高一数学 必修二 1.1.1.2

合集下载

高一数学必修二1.2-1doc

高一数学必修二1.2-1doc

高一数学必修二1.2.1. 平面的基本性质学习目标1. 了解平面的描述性概念;2. 掌握平面的表示方法和基本画法;3. 掌握平面的基本性质;4. 能正确地用数学语言表示点、直线、平面以及它们之间的关系.学习过程一建构知识1.平面的概念:光滑的桌面、平静的湖面等都是我们熟悉的平面形象,数学中的平面概念是现实平面加以抽象的结果.平面的特征:平面没有大小、厚薄和宽窄,平面在空间是无限延伸的.2.平面的画法:3.平面的表示方法:4.用数学符号来表示点、线、面之间的位置关系:点与直线的位置关系:点与平面的位置关系:直线与平面的位置关系:5.平面的基本性质:公理1:文字语言描述为:符号语言表示为:公理2:文字语言描述为:符号语言表示为:公理3:文字语言描述为:符号语言表示为:推论1:推论2:推论3:二 知识运用 例题例1 辨析:10个平面重叠起来,要比5个平面重叠起来厚. ( ) 有一个平面的长是50米,宽是20米. ( ) 黑板面是平面. ( ) 平面是绝对的平,没有大小,没有厚度,可以无限延展的抽象的数学概念.( ) 例2例3 把下列语句用集合符号表示,并画出直观图.(1)点A 在平面α内,点B 不在平面α内,点A ,B 都在直线a 上;(2)平面α与平面β相交于直线m ,直线a 在平面α内且平行于直线m .例4 如图,ABC ∆中,若BC AB ,在平面α内,判断AC 是否在平面α内.如图,已知l D l C l B l A ∉∈∈∈,,,,求证:直线CD BD AD 、、共面.例6 求证:两两相交但不过同一点的四条直线相交.例5 ABD C l α如图,在长方体1111D C B A ABCD -中,P 为棱1BB 的中点.(1)画出由P C A ,,11三点所确定的平面α与长方体表面的交线;(2)画出平面α与平面ABCD 的交线.巩固练习1.用符号表示“点A 在直线l 上,l 在平面α外”,正确的是( ) A .α∉∈l l A , B .α⊄∈l l A , C .α⊄⊂l l A , D .α∉⊂l l A , 2.下列叙述中,正确的是( ) A .ααα∈∴∈∈PQ Q P ,,C .αα∈∴∈∈⊂CD AB D AB C AB ,,,B .PQ Q P =⋂∴∈∈βαβα,, D .AB AB AB =⋂∴⊂⊂βαβα,, 3.为什么许多自行车后轮旁只安装一只撑脚?4.四条线段顺次首尾相接,所得的图形一定是平面图形吗?5.指出下列说法是否正确,并说明理由: (1)空间三点确定一个平面;(2)如果平面与平面有公共点,那么公共点就不止一个;(3)因为平面型斜屋面不与地面相交,所以屋面所在的平面与地面不相交.6.下列推理错误的是( )A .ααα⊂⇒∈∈∈∈lB l B A l A ,,,B .AB B B A A =⋂⇒∈∈∈∈βαβαβα,,,C .αα∉⇒∈⊄A l A l ,D .βα∈∈C B A C B A 、、,、、,且C B A 、、不共线βα、⇒⇒重合CA 1例7三 回顾小结1.正确使用集合符号表示点、线、面的位置关系,平面的基本性质. 2.掌握3个推论及其作用,掌握平面与平面之间的交线及其作法. 学习评价 基础知识1、如图,在有公共端点O 的两条射线k l ,上分别有点A ,B ,C ,D ,E ,则过其中任意三点可以确定的平面有 个.2、平面α内有三个点,平面α外有一个点,过其中任意三点可以确定的平面共有 个.3、三条直线两两相交,经过这3条直线的平面有 .4、两个平面把空间分成 个部份. 5.下列命题中,正确的个数为 . (1)四边形是平面图形;(2)有三个公共点的两个平面重合;(3)两两相交的三条直线必在同一平面内;(4)三角形必是平面图形. 6、若,,,,M b a c b a ==⊂⊂ βαβα则 ( ) A 、c M ∈ B 、c M ∉ C 、c M ⊂ D 、c M ⊄ 7、根据下列条件画出图形: (1);,,,l B l A B A ∈∈∉∈αα(2)ABC l ∆=,βα 的顶点.,,,,l C C l B l B l A ∉∈∉∈∈β8、证明梯形是平面图形.拓展延伸:9、画一个正方体ABCD—A1B1C1D1,再画出平面ACD1与平面BDC1的交线,并且说明理由.10、已知:O1是正方形ABCD—A1B1C1D1的上底面的中心,过D1、B1、A作一个截面,求证:此截面与对角线A1C的交点P一定在AO1上.1.2.1. 平面的基本性质1. 12. 1或43. 0或1个4.3或45.1 个6. A7. 略8. 由梯形的定义和梯形的两底互相平行,两底所在的两条直线确定一个平面,而梯形的两个腰各有两个点在这个平面上,所以这两个腰也在这个平面上。

