信号与系统第二章---2(1)

合集下载

信号与系统课后题解第二章

信号与系统课后题解第二章


对⑺式求一阶导,有:
de(t ) d 2 i 2 (t ) di (t ) du (t ) =2 +2 2 + c 2 dt dt dt dt de(t ) d 2 i2 (t ) di (t ) =2 + 2 2 + 2i1 (t ) + 2i 2 (t ) 2 dt dt dt

将⑸式代入⑻式中,有:
λ 2 + 2λ + 1 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1
y h (t ) = C1e −t + C2 te− t
由初始状态为 y (0 ) = 1, y ' (0 ) = 0 ,则有:
C1 = 1 − C 1 + C 2 = 0
由联立方程可得 故系统的零输入响应为:
由联立方程可得 故系统的零输入响应为:
A1 = 2, A2 = −1
y zi (t ) = 2e − t − e −2 t
(2)由原微分方程可得其特征方程为
λ 2 + 2λ + 2 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1 ± i
y h (t ) = e −t (C1 cos t + C2 sin t )
(− 3C1 + 3C2 )δ (t ) + (C1 + C2 )δ ' (t ) − (− 2C1 + C 2 )δ (t ) = δ (t )
(
(
( + C e )δ (t ) + (C e
2 1
)
−2 t
+ C2 e t δ ' (t )

信号与系统第二章习题

信号与系统第二章习题
当激励为et sin tut ut 1时的零状态响应为
rt et ht
sin tut ut 1ut ut 1
t
0
sin
d
τ
u
t
ut
2
1
t 1
sin
τ
d
τut
u
t
2
1 1 costut ut 2
X
20

例2-4 计算卷积 f1(t) f2(t),并画出波形。

f1 t
f2 t
2
1
1 e t1u t 1
则得
A1 A2 3 3A1 2A2 2
解得
A1 A2
4 7
代入(1)得
ht 4e2t 7e3t ut X
18
例2-3


已知线性时不变系统的一对激励和响应波形如下图所示,
求该系统对激励的 et sin tut ut 1零状态响应。
et
r t
1
1
O 12
t
对激励和响应分别微分一次,得
t0
因为特解为3,所以 强迫响应是3,自由响应是 4 et e2t
X
12
方法二


零状态响应rzs t是方程
d2 r dt
t
2
3
dr d
t
t
2r
t
2
t
6ut
且满足rzs 0 rzs0 0的解
(5)
由于上式等号右边有 t项 ,故rzst应含有冲激函数,
从而rzs t 将发生跳变,即 rzs 0 rzs 0
d2 rt 3 d rt 2rt 0
dt2
dt

信号与系统 2.1

信号与系统 2.1
⎧3P2 = 1 ⎪ ⎨4 P2 + 3P = 2 1 ⎪2 P + 2 P + 3 P = 0 1 0 ⎩ 2
所以,特解为
1 2 2 10 y p (t ) = t + t − 3 9 27
8
d 2 y (t ) dt2
+2
d y (t ) d f (t ) + 3 y (t ) = + f (t ) dt dt
7
P1 cos(β t ) + P2 sin (β t )(特征根不等于 ± j β )
Signals & Systems
例:给定微分方程式
d 2 y (t ) dt2
d y (t ) d f (t ) +2 + 3 y (t ) = + f (t ) dt dt
如果已知: (1) f (t ) = t 2 ; (2 ) f (t ) = e t , 方程的特解。 解: (1)由于f(t)=t2,故特解函数式为 代入方程,整理得
10
Signals & Systems
全解举例2.1-1
例 描述某LTI系统的微分方程为 y”(t) + 5y’(t) + 6y(t) = f(t) 求当f(t) = 2e-t,t≥0;y(0)=2,y’(0)= -1时的全解 解: (1) 特征方程为λ2 + 5λ+ 6 = 0 其特征根λ1= – 2, λ2= – 3。齐次解为 yh(t) = C1e – 2t + C2e – 3t (2)当f(t) = 2e – t时,其特解可设为 yp(t) = Pe – t 将其代入微分方程得 Pe – t + 5(– Pe – t) + 6Pe – t = 2e – t 解得 P=1,于是特解为 yp(t) = e – t (3)全解为: y(t) = yh(t) + yp(t) = C1e – 2t + C2e – 3t + e – t 其中 待定常数C1,C2由初始条件确定。 y(0) = C1+C2+ 1 = 2,y’(0) = – 2C1 – 3C2 – 1= – 1 解得 C1 = 3 ,C2 = – 2 最后得全解 y(t) = 3e – 2t – 2e – 3t + e – t , t≥0

