函数图象的割线斜率与切线斜率的关系

合集下载

谈曲线割线与中切线斜率关系问题的通用解法

谈曲线割线与中切线斜率关系问题的通用解法
1 得 [ e x 2 e x1 ( x 2 x 1 ) e x 2 x1
x 2 x1 2
即 ] 0,
x x1 f (x2 ) f (x1) )。 f '( 2 2 x2 x1
【例 4】已知函数 f (x) x ln x, (x 0) , x1 , x2 ( x1 x2 ) 为函数图像上任意两 点的横坐标,求证:
( (ⅱ) 若 f (x) 0 有两个实根, 分别为 x1, x 试比较 2 x1 x2 ) ,
f '( x2 x1 ) 的大小。 2
通法: (ⅰ)易求得 a 的取值范围为 a 0或a 1;
f (x2 ) f (x1) 与 x2 x1
(ⅱ) 由于 f (x) e ax 1, 故 f ' (x) e a , 进而 f ' ' (x) f ' ' ' (x) e 0 , 。
a 0 时,有
f (x2 ) f (x1) f (x2 ) f (x1) x x f ' ( x2 x1 ) ; a 0 时,有 f '( 2 1 ) 。 x2 x1 x2 x1 2 2
x
【例 3】已知函数 f (x) e ax 1.
3
(ⅰ)若 f (x) 0 仅有一个实根,求实数 a 的取值范围;
x1 , x 2 D , 且 x1 x 2 :若 f ''(x) 单调递增,则有
若 f ''(x) 为常数,则有
f (x2 ) f (x1) x x f '( 2 1 ) ; x2 x1 2
f ( x2 ) f ( x1 ) x x f ' ( 2 1 ) ;若 f ''(x) 单调递减,则有 x2 x1 2

浅析高中物理图像中斜率的意义及应用

浅析高中物理图像中斜率的意义及应用

课程教育研究Course Education Research 2018年第20期科学·自然在高中物理学习中,物理图像中斜率的应用非常广泛,有不少同学对此缺乏正确的分析,常常混淆斜率的应用或者忽略有关限制条件。

如果对这类问题模棱两可,领会不深刻,会导致物理学习出现较大困难,做题时有会而不对,对而不全的情况,甚至对有些题目无从下手。

下面对斜率的有关问题进行讨论。

一、割线斜率与切线斜率的比较从数学知识可知,斜率是表示一条直线对横坐标轴的倾斜程度,通常是用直线和水平线的夹角的正切来表示。

如图1所示,Ⅰ线为P 点与坐标原点相连接的割线,其斜率k=y x,即过原点的割线斜率为相应的y 与x 瞬时值的比值;Ⅱ直线为P 点的切线,其斜率k 1=dy dx,即切线斜率为相应的y 与x 微小变化量的比值。

显然,在图线为曲线时,某点的切线斜率与过该点和原点的割线斜率一般并不相等,只有在图线为过原点的直线时,两者的斜率才一定相等。

因此,在物理图像中,两种斜率所反映的问题是不同的,用切线的斜率来表示的是用微小变化量的比值来反映的物理量,如:1.速度v=dx dt,在x-t 图像中,切线斜率表示速度的瞬时值。

2.加速度a=du dt,在v-t 图像中,切线斜率表示加速度的瞬时值。

3.电流强度I=dq dt,在q-t 图像中,切线斜率表示电流强度的瞬时值。

4.电动势E=n d ϕdt,在Ф-t 图像中,切线斜率表示电动势的瞬时值。

用过原点的割线来表示的是相应瞬时值的比值来反映的物理量,如:1.电阻R=U I,在U-I 图像中,过原点的割线斜率表示电阻值。

2.质量倒数1m =a F,在a-F 图像中,过原点的割线斜率表示质量的倒数值。

下面探讨运用斜率法解题:例1:列车在恒定功率机车牵引下,从车站出发行驶5min ,使速度达到20m/s ,那么在这段时间内,列车行驶的路程()A.一定小于3kmB.一定等于3kmC.一定大于3kmD.不能确定解析列车在恒定功率下行驶,牵引力随速度增加而减小。

法线切线斜率的关系

法线切线斜率的关系

法线切线斜率的关系法线和切线是解析几何中常见的概念,它们在数学和物理学中有着重要的应用。

而法线切线斜率则描述了这两条线的斜率之间的关系。

本文将围绕这一关系展开讨论,并深入探究其背后的数学原理和物理意义。

一、法线和切线的定义和性质我们先来了解一下法线和切线的定义和性质。

在解析几何中,给定一条曲线上的一点P,以P为切点的切线是曲线与此切线相切于P 点且仅有一个公共点的直线。

而以P为切点的法线是与此切线垂直的直线。

切线和法线的斜率分别称为切线斜率和法线斜率。

二、切线斜率的定义和计算方法切线斜率的定义是切线与x轴正方向之间的夹角的正切值。

设曲线方程为y=f(x),切线斜率可通过求导得到。

具体而言,我们可以计算曲线函数在切点的导数,即切线的斜率。

若曲线函数为y=f(x),则切线斜率为f'(x)。

这意味着切线斜率可以通过求导来计算。

三、法线斜率的定义和计算方法法线斜率的定义是法线与x轴正方向之间的夹角的正切值。

由于法线与切线互为垂直关系,故法线斜率与切线斜率之积为-1。

设切线斜率为k,则法线斜率为-1/k。

这意味着我们可以通过切线斜率的倒数来计算法线斜率。

根据切线斜率和法线斜率的定义,我们可以得到法线切线斜率之间的关系。

设切线斜率为k,法线斜率为m,则根据前述推导,有m=-1/k。

也就是说,法线斜率与切线斜率互为倒数关系。

五、物理意义和应用法线和切线的概念不仅在数学中有应用,也在物理学中有重要的意义。

在物理学中,曲线往往表示某一物理量随着另一物理量的变化而变化的规律。

切线斜率描述了曲线的变化速率,而法线斜率则描述了曲线的变化趋势。

举个例子来说,我们考虑一个物理问题:某一物体的速度随时间的变化曲线。

速度-时间曲线上的某一点的切线斜率就是该点的加速度,而法线斜率则描述了加速度的变化趋势。

如果法线斜率为正,表示加速度逐渐增大;如果法线斜率为负,表示加速度逐渐减小。

这样,我们就可以通过法线斜率来分析物体的加速度变化规律。

切线斜率公式

切线斜率公式

切线斜率公式切线斜率公式是数学中的一个重要的概念,它是用来衡量坐标上的两点之间的斜率的,即两点斜线的倾斜程度。

它也可以用来描述一条曲线上两点之间的变化或斜率变化。

简言之,切线斜率公式是用来测量函数中心点处的切点斜率变化的一种数学公式。

切线斜率公式由简单的数学符号表示,它的一般形式是:m=(y2-y1)/(x2-x1)。

其中,m表示切线的斜率,y1和y2分别表示曲线上两点的y坐标,x1和x2分别表示曲线上两点的x坐标。

由于切线的斜率是曲线上两点间的城市系数,因此,如果我们在一条曲线上定义了一系列点,就可以使用切线斜率公式来计算每两点之间的斜率变化。

换句话说,当我们绘制一条曲线时,它的斜率分布就可以用切线斜率公式表示出来。

当我们讨论切线斜率公式时,又可分为两大类:一种是一般的切线斜率公式,另一种是以其他变量为参数的切线斜率公式。

以简单的函数为例,一般切线斜率公式可以表示为:f(x) = (f(x+h)-f(x))/h。

在这里,f(x)表示函数f(x)在x点处的一阶导数,h是函数上两点之间的距离。

而以其他变量为参数的切线斜率公式可表示为:f(x) = (f(x+h, y+k)-f(x, y))/[(h^2+k^2)^(1/2)]。

这里,x和y表示函数f(x,y)上的两维坐标,h和k分别表示函数在x和y方向上的距离,f(x)表示函数f(x,y)的一阶偏导数。

切线斜率公式具有很多应用价值,从绘制函数图像到研究复杂系统,这些公式都能有效地帮助我们完成任务。

比如,当我们研究空间系统时,使用切线斜率公式可以很好地模拟系统的变化。

同样,当我们研究社会系统时,切线斜率公式也可以帮助我们探究这些社会系统的变化情况。

总而言之,切线斜率公式是一种重要的数学工具,它可以用来测量函数在坐标上的两点的斜率变化,并且也可以用来研究复杂系统的变化情况。

在科学研究中,它是一种强大的分析工具,它不仅可以帮助我们更深入地理解函数及其变化规律,也可以帮助我们模拟复杂系统的变化情况,从而更好地研究复杂系统的变化特征和行为规律。

切线与割线斜率关系的深度探析

切线与割线斜率关系的深度探析

( x0, f ( x0 ) ) 一定是拐点. 又 k % P, 所以曲线 C 不存
22
在与 l 平行的割线, 也即平行于拐点 ( x0, f ( x0 ) ) 处 切线的任意直线与曲线 C 至多有一个交点, 必要性 成立.
( 4) 由 ( 3) 的证明易知结论成立.
由上述定理 可知, 对于 二阶 可导 曲线 C: y = f (x ) 有: ∋ 当且仅当曲线 C 不存在拐点, 或对曲线 C
和 F, 割线 EF 的斜率等于切线 l的斜率, 所以 Q ! P, 又由 ( 1) 知 P ! Q, 所以 P = Q;
( 3) 一方面, 因为曲线 C 存在这样的拐点, 使得
平行于该拐点处切线的任意直线与曲线 C 至多有一 个交点, 所以曲线 C 上任意两点的连线的斜率都不等
于该拐点处切线的斜率, 所以 P Q, 充分性成立;
,
+
#
上 递 增, 所以
h( x ) m in
=
h(
1 3
)
=-
1 27
3+
4.
若 h( x ) min ! 0, 则 | h (x ) |m in = 0, 此时 | 2x3 -
x2 + 4 | > 1对任意的 x > 0 不能恒成立, 故必有
h ( x )m in
>
0, 此时
| h(x)
|m in =
x
x2 2
12
-
3
33 x1 x2
>
1
3x1 x2 +
x1 + x2 x1 x2
>
3
33