高一数学必修二

高一数学必修二

高一数学必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积1.柱、锥、台、球的结构特征(1)柱棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。

底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

棱柱与圆柱统称为柱体。

(2)锥棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。

底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥……圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。

棱锥与圆锥统称为锥体。

(3)台棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。

圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。

圆台和棱台统称为台体。

(4)球以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。

高中数学必修二目录

高中数学必修二目录

高中数学必修二目录第一章:二次函数• 1.1 二次函数的定义和图像– 1.1.1 二次函数的定义和性质– 1.1.2 二次函数的标准形式和一般形式– 1.1.3 二次函数的图像和性质• 1.2 二次函数的解析式– 1.2.1 二次函数的解析式– 1.2.2 二次函数解析式中的参数含义• 1.3 二次函数的图像与性质– 1.3.1 二次函数的对称轴和顶点坐标– 1.3.2 二次函数的最值和零点• 1.4 二次函数的平移和反射– 1.4.1 二次函数的平移– 1.4.2 二次函数的反射第二章:三角函数• 2.1 弧度制与度制– 2.1.1 弧度的定义和性质– 2.1.2 弧度和角度的相互转化公式• 2.2 任意角的三角函数– 2.2.1 任意角的正弦函数– 2.2.2 任意角的余弦函数– 2.2.3 任意角的正切函数• 2.3 三角函数图像与性质– 2.3.1 正弦函数图像与性质– 2.3.2 余弦函数图像与性质– 2.3.3 正切函数图像与性质• 2.4 三角函数的基本公式– 2.4.1 正弦函数的基本公式– 2.4.2 余弦函数的基本公式– 2.4.3 正切函数的基本公式• 2.5 三角函数的诱导公式和倍角公式– 2.5.1 三角函数的诱导公式– 2.5.2 三角函数的倍角公式第三章:平面向量• 3.1 平面向量的定义– 3.1.1 平面向量的定义和性质• 3.2 平面向量的运算– 3.2.1 平面向量的加法– 3.2.2 平面向量的减法– 3.2.3 平面向量的数乘• 3.3 平面向量的线性运算– 3.3.1 平面向量的线性组合– 3.3.2 平面向量的线性相关与线性无关• 3.4 平面向量的数量积– 3.4.1 平面向量的数量积定义和性质– 3.4.2 平面向量的数量积计算方法• 3.5 平面向量的应用– 3.5.1 平面向量在几何问题中的应用– 3.5.2 平面向量在物理问题中的应用第四章:指数与对数函数• 4.1 指数函数– 4.1.1 指数函数的定义和性质– 4.1.2 指数函数的图像与性质• 4.2 对数函数– 4.2.1 对数函数的定义和性质– 4.2.2 对数函数的图像与性质• 4.3 指对公式、指数方程与对数方程– 4.3.1 指对公式– 4.3.2 指数方程与对数方程的基本概念– 4.3.3 指数方程与对数方程的解法• 4.4 常用对数与自然对数– 4.4.1 常用对数和自然对数的定义和性质– 4.4.2 常用对数与自然对数的计算第五章:概率与统计• 5.1 随机事件与概率的引入– 5.1.1 随机事件的定义和性质– 5.1.2 概率的定义和性质• 5.2 古典概型与几何概型– 5.2.1 古典概型– 5.2.2 几何概型• 5.3 条件概率与贝叶斯公式– 5.3.1 条件概率的定义和性质– 5.3.2 贝叶斯公式的推导和应用• 5.4 随机变量与概率分布– 5.4.1 随机变量的定义和性质– 5.4.2 离散随机变量和连续随机变量的概率分布• 5.5 统计与抽样调查– 5.5.1 统计的基本概念– 5.5.2 抽样调查和统计分布以上是《高中数学必修二》的目录,该教材涵盖了二次函数、三角函数、平面向量、指数与对数函数、概率与统计等内容。