信号与系统第二章第一讲

信号与系统第二章第一讲
i
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1

线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统

vR (t )
C


vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )

时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )

信号与系统第2章ppt课件

信号与系统第2章ppt课件
,这种频谱搬移技术在通信系统中
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)
乘以Cos(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
当 0 时 当 0 时
A () li m 0 A e () lim A e ( 0) lim 2 0 2 0
所以
A () li m 0A e()()
B()li m0Be()j
精选ppt
第二章 傅立叶变换
(6)符号函数 符号函数sgn(t)如图所示
由于sgn(t)不符合绝对可积条件, 故使用间接方法计算。
利用傅里叶反变换公式计算
第二章 傅立叶变换
例4 试求图示周期信号的频谱函数,图(b)中冲激函数的强度均为1.
(b)
[提示:(a)F()F[1]1F[cos(t)]
22

(b
Cn
1 T
T
2 T
fT(t)ejntdt
2
fT(t)(t)(tT2)

信号与线性系统-2 (1)

信号与线性系统-2 (1)

信号与线性系统-2(总分:100.00,做题时间:90分钟)一、计算题(总题数:19,分数:100.00)已知信号f(t)波形如图(a)所示,试绘出下列函数的波形:(分数:6.00)(1).f(2t);(分数:1.00)__________________________________________________________________________________________ 正确答案:()解析:解 f(2t)可由f(t)的波形沿时间轴压缩2倍而得到,如图(b)所示;(2).f(t)ε(t);(分数:1.00)__________________________________________________________________________________________ 正确答案:()解析:解 f(t)ε(t)可由f(t)的波形取t>0的部分而得到,如图(c)所示;(3).f(t-2)ε(t);(分数:1.00)__________________________________________________________________________________________ 正确答案:()解析:解将f(t)的波形沿时间轴右移2得到f(t-2),如图(d)所示,再取f(t-2)的波形中t>0的部分即得f(t-2)ε(t),如图(e)所示;(4).f(t-2)ε(t-2);(分数:1.00)__________________________________________________________________________________________ 正确答案:()解析:解 f(t-2)ε(t-2)可由f(t)ε(t)的波形沿时间轴右移2而得到,如图(f)所示;(5).f(2-t);(分数:1.00)__________________________________________________________________________________________ 正确答案:()解析:解将f(t)的波形沿纵轴反褶得到f(-t),波形如图(g)所示,再将其沿时间轴右移2即得到f(2-t),如图(h)所示;(6).f(-2-t)ε(-t)。

信号与系统-第2章

信号与系统-第2章

f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.

信号与系统课件(郑君里版)第二章

信号与系统课件(郑君里版)第二章

e ,t≥0;y(0)=2,y’(0)= 2 t ,t≥0;y(0)= 1, e
t
-1
y’(0)=0时的全解。
解: (1) 特征方程为
2 + 5λ+ 6 = 0
其特征根λ1= – 2,λ2= – 3。 齐次解为
yh (t ) C1e2t C2e2t
由表2-2可知,当f(t) = 2 e t
y fh (t ) C f 1e
2t
C f 2e
t
其特解为常数 3 , 于是有
y f (t ) C f 1e2t C f 2et 3
C1 1 C 2 4
根据初始值求得:
y f (t ) e2t 4et 3,t 0
四.系统响应划分
自由响应+强迫响应 (Natural+forced) 暂态响应+稳态响应 (Transient+Steady-state) 零输入响应+零状态响应 (Zero-input+Zero-state)
零输入响应
2.2 冲激响应和阶跃响应
一.冲激响应 1.定义 系统在单位冲激信号δ(t) 作用下产生的零状态响 应,称为单位冲激响应,简称冲激响应,一般用h(t)表 示。
t
ht
H
[例2.2.1] 描述某系统的微分方程为y”(t)+5y’(t)+6y(t)=f(t)求其 冲激响应h(t)。
相互关系
零输入响应是自由响应的一部分,零状态响应有自由响 应的一部分和强迫响应构成 。
y (t ) e 2t 3 y x (t ) y f (t ) (2e 2t 4e t ) (e 2t 4e t 3),t 0