5x1 x2
+

切线斜率

切线斜率

切线斜率切线斜率是一个在微积分中非常重要的概念。

它描述了一条曲线在某一点处的斜率,能够帮助我们理解曲线在该点的变化情况。

在这篇文章中,我将为您详细介绍切线斜率的概念、计算方法以及在实际问题中的应用。

首先,让我们来了解一下什么是切线斜率。

切线斜率可以理解为曲线在某一点处的瞬时斜率,它表示了曲线在该点的变化率。

我们可以通过近似切线来计算切线斜率,这个近似切线与曲线在该点处非常接近,因此能够很好地反映曲线的变化情况。

切线斜率的计算方法是利用微积分的导数概念。

对于一个函数f(x),我们只需要求出它在某一点x=a处的导数,就可以得到该点处的切线斜率。

导数可以理解为函数在某一点处的瞬时变化率,因此也就等于切线的斜率。

计算切线斜率的导数公式是比较简单的。

对于一个函数f(x),它的导数可以表示为f'(x)。

在计算导数时,我们可以使用极限的概念来进行计算。

具体来说,我们需要计算函数f(x)在x=a处的极限,其中a是一个非常接近我们所关注点的数值。

这个极限的值就等于该点处的切线斜率。

举个例子,我们来计算一条曲线在某一点处的切线斜率。

假设我们有一个函数f(x)=x^2,我们想要求解该函数在x=2处的切线斜率。

首先,我们需要求出函数f(x)的导数。

对于这个函数来说,它的导数是f'(x)=2x。

然后,我们将x=2代入到导数公式中,即可得到切线斜率。

在这个例子中,切线斜率的值为4。

切线斜率在实际问题中有许多应用。

例如,在物理学中,我们经常需要研究物体在不同位置的速度。

可以通过计算速度函数的导数来得到物体在每个时刻的瞬时速度,而这个导数值就等于切线斜率。

同样地,在经济学和金融学中,切线斜率被用来衡量某种经济指标的增长速度。

总结起来,切线斜率作为微积分中的重要概念,能够描述曲线在某一点处的斜率和变化情况。

通过求函数的导数,我们可以得到切线斜率的数值,并应用于许多实际问题中。

切线斜率的计算方法简单,但其背后的数学基础是微积分的重要内容之一。

切线斜率公式

切线斜率公式

切线斜率公式以《切线斜率公式》为标题,写一篇3000字的中文文章切线斜率是数学中一个重要的概念,它可以很容易地用来描述任何曲线上两个点之间的关系。

它可以用来计算弧度,平面角,变化率和其他函数之间的关系。

该概念主要用于解决艺术,统计学,物理,金融学和其他各种科学领域的数学问题。

因此,本文将尝试提供一个简洁的解释,以及切线斜率的计算公式。

首先,我们来讨论一下切线斜率的定义:线斜率是一条给定曲线上任意两点A(x1,y1)和B(x2,y2)之间斜率的表示。

其计算公式为:斜率 =(y2 - y1)/(x2 - x1)。

换句话说,斜率实际上是两个点之间的垂直距离和水平距离的比值。

比如说,如果你有一条直线,它的斜率就是水平和竖直距离之比。

例如,假设一个直线有如下两个点:A(1,2)和B(3,4),那么它的斜率就是:斜率 =(4 - 2)/(3 - 1)= 2/2=1。

此外,切线斜率也可以用来表示其他函数的变化率,只要采用标准变换技术。

例如,如果给定一个函数y = f(x),那么它的切线斜率可以使用下面的式子来表示:斜率= dy/dx = f(x)/dx。

在实际应用中,切线斜率的求解也是一个活跃的领域。

例如,求凸包的切线斜率可以使用凸包求解算法。

该算法把凸多边形拆分成有向边,以求出其切线斜率。

此外,研究人员也可以利用梯度下降法来求出某种函数的切线斜率,以及其他最优化算法。

总之,切线斜率是一个十分有用的数学概念,可以用来描述曲线上两点间的关系,它还可以用于计算弧度,平面角,变化率和其他函数之间的关系。

另外,本文也讨论了切线斜率的计算公式,以及在实际应用中的求解方法。

它可以帮助我们更好地理解切线斜率的实际意义,进而应用于不同的科学和工程领域。

切点和切线斜率的关系

切点和切线斜率的关系

切点和切线斜率的关系切点和切线斜率是微积分中重要的概念,它们之间存在着密切的关系。

在数学上,切点是曲线上的一个点,而切线是通过这个点且与曲线相切的一条直线。

切线的斜率则是切线的特征之一,它表示切线在曲线上的变化率。

我们来看切点和切线的定义。

给定一个曲线,我们想要找到曲线上的一个点P,使得过点P的切线与曲线相切。

这个点P就是切点,而过点P的切线就是切线。

在数学中,切线的斜率是一个非常重要的概念。

它表示切线在曲线上的变化率,也就是切线的斜率决定了切线的倾斜程度。

斜率的计算方法是通过切线经过的两个点的纵坐标之差除以横坐标之差。

例如,对于曲线y = f(x),切点P的横坐标为x0,纵坐标为y0,切线的斜率可以表示为:k = (f(x0) - y0) / (x - x0)其中,k表示切线的斜率。

接下来,我们来探讨切点和切线斜率之间的关系。

当我们知道曲线的方程和切点的坐标时,可以通过求导来求得切线的斜率。

求导是微积分中的一项重要技巧,它可以用来计算曲线在某一点的切线的斜率。

具体来说,当我们给定曲线的方程y = f(x)时,可以通过求导来得到曲线在任意一点的切线的斜率。

求导的结果是一个函数,表示了曲线在每个点的斜率。

然后,我们可以将切点的坐标代入导数函数,即可得到切点处的切线斜率。

举个例子来说明这个关系。

假设我们有一个曲线y = x^2,我们想要求解曲线在点(1, 1)处的切线的斜率。

首先,我们对曲线进行求导,得到导数函数y' = 2x。

然后,我们将切点的坐标(1, 1)代入导数函数,得到切点处的切线斜率为2。

这意味着曲线y = x^2在点(1, 1)处的切线的斜率为2。

总结起来,切点和切线斜率之间的关系可以通过求导来确定。

当我们知道曲线的方程和切点的坐标时,可以通过求导得到曲线在切点处的切线斜率。

求导是一种重要的计算方法,它可以用来计算曲线在任意一点的切线的斜率。

切点和切线斜率的关系在微积分中有着广泛的应用。

高考数学斜率知识点

高考数学斜率知识点

高考数学斜率知识点斜率是数学中一个重要的概念,它描述了函数曲线的变化率。

在高考数学中,斜率是一个常见的考点,掌握斜率的相关知识对解题非常有帮助。

本文将详细介绍高考数学中与斜率相关的知识点。

一、斜率的定义斜率描述了函数曲线在某一点的切线斜率,它表示函数的变化速率。

对于直线函数,斜率可以直接通过斜率公式计算得出;对于曲线函数,斜率可以通过求导函数得到。

以下是斜率的计算公式:1. 直线函数的斜率对于直线函数y = kx + b, 其中k为斜率。

斜率的计算公式为:k =(y₂ - y₁) / (x₂ - x₁),其中(x₁, y₁)和(x₂, y₂)为直线上的两个点。

2. 曲线函数的斜率对于曲线函数y = f(x),其斜率可以通过求导得到。

求导函数f'(x)表示了曲线在每个点的切线斜率。

二、斜率的性质了解斜率的性质对于高考数学题目的解答非常重要。

下面介绍几个斜率的性质:1. 斜率为正、负和零的含义当斜率大于0时,表示函数呈现递增趋势;当斜率小于0时,表示函数呈现递减趋势;当斜率等于0时,表示函数的值保持不变。

2. 平行线和垂线的斜率关系两条平行线的斜率相等;两条垂直线的斜率乘积为-1。

3. 斜率与角度的关系斜率为k的直线与x轴的夹角为θ,其中tanθ = k。

三、斜率在解题中的应用掌握斜率的应用方法对于高考数学题目的解答非常重要。

以下是一些常见的斜率应用:1. 判断直线的趋势通过计算斜率,可以判断直线是递增还是递减,也可以判断直线的陡峭程度。

2. 求平行线和垂线已知一条直线的斜率,可以通过斜率的性质求得与它平行或垂直的直线的斜率。

3. 求函数的切线已知曲线函数的斜率,可以通过斜率的定义求得函数曲线在某一点的切线方程。

4. 解决最优化问题最优化问题中经常需要求解某个函数的最大值或最小值,这可以通过斜率为0的点来实现。

四、总结斜率作为高考数学中的重要概念,对于解题非常有帮助。

本文详细介绍了斜率的定义、性质和应用,希望可以帮助到同学们在高考数学中顺利解题。

割线斜率集是切线斜率集真子集的一个充要条件

割线斜率集是切线斜率集真子集的一个充要条件
文 1 末 尾 指 出 ,对 于 有 多 个 拐 点 的 函 数 ,也 可 能满足 AB,比如y=sinx,y=cosx 等等,所以, “有且仅有一个 拐 点”只 是 “AB”的 充 分 条 件 而 非 必 要 条 件 .那 么 “AB”的 充 要 条 件 是 什 么 ? 本 文 通 过 探 索 ,成 功 地 解 决 了 这 个 问 题 ,不 但 发 现 了
取值集合 相 同,又 g′(x)=4+x23 -xλ2 >4,所 以
g(xx11)--gx2(x2)>4,显 然 满 足 题 意 ;
2° 当λ>0 时 ,令 g″(x)=0 得 x0 =λ3 ,当 0<
x<λ3时,g″(x)<0,当 x>λ3 时,g″(x)>0,所 以
54
数学通报 2011年 第50卷 第12期

令g(t)=2ln(t2t-t-12 1)2,
则 g(t)=2lntt22--l(n2t(2-t1-)1),
设 A(2t-1,ln(2t-1)),B(2t,lnt2)是对数函
数y=lnx(x>1)图像上的两点,则g(t)=k2AB , 因为曲 线 y=lnx(x>1)上 凸,无 拐 点,根 据
推论2,曲线y=lnx(x>1)上 割 线 斜 率 的 取 值 集 合等 于 切 线 斜 率 的 取 值 集 合,又 0<y′<1,所 以 0<kAB <1,所以g(t)>2,结合②得a≤2.
例1(2009年高 考 辽 宁 卷 理 21 题)已 知 函 数 f(x)= 12x2 -ax+ (a-1)lnx,a>1.
(1)讨 论 函 数 f(x)的 单 调 性 ; (2)证 明:若 a<5,则 对 任 意 x1,x2 ∈ (0, + ∞ ),x1 ≠x2 ,有f(xx11)--xf2(x2)> -1. 解 (1)略 ;(2)f′(x)=x+ax-1-a,f″(x)

切线斜率公式

切线斜率公式

切线斜率公式所谓切线斜率公式,指的是一种在几何学中用来表示切线和曲线的斜率的公式。

它可以帮助我们更准确地描述几何结构,也可以用于建立更复杂的几何结构模型,加深我们对几何的理解,为我们提供测量和定位的能力。

下面就介绍切线斜率公式的具体内容。

首先,我们得明确切线斜率公式的概念,有两种方法可以解释这一概念:第一种方法:在几何中,如果有一条抛物线,则抛物线的某一处的切线方程就可以用切线斜率公式来描述。

这里的切线斜率公式就是: m=f’(x)/f’(y),其中m表示抛物线或其他曲线的斜率,f’(x)表示x的导数,f’(y)表示y的导数。

第二种方法:另一种方法是直接用两个点的坐标表示切线的斜率,即斜率公式:m= (y2-y1)/(x2-x1),其中m表示切线斜率,(x1,y1)与(x2,y2)分别表示坐标点,这时切线斜率的计算就不再需要考虑导数的概念了。

接下来,我们来看一下具体的计算。

为了更好地理解切线斜率,我们以抛物线为例来计算它的切线斜率。

假设我们有一条抛物线y=ax^2+bx+c,其中a,b,c都是已知的常数,我们要求的是抛物线的某一点的切线斜率。

么,根据切线斜率公式,我们只需要求出函数对x的导数,显然,当x=x0时,函数y=ax^2+bx+c的导数就是2ax0+b。

因此,抛物线在x=x0处的切线斜率为2ax0+b。

实际上,以上我们介绍的是切线斜率公式一种经典的应用,即抛物线的切线斜率公式。

它只是切线斜率公式的最简单的一种,而实际上,切线斜率公式不仅仅可以用来表示抛物线的切线,也可以用来表示一般函数的切线斜率,只要求出函数的偏导数即可。

另外,我们还可以用切线斜率公式来推导出曲线的法线斜率,那么有什么方法呢?答案是用偏导数求法线斜率:如果函数是一个二次函数,即y=ax^2+bx+c,其中a,b,c是已知的常数,那么函数的法线斜率可以用如下的公式表示:m=-b/2a,其中m表示法线斜率,b表示函数的系数,2a表示函数的二次项系数。

平面几何中的圆的切线与割线

平面几何中的圆的切线与割线

平面几何中的圆的切线与割线圆是平面几何中的基本图形之一,具有许多重要性质和特点。

其中,切线和割线是与圆密切相关的概念,它们在几何学中有着广泛的应用。

本文将介绍圆的切线和割线的定义、性质以及应用。

一、切线的定义和性质在平面几何中,切线是指与圆只有一个交点的直线。

它与圆相切于该交点,并且该交点是圆心到切点的线段的垂直平分线。

切线的性质如下:1. 切线和半径垂直:切线与圆相切于一个点,这个点同时也是圆心到切点的线段的垂直平分线。

2. 切线的斜率与半径的斜率互为相反数:在切点处,切线与半径的斜率之间存在着特殊的关系,它们的乘积等于-1。

3. 切线的长度等于半径的长度:以圆心为中心,切线和半径是等长的,这是切线的一个重要特征。

二、割线的定义和性质与切线相对应的是割线。

割线是一个与圆有两个交点的直线,它截断了圆的一部分或者整个圆内部。

割线的性质如下:1. 割线的两个交点与圆心对应的弦的中点重合:割线截断了圆,将圆划分为两部分,并且圆心、割线的交点和圆上与这两个交点对应的弦的中点是共线的。

2. 割线的长度不等于半径的长度:割线截断了圆,所以其长度一般不等于半径的长度。

3. 割线的两个交点到圆心的距离相等:以圆的圆心为中心,割线上的任意两个交点到圆心的距离是相等的。

三、切线与割线的应用切线和割线在实际问题中有着许多应用。

以下是其中一些常见的应用场景:1. 直线与圆的位置关系:通过判断一条直线与圆的交点个数,可以判断直线与圆的位置关系。

若直线与圆无交点,则直线在圆外;若直线与圆有一个交点,则直线与圆相切;若直线与圆有两个交点,则直线与圆相交。

2. 切线的应用:在工程测绘和机械制造中,切线常用来解决问题。

例如,当我们需要在机械装配中使某一零件与另一零件相切时,可以利用切线的性质来确定正确的位置。

3. 割线的应用:在建筑设计和道路规划中,割线可以用来确定两个点之间的最短路径,以提高交通效率和减少建设成本。

综上所述,切线和割线是平面几何中与圆密切相关的概念。

两线相切斜率关系

两线相切斜率关系

两线相切斜率关系一、引言两线相切是初中数学中的一个重要概念,它在高中数学和大学数学中也有广泛的应用。

本文将从斜率的角度出发,探讨两线相切时斜率的关系。

二、什么是斜率?斜率是指直线在平面直角坐标系中与$x$轴正向夹角的正切值,也就是直线上任意两点纵坐标之差与横坐标之差的比值。

如果直线过点$(x_1,y_1)$和$(x_2,y_2)$,则它的斜率$k$可以表示为:$$k=\frac{y_2-y_1}{x_2-x_1}$$三、两条直线相交时斜率的关系当两条不平行直线相交时,它们一定有一个交点。