重点高中数学各章节内容

重点高中数学各章节内容

重点高中数学各章节内容————————————————————————————————作者:————————————————————————————————日期:第一章集合与函数概念1.1集合1.2函数及其表示1.3函数的基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数的应用3.1函数与方程3.2函数模型及其应用【必修二】第一章空间几何体1.1空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式第四章圆与方程4.1圆的方程4.2直线、圆的位置关系4.3空间直角坐标系第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型【必修四】第一章三角函数1.1任意角和弧度制1.2任意角的三角函数1.3三角函数的诱导公式1.4三角函数的图象和性质1.5函数的图象1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换【必修五】第一章解三角形1.1正弦定理和余弦定理1.2应用举例第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.4基本不等式选修2-1第一章常用逻辑用语1-1命题及其关系1-2充分条件与必要条件1-3简单的逻辑联结词1-4全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2-1曲线与方程2-2椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2-3双曲线探究与发现2-4抛物线探究与发现阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章空间向量与立体几何3-1空间向量及其运算阅读与思考向量概念的推广与应用3-2立体几何中的向量方法小结复习参考题选修2-2第一章导数及其应用1-1变化率与导数1-2导数的计算1-3导数在研究函数中的应用1-4生活中的优化问题举例1-5定积分的概念1-6微积分基本定理1-7定积分的简单应用小结复习参考题第二章推理与证明2-1合情推理与演绎推理2-2直接证明与间接证明2-3数学归纳法第三章数系的扩充与复数的引入3-1数系的扩充和复数的概念3-2复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1-1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1-2排列与组合探究与发现组合数的两个性质1-3二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2-1离散型随机变量及其分布列2-2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2-3离散型随机变量的均值与方差2-4正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3-1回归分析的基本思想及其初步应用3-2独立性检验的基本思想及其初步应用实习作业小结复习参考题。

人教A版高中数学教材目录(全)

人教A版高中数学教材目录(全)

必修1【1】第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步 2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用 3.4 概率的应用必修四第一章基本初等函(Ⅱ) 1.1 任意角的概念与弧度制 1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式 3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法 3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学) 2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。

高中数学必修二目录

高中数学必修二目录

高中数学必修二目录单元一:函数与方程1.1 函数的概念• 1.1.1 函数的定义• 1.1.2 函数的性质• 1.1.3 函数的图像1.2 代数函数与分段函数• 1.2.1 线性函数• 1.2.2 幂函数• 1.2.3 指数函数• 1.2.4 对数函数• 1.2.5 分段函数1.3 一次函数与二次函数• 1.3.1 一次函数及其性质• 1.3.2 二次函数及其性质• 1.3.3 一次二次函数的图像与性质比较1.4 二次函数的图像与性质• 1.4.1 完全平方公式• 1.4.2 二次函数解析式及图像• 1.4.3 二次函数的最值• 1.4.4 二次函数与其他函数的关系1.5 一次函数与二次函数的联立方程• 1.5.1 一次函数与二次函数的联立方程解法• 1.5.2 代数与几何应用题单元二:三角函数2.1 弧度制与角度制• 2.1.1 弧度制的定义• 2.1.2 角度制与弧度制的换算2.2 三角函数的概念• 2.2.1 正弦函数、余弦函数和正切函数的定义• 2.2.2 三角函数的图像• 2.2.3 相关角的概念2.3 三角函数的性质• 2.3.1 周期性和奇偶性• 2.3.2 幅角的定义• 2.3.3 三角函数的基本性质2.4 三角函数的图像与性质• 2.4.1 正弦函数与余弦函数的图像• 2.4.2 正切函数的图像• 2.4.3 三角函数的最值• 2.4.4 三角函数的周期2.5 三角函数的应用• 2.5.1 三角函数与直角三角形• 2.5.2 弧度制下三角函数的定义• 2.5.3 三角函数的应用题单元三:平面向量3.1 平面向量的概念• 3.1.1 平面向量的定义• 3.1.2 平面向量的运算法则• 3.1.3 平面向量的线性相关与线性无关3.2 平面向量的基本定理与坐标表示• 3.2.1 平行四边形定理• 3.2.2 基本定理及其推论• 3.2.3 平面向量的坐标表示与计算3.3 平面向量的数量积• 3.3.1 数量积的定义• 3.3.2 数量积的计算• 3.3.3 数量积的性质与应用3.4 平面向量的向量积• 3.4.1 向量积的定义• 3.4.2 向量积的计算• 3.4.3 向量积的性质与应用3.5 平面向量的混合积• 3.5.1 混合积的定义• 3.5.2 混合积的计算• 3.5.3 混合积的性质与应用以上是《高中数学必修二》的目录。