信号与系统王明泉第二章习题解答

信号与系统王明泉第二章习题解答
(1)零输入响应 满足方程
其 值
方程特征根 , ,故零输入响应
将初始值代入上式及其导数,得
由上式解得 , ,所以
(2)零状态响应 是初始状态为零,且 时,原微分方程的解,即 满足方程

及初始状态 。先求 和 ,由于上式等号右端含有 ,令
积分(从 到 )得
将 、 和 代入微分方程可求得 。对以上三式等号两端从 到 积分,并考虑到 , ,可求得
解:(1)求齐次解
特征方程为:
特征根为:
所以,
(2)求特解
(3)全响应
将 代入系统方程得
(1)
将初始条件代入
得:
所以全响应为:
2.5 已知描述某线性时不变连续系统的微分方程为

当激励为 时,系统的完全响应为 , 。试求其零输入响应、零状态响应、自由响应和强迫响应。
解:由全响应得初始条件 ,
(1)求零输入响应
在时域中,子系统级联时,总的冲激响应等于子系统冲激响应的卷积。
因果系统的冲激响应为
(2)阶跃响应
一线性时不变系统,当其初始状态为零时,输入为单位阶跃函数所引起的响应称为单位阶跃响应,简称阶跃响应,用 表示。阶跃响应是激励为单位阶跃函数 时,系统的零状态响应
阶跃响应 与冲激响应 之间的关系为

2.2.6卷积积分
(1)卷积积分的概念
一般情况下,如有两个信号 和 做运算
此运算定义为 和 的卷积(Convolution),简记为

(2)卷积积分的图解法
用图解法能直观地说明卷积积分的计算过程,而且便于理解卷积的概念。两个信号 和 的卷积运算可通过以下几个步骤来完成:
第一步,画出 和 波形,将波形图中的 轴改换成 轴,分别得到 和 的波形。

信号与系统课后答案 第2章 习题解

信号与系统课后答案 第2章 习题解

第2章 习 题2-1 求下列齐次微分方程在给定起始状态条件下的零输入响应(1)0)(2)(3)(22=++t y t y dt d t y dt d ;给定:2)0(,3)0(==--y dt dy ; (2)0)(4)(22=+t y t y dt d ;给定:1)0(,1)0(==--y dtd y ;(3)0)(2)(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dt dy ; (4)0)()(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy ; (5)0)()(2)(2233=++t y dt d t y dt d t y dt d ;给定:2)0(,1)0(,1)0(22===---y dt d y dt d y 。

(6)0)(4)(22=+t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy 。

解:(1)微分方程的特征方程为:2320λλ++=,解得特征根:121, 2.λλ=-=- 因此该方程的齐次解为:2()t th y t Ae Be --=+.由(0)3,(0)2dy y dt--==得:3,2 2.A B A B +=--=解得:8, 5.A B ==- 所以此齐次方程的零输入响应为:2()85tty t e e--=-.(2)微分方程的特征方程为:240λ+=,解得特征根:1,22i λ=±.因此该方程的齐次解为:()cos(2)sin(2)h y t A t B t =+.由(0)1,(0)1d y y dx --==得:1A =,21B =,解得:11,2A B ==. 所以此齐次方程的零输入响应为:1()cos(2)sin(2)2y t t t =+.(3)微分方程的特征方程为:2220λλ++=,解得特征根:1,21i λ=-± 因此该方程的齐次解为:()(cos()sin())th y t e A t B t -=+.由(0)1,(0)2dy y dx--==得:1,2,A B A =-= 解得:1,3A B ==.所以齐次方程的零输入响应为:()(cos()3sin())ty t e t t -=+.(4)微分方程的特征方程为:2210λλ++=,解得二重根:1,21λ=-.因此该方程的齐次解为:()()th y t At B e -=+. 由(0)1,(0)2dy y dx--==得:1,2,B A B =-=解得:3, 1.A B == 所以该方程的零输入响应为:()(31)ty t t e -=+.(5)微分方程的特征方程为:3220λλλ++=,解得特征根: 1,21λ=-,30λ=. 因此该方程的齐次解为:()()th y t A Bt C e -=++.由22(0)1,(0)1,(0)2d d y y y dx dt---===得:1,1,22A C B C C B +=-=-=. 解得:5,3,4A B C ==-=-.所以方程的零输入响应为:()5(34)ty t t e -=-+.(6)微分方程的特征方程为:240λλ+=,解得特征根:120,4λλ==-. 因此该方程的齐次解为:4()th y t A Be -=+.由(0)1,(0)2d y y dx --==得:1,42A B B +=-=.解得:31,22A B ==-. 所以此齐次方程的零输入响应为:431()22ty t e -=-.2-2 已知系统的微分方程和激励信号,求系统的零状态响应。