在交点处,这两条直线的斜率不同。

为了证明这个结论,我们可以采用反证法。

假设有两条不平行直线$L_1$和$L_2$,它们有一个公共点$(x,y)$且在该点处有相同的斜率$k$。

那么对于任意一点$(x+\Delta x,y+\Delta y)$(其中$\Delta x\neq0,\Delta y\neq0$),我们都可以得到:$$k=\frac{y+\Delta y-y}{x+\Delta x-x}=\frac{\Delta y}{\Delta x}$$即两条直线在该点处的斜率相同。

这意味着,$L_1$和$L_2$在该点处是平行的,与它们相交的假设矛盾。

因此,我们得出结论:两条不平行直线在交点处的斜率不同。

四、两条直线平行时斜率的关系当两条直线平行时,它们没有交点,也就是说它们在任何一点处的斜率都相同。

为了证明这个结论,我们可以采用反证法。

假设有两条平行直线$L_1$和$L_2$,它们在某一点$(x,y)$处有不同的斜率$k_1$和$k_2$。

那么对于任意一点$(x+\Delta x,y+\Deltay)$(其中$\Delta x\neq0,\Delta y\neq0$),我们都可以得到:$$k_1=\frac{y+\Delta y-y}{x+\Delta x-x}=\frac{\Delta y}{\Delta x}\quad k_2=\frac{y+\Delta y-y}{x+\Delta x-x}=\frac{\Deltay}{\Delta x}$$即两条直线在该点处的斜率相同。

切线与割线斜率关系的深度探析

切线与割线斜率关系的深度探析

切线与割线斜率关系的深度探析1.问题提出文【1】得出了如下的结论:设()y f x =是定义在(,)a b 上的可导函数,曲线:()C y f x =上任意两个不同点的连线(称为割线)斜率的取值区间为P ,曲线C 上任意一点处的切线斜率的取值范围为Q ,则P Q ⊆,而且Q 中元素比P 中元素至多多了区间P 的端点值. 并指出,求解1212()()f x f x x x -∨-的恒成立问题,可将1212()()f x f x x x --转化为()f x ',用导数法求解.设用导数法求得参数取值区间为D ,然后再检验区间D 的端点值是否符合题意. 例如,已知21()2ln (0)f x x x x xλ=++>,对于任意两个不等的正数12,x x ,恒有1212()()f x f x x x ''->-,求λ的取值范围(四川2006高考题变式). 【解】设21()()4g x f x x x x λ'==-+,322()4g x x xλ'=+-,依条件1212()()1g x g x x x ->-,由()1g x '>得32241x xλ+->,以1x 替换x ,则有32241x x λ-+>对任意0x >恒成立.①当0λ≤时,显然成立;②当0λ>时,令32()24(0)h x x x x λ=-+>,2()62h x x x λ'=-,令()03h x x λ'=⇒=.min ()()4327h x h λλ∴==-+. 若min ()0h x ≤,则min ()0h x =,此时32241x xλ-+>对任意0x >不能恒成立,故必有min ()0h x >,此时3min min ()()427h x h x λ==-+,依条件有33412704027λλλ⎧-+>⎪⎪⇒<<⎨⎪-+>⎪⎩综上得λ<.下面检验端点λ=是否符合题意.当λ=时,1212()()f x f x x x ''->-12221241x x x x +⇔+>1212123x x x x x x +⇔+>或1212125x x x x x x ++<. 由于1212121212333x x x x x x x x x x ++>=≥(当12x x =时取等号),故λ=符合题意,因而λ=反思上述解法,总感到美中不足.因为在检验λ=验过程不轻松,且不容易想到.那么是否有一种融解答与检验为一体的导数解法呢?要回答这个问题,关键得弄清如下实质问题:何时曲线的割线斜率取值范围等于切线斜率的取值范围,即P Q =?何时P Q Ø,且Q 比P 多了区间P 的端点值?这些端点值究竟是何值?曲线上与这些端点值对应点的位置在哪里?2.结论构建定理 设()y f x =是定义在连通开区间()I I R ⊆上的二阶可导函数,其对应曲线C 上任意两点的连线斜率的取值集合为P ,曲线C 上任意一点处的切线斜率取值集合为Q ,则(1)P Q ⊆;(2)当曲线C 不存在拐点时,P Q =;(3)P Q ⇔Ø曲线上存在这样的拐点,使得平行于该拐点处切线的任意直线与曲线C 至多有一个交点;(4)在(3)的前提下,设所有这样的拐点处的切线斜率组成的集合为S ,则Q P S =ð. 引理1 函数()y f x =在(,)a b 内二阶可导,则曲线()y f x =在(,)a b 内上凸(或下凸)的(,)x a b ⇔∀∈,()0f x ''≤(或0≥),且在(,)a b 的任何子区间上()f x ''不恒为0.引理2 曲线的向上凸与向下凸部分的分界点称为该曲线的拐点.若()y f x =在一个连通开区间I 上二阶可导,则00(,())x f x 为曲线()y f x =拐点的必要条件是0()0f x ''=.下面给出定理的证明.(1)12,x x I ∀∈,设12x x <,由于()f x 在[]12,x x 上连续,在12(,)x x 内可导,由拉格朗日中值定理可得,在开区间(,)a b 内至少存在一点ξ,使1212()()()f x f x f x x ξ-'=-,故P Q ⊆. (2) 由于曲线C 不存在拐点,故曲线C 的凸性确定.不妨设下凸.设l 是曲线C 的任意一条切线,则C 必在l 的上方,将l 向上平移很小一段距离至直线m ,则m 必与C 交于两个不同的点,E F ,割线EF 的斜率等于l 的斜率,故Q P ⊆,但由(1)知P Q ⊆,故P Q =.(3)一方面,因曲线C 存在这样的拐点,使平行于该拐点处切线的任意直线与C 至多有一个交点,故曲线C 上任意两点的连线斜率都不等于该拐点处切线的斜率,P Q ∴Ø,充分性得证.另一方面,由于P Q Ø,故k Q ∃∈,但k P ∉,令曲线在点00(,())x f x 处的切线为l ,其斜率为k ,若00(,())x f x 不是拐点,则必存在开区间0I I ⊆,使 得00x I ∈,且曲线在0I 上凸性确定.由(2)的证明知,曲线在0I 上必存在某两点的割线斜率等于k ,故k P ∈与k P ∉矛盾,故00(,())x f x 一定是拐点,又k P ∉,故曲线C 不存在与l 平行的割线,也即平行于拐点00(,())x f x 处切线的任意直线与曲线至多有一个交点.必要性得证.(4)由(3) 的证明易知结论成立.由定理知,对于二阶可导曲线:()C y f x =,有①当且仅当曲线C 不存在拐点,或对曲线C 的每一个拐点,都存在平行于该拐点处切EF l E m线的直线与曲线C 至少有两个交点时,P Q =.②可导曲线C 的切线斜率的取值区间Q 至多比割线斜率的取值区间P 多了区间P 的端点值.这些端点值就是定理结论(3)条件中的拐点处切线的斜率.对于只有一个拐点的二阶可导函数,有如下的推论 当曲线C 只有一个拐点A 00(,())x f x 时,必有P Q Ø,而且{}0()Q P f x '=ð.证明:根据定理结论(3),只需要证明斜率为0()k f x '=的任意直线与曲线C 至多有一个交点即可.设斜率为0()k f x '=的任意一条直线为()g x kx b =+.考察方程()()0f x g x -=在I 上解的个数.令()()()()h x f x g x f x kx b =-=--,0()()()()h x f x k f x f x ''''=-=-.因为曲线C 只有一个拐点00(,())A x f x ,故在拐点的两侧曲线C 的凸性相反.不妨设左侧上凸,右侧下凸.则当0x x <时,()0f x ''<,故()f x ',0()()()0h x f x f x '''=->;当0x x >时,()0f x ''>,故()f x ',0()()()0h x f x f x '''=->.故()h x 在I上,故()()0f x g x -=至多有一解,即直线()g x kx b =+与曲线C 的交点至多一个,根据定理(3)(4)推论得证.定理及推论反映了曲线切线斜率与割线斜率之间的具体关系,为借助切线斜率求解割线斜率范围问题提供了一种新方法.【例】已知曲线2:3()x x C y e e x R =-∈任意不同两点的连线斜率为k ,求k 的取值范围. 解 22399232()488xx x y e e e '=-=--≥-,又243(43)x x x x y e e e e ''=-=-. 当3ln 4x <时0y ''<,曲线上凸;当3ln 4x >时0y ''>,曲线下凸,故曲线在3ln 4x =处是一个拐点,而3498x y ='=-,根据推论,k 的取值范围为9(,)8-+∞. 曹军,《中学数学杂志》2010年11月.【附】文【1】主要结论1212()()f x f x x x -∨-定理 设()y f x =在(,)a b 内可导,连结其图象上任意两点,A B 的割线斜率为AB k ,图象上任意一点处的切线斜率为k ,则(1) 若k m >,则AB k m >;若k m ≥,则AB k m >或AB k m ≥.(2)若AB k m >,则k m >或k m ≥;若AB k m ≥,则k m ≥.证明:设11(,())A x f x ,22(,())B x f x 是曲线()y f x =图象上任意不同的两点.(1)不妨设12x x <,由拉格朗日中值定理可知,在12(,)x x 内至少存在一点ξ,使1212()()()f x f x f x x ξ-'=-. 由于k m >,故()f m ξ'>,故AB k m >.其余类似.(2)设21(0)x x x x =+∆∆≠,211121()()()()AB f x f x f x x f x k m x x x-+∆-==>-∆,则1100()()lim lim x x f x x f x m m x ∆→∆→+∆-≥=∆,即()f x m '≥.其余类似. A。

