用期月工薪的方差要比乙区高出一倍。

在样本量和抽样方法相同的情况下,甲区的抽样误差要比乙区高( )。

A.41.4% B.42.4% C.46.8% D.48.8%[答案] A[解析] 假设乙地区的大学毕业生试用期月工薪的方差为σ2,甲地区的大学毕业生试用期月工薪的方差为2σ2,则:,那么,在样本量和抽样方法相同的,情况下,甲区的抽样误差要比乙区高=41.4%。

5.对某天生产的2000件电子元件的耐用时间进行全面检测,又抽取5%进行抽样复测,资料如表5-1所示。

表5-1耐用时间(小时) 全面检测(支) 抽样复测(支)3000以下3000~4000 4000~5000 50600990230505000以上总计36020018100规定耐用时间在3000小时以下为不合格品,则该电子元件合格率的抽样平均误差为( )。

第五章 抽样法

第五章 抽样法

抽样的作用

抽样调查能够解决全面调查无法或难以解决的问
题。

抽样调查可以补充和订正全面调查的结果。
抽样调查方法可以用于生产过程中产品质量的检
查和控制。 抽样调查方法可以用于对总体的某种假设进行检 验,以判断这种假设的真伪,决定行动的取舍。

抽样中的几个基本术语
总体(Population):调查研究的事物或现象的全体 个体(Item unit):组成总体的每个元素
一、抽样的概念、特点、作用 二、抽样中的基本术语 (一)总体和样本 (二)参数和统计量 (三)样本容量和样本个数 (四)重复抽样和不重复抽样 (五)概率抽样与非概率抽样 (六)抽样框 三、抽样误差
抽样的概念 特点
(一)概念 抽样调查是按照随机原则从全部研究对象中抽取 一部分单位进行观察,并依据获得的数据对全部研 究对象的数量特征做出具有一定可靠性的估计和判 断.达到对现象总体认识的一种方法. (二)特点 它是按照随机原则从总体中抽取样本。 它是由部分推算整体的一种方法。 它是运用概率估计的方法。 抽样误差可事先计算并加以控制。
抽样中的几个基本术语
X
i 1 N
总体均值
X
i
N