《信号与系统》第二版第二章:LTI连续时间系统的时域分析

《信号与系统》第二版第二章:LTI连续时间系统的时域分析
由起始状态Y(0-)≠0 所产生的响应。
零状态(zero state)响应 yzs (t ) :不考虑起始时刻系统储能的作用,即Y(0-) ≡0,由系统的外加激励信号 v (t ) = v (t )u (t ) ≠ 0 所产生的响应。
零输入响应 yzi (t ) :
5
《信号与系统》
第二章:LTI 连续时间系统的时域分析
∏(p −αi )
i =1
(αi 为互异特征根)
= N (p) ⎡⎣eαnt ∗ ∗ eα1t ∗ v (t )⎤⎦
(2-19)
n
∑ yzs (t ) = 齐次解 Aieαit +特解 B (t ) i =1
(2-20)
特解 B (t ) 反映系统输入对输出的强迫。
非零状态线性系统: 定义(非零状态线性系统):系统 T 的初始状态为X(0-)≠0
令: D (p) pn + an−1pn−1 + ... + a1p + a0
N (p) bmpm + ... + b1p + b0
4
《信号与系统》
有:
第二章:LTI 连续时间系统的时域分析
y
(t)
=
N (p) D(p)
v(t
)
H (p)v(t)
(2-13)
其中,
H
(p)
=
N (p) D(p)
称为系统算子。
≤ ∫ ∫ f (τ ) g (t −τ ) dτ dt ΩΩ
= ∫ f (τ ) ∫ g (t −τ ) dtdτ
Ω
Ω
=∫
f (τ )
g (t ) dτ = 1
f (t) 1
g (t ) 1

信号与系统(教案) 第二章

信号与系统(教案) 第二章

二、图解机理
用图形方式理解卷积运算过程,包括以下6个步骤: Step1:换元。画出f1(t)与f2(t)波形,将波形图中的t轴 改换成τ轴,分别得到f1(τ)和f2(τ)。 Step2:翻转。将f2(τ)波形以纵轴为中心轴翻 180°,得 到f2(-τ)波形。 4
信号与系统
2.2
卷积积分
Step3:平移。给定t值,将f2(-τ)波形沿τ轴平移|t|。
卷积积分是一种数学运算,它有许多重要的性质 (或运算规则),灵活地运用它们能简化卷积运算。 下面讨论均设卷积积分是收敛的(或存在的)。
性质1.卷积代数 满足乘法的三律: 1. 交换律: f1(t)* f2(t) =f2(t)* f1(t) 2. 分配律: f1(t)*[ f2(t)+ f3(t)] =f1(t)* f2(t)+ f1(t)* f3(t) 3. 结合律: [f1(t)* f2(t)]* f3(t)] =f1(t)*[ f2(t) * f3(t)]
1.奇异信号
单位冲激信号 (t), 单位阶跃信号 (t).
2.正弦信号
也称为虚指数信号。 f (t ) A cos( t ) A [e j (t ) e j (t ) ] 2
式 中A、和分 别 为 正 弦 信 号 的 振 幅 角 频 率 和 初 相 。 、 f ( t )是 周 期 信 号 , 其 周 期 2 T=
1 0
f 1(t)
2
t
14
信号与系统 例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1)
2.2 卷积积分 2.2 卷积积分