切线与割线斜率关系的深度探析

切线与割线斜率关系的深度探析

切线与割线斜率关系的深度探析1.问题提出文【1】得出了如下的结论:设()y f x =是定义在(,)a b 上的可导函数,曲线:()C y f x =上任意两个不同点的连线(称为割线)斜率的取值区间为P ,曲线C 上任意一点处的切线斜率的取值范围为Q ,则P Q ⊆,而且Q 中元素比P 中元素至多多了区间P 的端点值. 并指出,求解1212()()f x f x x x -∨-的恒成立问题,可将1212()()f x f x x x --转化为()f x ',用导数法求解.设用导数法求得参数取值区间为D ,然后再检验区间D 的端点值是否符合题意. 例如,已知21()2ln (0)f x x x x xλ=++>,对于任意两个不等的正数12,x x ,恒有1212()()f x f x x x ''->-,求λ的取值范围(四川2006高考题变式). 【解】设21()()4g x f x x x x λ'==-+,322()4g x x xλ'=+-,依条件1212()()1g x g x x x ->-,由()1g x '>得32241x x λ+->,以1x 替换x ,则有32241x x λ-+>对任意0x >恒成立.①当0λ≤时,显然成立;②当0λ>时,令32()24(0)h x x x x λ=-+>,2()62h x x x λ'=-,令()03h x x λ'=⇒=.min ()()4327h x h λλ∴==-+. 若min ()0h x ≤,则m in ()0h x =,此时32241x xλ-+>对任意0x >不能恒成立,故必有min ()0h x >,此时3min min ()()427h x h x λ==-+,依条件有33412704027λλλ⎧-+>⎪⎪⇒<<⎨⎪-+>⎪⎩. 综上得λ<.下面检验端点λ=是否符合题意.当λ=时,1212()()f x f x x x ''->-12221241x x x x +⇔+>1212123x x x x x x +⇔+>或1212125x x x x x x ++<. 由于1212121212333x x x x x x x x x x ++>=≥(当12x x =时取等号),故λ=符合题意,因而λ=反思上述解法,总感到美中不足.因为在检验λ=验过程不轻松,且不容易想到.那么是否有一种融解答与检验为一体的导数解法呢?要回答这个问题,关键得弄清如下实质问题:何时曲线的割线斜率取值范围等于切线斜率的取值范围,即P Q =?何时P Q Ø,且Q 比P 多了区间P 的端点值?这些端点值究竟是何值?曲线上与这些端点值对应点的位置在哪里?2.结论构建定理 设()y f x =是定义在连通开区间()I I R ⊆上的二阶可导函数,其对应曲线C 上任意两点的连线斜率的取值集合为P ,曲线C 上任意一点处的切线斜率取值集合为Q ,则(1)P Q ⊆;(2)当曲线C 不存在拐点时,P Q =;(3)P Q ⇔Ø曲线上存在这样的拐点,使得平行于该拐点处切线的任意直线与曲线C 至多有一个交点;(4)在(3)的前提下,设所有这样的拐点处的切线斜率组成的集合为S ,则Q P S =ð. 引理1 函数()y f x =在(,)a b 内二阶可导,则曲线()y f x =在(,)a b 内上凸(或下凸)的(,)x a b ⇔∀∈,()0f x ''≤(或0≥),且在(,)a b 的任何子区间上()f x ''不恒为0.引理2 曲线的向上凸与向下凸部分的分界点称为该曲线的拐点.若()y f x =在一个连通开区间I 上二阶可导,则00(,())x f x 为曲线()y f x =拐点的必要条件是0()0f x ''=.下面给出定理的证明.(1)12,x x I ∀∈,设12x x <,由于()f x 在[]12,x x 上连续,在12(,)x x 内可导,由拉格朗日中值定理可得,在开区间(,)a b 内至少存在一点ξ,使1212()()()f x f x f x x ξ-'=-,故P Q ⊆. (2) 由于曲线C 不存在拐点,故曲线C 的凸性确定.不妨设下凸.设l 是曲线C 的任意一条切线,则C 必在l 的上方,将l 向上平移很小一段距离至直线m ,则m 必与C 交于两个不同的点,E F ,割线EF 的斜率等于l 的斜率,故Q P ⊆,但由(1)知P Q ⊆,故P Q =.(3)一方面,因曲线C 存在这样的拐点,使平行于该拐点处切线的任意直线与C 至多有一个交点,故曲线C 上任意两点的连线斜率都不等于该拐点处切线的斜率,P Q ∴Ø,充分性得证.另一方面,由于P Q Ø,故k Q ∃∈,但k P ∉,令曲线在点00(,())x f x 处的切线为l ,其斜率为k ,若00(,())x f x 不是拐点,则必存在开区间0I I ⊆,使 得00x I ∈,且曲线在0I 上凸性确定.由(2)的证明知,曲线在0I 上必存在某两点的割线斜率等于k ,故k P ∈与k P ∉矛盾,故00(,())x f x 一定是拐点,又k P ∉,故曲线C 不存在与l 平行的割线,也即平行于拐点00(,())x f x 处切线的任意直线与曲线至多有一个交点.必要性得证.(4)由(3) 的证明易知结论成立.由定理知,对于二阶可导曲线:()C y f x =,有①当且仅当曲线C 不存在拐点,或对曲线C 的每一个拐点,都存在平行于该拐点处切EF l E m线的直线与曲线C 至少有两个交点时,P Q =.②可导曲线C 的切线斜率的取值区间Q 至多比割线斜率的取值区间P 多了区间P 的端点值.这些端点值就是定理结论(3)条件中的拐点处切线的斜率.对于只有一个拐点的二阶可导函数,有如下的推论 当曲线C 只有一个拐点A 00(,())x f x 时,必有P Q Ø,而且{}0()Q P f x '=ð.证明:根据定理结论(3),只需要证明斜率为0()k f x '=的任意直线与曲线C 至多有一个交点即可.设斜率为0()k f x '=的任意一条直线为()g x kx b =+.考察方程()()0f x g x -=在I 上解的个数.令()()()()h x f x g x f x kx b =-=--,0()()()()h x f x k f x f x ''''=-=-.因为曲线C 只有一个拐点00(,())A x f x ,故在拐点的两侧曲线C 的凸性相反.不妨设左侧上凸,右侧下凸.则当0x x <时,()0f x ''<,故()f x ' ,0()()()0h x f x f x '''=->;当0x x >时,()0f x ''>,故()f x ' ,0()()()0h x f x f x '''=->.故()h x 在I 上 ,故()()0f x g x -=至多有一解,即直线()g x kx b =+与曲线C 的交点至多一个,根据定理(3)(4)推论得证.定理及推论反映了曲线切线斜率与割线斜率之间的具体关系,为借助切线斜率求解割线斜率范围问题提供了一种新方法.【例】已知曲线2:3()x x C y e e x R =-∈任意不同两点的连线斜率为k ,求k 的取值范围. 解 22399232()488xx x y e e e '=-=--≥-,又243(43)x x x x y e e e e ''=-=-. 当3ln 4x <时0y ''<,曲线上凸;当3ln 4x >时0y ''>,曲线下凸,故曲线在3ln 4x =处是一个拐点,而3498x y ='=-,根据推论,k 的取值范围为9(,)8-+∞. 曹军,《中学数学杂志》2010年11月.【附】文【1】主要结论1212()()f x f x x x -∨-定理 设()y f x =在(,)a b 内可导,连结其图象上任意两点,A B 的割线斜率为AB k ,图象上任意一点处的切线斜率为k ,则(1) 若k m >,则AB k m >;若k m ≥,则AB k m >或AB k m ≥.(2)若AB k m >,则k m >或k m ≥;若AB k m ≥,则k m ≥.证明:设11(,())A x f x ,22(,())B x f x 是曲线()y f x =图象上任意不同的两点.(1)不妨设12x x <,由拉格朗日中值定理可知,在12(,)x x 内至少存在一点ξ,使1212()()()f x f x f x x ξ-'=-. 由于k m >,故()f m ξ'>,故AB k m >.其余类似.(2)设21(0)x x x x =+∆∆≠,211121()()()()AB f x f x f x x f x k m x x x-+∆-==>-∆,则1100()()lim lim x x f x x f x m m x ∆→∆→+∆-≥=∆,即()f x m '≥.其余类似. A。