高中数学必修二1.1.1-2课件

高中数学必修二1.1.1-2课件

线为旋转轴,其余三边旋
转形成的面所围成的
_旋__转__体___ 叫 做 圆 柱 ,
旋___转__轴_ 叫 做 圆 柱 的 轴 ;
圆柱
_垂__直__于__轴__ 的 边 旋 转 而 成 的 _圆__面___ 叫 做 圆 柱 的 底
面;平__行__于__轴__的边旋转而
成的曲面叫做圆柱的侧
面;无论旋转到什么位置
预习测评 1.下列几何体是棱柱的有( )
A.1 个 B.2 个 C.3 个 D.4 个 【答案】D
2.以钝角三角形的较小边所在直线为轴,其他两边旋转一周 所得到的几何体是( )
A.两个圆锥拼接而成的组合体 B.一个圆台 C.一个圆锥 D.一个圆锥挖去一个同底的小圆锥
【答案】D
3.一个棱柱有 10 个顶点,所有的侧棱长的和为 60 cm,则每 条侧棱长为________ cm.
OO′
以半圆的__直__径____所在直线
为旋转轴,半圆面旋转一周形

成的旋转体叫做球体,简称 球._半__圆__的__圆__心___叫做球的球
心,_半__圆__的__半__径___叫做球的半
径,半__圆__的__直__径__叫做球的直径
球常用表示球 心的字母表示, 左图中的球表
示为球 O
4.简单组合体的结构特征
的平面去截棱锥,底面
棱 台
和截面之间的部分叫做
棱台.原棱锥的 ___底__面___ 和 __截__面____ 分
别叫做棱台的下底面和
上底面
如上、下底面分别是 四边形 A′B′C′ D′、四边形 ABCD 的四棱台,可记为棱 台
ABCD- A′B′C′D′
3.旋转体
旋转 体
结构特征