信号与系统-第二章线性时不变系统

信号与系统-第二章线性时不变系统

n
1
k
f1 (k )
f2 (0
k)
3,
k
f1 (k )
f2 (1 k)
3,
n0 n 1
k
f1 (k )
f2(2 k)
1,
0,
n2 n14 3
三. 卷积和的计算:(3)列表法
分析卷积和的过程,可以发现有如下特点:
① x(n与) 的h(所n)有各点都要遍乘一次;
② 在遍乘后,各点相加时,根据 x(k)h(n k), k
x (t) x(t)
20
x(t) x (t)
x(k)
t
0
k (k 1)
引用 (t,) 即:
(t)
1
/ 0
0t otherwise
则有:
(t
)
1 0
0t otherwise
21
第 个k 矩形可表示为: x(k) (t k)
这些矩形叠加起来就成为阶梯形信号 x,(t)
即: x (t) x(k) (t k) k 当 时0 , k d
un 4 ak
an3
1un 4
k 0
a 1
9
例4: x(n) nu(n) 0 1 h(n) u(n)
x(k) ku(k)
1
0
k ...
h(n k) u(n k)
1
k
0
n
y(n) x(n) h(n)
x(k)h(n k) ku(k)u(n k)
k
k
u(n) n k 1 n1 u(n)
例2 :
1 x(t) 0
h( )
2T
0t T otherwise

信号与系统第三版课后习题答案

信号与系统第三版课后习题答案

信号与系统第三版课后习题答案信号与系统第三版课后习题答案信号与系统是电子信息类专业中一门重要的基础课程,它是研究信号的产生、传输、处理和识别的学科。

在学习这门课程时,课后习题是非常重要的,它可以帮助我们巩固所学的知识,并且提高解决问题的能力。

下面是信号与系统第三版课后习题的答案。

第一章:信号与系统的基本概念1. 信号是指随时间、空间或其他独立变量的变化而变化的物理量。

系统是指能够对输入信号进行处理并产生输出信号的物理设备或数学模型。

2. 连续时间信号是在连续时间范围内定义的信号,可以用连续函数表示。

离散时间信号是在离散时间范围内定义的信号,可以用数列表示。

3. 周期信号是指在一定时间间隔内重复出现的信号,具有周期性。

非周期信号是指不具有周期性的信号。

4. 奇对称信号是指关于原点对称的信号,即f(t)=-f(-t)。

偶对称信号是指关于原点对称的信号,即f(t)=f(-t)。

5. 系统的线性性质是指系统满足叠加原理,即对于输入信号的线性组合,输出信号也是这些输入信号的线性组合。

6. 系统的时不变性质是指系统对于不同时间的输入信号,输出信号的特性是不变的。

7. 系统的因果性质是指系统的输出只依赖于当前和过去的输入信号,而不依赖于未来的输入信号。

第二章:连续时间信号与系统的时域分析1. 奇偶分解是将一个信号分解为奇对称和偶对称两个部分的过程。

奇偶分解的目的是简化信号的处理和分析。

2. 卷积是信号处理中常用的一种操作,它描述了两个信号之间的相互作用。

卷积的定义为:y(t) = ∫[x(τ)h(t-τ)]dτ。

3. 系统的冲激响应是指系统对于单位冲激信号的输出响应。

冲激响应可以用来描述系统的特性和性能。

4. 系统的单位阶跃响应是指系统对于单位阶跃信号的输出响应。

单位阶跃响应可以用来描述系统的稳定性和响应速度。

5. 系统的单位斜坡响应是指系统对于单位斜坡信号的输出响应。

单位斜坡响应可以用来描述系统的积分特性。

信号与系统课后答案2

信号与系统课后答案2

A1e −2t
+
2 A2e−8t
故有
uc (0+ ) = A1 + A2 = 6
i(0+ )
=
1 2
A1
+
2 A2
=
0
联解得 A1-=8,A2=-2。故得
uc (t) = 8e−2t − 2e−8t V t ≥ 0
又得
i(t) = −C duc = 4e−2t − 4e−8t A t ≥ 0 dt
1 1
+
p u2 (t)
=
0

1 3
p
+ 1u1 (t )
− u2 (t)
=
pf
(t)
( ) − u1(t) + p2 + p +1 u2 (t) = 0
联解得
u2 (t) =
p2
3 + 4p + 4
f (t) =
H ( p) f (t)
故得转移算子为
H(p) =
u2 (t) f (t)
=
p2
3 + 4p + 4
f1(t −1) − f1(t − 2) + f1(t − 3)
y2(t)的波形如图题 2.10(d)所示 2-11.
d f (t)
试证明线性时不变系统的微分性质与积分性质,即若激励 f(t)产生的响应为 y(t),则激励 dt
产生
∫ ∫ d
的响应为 dt
y(t)
(微分性质),激励
t −∞
f (τ )dτ
故得
3 3
进一步又可求得 uc(t)为
uc
(t )