函数图象的割线斜率与切线斜率的关系 (2019高考)数学考点分类解析

函数图象的割线斜率与切线斜率的关系  (2019高考)数学考点分类解析

函数图象的割线斜率与切线斜率的关系题 1 (2010年高考辽宁卷理科第21(2)题)已知函数1,1ln )1()(2-<+++=a ax x a x f .如果对任意2121214)()(),,0(,x x x f x f x x -≥-+∞∈,求a 的取值范围.(答案:2-≤a .)题2(2009年高考辽宁卷理科第21(2)题)已知函数1,ln )1(21)(2>-+-=a x a ax x x f .证明:若5<a ,则对任意2121),,0(,x x x x ≠+∞∈,有1)()(2121->--x x x f x f .题3 (2009年高考浙江卷理科第10题)对于正实数α,记αM 为满足下述条件的函数)(x f 构成的集合:∈∀21,x x R 且12x x >,有)()()()(121212x x x f x f x x -<-<--αα.下列结论中正确的是( )(答案:C.)A.若21)(,)(ααM x g M x f ∈∈,则21)()(αα⋅∈⋅M x g x fB.若21)(,)(ααM x g M x f ∈∈且0)(≠x g ,则21)()(ααM x g x f ∈C.若21)(,)(ααM x g M x f ∈∈,则21)()(αα+∈+M x g x fD.若21)(,)(ααM x g M x f ∈∈且21αα>,则21)()(αα-∈-M x g x f题4(2006年高考四川卷理科第22(2)题)已知函数)(),0(ln 2)(2x f x x a xx x f >++=的导函数是)(x f ',21,,4x x a ≤是不相等的正数,求证:2121)()(x x x f x f ->'-'.深入研究这四道高考题(除题8是选择压轴题外,其余三道都是解答压轴题的最后一问),可得函数图象的割线斜率与切线斜率的关系:定理 设∈a R ,函数)(x f 在区间I 上可导,则 (1)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔≤--)(,)()(2121;(2)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔<--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(不能恒成立;(3)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔≥--)(,)()(2121;(4)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔>--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(不能恒成立;(5)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔≤--)(,)()(2121;(6)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔<--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(及a x f -=')(均不能恒成立;(7)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔≥--)(,)()(2121;(8)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔>--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(及a x f -=')(均不能恒成立.为证明定理,须介绍两个引理,它们在《数学分析》中均可找到(比如文献[1],[2]): 引理 1 若函数)(x f 在区间I 上可导,则)(x f 在I 上单调不减(不增)的充要条件是0)()(≤≥'x f 在I x ∈时恒成立.(注:若2121,,x x I x x <∈∀有)()()(21x f x f ≥≤,则称)(x f 在区间I 上单调不减(不增).)引理 2 若函数)(x f 在区间I 上可导,则)(x f 在I 上严格递增(递减)⇔在I 上0)()(≤≥'x f 且对于任意的区间I I ⊂0,当0I x ∈时0)(='x f 不能恒成立.(注:若2121,,x x I x x <∈∀有)()()(21x f x f ><,则称)(x f 在区间I 上严格递增(递减).)定理的证明 设ax x f x h ax x f x g +=-=)()(,)()(. (1)左边2121,,x x I x x ≠∈∀⇔有2121212211,,0])([])([x x I x x x x ax x f ax x f ≠∈∀⇔≤----有0)()(2121≤--x x x g x g )(x g ⇔在I上单调不增0)()(≤-'='⇔a x f x g ⇔右边.(2)左边2121,,x x I x x ≠∈∀⇔有2121212211,,0])([])([x x I x x x x ax x f ax x f ≠∈∀⇔<----有0)()(2121<--x x x g x g )(x g ⇔在I 上严格递减0)()(≤-'='⇔a x f x g (用引理2,这里省去了一些文字的叙述,下同)⇔右边.(3)同(1)可证. (4)同(2)可证.(5)左边2121,,x x I x x ≠∈∀⇔有21212121,,)()(x x I x x a x x x f x f a ≠∈∀⇔≤--≤-有⇔⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥--≤--0)()(0)()(21212121x x x h x h x x x g x g ⇔⇔⎪⎭⎪⎬⎫⎩⎨⎧ 减上在上在单调不)(单调不增)(I x h I x g 右边. (6)左边2121,,x x I x x ≠∈∀⇔有21212121,,)()(x x I x x a x x x f x f a ≠∈∀⇔<--<-有⇔⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>--<--0)()(0)()(21212121x x x h x h x x x g x g ⇔⇔⎪⎭⎪⎬⎫⎩⎨⎧ 上严格递增在上严格递减在I x h I x g )()(右边. (7) 2121,,x x I x x ≠∈∀有⇔≥--a x x x f x f 2121)()(2121,,x x I x x <∈∀有a x x x f x f ≥--1212)()(或⇔-≤--a x x x f x f 1212)()(2121,,x x I x x <∈∀有)()(21x g x g ≤或⇔≥)()(21x h x h0)(,≥'∈∀x g I x 或⇔≤'0)(x h a x f I x ≥'∈∀)(,或⇔-≤'a x f )(a x f I x ≥'∈∀)(,(8)同(7)可证.题5 已知函数∈++-=b a b ax x x f ,()(23R )的图象上任意不同的两点连线的斜率小于1,求a 的取值范围.解 由定理9(2),得123)(2≤+-='ax x x f 在∈x R 时恒成立,即01232≥+-ax x 恒成立,所以]3,3[,012)2(2-∈≤-=∆a a .所以所求a 的取值范围是]3,3[-.注 由定理9(1)知,若把例1中的“小于”改成“不大于”,所得答案不变.还可验证:当0,3==b a 时,233)(x x x f +-=的图象上任一割线的斜率小于1,但图象在拐点(即凹凸性的分界点,其二阶导数值为0,参见文献[2]或[3])31处切线的斜率为1(图1).图1题6 (2013年福建省厦门一中月考试题)已知函数∈++-=b a b ax x x f ,()(23R )(1)若函数)(x f y =的图象上任意两个不同的点连线斜率小于1,求证:33<<-a ;(2)若]1,0[∈x ,且函数)(x f 的图象上任意一点处的切线斜率为k ,试证明1≤k 的充要条件为31≤≤a .由题5的结论可知,题6的第(1)问是错题(可得第(2)问是正确的). 下面用定理给出题1~4的简解.题3的简解 αM 即满足条件“∈∀21,x x R ,有α<--2121)()(x x x f x f ”的函数)(x f 构成的集合.由定理(6),得αM 即满足条件“∈≤'x x f ()(αR )且对于任意的区间I I ⊂0,当0I x ∈时a x f =')(及a x f -=')(均不能恒成立”的函数)(x f 的集合.由此及绝对值不等式可证得选项C 成立(且可排除选项A 、B 、D),所以选C.题2的简解 由定理(4)知只需证明“当0>x 时1)(-≥'x f 且1)(-='x f 只能在一些孤立点上成立”:11)12(1121)(->----=--≥--+='a a a a a xa x x f所以要证结论成立.(并且还可得:当51≤≤a 时,结论也成立.)题1的简解)0(21)(>++='x ax xa x f .由定理(7)知题设即421)(≥---='ax xa x f 在0>x 时恒成立,由1-<a 及均值不等式可得所求a 的取值范围是]2,(--∞.注 下面把题1中的题设“1-<a ”改成“∈a R ”,再来求解: 此时题意即“421≥++ax xa 在0>x 时恒成立,求a 的取值范围”.当1-<a 时,已得2-≤a ;当01≤≤-a 时,可得函数)0(21)(>++=x ax xa x g 是单调减函数,可得此时不满足题设;当0>a 时,由均值不等式可得1≥a .所以所求a 的取值范围是),1[]2,(+∞⋃--∞. 题4的简解 设xax x x f x g +-='=222)()(,即证1)()(2121>--x x x g x g . 由定理(8)知,只需证明:当0>x 时1)(≥'x g ,即)0(14223>>-+x xax 只需证 )0(14223>>-+x x a x 即 )0(222>>++x a xx x这由均值不等式及题设可证:a xx x ≥>⋅≥++4432232 所以欲证成立.注 由以上简解知,把题4中的“4≤a ”改成“343⋅≤a ”后所得结论也成立.参考文献1 刘玉琏,傅沛仁.数学分析讲义(上册)[M].3版.北京:高等教育出版社,19922 华东师范大学数学系编.数学分析(上册)[M].3版.北京:高等教育出版社,2001用排除法简解2015年高考全国卷I 理科第12题高考题 (2015年高考全国卷I 理科第12题)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.3,12e ⎡⎫-⎪⎢⎣⎭ B.33,2e 4⎡⎫-⎪⎢⎣⎭C.33,2e 4⎡⎫⎪⎢⎣⎭D.3,12e ⎡⎫⎪⎢⎣⎭解法1 (数形结合法)D.令g (x )=e x (2x -1),得g ′(x )=e x (2x +1).由g ′(x )>0得x >-12,由g ′(x )<0得x <-12,所以函数g (x )在11,,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭上分别是减函数、增函数. 又函数g (x )在x <12时g (x )<0,在x >12时g (x )>0,所以其大致图象如图1所示.图1直线y =ax -a 过点(1,0).若a ≤0,则f (x )<0的整数解有无穷多个,因此只能a >0. 结合函数图象可知,存在唯一的整数x 0,使得f (x 0)<0,即存在唯一的整数x 0,使得点(x 0,ax 0-a )在点(x 0,g (x 0))的上方,得x 0只能是0,所以实数a 应满足⎩⎪⎨⎪⎧f (-1)≥0,f (0)<0,f (1)≥0,即⎩⎪⎨⎪⎧-3e -1+2a ≥0,-1+a <0,e ≥0,解得32e≤a <1.即实数a 的取值范围是3,12e ⎡⎫⎪⎢⎣⎭.解法2 (分离常数法)D.令1+=t x 后,得题设即关于t 的不等式)0(1)e (21≠<++t at t t 有唯一的整数解.若0t >,由a <1,可得1(21)e (21)e t t t t at ++>+>>所以题设即关于t 的不等式1(21)e(0)t t at t ++<<即1(21)e (0)t t a t t++><有唯一的整数解,也即关于t 的不等式1(21)e (1)t t a t t++>≤-有唯一的整数解. 设1(21)e ()(1)t t g t t t ++=≤-,得12e ()(1)(21)(1)t g t t t t t+'=+-≤-,所以函数)(t g 在(,1]-∞-上是增函数,得最大值为(1)1g -=.