数学必修二知识点总结框架

数学必修二知识点总结框架

数学必修二知识点总结框架第一章函数与导数1.1 函数的概念与性质1.1.1 函数的定义1.1.2 函数的性质1.1.3 函数的图像与性态1.2 基本初等函数1.2.1 幂函数1.2.2 指数函数1.2.3 对数函数1.2.4 三角函数1.2.5 反三角函数1.2.6 三角函数的诱导函数1.3 函数的运算1.3.1 函数的和、差、积、商的运算1.3.2 复合函数1.3.3 反函数1.4 函数的图像与性态1.4.1 函数的单调性1.4.2 函数的奇偶性1.4.3 函数的周期性1.4.4 函数的对称性1.4.5 函数的图像与性态1.5 导数的概念1.5.1 导数的定义1.5.2 导数的几何意义1.5.3 导数的计算1.6 函数的导数1.6.1 函数的导数1.6.2 基本初等函数的导数1.6.3 函数的运算与导数的运算法则1.6.4 反函数的导数1.7 函数的单调性和曲线的凹凸性1.7.1 函数的单调性1.7.2 曲线的凹凸性1.7.3 曲线与切线1.8 函数的应用1.8.1 极值与最值1.8.2 函数的单调性与曲线的凹凸性1.8.3 函数的图像与导数1.8.4 函数的应用实例第二章三角函数2.1 角度与三角函数2.1.1 角的概念2.1.2 弧度制2.1.3 三角函数概念及其性质2.2 三角函数的图像与性态2.2.1 正弦函数、余弦函数、正切函数、余切函数的图像 2.2.2 三角函数图像的平移与变换2.2.3 三角函数性质2.3 三角函数的基本关系2.3.1 同角三角函数的基本关系 2.3.2 和差化积2.3.3 倍角公式2.3.4 万能角2.4 三角函数的应用2.4.1 角的正弦定理与余弦定理 2.4.2 应用题解析第三章数列与数学归纳法3.1 数列的概念与表示3.1.1 数列的定义3.1.2 数列的通项公式3.1.3 数列的图像3.2 等差数列3.2.1 等差数列的性质3.2.2 等差数列的通项公式3.2.3 等差数列的前n项和3.3 等比数列3.3.1 等比数列的性质3.3.2 等比数列的通项公式3.3.3 等比数列的前n项和3.4 递推数列3.4.1 递推数列的概念3.4.2 递推数列的性质3.4.3 递推数列的通项公式3.5 数学归纳法3.5.1 数学归纳法的概念3.5.2 数学归纳法的证明方法 3.5.3 数学归纳法的应用第四章平面向量4.1 向量的概念及表示4.1.1 向量的定义4.1.2 向量的性质4.1.3 向量的表示4.2 向量的运算4.2.1 向量的加减法4.2.2 向量的数量积4.2.3 向量的数量积几何意义 4.2.4 向量的数量积的性质 4.2.5 向量的数量积的运算 4.2.6 向量的线性运算4.3 平面向量的应用4.3.1 向量的基本运算4.3.2 平面向量的应用4.3.3 平面向量的坐标表示 4.3.4 平面向量的数量积应用第五章解析几何5.1 平面直角坐标系5.1.1 平面直角坐标系的概念 5.1.2 平面直角坐标系的性质5.1.3 平面直角坐标系的相关概念5.2 参数方程与一般方程5.2.1 参数方程的概念5.2.2 参数方程与一般方程的相互转化 5.2.3 参数方程的规律5.3 直线和圆的方程5.3.1 直线的一般方程5.3.2 直线的参数方程5.3.3 圆的一般方程5.3.4 圆的参数方程5.4 圆锥曲线的一般方程5.4.1 椭圆的一般方程5.4.2 双曲线的一般方程5.4.3 抛物线的一般方程5.5 空间直角坐标系5.5.1 空间直角坐标系的概念5.5.2 空间直角坐标系的性质5.5.3 空间直角坐标系的应用第六章空间解析几何初步6.1 空间直线和空间平面6.1.1 空间直线的方程6.1.2 空间平面的方程6.1.3 空间直线与空间平面的位置关系6.2 空间几何体的性质6.2.1 点、直线、平面6.2.2 圆锥曲线及其特性6.2.3 空间几何体的视图6.3 空间向量的运算6.3.1 空间向量的数量积6.3.2 空间向量的叉积6.3.3 空间向量的三线共面第七章立体几何初步7.1 空间图形的投影7.1.1 三视图与剖视图7.1.2 图形的投影7.1.3 空间图形的展开图7.2 空间图形的计算7.2.1 空间图形的体积7.2.2 空间图形的表面积7.2.3 空间图形的计算7.3 空间几何体的位置关系7.3.1 空间几何体的位置关系 7.3.2 空间几何体的三视图 7.3.3 空间几何体的投影第八章概率初步8.1 随机事件与概率8.1.1 随机事件的概念8.1.2 随机事件的性质8.1.3 概率的概念8.1.4 概率的性质8.2 条件概率8.2.1 条件概率的概念8.2.2 互斥事件与对立事件的概率计算8.2.3 定理的概率计算8.3 事件间的关系8.3.1 独立事件8.3.2 事件间的关系8.3.3 事件运算法则8.4 随机变量8.4.1 随机变量的定义8.4.2 随机变量的分布8.4.3 随机变量的分布列8.5 随机事件与概率的应用8.5.1 样本空间8.5.2 概率模型的应用8.5.3 概率的应用实例以上是数学必修二的知识点总结,希望对您复习整理有所帮助。

北师大版高中数学选择性必修第二册 第二章 1.1 平均变化率~1.2 瞬时变化率

北师大版高中数学选择性必修第二册 第二章 1.1 平均变化率~1.2 瞬时变化率
x0=2,Δx=0.1时平均变化率的值.
解 函数f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率为
2
(0 +Δ)-(0 ) [3(0 +Δ) +2]-(320 +2)
=
Δ
(0 +Δ)-0
60 ·Δ+3(Δ)2
=
=6x0+3Δx.
Δ
当x0=2,Δx=0.1时,函数y=3x2+2在区间[2,2.1]上的平均变化率为
2.瞬时速度的计算:设物体运动的时间与位移函数关系式为y=s(t),则物体
在t0时刻的瞬时速度就是当Δt趋向于0时,
s
t
=
s(t 0 +t)-s(t 0 )
t
的极限值.
3.瞬时变化率:对于一般的函数y=f(x),在自变量x从x0变到x1的过程中,若设
Δx=x1-x0,Δy=f(x1)-f(x0),则该函数的平均变化率为