X F
i 1 K i
K
i
F
i 1
i
标准差

X
N i 1
i
X
2
N

X
K i 1
i K
X Fi
i
2
F
i 1
抽样中的几个基本术语
总体方差
2
( X i X )2
i 1
N
N

( X i X ) 2 Fi

统计学中的抽样分布基本理论

统计学中的抽样分布基本理论

统计学中的抽样分布基本理论统计学是一门广泛应用于各个领域的学科。

在许多领域都需要数据支撑决策,统计学是收集、分析和解释数据的科学。

而抽样分布的基本理论则是统计学中最为基础且至关重要的概念之一。

什么是抽样分布?抽样分布指的是在总体中选取一定数量样本的情况下,样本所呈现的分布情况。

这个分布被称为抽样分布。

抽样分布正是在原本无法得出准确结果时,在对样本进行检测和分析加以处理得出的模拟分布情况。

抽样分布的定义我们假设样本是从一个总体中随机抽取的,这个总体具有一个概率分布,并且每个样本都独立地从该概率分布中抽取。

根据中心极限定理,当样本数量足够大时,样本均值的分布将会近似正态分布,均值为总体均值,标准差为总体标准差除以样本量的平方根。

这个近似于正态分布的抽样分布称为样本均值的抽样分布。

抽样分布中的t分布因为在实际应用中,样本的真实总体均值和总体标准差都是为了推断或预测总体特征,而在抽样时这些特征是不确定的,所以会有一定误差。

这时我们便需要用到其它类型的抽样分布。

t分布就是这样一种抽样分布方式,它在样本量较小时,比正态分布更适用。

它类似于正态分布,但在小样本情况下,会有更宽的尾部和更高的峰值。

t分布具有参数自由度 (df) ,其在自由度越大时,越接近于正态分布。

当自由度大于30时,两者基本一致。

了解抽样分布形式和方法对于进行更高质量的统计分析意义重大。

在统计中,我们总是使用概率论和数理统计中的一些基本思想来尽可能减少污染。

特别是在数据采集的实际工作中,数据样本的选取是统计分析的重要基础之一,样本均值的分布越正常,那么就可以推断出样本中的点集越正常。

抽样分布是推断总体、检验总体分布、总体均值、总体比率、总体标准差等经典统计问题的基础。

社会学 抽样调查法

社会学 抽样调查法
富兰克林·罗斯福&阿尔夫·兰登 富兰克林·罗斯福最终以61%选票当选 《文学文摘》却预测罗斯福43%,相反,预
测兰登57% 1938年美国《文学文摘》杂志倒闭
此前《文学文摘》杂志已经成功预测 了1920、1924、1928和1932年的总统选举, 并且都一直沿用根据电话簿和车牌登记名 单来编制抽样框。而在1936年,因严重的 经济萧条,很多中产阶级沦为贫民。
二、概率抽样具Biblioteka 方法1.简单随机抽样随机数表抽样 (节选) 任意抽取法 抽签法
随机数表号码 100973 375420 084226 990190 128079 660657 310601 852697 635733 990164
选用号码 1009 3754 0842
1280
3106
东北区:黑龙江、吉林、辽宁 西北区:陕西、甘肃、宁夏、青海、新疆 华北区:内蒙古、河北、山西、北京、天津 华东区:山东、安徽、江西、江苏、浙江、
福建、上海 中南区:河南、湖南、湖北、广东、广西、
海南
西南区:四川、重庆、云南、贵州、西藏
城市选择
选中的6个省(区)中,分别选取其省会城市 和在该城市附近的中小城市1个。加上原本的 3个直辖市,一共15个城市。
几个概念
概率 就是事件发生频率所接近的固定数值,它是 相应事件发生的可能性大小的一个客观、定量的度 量。
“大数定律” 又称为“大数法则”或“平均法则”, 是概率论主要法则之一。它的意义是:在随机事件 的大量重复出现中,往往呈现几乎必然的规律,这 类规律就是大数法则。
例如,根据大数定律,乘飞机出事故的概率大约为 十万分之二。
第二步
在每一所抽中的小学里,再按简单随 机抽样的方式抽取高、低年级各一个。

统计学(李荣平)2014-5

统计学(李荣平)2014-5

P{t>tα(n)}= h(t;n)dt
t (n)
的数tα(n)为t(n)分布的上α分为点。 例:查表求:t0.05(8), t0.95(8)
o
t (n)
第一节 抽样分布
(三)F 分布
设 U ~ 2(n1 ),V ~ 2(n2 ), 且设 U,V 独立,则称随机变量
F U / n1 V / n2
保证质量,规定σ≤0.6mm时,认为生产过程处于良好控制
状态。为此,每隔一定时间抽取20个零件作为一个样本,并
计算样本方差S2。若P{S2≥c } ≤0.01(此时σ=0.6mm),
则认为生产过程失去控制,必须停产检查,问:
(1)C为何值时,S2≥c的概率才小于或等于0.01? (2)若取得的一个样本的标准差S=0.84,生产过程是
第五章 抽样分布与参数估计

第一节 抽样分布
要 内
第二节 参数点估计

第三节 区间估计
第一节 抽样分布
一、随机样本
总体与个体:试验全部可能的观测值叫总体;试验的 每一个观测值叫个体。
样本容量与样本个数:样本中包含的单位数叫样本容 量;从一个总体中可能抽取多少个样本叫样本个数。
总体容量:总体中所包含的个体数。 有限总体和无限总体:总体容量可数的称有限总体, 不可数的称无限总体。 重置抽样(重复抽样)和无重置抽样(不重复抽样)
X
1 n
n i 1
Xi
为样本均值;称统计量
S 2
1 n1
n i1
(Xi
X )2
为 样本方差 ,称统计量 S
S2
1n
( X X ) 2 为样本标准差 ;统计量
n 1 i1 i

概率论与数理统计第五章2

概率论与数理统计第五章2
tα (n)
分布的上 分位数或上侧临界值, 的数tα(n)为t分布的上α分位数或上侧临界值, 其几何意义见图5-7. 其几何意义见图
标准正态分布的分位数
在实际问题中, 在实际问题中, α常取0.1、0.05、0.01. 常用到下面几个临界值: 常用到下面几个临界值:
u0.05 =1.645, , u0.05/2=1.96, ,
u0.01 =2.326 u0.01/2=2.575
数理统计中常用的分布除正态分布外, 数理统计中常用的分布除正态分布外,还有 三个非常有用的连续型分布, 三个非常有用的连续型分布,即
定理5.1 定理5.1
设(X1,X2,…,Xn)为来自正态总体 X~N( ,σ 2)的样本,则 的样本, ~ (1) 样本均值 X与样本方差S 2相互独立; 相互独立; n (2)
(n 1)S
2
σ
2
=
∑(X X)
i =1 i
2
σ
2
~ χ (n 1)
2
(5.8)
与以下补充性质的结论比较: 与以下补充性质的结论比较: 性质 设(X1,X2,…,Xn)为取自正态总体
上侧临界值. 如图. 上侧临界值 如图
概率分布的分位数(分位点) 概率分布的分位数(分位点) 定义 对总体X和给定的α (0<α<1),若存在xα, α 分布的上侧 分位数或 上侧α 使P{X≥xα} =α, 则称xα为X分布的上侧α分位数或 α y α o xα x
P{X≥xα} =α α
∫ xα
其中Sn
(5.10)
=
2 (n1 1)S1
2 2 S1、S2 分别为两总体的样本方差 分别为两总体的样本方差.
n1 + n2 2

2021统计学原理-《统计学》第五章统计量及其抽样分布试题(精选试题)

2021统计学原理-《统计学》第五章统计量及其抽样分布试题(精选试题)

统计学原理-《统计学》第五章统计量及其抽样分布试题1、智商的得分服从均值为100,标准差为16的正态分布。

从总体中抽取一个容量为n的样本,样本均值的标准差为2,样本容量为____________。

2、样本均值与总体均值之间的差被称作____________。

3、从均值为50,标准差为5的无限总体中抽取容量为30的样本,则抽样分布的超过51的概率为____________。

4、某校大学生中,外国留学生占10%。

随机从该校学生中抽取100名学生,则样本中外国留学生比例的标准差为____________。

5、假设总体服从均匀分布,从此总体中抽取容量为36的样本,则样本均值的抽样分布( )。

A.服从非正态分布B.近似正态分布C.服从均匀分布D.服从x²分布6、从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差( )。

A.保持不变B.增加C.减小D.无法确定7、总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准误差分别为( )。