又lim ()0,(1)1t g t g →-∞=-=,由此可作出函数)(t g 的图象如图2所示:图2注意到图象()y g t =过点32,2e B ⎛⎫- ⎪⎝⎭且1<a ,所以由图2可得: 当32ea <时,满足()g t a >的整数t 有2,1--,所以此时不满足题意. 当1e23<≤a 时,满足()g t a >的整数t 只有1-,所以此时满足题意. 得所求a 的取值范围是3,12e ⎡⎫⎪⎢⎣⎭. 解法3 (排除法)D.当0a =时,不等式f (x )<0即e x (2x -1)<0也即12x <,它有无数个整数解,不满足题设.由此可排除选项A,B.令g (x )=e x (2x -1),得g ′(x )=e x (2x +1).由g ′(x )>0得x >-12,由g ′(x )<0得x <-12,所以函数g (x )在11,,,22⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭上分别是减函数、增函数.又g ′(0)=1,所以可得曲线()y g x =在点(0,1)-处的切线为1y x =-,如图3所示.图3所以当a <1且1a →时满足题设(此时满足题设的唯一整数x 0=0).由此可排除选项C. 所以选D.注 小题不大做,还是解法3(排除法)简洁.本题对函数与方程思想、数形结合思想、分类讨论思想都有所考查.例谈用验证法解题——2010年高考数学安徽卷理科第20题的另解题1 解方程:(1)2121+=+x x ;(2)c c x x 11-=-;(3)c c x x 11+=+. 解 (1)容易观察出212,=x 均是该方程的解.按常规方法解此方程时,先去分母得到一元二次方程,该一元二次方程最多两个解,再检验(舍去使原方程中分母为零的解),所以原方程最多有两个解.而已经找到了原方程的两个解212,=x ,所以这两个解就是原方程的所有解. (2)同理,可得原方程的所有解是cc x 1-=,. (3)容易观察出cc x 1,=均是该方程的解.同上得原方程最多有两个解,而已经找到了原方程的两个解cc x 1,=(因为对于任意的非零实数c ,c 和c 1都是原方程的解,所以应当把c 和c1理解成原方程的两个解),所以这两个解就是原方程的所有解.题2 解方程22=+++x x x .解 设函数2)(+++=x x x x f ,易知它是增函数,所以方程2)(=x f 至多有一个根(当2在函数)(x f 的值域中时有一个根,否则没有根),……所以原方程的根是2=x .题3 已知1tan ,51cos sin ->=+ααα,求αtan . 解 由⎪⎩⎪⎨⎧=+=+1cos sin 51cos sin 22αααα及“勾三股四弦五”可以猜出该方程组有两组解:⎪⎪⎩⎪⎪⎨⎧-==53cos 54sin αα 或 ⎪⎪⎩⎪⎪⎨⎧=-=54c o s 53s i n αα 该方程组即⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛-+-=1sin 51sin sin 51cos 22αααα 因为关于αsin 的一元二次方程1sin 51sin 22=⎪⎭⎫⎝⎛-+αα最多有两个解,所以该方程组也最多有两组解,......所以上面猜出的两组解就是该方程组的全部解, (4)3tan -=α. 题4]1[ (2007年高考陕西卷理科第22(1)题)已知各项全不为零的数列}{k a 的前k 项和为k S ,且∈=+k a a S k k k (211N*),其中11=a ,求数列}{k a 的通项公式. 解 由题设得kk k k k a a a a a S a )(22211+++==+ ,所以当k a a a ,,,21 确定时,1+k a 也唯一确定.所以由11=a 知,数列}{k a 是唯一确定的.可以观察出k a k =满足题设的所有条件,所以数列{}k 是满足题设的唯一数列,得k a k =.另解 (2),2)()((211111k k k kk k k k k k k k S S S S S k S S S S a a S +-=≥--==-++-+因为)2)(01≥≠=--k a S S k k k ①由题设得3,121==S S ,再由①知{}k S 是唯一确定的数列⎪⎪⎭⎫ ⎝⎛⎩⎨⎧≥-==-2,1,11k S S k S a k k k .再同上得k a k =.题5]1[ (2005年高考江苏卷第23(1)(2)题)设数列}{n a 的前n 项和为n S ,已知11,6,1321===a a a ,且∈+=+--+n B An S n S n n n ()25()85(1N*),其中B A ,为常数.(1)求A 与B 的值;(2)证明数列}{n a 为等差数列;解 (1)8,20-=-=B A . (2) ∈-+--+=+n n n S n n S n n (8582085251N*),11=S ②所以{}n S 是唯一确定的数列,}{n a 也是唯一确定的数列.又由11,6,1321===a a a 知,若}{n a 为等差数列,则45-=n a n ,于是)35(21-=n n S n . 容易验证)35(21-=n n S n 满足②,所以题中的45),35(21-=-=n a n n S n n ,}{n a 为等差数.题6]2[ 已知数列}{n a 满足nn a a a n n ++==+2111,21,求n a ; 解 首先,由首项211=a 及递推关系nn a a n n ++=+211知,满足题意的数列}{n a 是唯一确定的.所以,若能找到一个数列满足该题目的所有条件,则该数列的通项公式就是所求的答案.易得⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+-=+-=+=-+n k n k n n n n a a n n 111111121,即nk a n1-=(k 是常数)满足递推关系n n a a n n ++=+211,再由211=a ,得n a n123-=满足题目的所有条件,所以本题的答案就是na n 123-=.题7]2[ 已知数列}{n a 满足n n a n n a a 1,3211+==+,求n a . 解 易知本题的答案是是唯一确定的,所以只需寻求一个数列满足该题目的所有条件.易得k nk n kn n a a n n (111+=+=+是非零常数),即n k a n =满足递推关系n n a n na 11+=+,再由321=a ,得n a n 32=满足题目的所有条件,所以本题的答案就是na n 32=.注 因为绝大部分求数列通项公式的题目答案都是唯一的,所以只要能观察或求出满足所有题设的一个通项公式,则该通项公式就是所求的唯一答案.对于要求解的问题Ω,若能证明它最多有n n (是确定的正整数)个解,又找出了它的n 个解n ωωω,,,21 ,则这n 个解就是该问题的所有解.这就是本文要阐述的用验证法解题.下面再用这种方法解答一道高考题:题8 (2010·安徽·理·20)设数列 ,,,,21n a a a 中的每一项都不为0.证明{}n a 为等差数列的充分必要条件是:对任何∈n N*,都有1113221111++=+++n n n a a na a a a a a .证明 先证必要性.若数列{}n a 是公差为d 的等差数列: 当0=d 时,易得欲证成立.当0≠d 时,有⎪⎪⎭⎫⎝⎛-++-+-=++++++1132232112132211111n n n n n n a a a a a a a a a a a a d a a a a a a 111111111322111111111111+++++=-⋅=⎪⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=n n n n n n a a na a a a d a a d a a a a a a d再证充分性.只需对)3(≥n n 用数学归纳法证明加强的结论:若),,3,2(1111113221n i a a ia a a a a a i i i ==+++++恒成立,则n a a a ,,,21 成等差数列,且na a n 1≠. 当3=n 时成立:当2=i 时,得2313132212,211a a a a a a a a a =+=+,所以321,,a a a 成等差数列,还可证313a a ≠(因为由313a a =可得023131313334=-=--+=+=a a a a a d a a ,而由3=i 时成立立知)04≠a .假设kn ,,4,3 =时成立:即ka a a ,,,21 成等差数列,且ka a a a a a k 11413,,4,3≠≠≠. 由k i ,,3,2 =时均成立及kaa a a a a k 11413,,4,3≠≠≠知,当21,a a 确定时,数列121,,,+n a a a 也是确定的,而由必要性的证明知,由21,a a 确定的等差数列121,,,+n a a a 满足题设,所以由题设及21,a a 确定的数列就是这个等差数列,即121,,,+n a a a 成等差数列,同上还可证111+≠+k a a k ,即1+=k n 时成立.所以要证结论成立,得充分性成立.参考文献1 甘志国.例谈用验证法求数列通项[J].中学数学月刊,2008(3):462 甘志国著.初等数学研究(II)上[M].哈尔滨:哈尔滨工业大学出版社,2009.416-417用排除法简解2015年高考全国卷I 理科第12题高考题 (2015年高考全国卷I 理科第12题)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.3,12e ⎡⎫-⎪⎢⎣⎭ B.33,2e 4⎡⎫-⎪⎢⎣⎭C.33,2e 4⎡⎫⎪⎢⎣⎭D.3,12e ⎡⎫⎪⎢⎣⎭解法1 (数形结合法)D.令g (x )=e x (2x -1),得g ′(x )=e x (2x +1).由g ′(x )>0得x >-12,由g ′(x )<0得x <-12,所以函数g (x )在11,,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭上分别是减函数、增函数. 又函数g (x )在x <12时g (x )<0,在x >12时g (x )>0,所以其大致图象如图1所示.图1直线y =ax -a 过点(1,0).若a ≤0,则f (x )<0的整数解有无穷多个,因此只能a >0. 结合函数图象可知,存在唯一的整数x 0,使得f (x 0)<0,即存在唯一的整数x 0,使得点(x 0,ax 0-a )在点(x 0,g (x 0))的上方,得x 0只能是0,所以实数a 应满足⎩⎪⎨⎪⎧f (-1)≥0,f (0)<0,f (1)≥0,即⎩⎪⎨⎪⎧-3e -1+2a ≥0,-1+a <0,e ≥0,解得32e≤a <1.即实数a 的取值范围是3,12e ⎡⎫⎪⎢⎣⎭.解法2 (分离常数法)D.令1+=t x 后,得题设即关于t 的不等式)0(1)e (21≠<++t at t t 有唯一的整数解.若0t >,由a <1,可得1(21)e (21)e t t t t at ++>+>>所以题设即关于t 的不等式1(21)e(0)t t at t ++<<即1(21)e (0)t t a t t++><有唯一的整数解,也即关于t 的不等式1(21)e (1)t t a t t++>≤-有唯一的整数解. 设1(21)e ()(1)t t g t t t ++=≤-,得12e ()(1)(21)(1)t g t t t t t+'=+-≤-,所以函数)(t g 在(,1]-∞-上是增函数,得最大值为(1)1g -=.又lim ()0,(1)1t g t g →-∞=-=,由此可作出函数)(t g 的图象如图2所示:图2注意到图象()y g t =过点32,2e B ⎛⎫- ⎪⎝⎭且1<a ,所以由图2可得: 当32ea <时,满足()g t a >的整数t 有2,1--,所以此时不满足题意. 当1e23<≤a 时,满足()g t a >的整数t 只有1-,所以此时满足题意. 得所求a 的取值范围是3,12e ⎡⎫⎪⎢⎣⎭. 解法3 (排除法)D.当0a =时,不等式f (x )<0即e x (2x -1)<0也即12x <,它有无数个整数解,不满足题设.由此可排除选项A,B.令g (x )=e x (2x -1),得g ′(x )=e x (2x +1).由g ′(x )>0得x >-12,由g ′(x )<0得x <-12,所以函数g (x )在11,,,22⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭上分别是减函数、增函数.又g ′(0)=1,所以可得曲线()y g x =在点(0,1)-处的切线为1y x =-,如图3所示.图3a 时满足题设(此时满足题设的唯一整数x0=0).由此可排除选项C.所以当a<1且1所以选D.注小题不大做,还是解法3(排除法)简洁.本题对函数与方程思想、数形结合思想、分类讨论思想都有所考查.。