《信号与系统》第二章习题解答

《信号与系统》第二章习题解答

14
Chapter 2
Problems Solution
2.47 An LTI system with impulse response h0 (t ) y0 (t ) x0 (t ) → y0 (t ) 1 In each of these cases,determine 0 2 whether or not we have enough Information to determine the output y (t )
∞ ∞ y ( t ) = ∑ δ ( t − kT ) ∗ h ( t ) = ∑ h ( t − kT ) k =−∞ k =−∞
11
Chapter 2
Problems Solution
y (t )
L
1
-4 -3 -1 0 1 3
-5
5
L
t t
L L
(a) T=4 1 y (t )
Problems Solution
2.20. Evaluate the following integrals:
(a ) ∫−∞
பைடு நூலகம்
+∞
u0 (t ) cos(t )dt = cos t
t =0
=1
(b ) ∫0
5
sin (2πt )δ (t + 3)dt = 0
(c) ∫−5 u1 (1 − τ ) cos(2πτ )dτ
(c) S is time-varying.
y [ n ] = u [ n − 2] − u [ n − 6] y [ n] = u [ n − 4] − u [ n − 8]
( d ) x [ n] = u [ n]

信号与系统复习资料 第2章 z变换与离散时间傅里叶变换(DTFT

信号与系统复习资料 第2章  z变换与离散时间傅里叶变换(DTFT

Z变换与DTFT
以下假设
n1<n2
•如果n2 ≤0 ,则收敛域不包括∞点
• 如果n1≥0 ,则收敛域不包括0点
• 如果n1<0<n2,收敛域不包括0 、∞点
1) n2 0( n1 0), 0 z
2) n1 0( n2 0), 0 z
3) n1 0, n2 0, 0 z
Rx
当Rx Rx 时,Roc :
-10-
0
当Rx Rx 时,Roc : Rx z Rx
Z变换与DTFT
例1
[n]1, 0 z
ZT
[n]z
n