A.50,8B.50,1C.50,4D.8,88、某厂家生产的灯泡寿命的均值为60小时,标准差为4小时。

如果从中随机抽取30只灯泡进行检测,则样本均值( )。

A.抽样分布的标准差为4小时B.抽样分布近似等同于总体分布C.抽样分布的中位数为60小时D.抽样分布近似等同于正态分布,均值为60小时9、假设某学校学生的年龄分布是右偏的,均值为23岁,标准差为3岁。

如果随机抽取100名学生,下列关于样本均值抽样分布描述不正确的是( )。

A.抽样分布的标准差等于3B.抽样分布近似服从正态分布C.抽样分布的均值近似为23D.抽样分布为非正态分布10、从均值为200,标准差为50的总体中抽取容量为100的简单随机样本,样本均值的数学期望是( )。

A.150B.200C.100D.25011、从均值为200,标准差为50的总体中抽取容量为100的简单随机样本,样本均值的标准差是( )。

第5章抽样调查及参数估计(练习题)

第5章抽样调查及参数估计(练习题)

第五章抽样调查及参数估计5.1 抽样与抽样分布5.2 参数估计的基本方法5.3 总体均值的区间估计5.4 总体比例的区间估计5.5 样本容量的确定一、简答题1.什么是抽样推断?用样本指标估计总体指标应该满足哪三个标准才能被认为是优良的估计?2.什么是抽样误差,影响抽样误差的主要因素有哪些?3.简述概率抽样的五种方式二、填空题1.抽样推断是在随机抽样的基础上,利用样本资料计算样本指标,并据以推算总体数量特征的一种统计分析方法。

2.从全部总体单位中随机抽选样本单位的方法有两种,即重复抽样和不重复抽样。

3.常用的抽样组织形式有简单随机抽样、类型抽样、等距抽样、整群抽样等四种。

4.影响抽样误差大小的因素有总体各单位标志值的差异程度、抽样单位数的多少、抽样方法和抽样调查的组织形式。

5.总体参数区间估计必须具备估计值、概率保证程度或概率度、抽样极限误差等三个要素。

6.从总体单位数为N的总体中抽取容量为n的样本,在重复抽样和不重复抽样条件下,可能的样本个数分别是______________和_____________。

7.简单随机_抽样是最基本的抽样组织方式,也是其他复杂抽样设计的基础。

8.影响样本容量的主要因素包括总体各单位标志变异程度_、__允许的极限误差Δ的大小、_抽样方法_、抽样方式、抽样推断的可靠程度F(t)的大小等。

三、选择题1.抽样调查需要遵守的基本原则是( B )。

A.准确性原则 B.随机性原则 C.代表性原则 D.可靠性原则2.抽样调查的主要目的是( A )。

A.用样本指标推断总体指标 B.用总体指标推断样本指标C.弥补普查资料的不足 D.节约经费开支3.抽样平均误差反映了样本指标与总体指标之间的( B )。

A.实际误差 B.实际误差的平均数C.可能的误差范围 D.实际的误差范围4.对某种连续生产的产品进行质量检验,要求每隔一小时抽出10分钟的产品进行检验,这种抽查方式是( D )。

A.简单随机抽样 B.类型抽样 C.等距抽样 D.整群抽样5.在其他情况一定的情况下,样本单位数与抽样误差之间的关系是( B )。

统计量的抽样分布

统计量的抽样分布

第一节 样本率的抽样分布
(二)样本率抽样分布的正态近似
因此,当利用二项分布的正态近似来计算累积概率时,可以对需要计算的“成功” 次数的整数实施加0.5或减0.5后再采用正态分布近似法来计算,这样可以提高近似 的准确性,此类方法称为近似正态分布的连续性校正。
B(n, ) B(n, )
第一节 样本率的抽样分布
样本均数的离散程度远小于总体
分布的离散程度。
样本均数的取值随样本变化,但分 布围绕总体均数,基本左右对称, 且中间高、两边低,呈近似对称。
B(n, ) B(n, )
第一节 样本均数的抽样分布
(三)数理结论
B(n, ) B(n, )
第一节 样本均数的抽样分布
(三)数理结论
B(n, ) B(n, )
卫生统计学
第五章 统计量的抽样分布
李晓松 四川大学
赵 星
四川大学
目录
01 02 第一节:样本率的抽样分布
第二节:样本均数的抽样分布
重点难点
※ 应用二项分布概率公式、运用统计表计算样本率的概率分布 ※ 应用概率理论计算样本率、样本均数的概率分布 ※ 利用蒙特卡罗模拟产生多个样本进而描述样本率、样本均数的抽样分布 ※ 正态分布近似计算法的条件
② 样本率的标准差为0.2812,刻画了样本率的变异程度。
第一节 样本率的抽样分布
(一)样本率的概率分布
第一节 样本率的抽样分布
(一)样本率的概率分布
① 模拟数据的产生和样本频数的计算 模拟数据的产生思路、产生过程及计算样本率的步骤等均与投掷3次一样。 ② 样本率的均数与标准差随样本量增加的变化情况
(一)样本率的概率分布
模拟实验得到的频率与用概率公式计算的结果对比