函数图象的割线斜率与切线斜率的关系 (2019高考)数学考点分类解析

函数图象的割线斜率与切线斜率的关系  (2019高考)数学考点分类解析

函数图象的割线斜率与切线斜率的关系题 1 (2010年高考辽宁卷理科第21(2)题)已知函数1,1ln )1()(2-<+++=a ax x a x f .如果对任意2121214)()(),,0(,x x x f x f x x -≥-+∞∈,求a 的取值范围.(答案:2-≤a .)题2(2009年高考辽宁卷理科第21(2)题)已知函数1,ln )1(21)(2>-+-=a x a ax x x f .证明:若5<a ,则对任意2121),,0(,x x x x ≠+∞∈,有1)()(2121->--x x x f x f .题3 (2009年高考浙江卷理科第10题)对于正实数α,记αM 为满足下述条件的函数)(x f 构成的集合:∈∀21,x x R 且12x x >,有)()()()(121212x x x f x f x x -<-<--αα.下列结论中正确的是( )(答案:C.)A.若21)(,)(ααM x g M x f ∈∈,则21)()(αα⋅∈⋅M x g x fB.若21)(,)(ααM x g M x f ∈∈且0)(≠x g ,则21)()(ααM x g x f ∈C.若21)(,)(ααM x g M x f ∈∈,则21)()(αα+∈+M x g x fD.若21)(,)(ααM x g M x f ∈∈且21αα>,则21)()(αα-∈-M x g x f题4(2006年高考四川卷理科第22(2)题)已知函数)(),0(ln 2)(2x f x x a xx x f >++=的导函数是)(x f ',21,,4x x a ≤是不相等的正数,求证:2121)()(x x x f x f ->'-'.深入研究这四道高考题(除题8是选择压轴题外,其余三道都是解答压轴题的最后一问),可得函数图象的割线斜率与切线斜率的关系:定理 设∈a R ,函数)(x f 在区间I 上可导,则 (1)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔≤--)(,)()(2121;(2)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔<--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(不能恒成立;(3)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔≥--)(,)()(2121;(4)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔>--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(不能恒成立;(5)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔≤--)(,)()(2121;(6)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔<--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(及a x f -=')(均不能恒成立;(7)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔≥--)(,)()(2121;(8)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔>--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(及a x f -=')(均不能恒成立.为证明定理,须介绍两个引理,它们在《数学分析》中均可找到(比如文献[1],[2]): 引理 1 若函数)(x f 在区间I 上可导,则)(x f 在I 上单调不减(不增)的充要条件是0)()(≤≥'x f 在I x ∈时恒成立.(注:若2121,,x x I x x <∈∀有)()()(21x f x f ≥≤,则称)(x f 在区间I 上单调不减(不增).)引理 2 若函数)(x f 在区间I 上可导,则)(x f 在I 上严格递增(递减)⇔在I 上0)()(≤≥'x f 且对于任意的区间I I ⊂0,当0I x ∈时0)(='x f 不能恒成立.(注:若2121,,x x I x x <∈∀有)()()(21x f x f ><,则称)(x f 在区间I 上严格递增(递减).)定理的证明 设ax x f x h ax x f x g +=-=)()(,)()(. (1)左边2121,,x x I x x ≠∈∀⇔有2121212211,,0])([])([x x I x x x x ax x f ax x f ≠∈∀⇔≤----有0)()(2121≤--x x x g x g )(x g ⇔在I上单调不增0)()(≤-'='⇔a x f x g ⇔右边.(2)左边2121,,x x I x x ≠∈∀⇔有2121212211,,0])([])([x x I x x x x ax x f ax x f ≠∈∀⇔<----有0)()(2121<--x x x g x g )(x g ⇔在I 上严格递减0)()(≤-'='⇔a x f x g (用引理2,这里省去了一些文字的叙述,下同)⇔右边.(3)同(1)可证. (4)同(2)可证.(5)左边2121,,x x I x x ≠∈∀⇔有21212121,,)()(x x I x x a x x x f x f a ≠∈∀⇔≤--≤-有⇔⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥--≤--0)()(0)()(21212121x x x h x h x x x g x g ⇔⇔⎪⎭⎪⎬⎫⎩⎨⎧ 减上在上在单调不)(单调不增)(I x h I x g 右边. (6)左边2121,,x x I x x ≠∈∀⇔有21212121,,)()(x x I x x a x x x f x f a ≠∈∀⇔<--<-有⇔⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>--<--0)()(0)()(21212121x x x h x h x x x g x g ⇔⇔⎪⎭⎪⎬⎫⎩⎨⎧ 上严格递增在上严格递减在I x h I x g )()(右边. (7) 2121,,x x I x x ≠∈∀有⇔≥--a x x x f x f 2121)()(2121,,x x I x x <∈∀有a x x x f x f ≥--1212)()(或⇔-≤--a x x x f x f 1212)()(2121,,x x I x x <∈∀有)()(21x g x g ≤或⇔≥)()(21x h x h0)(,≥'∈∀x g I x 或⇔≤'0)(x h a x f I x ≥'∈∀)(,或⇔-≤'a x f )(a x f I x ≥'∈∀)(,(8)同(7)可证.题5 已知函数∈++-=b a b ax x x f ,()(23R )的图象上任意不同的两点连线的斜率小于1,求a 的取值范围.解 由定理9(2),得123)(2≤+-='ax x x f 在∈x R 时恒成立,即01232≥+-ax x 恒成立,所以]3,3[,012)2(2-∈≤-=∆a a .所以所求a 的取值范围是]3,3[-.注 由定理9(1)知,若把例1中的“小于”改成“不大于”,所得答案不变.还可验证:当0,3==b a 时,233)(x x x f +-=的图象上任一割线的斜率小于1,但图象在拐点(即凹凸性的分界点,其二阶导数值为0,参见文献[2]或[3])31处切线的斜率为1(图1).图1题6 (2013年福建省厦门一中月考试题)已知函数∈++-=b a b ax x x f ,()(23R )(1)若函数)(x f y =的图象上任意两个不同的点连线斜率小于1,求证:33<<-a ;(2)若]1,0[∈x ,且函数)(x f 的图象上任意一点处的切线斜率为k ,试证明1≤k 的充要条件为31≤≤a .由题5的结论可知,题6的第(1)问是错题(可得第(2)问是正确的). 下面用定理给出题1~4的简解.题3的简解 αM 即满足条件“∈∀21,x x R ,有α<--2121)()(x x x f x f ”的函数)(x f 构成的集合.由定理(6),得αM 即满足条件“∈≤'x x f ()(αR )且对于任意的区间I I ⊂0,当0I x ∈时a x f =')(及a x f -=')(均不能恒成立”的函数)(x f 的集合.由此及绝对值不等式可证得选项C 成立(且可排除选项A 、B 、D),所以选C.题2的简解 由定理(4)知只需证明“当0>x 时1)(-≥'x f 且1)(-='x f 只能在一些孤立点上成立”:11)12(1121)(->----=--≥--+='a a a a a xa x x f所以要证结论成立.(并且还可得:当51≤≤a 时,结论也成立.)题1的简解)0(21)(>++='x ax xa x f .由定理(7)知题设即421)(≥---='ax xa x f 在0>x 时恒成立,由1-<a 及均值不等式可得所求a 的取值范围是]2,(--∞.注 下面把题1中的题设“1-<a ”改成“∈a R ”,再来求解: 此时题意即“421≥++ax xa 在0>x 时恒成立,求a 的取值范围”.当1-<a 时,已得2-≤a ;当01≤≤-a 时,可得函数)0(21)(>++=x ax xa x g 是单调减函数,可得此时不满足题设;当0>a 时,由均值不等式可得1≥a .所以所求a 的取值范围是),1[]2,(+∞⋃--∞. 题4的简解 设xax x x f x g +-='=222)()(,即证1)()(2121>--x x x g x g . 由定理(8)知,只需证明:当0>x 时1)(≥'x g ,即)0(14223>>-+x xax 只需证 )0(14223>>-+x x a x 即 )0(222>>++x a xx x这由均值不等式及题设可证:a xx x ≥>⋅≥++4432232 所以欲证成立.注 由以上简解知,把题4中的“4≤a ”改成“343⋅≤a ”后所得结论也成立.参考文献1 刘玉琏,傅沛仁.数学分析讲义(上册)[M].3版.北京:高等教育出版社,19922 华东师范大学数学系编.数学分析(上册)[M].3版.北京:高等教育出版社,2001用排除法简解2015年高考全国卷I 理科第12题高考题 (2015年高考全国卷I 理科第12题)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.3,12e ⎡⎫-⎪⎢⎣⎭ B.33,2e 4⎡⎫-⎪⎢⎣⎭C.33,2e 4⎡⎫⎪⎢⎣⎭D.3,12e ⎡⎫⎪⎢⎣⎭解法1 (数形结合法)D.令g (x )=e x (2x -1),得g ′(x )=e x (2x +1).由g ′(x )>0得x >-12,由g ′(x )<0得x <-12,所以函数g (x )在11,,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭上分别是减函数、增函数. 又函数g (x )在x <12时g (x )<0,在x >12时g (x )>0,所以其大致图象如图1所示.图1直线y =ax -a 过点(1,0).若a ≤0,则f (x )<0的整数解有无穷多个,因此只能a >0. 结合函数图象可知,存在唯一的整数x 0,使得f (x 0)<0,即存在唯一的整数x 0,使得点(x 0,ax 0-a )在点(x 0,g (x 0))的上方,得x 0只能是0,所以实数a 应满足⎩⎪⎨⎪⎧f (-1)≥0,f (0)<0,f (1)≥0,即⎩⎪⎨⎪⎧-3e -1+2a ≥0,-1+a <0,e ≥0,解得32e≤a <1.即实数a 的取值范围是3,12e ⎡⎫⎪⎢⎣⎭.解法2 (分离常数法)D.令1+=t x 后,得题设即关于t 的不等式)0(1)e (21≠<++t at t t 有唯一的整数解.若0t >,由a <1,可得1(21)e (21)e t t t t at ++>+>>所以题设即关于t 的不等式1(21)e(0)t t at t ++<<即1(21)e (0)t t a t t++><有唯一的整数解,也即关于t 的不等式1(21)e (1)t t a t t++>≤-有唯一的整数解. 设1(21)e ()(1)t t g t t t ++=≤-,得12e ()(1)(21)(1)t g t t t t t+'=+-≤-,所以函数)(t g 在(,1]-∞-上是增函数,得最大值为(1)1g -=.又lim ()0,(1)1t g t g →-∞=-=,由此可作出函数)(t g 的图象如图2所示:图2注意到图象()y g t =过点32,2e B ⎛⎫- ⎪⎝⎭且1<a ,所以由图2可得: 当32ea <时,满足()g t a >的整数t 有2,1--,所以此时不满足题意. 当1e23<≤a 时,满足()g t a >的整数t 只有1-,所以此时满足题意. 得所求a 的取值范围是3,12e ⎡⎫⎪⎢⎣⎭. 解法3 (排除法)D.当0a =时,不等式f (x )<0即e x (2x -1)<0也即12x <,它有无数个整数解,不满足题设.由此可排除选项A,B.令g (x )=e x (2x -1),得g ′(x )=e x (2x +1).由g ′(x )>0得x >-12,由g ′(x )<0得x <-12,所以函数g (x )在11,,,22⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭上分别是减函数、增函数.又g ′(0)=1,所以可得曲线()y g x =在点(0,1)-处的切线为1y x =-,如图3所示.图3所以当a <1且1a →时满足题设(此时满足题设的唯一整数x 0=0).由此可排除选项C. 所以选D.注 小题不大做,还是解法3(排除法)简洁.本题对函数与方程思想、数形结合思想、分类讨论思想都有所考查.例谈用验证法解题——2010年高考数学安徽卷理科第20题的另解题1 解方程:(1)2121+=+x x ;(2)c c x x 11-=-;(3)c c x x 11+=+. 解 (1)容易观察出212,=x 均是该方程的解.按常规方法解此方程时,先去分母得到一元二次方程,该一元二次方程最多两个解,再检验(舍去使原方程中分母为零的解),所以原方程最多有两个解.而已经找到了原方程的两个解212,=x ,所以这两个解就是原方程的所有解. (2)同理,可得原方程的所有解是cc x 1-=,. (3)容易观察出cc x 1,=均是该方程的解.同上得原方程最多有两个解,而已经找到了原方程的两个解cc x 1,=(因为对于任意的非零实数c ,c 和c 1都是原方程的解,所以应当把c 和c1理解成原方程的两个解),所以这两个解就是原方程的所有解.题2 解方程22=+++x x x .解 设函数2)(+++=x x x x f ,易知它是增函数,所以方程2)(=x f 至多有一个根(当2在函数)(x f 的值域中时有一个根,否则没有根),……所以原方程的根是2=x .题3 已知1tan ,51cos sin ->=+ααα,求αtan . 解 由⎪⎩⎪⎨⎧=+=+1cos sin 51cos sin 22αααα及“勾三股四弦五”可以猜出该方程组有两组解:⎪⎪⎩⎪⎪⎨⎧-==53cos 54sin αα 或 ⎪⎪⎩⎪⎪⎨⎧=-=54c o s 53s i n αα 该方程组即⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛-+-=1sin 51sin sin 51cos 22αααα 因为关于αsin 的一元二次方程1sin 51sin 22=⎪⎭⎫⎝⎛-+αα最多有两个解,所以该方程组也最多有两组解,......所以上面猜出的两组解就是该方程组的全部解, (4)3tan -=α. 题4]1[ (2007年高考陕西卷理科第22(1)题)已知各项全不为零的数列}{k a 的前k 项和为k S ,且∈=+k a a S k k k (211N*),其中11=a ,求数列}{k a 的通项公式. 解 由题设得kk k k k a a a a a S a )(22211+++==+ ,所以当k a a a ,,,21 确定时,1+k a 也唯一确定.所以由11=a 知,数列}{k a 是唯一确定的.可以观察出k a k =满足题设的所有条件,所以数列{}k 是满足题设的唯一数列,得k a k =.另解 (2),2)()((211111k k k kk k k k k k k k S S S S S k S S S S a a S +-=≥--==-++-+因为)2)(01≥≠=--k a S S k k k ①由题设得3,121==S S ,再由①知{}k S 是唯一确定的数列⎪⎪⎭⎫ ⎝⎛⎩⎨⎧≥-==-2,1,11k S S k S a k k k .再同上得k a k =.题5]1[ (2005年高考江苏卷第23(1)(2)题)设数列}{n a 的前n 项和为n S ,已知11,6,1321===a a a ,且∈+=+--+n B An S n S n n n ()25()85(1N*),其中B A ,为常数.(1)求A 与B 的值;(2)证明数列}{n a 为等差数列;解 (1)8,20-=-=B A . (2) ∈-+--+=+n n n S n n S n n (8582085251N*),11=S ②所以{}n S 是唯一确定的数列,}{n a 也是唯一确定的数列.又由11,6,1321===a a a 知,若}{n a 为等差数列,则45-=n a n ,于是)35(21-=n n S n . 容易验证)35(21-=n n S n 满足②,所以题中的45),35(21-=-=n a n n S n n ,}{n a 为等差数.题6]2[ 已知数列}{n a 满足nn a a a n n ++==+2111,21,求n a ; 解 首先,由首项211=a 及递推关系nn a a n n ++=+211知,满足题意的数列}{n a 是唯一确定的.所以,若能找到一个数列满足该题目的所有条件,则该数列的通项公式就是所求的答案.易得⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+-=+-=+=-+n k n k n n n n a a n n 111111121,即nk a n1-=(k 是常数)满足递推关系n n a a n n ++=+211,再由211=a ,得n a n123-=满足题目的所有条件,所以本题的答案就是na n 123-=.题7]2[ 已知数列}{n a 满足n n a n n a a 1,3211+==+,求n a . 解 易知本题的答案是是唯一确定的,所以只需寻求一个数列满足该题目的所有条件.易得k nk n kn n a a n n (111+=+=+是非零常数),即n k a n =满足递推关系n n a n na 11+=+,再由321=a ,得n a n 32=满足题目的所有条件,所以本题的答案就是na n 32=.注 因为绝大部分求数列通项公式的题目答案都是唯一的,所以只要能观察或求出满足所有题设的一个通项公式,则该通项公式就是所求的唯一答案.对于要求解的问题Ω,若能证明它最多有n n (是确定的正整数)个解,又找出了它的n 个解n ωωω,,,21 ,则这n 个解就是该问题的所有解.这就是本文要阐述的用验证法解题.下面再用这种方法解答一道高考题:题8 (2010·安徽·理·20)设数列 ,,,,21n a a a 中的每一项都不为0.证明{}n a 为等差数列的充分必要条件是:对任何∈n N*,都有1113221111++=+++n n n a a na a a a a a .证明 先证必要性.若数列{}n a 是公差为d 的等差数列: 当0=d 时,易得欲证成立.当0≠d 时,有⎪⎪⎭⎫⎝⎛-++-+-=++++++1132232112132211111n n n n n n a a a a a a a a a a a a d a a a a a a 111111111322111111111111+++++=-⋅=⎪⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=n n n n n n a a na a a a d a a d a a a a a a d再证充分性.只需对)3(≥n n 用数学归纳法证明加强的结论:若),,3,2(1111113221n i a a ia a a a a a i i i ==+++++恒成立,则n a a a ,,,21 成等差数列,且na a n 1≠. 当3=n 时成立:当2=i 时,得2313132212,211a a a a a a a a a =+=+,所以321,,a a a 成等差数列,还可证313a a ≠(因为由313a a =可得023131313334=-=--+=+=a a a a a d a a ,而由3=i 时成立立知)04≠a .假设kn ,,4,3 =时成立:即ka a a ,,,21 成等差数列,且ka a a a a a k 11413,,4,3≠≠≠. 由k i ,,3,2 =时均成立及kaa a a a a k 11413,,4,3≠≠≠知,当21,a a 确定时,数列121,,,+n a a a 也是确定的,而由必要性的证明知,由21,a a 确定的等差数列121,,,+n a a a 满足题设,所以由题设及21,a a 确定的数列就是这个等差数列,即121,,,+n a a a 成等差数列,同上还可证111+≠+k a a k ,即1+=k n 时成立.所以要证结论成立,得充分性成立.参考文献1 甘志国.例谈用验证法求数列通项[J].中学数学月刊,2008(3):462 甘志国著.初等数学研究(II)上[M].哈尔滨:哈尔滨工业大学出版社,2009.416-417用排除法简解2015年高考全国卷I 理科第12题高考题 (2015年高考全国卷I 理科第12题)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.3,12e ⎡⎫-⎪⎢⎣⎭ B.33,2e 4⎡⎫-⎪⎢⎣⎭C.33,2e 4⎡⎫⎪⎢⎣⎭D.3,12e ⎡⎫⎪⎢⎣⎭解法1 (数形结合法)D.令g (x )=e x (2x -1),得g ′(x )=e x (2x +1).由g ′(x )>0得x >-12,由g ′(x )<0得x <-12,所以函数g (x )在11,,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭上分别是减函数、增函数. 又函数g (x )在x <12时g (x )<0,在x >12时g (x )>0,所以其大致图象如图1所示.图1直线y =ax -a 过点(1,0).若a ≤0,则f (x )<0的整数解有无穷多个,因此只能a >0. 结合函数图象可知,存在唯一的整数x 0,使得f (x 0)<0,即存在唯一的整数x 0,使得点(x 0,ax 0-a )在点(x 0,g (x 0))的上方,得x 0只能是0,所以实数a 应满足⎩⎪⎨⎪⎧f (-1)≥0,f (0)<0,f (1)≥0,即⎩⎪⎨⎪⎧-3e -1+2a ≥0,-1+a <0,e ≥0,解得32e≤a <1.即实数a 的取值范围是3,12e ⎡⎫⎪⎢⎣⎭.解法2 (分离常数法)D.令1+=t x 后,得题设即关于t 的不等式)0(1)e (21≠<++t at t t 有唯一的整数解.若0t >,由a <1,可得1(21)e (21)e t t t t at ++>+>>所以题设即关于t 的不等式1(21)e(0)t t at t ++<<即1(21)e (0)t t a t t++><有唯一的整数解,也即关于t 的不等式1(21)e (1)t t a t t++>≤-有唯一的整数解. 设1(21)e ()(1)t t g t t t ++=≤-,得12e ()(1)(21)(1)t g t t t t t+'=+-≤-,所以函数)(t g 在(,1]-∞-上是增函数,得最大值为(1)1g -=.又lim ()0,(1)1t g t g →-∞=-=,由此可作出函数)(t g 的图象如图2所示:图2注意到图象()y g t =过点32,2e B ⎛⎫- ⎪⎝⎭且1<a ,所以由图2可得: 当32ea <时,满足()g t a >的整数t 有2,1--,所以此时不满足题意. 当1e23<≤a 时,满足()g t a >的整数t 只有1-,所以此时满足题意. 得所求a 的取值范围是3,12e ⎡⎫⎪⎢⎣⎭. 解法3 (排除法)D.当0a =时,不等式f (x )<0即e x (2x -1)<0也即12x <,它有无数个整数解,不满足题设.由此可排除选项A,B.令g (x )=e x (2x -1),得g ′(x )=e x (2x +1).由g ′(x )>0得x >-12,由g ′(x )<0得x <-12,所以函数g (x )在11,,,22⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭上分别是减函数、增函数.又g ′(0)=1,所以可得曲线()y g x =在点(0,1)-处的切线为1y x =-,如图3所示.。