n
[0]z 1
0
收敛域应是整个z 的闭平面
-11-
Z变换与DTFT
Z变换与DTFT
第二章 z变换和DTFT
-1-
Z变换与DTFT
本章主要内容:
1. z变换:定义及收敛域,z变换的反变换
z变换的基本性质和定理 2. ZT 与连续信号LT、FT的关系
(信号)
3. 离散时间信号的DTFT(序列的傅立叶变换)
4. z变换与DTFT的关系 5. DTFT的一些性质 6. 周期性序列的DTFT 7. DTFT变换的对称性质
例2:求x(n)=RN(n)的z变换及其收敛域
解:X(z)= x(n ) z = RN (n ) z
n n n
N Z=1处零 z 1 极对消 z N 1 ( z 1)
1 z = z 1 z 1 n 0
N 1 n
n N
q n1 q n2 1 n q 1 q n n1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h(n) (t) an1h(n1) (t) a0h(t) (t)
h( j) (0 ) 0, j 0,1,2,, n 1
用前面类似的方法,可推得各0+初始值为:
h( j) (0 ) 0, j 0,1,2,, n 2
h(n1) (0 ) 1 若微分方程的特征根均为单根,则冲激响应
h(t) C1e-2t C2e-3t ,
将初始值代入,得
t 0
h(0 ) C1 C2 3 h(0 ) 2C1 3C2 12
C1 3 C2 6
得系统的冲激响应为:
h(t) δ(t) (3e-2t-6e-3t ) (t)
第二章 连续系统的时域分析
二、阶跃响应
一个LTI系统,其初始状态为零时,输入为单位阶跃函数所 引起的响应称为单位阶跃响应,简称阶跃响应,用 表g示(t)
将初始条件代入冲激响应函数中 h(t) C1e3t (t) h(0 ) C1 1
系统的冲激响应为:
h(t) e 3t (t)
第二章 连续系统的时域分析
总结:若n阶微分方程的右端只含有f(t),即:
y(n) (t) an1 y(n1) (t) a0 y(t) f (t) 当 f (t) ,(t其) 零状态响应(即冲激响应满足)
得: h(0 ) h(0 ) 3 3 h(0 ) h(0 ) 12 12
a 1; b 3 c 12
得系统的冲激响应为: h(t) δ(t) (3e-2t-6e-3t ) (t)
第二章 连续系统的时域分析
当t>0时,h(t)满足方程
h(t) 5h(t) 6h(t) 0
它的特征根 2, 。故3系统的冲激响应
应 yzs (t) ,h(t)满h足(t) h(t) 5h(t) 6h(t) (t) 2 (t) 3 (t)
h(0 ) h(0 ) 0
求0+时刻初始值h(0 ), h(0 )
设: h(t) a (t) b (t) c (t) r0 (t) h(t) a (t) b (t) r1(t) h(t) a (t) r2 (t)
h(t) dg(t) dt
t
g(t) h(x)dx
即:defBiblioteka g(t) T[0, (t)]
(t)
g (t )
(t) LTI系统 g(t)
t
{x(0)}={0}
o
o
t
阶跃响应示意图
第二章 连续系统的时域分析
由于单位阶跃函数 (t与) 单位冲激函数 的(t)关系为:
(t) d (t)
dt
t
(t) (x)dx
根据LTI系统的微积分性质,同一系统的阶跃响应和冲激 响应的关系为:
例3:设描述某二阶LTI系统的微分方程为
y(t) 5y(t) 6y(t) f (t) 2 f (t) 3 f (t)
求其冲激响应。 解法一:选新变量y1(t),其冲激响应为h1(t),满足方程
y1(t) 5y1(t) 6y1(t) f (t)
设其冲激响应为h1(t),则原方程的冲激响应为
解得: C1 1,C2 1 系统的冲激响应为:
h(t) (e2t e3t ) (t)
第二章 连续系统的时域分析
一般而言,若描述LTI系统的微分方程为:
y(n)
(t)
a y(n1) n1
(t)
a0
y(t)
bm
f
(m)
(t)
bm1
f
( m 1)
(t)
b0
f
(t)
可分为如下两步求解系统的冲激响应h(t)
def
h(t) T[0, (t)]
(t)
h(t)
(t)
LTI系统 h(t)
t
{x(0)}={0}
o
o
t
第二章 连续系统的时域分析
例1: 已知某线性时不变系统的微分方程为
y(t) 3y(t) f (t)
试求系统的冲激响应h(t。)
解:当 f (t) (t), yzs (t) h(t)
则 h(t) 3h(t) (t)
h(0 ) 0 微分方程的特征根解得:
3
系统的冲激响应为 h(t) C1e 3t (t) 令: h(t) a (t) r0 (t)
h(t) r1(t) a 1
第二章 连续系统的时域分析
h(0 ) h(0 ) 1 h(0 ) h(0 ) 1 1
h(0 ) 0 h(0 ) 1
第二章 连续系统的时域分析
将初始条件代入冲激响应函数中 h(t) (C1e2t C2e3t ) (t) h(t) (2C1e2t 3C2e3t ) (t) (C1 C2 ) (t) h(0 ) C1 C2 0 h(0 ) 2C1 3C2 1
h(t) h1(t) 2h1(t) 3h1(t)
由于 h1(t) (e2t e3t ) (t)
h(t) h1(t) 2h1(t) 3h1(t)
δ(t) (3e-2t-6e-3t ) (t)
第二章 连续系统的时域分析
解法二:根据冲激响应的定义,当 f (t) 系(t统) 的零状态响
h(t) n C jejt (t)
j1
第二章 连续系统的时域分析
例2:设描述某二阶LTI系统的微分方程为 y(t) 5y(t) 6y(t) f (t)
求其冲激响应。
解:当 f (t) (t), yzs (t) h(t)
则:h(t) 5h(t) 6h(t) (t)
h(0 ) h(0 ) 0 微分方程的特征根为: 1 2, 2 3 系统的冲激响应为:h(t) (C1e2t C2e3t ) (t)
第二章 连续系统的时域分析
第二章 连续系统的时域分析
2.1 LTI连续系统的响应 2.2 冲激响应和阶跃响应 2.3 卷积积分 2.4 卷积积分的性质
第二章 连续系统的时域分析
2.2 冲激响应和阶跃响应
一、冲激响应
对于LTI系统,当初始状态为零时,输入为单位冲激
函数 (所t) 引起的响应称为单位冲激响应,简称冲激响应。
1)求右端只含有f(t)的冲激响应h1(t)
y (n) 1
(t
)
an1
y1(
n1)
(t
)
a0
y1(t
)
f (t)
2)根据LTI系统零状态响应的线性性质和微分性质
得原微分方程的冲激响应h(t)
h(t) bmh1(m) (t) bm1h1(m1) (t) b0h1(t)
第二章 连续系统的时域分析
相关文档
最新文档