概率论抽样分布

概率论抽样分布

概率论抽样分布说明在概率论中,抽样分布是指从总体中选取样本并计算样本统计量的分布。

通过研究抽样分布,可以推断总体的性质和参数。

在这篇文档中,我们将介绍概率论抽样分布的基本概念、特性以及常用的分布类型。

抽样分布的定义抽样分布是由于从总体中抽取样本导致的统计量的分布。

在统计学中,统计量是从样本数据中计算得出的数值,如样本均值、样本方差等。

通过从总体中不断抽取样本并计算统计量的值,可以得到抽样分布。

抽样分布的特性抽样分布具有以下特性:1.中心极限定理:当样本容量足够大时,抽样平均值的抽样分布近似呈正态分布。

2.抽样分布的均值等于总体均值:样本均值的期望值等于总体均值。

3.抽样分布的方差等于总体方差除以样本容量:样本均值的方差等于总体方差除以样本容量。

常见的抽样分布类型在概率论中,常用的抽样分布类型包括:1.正态分布:也称为高斯分布,是最常用的抽样分布。

当样本容量足够大时,均值的抽样分布近似呈正态分布。

2.t分布:用于小样本(样本容量较小)情况下对总体均值的推断。

相对于正态分布,t分布有更宽的尾部。

3.卡方分布:用于推断总体方差时的抽样分布。

卡方分布的形态由自由度决定。

4.F分布:用于比较两个总体方差是否相等的抽样分布。

F分布的形态由两个样本的自由度决定。

抽样分布的应用抽样分布广泛应用于统计学和概率论中的推断与检验问题。

通过从总体中抽取样本并计算统计量的分布,可以进行以下应用:1.参数估计:通过抽样分布,我们可以估计总体参数的取值,如总体均值、总体方差等。

2.假设检验:通过比较样本统计量与抽样分布的临界值,我们可以判断总体参数是否满足某个假设。

3.置信区间估计:通过计算抽样分布的分位数,我们可以得到总体参数的置信区间,从而评估参数的精确性。

总结抽样分布是概率论中的重要概念,用于推断总体的性质和参数。

具备了中心极限定理、均值和方差的性质等特点,常见的抽样分布类型包括正态分布、t分布、卡方分布和F分布。

通过抽样分布,我们可以进行参数估计、假设检验和置信区间估计等应用。

5.1样本均数的抽样分布与抽样误差(精)

5.1样本均数的抽样分布与抽样误差(精)
n均数抽样误差
n由固然存在的个体变异和抽样造成的样本均数与样本均数及样本均数与总体均
数之间的差异称为均数的抽样误差。
小结
1.抽样分布和抽样误差n样本统计量抽样分布误差含义及误差产生原因n
2.样本均数抽样分布和抽样误差n正态分布总体样本均数抽样分布规律非正态分布总体样本均数抽样分布规律n
n抽样分布
n由于抽样误差存在,从同一总体中随机抽取若干份样本,所得样本统计量是不
一致的,差异无法避免但其存在一定的分布规律。
2.样本均数抽样分布和抽样误差n正态分布总体样本均数抽样分布的电脑试验n
假定某年某地所有13岁女生的身高服从总体均数为155.4 cm,总
155.4,5.32)。用计算机从该总体中体标准差为5.3cm的正态分布N(
n非正态分布总体样本均数抽样分布的电脑实验n图(a)是正偏峰分布原始数据对应的直方图,用计算机随机抽取样本量分别为5, 10, 30和50的样本各1000份,计算样本均数并绘8
9
n中心极限定理表明
n 2 N m, s从正态总体()中随机抽取例数为n的多个样本,样本均数服从正态分布;即使是从偏态总体中随机抽样,当n足够大时(如n>30),样本均数也近似正态分布,且样本均数的均数等于原分布的均数。
第五章参数估计基础
一、样本均数的抽样分布与抽样误差
内容
1.抽样误差和抽样分布
2.样本均数抽样分布和抽样误差
1.抽样误差和抽样分布
n误差泛指实测值和真实值之差。按其产生原因与性质分两大类:系统误差和随
机误差。抽样误差是一种随机误差。n抽样误差
由于生物固有的个体变异,从某一总体中随机抽取一个样本,所得样本统计量与
随机抽样,每次抽取30例组成一份样本,重复抽样100次,计算每份样本的平均身高。