高中数学精品论文:切线与割线斜率关系的深度探析

高中数学精品论文:切线与割线斜率关系的深度探析
切线与割线斜率关系的深度探析
江苏南通高等师范学校
1 226100
曹军
问题提出 笔者在文[1]得出如下结论: 设Y=火龙)是定义在开区间(a,b)上的可导函
h(x)lni。>0,此时I
h(x)I面。=h(x)mi。=一击A3+ ,解得0<A<3石; ,解得 <A<3石;
数,曲线C:y=八菇)上任意不同两点的连线(称为 割线)斜率的取值区间为P,曲线C上任意一点处的 切线斜率的取值区间为Q,则Q 2 P,而且Q中元素 比P中元素至多多了区间P的端点值. 并指出,求解l八x。)一以髫:)I<I戈。一菇2 I(或 I八茗1)’一以筇2)I>I菇,一茹2 I)的恒成立问题,可以
在与z平行的割线,也即平行于拐点(茗。以‰))处 切线的任意直线与曲线C至多有一个交点,必要性 成立. (4)由(3)的证明易知结论成立. 由上述定理可知,对于二阶可导曲线C:y= “菇)有:①当且仅当曲线C不存在拐点,或对曲线C 的每一个拐点,都存在平行于该拐点处切线的直线 与曲线c至少有两个交点时,P=Q;②可导曲线C: Y=八菇)的切线斜率的取值区间Q至多比割线斜率 的取值区间P多了区间P的端点值,这些端点值就 是定理的结论(3)条件中的拐点处切线的斜率,即 函数在这些拐点处的导数. 对于只有一个拐点的二阶可导函数,定理有如 下推论: 推论 设y=以戈)是定义在连通开区间1(t∈ R)上的二阶可导函数,其对应曲线C上任意两点的 连线(称为割线)斜率的取值集合为P,曲线C上任
xl一戈2
I>1得,14+了2一毒I>l,以上替换茗,则有I

2菇,


一A戈2+4
l>1对任意的戈>0恒成立.
(1)当A≤0时,显然符合题意; (2)当A>0时,令h(x)=2x3一Ax2+4(x> 0),显然h(算)的图象经过(0,4),^’(戈)=6x2—

切线的证明方法

切线的证明方法

切线的证明方法引言在微积分中,切线是一条与曲线相切的直线。

切线的研究在数学和物理学中具有重要的意义。

本文将探讨切线的证明方法,包括切线的定义、切线的性质以及证明切线存在的方法。

切线的定义切线是一条与曲线仅有一个公共点且在该点处与曲线的切点相同的直线。

在数学中,切线的定义可以通过极限的概念来描述。

切线的性质切线具有以下性质:1.切线与曲线相切于一个点。

2.切线与曲线在切点处有相同的斜率。

切线的证明方法方法一:斜率法证明切线存在的一种常用方法是使用斜率。

下面以一元函数为例进行说明。

1.确定切点:首先需要确定曲线上的一个点,该点即为切点。

2.计算斜率:在切点处,计算曲线的斜率。

3.构造切线:以切点为起点,斜率为斜率的直线即为切线。

方法二:导数法导数是切线存在的必要条件。

下面以一元函数为例进行说明。

1.求导数:对给定的函数求导数。

2.确定切点:找到函数的一个极值点,该点即为切点。

3.判断斜率:计算极值点处的导数,若导数存在且不为零,则切线存在。

方法三:极限法极限是切线存在的另一种常用方法。

下面以一元函数为例进行说明。

1.确定切点:首先需要确定曲线上的一个点,该点即为切点。

2.构造割线:以切点为起点,选择一个趋近切点的点作为终点,构造割线。

3.极限计算:计算割线的斜率随着终点趋近切点时的极限值,若存在有限极限,则切线存在。

切线的应用切线的研究不仅在数学中有重要意义,还在物理学、工程学等学科中有广泛的应用。

以下是一些切线的应用实例:1.物体运动的切线速度:在物理学中,切线速度是描述物体运动的一个重要概念,它表示物体在某一时刻的瞬时速度。

2.曲线绘制:在计算机图形学中,利用切线可以绘制平滑的曲线,如贝塞尔曲线、样条曲线等。

3.最优化问题:在优化理论中,切线可以帮助求解最优化问题,如寻找函数的最大值、最小值等。

结论切线是与曲线相切的直线,具有特定的性质。

证明切线存在的方法包括斜率法、导数法和极限法。

切线的研究在数学和其他学科中具有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数图象的割线斜率与切线斜率的关系题 1 (2010年高考辽宁卷理科第21(2)题)已知函数1,1ln )1()(2-<+++=a ax x a x f .如果对任意2121214)()(),,0(,x x x f x f x x -≥-+∞∈,求a 的取值范围.(答案:2-≤a .)题2 (2009年高考辽宁卷理科第21(2)题)已知函数1,ln )1(21)(2>-+-=a x a ax x x f .证明:若5<a ,则对任意2121),,0(,x x x x ≠+∞∈,有1)()(2121->--x x x f x f .题3 (2009年高考浙江卷理科第10题)对于正实数α,记αM 为满足下述条件的函数)(x f 构成的集合:∈∀21,x x R 且12x x >,有)()()()(121212x x x f x f x x -<-<--αα.下列结论中正确的是( )(答案:C.)A.若21)(,)(ααM x g M x f ∈∈,则21)()(αα⋅∈⋅M x g x fB.若21)(,)(ααM x g M x f ∈∈且0)(≠x g ,则21)()(ααM x g x f ∈C.若21)(,)(ααM x g M x f ∈∈,则21)()(αα+∈+M x g x fD.若21)(,)(ααM x g M x f ∈∈且21αα>,则21)()(αα-∈-M x g x f题4 (2006年高考四川卷理科第22(2)题)已知函数)(),0(ln 2)(2x f x x a xx x f >++=的导函数是)(x f ',21,,4x x a ≤是不相等的正数,求证:2121)()(x x x f x f ->'-'.深入研究这四道高考题(除题8是选择压轴题外,其余三道都是解答压轴题的最后一问),可得函数图象的割线斜率与切线斜率的关系:定理 设∈a R ,函数)(x f 在区间I 上可导,则 (1)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔≤--)(,)()(2121;(2)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔<--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(不能恒成立;(3)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔≥--)(,)()(2121;(4)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔>--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(不能恒成立;(5)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔≤--)(,)()(2121;(6)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≤'∈∀⇔<--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(及a x f -=')(均不能恒成立;(7)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔≥--)(,)()(2121;(8)2121,,x x I x x ≠∈∀有a x f I x a x x x f x f ≥'∈∀⇔>--)(,)()(2121且∀区间I I ⊂0,当0I x ∈时a x f =')(及a x f -=')(均不能恒成立.为证明定理,须介绍两个引理,它们在《数学分析》中均可找到(比如文献[1],[2]): 引理 1 若函数)(x f 在区间I 上可导,则)(x f 在I 上单调不减(不增)的充要条件是0)()(≤≥'x f 在I x ∈时恒成立.(注:若2121,,x x I x x <∈∀有)()()(21x f x f ≥≤,则称)(x f 在区间I 上单调不减(不增).)引理 2 若函数)(x f 在区间I 上可导,则)(x f 在I 上严格递增(递减)⇔在I 上0)()(≤≥'x f 且对于任意的区间I I ⊂0,当0I x ∈时0)(='x f 不能恒成立.(注:若2121,,x x I x x <∈∀有)()()(21x f x f ><,则称)(x f 在区间I 上严格递增(递减).)定理的证明 设ax x f x h ax x f x g +=-=)()(,)()(. (1)左边2121,,x x I x x ≠∈∀⇔有2121212211,,0])([])([x x I x x x x ax x f ax x f ≠∈∀⇔≤----有0)()(2121≤--x x x g x g )(x g ⇔在I上单调不增0)()(≤-'='⇔a x f x g ⇔右边.(2)左边2121,,x x I x x ≠∈∀⇔有2121212211,,0])([])([x x I x x x x ax x f ax x f ≠∈∀⇔<----有0)()(2121<--x x x g x g )(x g ⇔在I 上严格递减0)()(≤-'='⇔a x f x g (用引理2,这里省去了一些文字的叙述,下同)⇔右边.(3)同(1)可证. (4)同(2)可证.(5)左边2121,,x x I x x ≠∈∀⇔有21212121,,)()(x x I x x a x x x f x f a ≠∈∀⇔≤--≤-有⇔⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥--≤--0)()(0)()(21212121x x x h x h x x x g x g ⇔⇔⎪⎭⎪⎬⎫⎩⎨⎧ 减上在上在单调不)(单调不增)(I x h I x g 右边. (6)左边2121,,x x I x x ≠∈∀⇔有21212121,,)()(x x I x x a x x x f x f a ≠∈∀⇔<--<-有⇔⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>--<--0)()(0)()(21212121x x x h x h x x x g x g ⇔⇔⎪⎭⎪⎬⎫⎩⎨⎧ 上严格递增在上严格递减在I x h I x g )()(右边. (7) 2121,,x x I x x ≠∈∀有⇔≥--a x x x f x f 2121)()(2121,,x x I x x <∈∀有a x x x f x f ≥--1212)()(或⇔-≤--a x x x f x f 1212)()(2121,,x x I x x <∈∀有)()(21x g x g ≤或⇔≥)()(21x h x h0)(,≥'∈∀x g I x 或⇔≤'0)(x h a x f I x ≥'∈∀)(,或⇔-≤'a x f )(a x f I x ≥'∈∀)(,(8)同(7)可证.题5 已知函数∈++-=b a b ax x x f ,()(23R )的图象上任意不同的两点连线的斜率小于1,求a 的取值范围.解 由定理9(2),得123)(2≤+-='ax x x f 在∈x R 时恒成立,即01232≥+-ax x 恒成立,所以]3,3[,012)2(2-∈≤-=∆a a .所以所求a 的取值范围是]3,3[-.注 由定理9(1)知,若把例1中的“小于”改成“不大于”,所得答案不变.还可验证:当0,3==b a 时,233)(x x x f +-=的图象上任一割线的斜率小于1,但图象在拐点(即凹凸性的分界点,其二阶导数值为0,参见文献[2]或[3])31处切线的斜率为1(图1).图1题6 (2013年福建省厦门一中月考试题)已知函数∈++-=b a b ax x x f ,()(23R ) (1)若函数)(x f y =的图象上任意两个不同的点连线斜率小于1,求证:33<<-a ;(2)若]1,0[∈x ,且函数)(x f 的图象上任意一点处的切线斜率为k ,试证明1≤k 的充要条件为31≤≤a .由题5的结论可知,题6的第(1)问是错题(可得第(2)问是正确的). 下面用定理给出题1~4的简解.题3的简解 αM 即满足条件“∈∀21,x x R ,有α<--2121)()(x x x f x f ”的函数)(x f 构成的集合.由定理(6),得αM 即满足条件“∈≤'x x f ()(αR )且对于任意的区间I I ⊂0,当0I x ∈时a x f =')(及a x f -=')(均不能恒成立”的函数)(x f 的集合.由此及绝对值不等式可证得选项C 成立(且可排除选项A 、B 、D),所以选C.题2的简解 由定理(4)知只需证明“当0>x 时1)(-≥'x f 且1)(-='x f 只能在一些孤立点上成立”:11)12(1121)(->----=--≥--+='a a a a a xa x x f所以要证结论成立.(并且还可得:当51≤≤a 时,结论也成立.) 题1的简解 )0(21)(>++='x ax xa x f .由定理(7)知题设即421)(≥---='ax xa x f 在0>x 时恒成立,由1-<a 及均值不等式可得所求a 的取值范围是]2,(--∞.注 下面把题1中的题设“1-<a ”改成“∈a R ”,再来求解: 此时题意即“421≥++ax xa 在0>x 时恒成立,求a 的取值范围”.当1-<a 时,已得2-≤a ;当01≤≤-a 时,可得函数)0(21)(>++=x ax xa x g 是单调减函数,可得此时不满足题设;当0>a 时,由均值不等式可得1≥a .所以所求a 的取值范围是),1[]2,(+∞⋃--∞. 题4的简解 设xax x x f x g +-='=222)()(,即证1)()(2121>--x x x g x g . 由定理(8)知,只需证明:当0>x 时1)(≥'x g ,即)0(14223>>-+x x ax 只需证 )0(14223>>-+x x a x 即 )0(222>>++x a xx x这由均值不等式及题设可证:a xx x ≥>⋅≥++4432232 所以欲证成立.注 由以上简解知,把题4中的“4≤a ”改成“343⋅≤a ”后所得结论也成立.参考文献1 刘玉琏,傅沛仁.数学分析讲义(上册)[M].3版.北京:高等教育出版社,19922 华东师范大学数学系编.数学分析(上册)[M].3版.北京:高等教育出版社,2001。

相关文档
最新文档