统计学中的抽样分布和抽样误差

统计学中的抽样分布和抽样误差

统计学中的抽样分布和抽样误差统计学是一门研究数据收集、处理和分析的学科,而在进行统计分析时,抽样是一项重要的技术。

抽样分布和抽样误差是统计学中关键的概念,本文将具体介绍它们的定义、特点和应用。

一、抽样分布在统计学中,抽样分布指的是从总体中抽取样本的过程中得到的样本统计量的概率分布。

样本统计量可以是样本均值、样本方差等。

抽样分布是由大量不同的样本所形成的,它们具有一定的数学特性。

抽样分布的特点有:1. 抽样分布的中心趋向于总体参数。

当样本容量足够大时,抽样分布的中心会接近总体参数的真值。

2. 抽样分布的形状可能与总体分布相同,也可能近似于正态分布。

中心极限定理是解释抽样分布接近正态分布的重要定理。

3. 样本容量越大,抽样分布的方差越小。

样本容量增大,抽样误差减小。

抽样分布在实际应用中具有重要价值。

通过了解抽样分布的性质,我们可以进行假设检验、构建置信区间以及进行参数估计等统计推断。

二、抽样误差抽样误差是指由于从总体中抽取样本而导致的估计值与总体参数值之间的差异。

它是统计推断中常见的误差来源,也是统计分析中需要控制的重要因素。

抽样误差的大小受到多个因素的影响,包括样本容量、总体变异性以及抽样方法等。

通常情况下,样本容量越大,抽样误差越小,因为更大的样本容量能够更好地代表总体。

为了降低抽样误差,我们可以采取以下策略:1. 增加样本容量。

增大样本容量可以减小抽样误差,提高估计值的准确性。

2. 采用随机抽样方法。

随机抽样可以降低抽样误差,确保样本的代表性。

3. 控制变异性。

尽量减少总体的变异性,可以减小抽样误差。

抽样误差的存在对于统计推断的可靠性有着重要的影响。

在进行数据分析和解释时,我们需要正确理解抽样误差的概念,并将其考虑在内。

总结:统计学中的抽样分布和抽样误差是进行统计推断不可或缺的概念。

抽样分布是样本统计量的概率分布,具有一定的数学特性,可以用于进行假设检验和置信区间估计。

抽样误差是由于从总体中抽取样本而导致的估计值与总体参数值之间的差异,它的大小受到多个因素的影响。

数理统计基本概

数理统计基本概

第五章 样本及抽样分布从本章开始, 我们将讲述数理统计的基本内容. 数理统计作为一门学科诞生于19世纪末20世纪初, 是具有广泛应用的一个数学分支, 它以概率论为基础, 根据试验或观察得到的数据, 来研究随机现象, 以便对研究对象的客观规律性作出合理的估计和判断.由于大量随机现象必然呈现出它的规律性, 故理论上只要对随机现象进行足够多次观察, 则研究对象的规律性就一定能清楚地呈现出来, 但实际上人们常常无法对所研究的对象的全体(或总体) 进行观察, 而只能抽取其中的部分(或样本) 进行观察或试验以获得有限的数据.数理统计的任务包括: 怎样有效地收集、整理有限的数据资料; 怎样对所得的数据资料进行分析、研究, 从而对研究对象的性质、特点, 作出合理的推断, 此即所谓的统计推断问题, 本课程主要讲述统计推断的基本内容.第一节 数理统计的基本概念内容分布图示★ 引言 ★ 总体与总体分布 ★ 样本与样本分布 ★ 例1★ 例2 ★ 例3 ★ 例4★ 统计推断问题简述★ 分组数据统计表和频率直方图 ★ 例5 ★ 经验分布函数 ★ 例6★ 统计量 ★ 样本的数字特征★ 例7 ★ 例8 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题5-1 ★ 返回内容要点:一、总体与总体分布总体是具有一定共性的研究对象的全体, 其大小与范围随具体研究与考察的目的而确定. 例如, 考察某大学一年级新生的体重情况, 则该校一年级全体新生就构成了待研究的总体. 总体确定后, 我们称总体的每一个可观察值为个体. 如前述总体(一年级新生) 中的每一个个体即为每个新生的体重. 总体中所包含的个体的个数称为总体的容量. 容量为有限的称为有限总体, 容量为无限的称为无限总体.数理统计中所关心的并非每个个体的所有性质, 而仅仅是它的某一项或某几项数量指标. 如前述总体(一年级新生)中, 我们关心的是个体的体重, 进而也可考察该总体中每个个体的身高和数学高考成绩等数量指标.总体中的每一个个体是随机试验的一个观察值, 故它是某一随机变量X 的值,于是, 一个总体对应于一个随机变量X , 对总体的研究就相当于对一个随机变量X 的研究, X 的分布就称为总体的分布函数, 今后将不区分总体与相应的随机变量, 并引入如下定义:定义 统计学中称随机变量(或向量)X 为总体, 并把随机变量(或向量)的分布称为总体分布.注(i) 有时个体的特性很难用数量指标直接描述, 但总可以将其数量化,如检验某学校全体学生的血型, 试验的结果有O 型、A 型、B 型、AB 型4种, 若分别以1,2,3,4依次记这4种血型,则试验的结果就可以用数量来表示了;(ii) 总体的分布一般来说是未知的, 有时即使知道其分布的类型(如正态分布、二项分布等),但不知这些分布中所含的参数等(如p ,,2σμ等).数理统计的任务就是根据总体中部分个体的数据资料对总体的未知分布进行统计推断.二、样本与样本分布由于作为统计研究对象的总体分布一般来说是未知的,为推断总体分布及其各种特征,一般方法是按一定规则从总体中抽取若干个体进行观察,通过观察可得到关于总体X 的一组数值),,,(21n x x x Λ,其中每一i x 是从总体中抽取的某一个体的数量指标i X 的观察值.上述抽取过程为抽样,所抽取的部分个体称为样本.样本中所含个体数目称为样本的容量.为对总体进行合理的统计推断,我们还需在相同的条件下进行多次重复的、独立的抽样观察,故样本是一个随机变量(或向量).容量为n 的样本可视为n 维随机向量),,,(21n X X X Λ,一旦具体取定一组样本,便得到样本的一次具体的观察值),,,(21n x x x Λ,称其为样本值.全体样本值组成的集合称为样本空间.为了使抽取的样本能很好地反映总体的信息, 必须考虑抽样方法,最常用的一种抽样方法称为简单随机抽样, 它要求抽取的样本满足下面两个条件:1. 代表性: n X X X ,,,21Λ与所考察的总体具有相同的分布;2. 独立性: n X X X ,,,21Λ是相互独立的随机变量.由简单随机抽样得到的样本称为简单随机样本, 它可用与总体独立同分布的n 个相互独立的随机变量n X X X ,,,21Λ表示. 显然, 简单随机样本是一种非常理想化的样本, 在实际应用中要获得严格意义下的简单随机样本并不容易.对有限总体, 若采用有放回抽样就能得到简单随机样本,但有放回抽样使用起来不方便, 故实际操作中通常采用的是无放回抽样, 当所考察的总体很大时, 无放回抽样与有放回抽样的区别很小, 此时可近似把无放回抽所得到的样本看成是一个简单随机样本. 对无限总体, 因抽取一个个体不影响它的分布, 故采用无放回抽样即可得到的一个简单随机样本.注: 今后假定所考虑的样本均为简单随机样本, 简称为样本.设总体X 的分布函数为)(x F ,则简单随机样本),,,(21n X X X Λ的联合分布函数为∏==ni i n x F x x x F 121)(),,,(Λ并称其为样本分布.特别地, 若总体X 为连续型随机变量,其概率密度为)(x f ,则样本的概率密度为∏==ni i n x f x x x f 121)(),,,(Λ分别称)(x f 与),,,(21n x x x f Λ为总体密度与样本密度.若总体X 为离散型随机变量,其概率分布为}{)(i i x X P x p ==, x 取遍X 所有可能取值, 则样本的概率分布为,)(},,,{),,,(12121∏======ni i n n x p x X x X x X p x x x p ΛΛ分别称)(i x p 与),,,(21n x x x p Λ为离散总体密度与离散样本密度.三、统计推断问题简述总体和样本是数理统计中的两个基本概念. 样本来自总体,自然带有总体的信息,从而可以从这些信息出发去研究总体的某些特征(分布或分布中的参数). 另一方面,由样本研究总体可以省时省力(特别是针对破坏性的抽样试验而言). 我们称通过总体X 的一个样本n X X X ,,,21Λ对总体X 的分布进行推断的问题为统计推断问题.总体、样本、样本值的关系:总体↙ ↖推断(个体)样本 → 样本值抽样在实际应用中, 总体的分布一般是未知的, 或虽然知道总体分布所属的类型, 但其中包含着未知参数. 统计推断就是利用样本值对总体的分布类型、未知参数进行估计和推断.为对总体进行统计推断, 还需借助样本构造一些合适的统计量, 即样本的函数, 下面将对相关统计量进行深入的讨论.四、分组数据统计表和频数直方图 通过观察或试验得到的样本值,一般是杂乱无章的,需要进行整理才能从总体上呈现其统计规律性. 分组数据统计表或频率直方图是两种常用整理方法. 1. 分组数据表:若样本值较多时,可将其分成若干组,分组的区间长度一般取成相等, 称区间的长度为组距. 分组的组数应与样本容量相适应. 分组太少,则难以反映出分布的特征,若分组太多,则由于样本取值的随机性而使分布显得杂乱. 因此,分组时,确定分组数(或组距)应以突出分布的特征并冲淡样本的随机波动性为原则. 区间所含的样本值个数陈为该区间的组频数. 组频数与总的样本容量之比称为组频率.2. 频数直方图:频率直方图能直观地表示出频数的分布,其步骤如下: 设n x x x ,,,21Λ是样本的n 个观察值.(i) 求出n x x x ,,,21Λ中的最小者)1(x 和最大者)(n x ;(ii) 选取常数a (略小于)1(x )和b (略大于)(n x ),并将区间],[b a 等分成m 个小区间(一般取m 使nm 在101左右): mab t m i t t t i i -=∆=∆+,,,2,1),,[Λ, 一般情况下,小区间不包括右端点.(iii) 求出组频数i n ,组频率i i f nn ∆=,以及),,2,1(,n i tfh i i Λ=∆=(iv) 在),[t t t i i ∆+上以i h 为高,t ∆为宽作小矩形,其面积恰为i f ,所有小矩形合在一起就构成了频率直方图五、经验分布函数样本的直方图可以形象地描述总体的概率分布的大致形态,而经验分布函数则可以用来描述总体分布函数的大致形状。

抽样及抽样分布

抽样及抽样分布

抽样及抽样分布引言在统计学中,抽样是从总体中选择一局部个体进行研究的过程。

通过抽样可以获得总体的估计值,从而对总体进行推断。

抽样是统计学的根底,也是进行统计推断的前提。

本文将介绍抽样的根本概念和方法,以及抽样分布的概念和特性。

抽样方法进行抽样时,需要选择适宜的抽样方法。

常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和群组抽样等。

简单随机抽样简单随机抽样是最根本的抽样方法,每个个体被随机地选入样本,且每个个体被选入样本的概率相等。

这种方法可以确保样本具有代表性。

系统抽样系统抽样是按照一定的规那么从总体中选取样本,例如每隔一定间隔选取一个个体。

这种方法简单实用,但需要注意规那么的选择是否会引入偏差。

分层抽样分层抽样是将总体分成假设干层,然后从每层中随机选取个体组成样本。

这种方法可以保证每个层次都有足够的代表性。

群组抽样群组抽样是将总体划分为假设干群组,然后随机选取假设干群组作为样本。

这种方法适用于总体中包含多个群组,但群组内个体相似的情况。

抽样分布抽样分布是指抽样统计量的分布。

统计量可以是样本均值、样本方差、样本相关系数等。

样本均值的抽样分布假设总体服从正态分布,样本均值的抽样分布也会服从正态分布。

根据中心极限定理,当样本容量足够大时,样本均值的抽样分布将变得更加接近正态分布。

样本方差的抽样分布样本方差的抽样分布是以总体方差为参数的分布,通常服从卡方分布。

样本容量的大小将影响样本方差的抽样分布形状。

样本相关系数的抽样分布样本相关系数的抽样分布通常是以总体相关系数为参数的分布。

样本容量的增加会使样本相关系数的抽样分布趋向于正态分布。

抽样误差与置信区间抽样误差是指样本统计量与总体参数之间的差异。

抽样误差的大小会受到样本容量和抽样方法的影响。

为了评估抽样结果的可靠性,可以构建置信区间。

置信区间是总体参数的一个区间估计,表示总体参数落在该区间的概率。

置信区间的宽度与置信水平、样本容量以及总体标准差等相关。

第五章抽样分布

第五章抽样分布
样本均值的抽样分布,就是采取重复 抽样的方式,选取容量为 的所有样本, 由样本均值所有可能的取值形成的概率分 布。它是推断总体均值 的理论基础。
以下分两种情况来讨论样本均值 的 抽样分布类型。
第二节 几个常见的抽样分布
正态分布:若 的概率密度函数为
f (x)
其中, 和
1
( x )2
e 2 2
(三)样本方差的数字特征 设总体 的方差为 ,采取重复抽样
的方式,从中抽取独立同分布的样本: , …, 。根据数学期望和方差的性质,可 推出样本方差的数学期望、方差与总体的
方差之间的关系为:
E(S2) 2
2 S2

2 4
n1
(5.5)
第一节 抽样分布基本概念
由式(5.5)可知:样本方差的平均数为 ,方差为 ,随着 的增大,其方差 越来越小,从而 的取值越来越向着 靠 拢,故用 去估计 理论依据成立。
服从正态分布

实际应用中,一般取 ,此时的样
本称为大样本。若为小样本,且总体分布
不是正态分布,此时不能按照正态分布来
处理,要运用小样本的相关理论来讨论。
第二节 几个常见的抽样分布
总体(, 2) 正态分布 非正态分布
大样本 小样本
正态分布
N (, 2 n)
非正态分布
图5-2 样本均值的抽样分布图

这种用商品质量数据的样本平均数 、 样本方差 作为总体平均数 、总体方差
【典型案例6】如何决定是否购买一批苹 果?
的作法,是人们购买商品时常用的有效 估计方法,其理论依据是本章将要学习的 内容。
第一节 抽样分布基本概念
一、样本容量和样本个数 二、参数和统计量 三、抽样分布 四、抽样分布的数字特征

黄良文《统计学》(第2版)笔记和课后习题(含考研真题)详解 第5章 抽样分布与抽样方法 【圣才出品

黄良文《统计学》(第2版)笔记和课后习题(含考研真题)详解 第5章  抽样分布与抽样方法 【圣才出品

②性质
(s 1) s (s)
(n 1) n!
(2) 2 (n) 分布的密度函数和主要性质
① 2 (n) 分布的密度函数
f
(x)
2n/2
1 (n
/
2)
x
n 2
1e
x
2,x
0
0,
x 0
②主要性质
a.如果 X~ 2 (n) ,则 E(X)=n,Var (X)=2n; b.如果 X1~ 2 (n) ,X2~ 2 (n) 且相互独立,则 X1+X2~ 2 (n1 n2 ) 。

其特点是:①n 个单位的样本由 n 次抽取的结果构成;②每次抽取的结果不是独立的。 ③虽然在同次试验中每个单位被抽取到的概率相同,但在不同次的试验中被抽取到的概率是 不相等的。
如果考虑顺序,其总样本个数为 PNn N ! (N n)!。如果不考虑顺序,总样本个数为 CNn N !/[(N n)!n!] ,每个样本被抽取到的概率都为1/ CNn 1 (N n)!n / N ! 。
i
类子总体的均值和方差分别为
i

2 i
。那么,样本均值
样本均值的数学期望
E(
X
)
。样本均值的方差(抽样标准误差)
2 X
k i 1
(
ni n
)2
2 Xi
①重置抽样
②不重置抽样

(2)整群抽样 整群抽样就是将总体的所有单位分成若干群,然后从其中随机抽取部分群,接着对中选 的群进行全面调查的抽样方式。 设总体的全部 N 个单位被划分为 R 群,每群都含有 M 个单位。现在从总体的所有 R
Dn
max
1k n
Xk
min 1k n

抽样分布的概念及重要性

抽样分布的概念及重要性

抽样分布的概念及重要性抽样分布是统计学中一个重要的概念,它描述了从总体中抽取样本的过程中,统计量的分布情况。

在统计学中,我们通常无法对整个总体进行研究,而是通过抽取样本来推断总体的特征。

抽样分布的概念帮助我们理解样本统计量的变异性,并为统计推断提供了理论基础。

本文将介绍抽样分布的概念及其重要性。

一、抽样分布的概念抽样分布是指在相同条件下,重复从总体中抽取样本,并计算样本统计量的分布情况。

在抽样过程中,每次抽取的样本可能不同,因此样本统计量的取值也会有所不同。

抽样分布描述了样本统计量的所有可能取值及其对应的概率分布。

常见的样本统计量包括样本均值、样本方差、样本比例等。

以样本均值为例,假设总体均值为μ,样本均值为x̄,抽样分布描述了在相同样本容量的情况下,样本均值的所有可能取值及其对应的概率分布。

根据中心极限定理,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。

二、抽样分布的重要性抽样分布在统计学中具有重要的意义,它对统计推断和假设检验提供了理论基础,具体体现在以下几个方面:1. 参数估计:抽样分布可以用于估计总体参数。

通过抽取样本并计算样本统计量,我们可以对总体参数进行估计。

例如,通过计算样本均值来估计总体均值,通过计算样本比例来估计总体比例等。

抽样分布提供了样本统计量的分布情况,帮助我们确定估计值的可信度和置信区间。

2. 假设检验:抽样分布可以用于假设检验。

在假设检验中,我们通常需要比较样本统计量与假设值之间的差异,以判断差异是否显著。

抽样分布提供了样本统计量的分布情况,可以帮助我们计算出观察到的差异在抽样误差范围内的概率,从而判断差异是否显著。

3. 抽样方法选择:抽样分布可以帮助我们选择合适的抽样方法。

不同的抽样方法会对样本统计量的分布产生不同的影响。

通过了解抽样分布的特点,我们可以选择合适的抽样方法,以提高样本统计量的准确性和可靠性。

4. 统计推断:抽样分布是统计推断的基础。

统计推断是指通过样本数据对总体特征进行推断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章抽样与抽样分布
例1:从某年级1000位学生中抽取4位学生,计算身高(μ=169, =6.4),来估计全年级平均身高,假设抽取了成千上万个样本,得到如下结果:
例2:几年前台湾一项调查显示,台湾民众月收入近似成正态分布,均值为13100台币,标准差为8750元,求:
1)随机抽取一人,收入超过18430元的概率?
2)抽取一个10人样本,平均收入超过18430元的概率?
例3:假定某班级男生平均身高169cm,标准差为10.2cm,如果抽取一个n=100的随机样本,那么样本均值在μ±2之内的可能性是多少?
例4:一架电梯极限负重1000公斤,一般可容纳13人。

假定电梯的所有乘客平均体重70公斤,标准差12公斤。

那么一个13个人的随机样本总重量超过极限负重的概率是多少?
例5:某市育龄妇女生育意愿普查,65%的赞成“只生一个孩子”,35%不赞成或不表态。

设生育态度X:赞成为1,否则为0。

求:1)总体均值、总体方差、总体中赞成的比例;2)随机抽取10位育龄妇女,得到样本值为1、0、0、1、1、
1、0、1、1、1,求样本均值、样本中赞成比例。

解:1)计算见下表
2)样本均值=7/10=0.7,样本中赞成比例=7/10=0.7
例6:学校选人大代表,结果有60%的选民投了我院院长而当选。

假定选举之前有人做了预测,抽取了一个n=30的随机样本进行民意测验,如果样本中只有半数一下的比例支持院长,于是得出院长失败的结果,显然这一预测是一个倒霉的预测。

那么,抽取到以上倒霉样本的概率是多少呢?即错误预测的可能性是多少?如果将样本量增到100,再计算错误概率。

例7:某中学学生男女人数相同,现随机从中抽取15名学生,问男生人数大于10的概率是多少?
四、样本方差的抽样分布
设随机变量x 1,x 2,x 3…..x i 相互独立且服从同一正态分布,则将这些随机变量标准化,再计算它们的平方和,得到卡方值2χ,其服从于自由度为n-1的卡方分布:
2χ=2222312(
)(
)(
).....(
)i x x x x μ
μ
μ
μ
σ
σ
σ
σ
----++++=
2
2
1
1
()
k
i
i x μσ=-∑
分子分母同乘n-1,进一步整理得2
χ=2
2
(1)n s σ-~2χ(n-1)
练习题:
1、某专业学生的年龄分布是右偏的,均值为22,标准差为4.45,如果采用重复抽样的方法从该专业学生中抽取容量为100的样本,则样本均值的抽样分布为?
2、从均值为50,标准差为5的正态总体中抽取容量为25的样本,则样本均值超过51的概率为?
3、某企业声明企业人均收入为5500元,标准差为550元。

如果随机抽取16位员工,则平均收入落在5400-5600元的概率是?
4、样本量为10的样本均值方差为12,则总体的方差为?
5、总体均值为3.1,标准差为0.8,从该总体中随机抽取容量为36的样本,样本
均值落在2-3.3之间的概率是?
6、某类球员的平均年薪为150万元,标准差为80万元,如果随机抽取100名球员,计算他们的平均年薪,超过100万元的概率为:()
A 0.2375 B近似等于0 C近似等于1 D 0.7357
7、正态总体均值为17,标准差为10,从总体中抽取一个容量为25的随机样本,样本均值的抽样分布为()
A N(17,4)
B N(10,2)
C N(17,2)
D N(10,1)
8、假设总体比例为0.4,采用重复抽样方法从中抽取一个容量为100的简单随机样本,则样本比例的分布为?
9、假设总体服从卡方分布,从该总体中抽取容量为100的样本,则样本均值的抽样分布()
A服从卡方分布B近似正态分布C二项分布 D F分布。

相关文档
最新文档