.
答案 2
解析
(3+2×2.1)-(3+2×2)
平均速度=
=2.
2.1-2
(3)函数f(x)=8x-6在[m,n]上的平均变化率为
答案 8
解析
f(n)-f(m)
n-m
=
(8n-6)-(8m -6)
=8.故答案率
1.瞬时速度:物体在某一时刻的速度称为瞬时速度.
变式训练 1 一质点按函数
为(
1
s(t)= 做直线运动,则其从 t1=1 到 t2=2
)
1
B.-2
A.-1
答案 B
解析 =
(2)-(1)
2-1
=

高一数学必修1-2知识点总结

高一数学必修1-2知识点总结

高中数学必修1知识点总结 第一章 集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). (6)空集的特性①空集是不含任何元素的集合.②空集是任何集合的子集,是任何非空集合的真子集.③空集单独使用时当集合的,但是放在集合里面又可以当元素使用,如{Φ}【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集B{x A A = ∅=∅ B A ⊆ B B ⊆ B{x A A = A ∅= B A ⊇ B B ⊇Φ=A C U UA C U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法0)【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f 叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a xa xb x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a yc y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.o⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系. 列表法:就是列出表格来表示两个变量之间的对应关系. 图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f)叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法增;若y f =则[()]y f g x =为减.(2)函数()(0)af x x a x=+>的图象与性质()f x分别在(,-∞、)+∞上为增函数,分别在[0)、上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作m x f =)(min .【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.若0)0(≠f ,则0=x 必不在)(x f 的定义域上③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.高中数学必修1知识点总结第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n示;当n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n a =;当n 为偶数时, (0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()n aa n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a anM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()xy ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对. (0,)+∞上为减函p,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则qpy x=是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x=上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --.②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b qa->,则()m f q =xxx①若02b x a -≤,则()M f q = ②02b x a->,则()M f p = (Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()mf q = ②02b x a->,则()m f p =.高中数学必修1知识点总结第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

人教A版高中数学教材目录(全)

人教A版高中数学教材目录(全)

人教A版高中数学目录必修1第一章集合与函数概念1 .1 集合2 .3 变量间的相关关系阅读与思考相关关系的强与弱2.5等比数列的前n项和1 .2 函数及其表示1 .3 函数的基本性质第三章概率3 .1 随机事件的概率第三章不等式第二章基本初等函数(Ⅰ)2.1 指数函数2 .2 对数函数2 .3 幂函数阅读与思考天气变化的认识过程3 .2 古典概型3 .3 几何概型3.1不等关系与不等式3.2一元二次不等式及其解法第三章函数的应用3.1 函数与方程3 .2 函数模型及其应用必修 4第一章三角函数1 .1 任意角和弧度制1 2 .任意角的三角函数3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域1 .3 三角函数的诱导公式必修21 .4 三角函数的图象与性质1 .5 函数 y=Asin (ωx+ψ) 3.3.2 简单的线性规划问题第一章空间几何体1 .6 三角函数模型的简单应1 .1 空间几何体的结构用1 .2 空间几何体的三视图和 3.4 基本不等式直观图1 .3 空间几何体的表面积与第二章平面向量体积 2 .1 平面向量的实际背景及第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2 .2 直线、平面平行的判定基本概念2 .2 平面向量的线性运算2 .3 平面向量的基本定理及坐标表示2 4 .平面向量的数量积2 5 .平面向量应用举例选修1-1第一章常用逻辑用语1.1命题及其关系及其性质2 .3 直线、平面垂直的判定及其性质第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式1.2充分条件与必要条件3 .2 简单的三角恒等变换第三章直线与方程1.3简单的逻辑联结词3.1 直线的倾斜角与斜率3 .2 直线的方程必修 51.4全称量词与存在量词 3 .3 直线的交点坐标与距离公式第一章解三角形必修31.1正弦定理和余弦定理第二章圆锥曲线与第一章算法初步1 .1 算法与程序框图 1.2应用举例方程1 .2 基本算法语句1 .3 算法案例阅读与思考割圆术1.3实习作业2.1椭圆2.2双曲线第二章统计2 .1 随机抽样阅读与思考一个著名的案第二章数列2.3抛物线例阅读与思考广告中数据的可靠性2.1数列的概念与简单表示法用第三章导数及其应阅读与思考如何得到敏感性问题的诚实反应2.2等差数列2 .2 用样本估计总体阅读与思考生产过程中的2.3等差数列的前n 项和质量控制图2.4等比数列3.1变化率与导数3.2导数的计算1人教A版高中数学目录选修 2-12.6导数在研究函数中 1.3 导数在研究函数的应用中的应用第一章常用逻辑用2.7生活中的优化问题 1.4 生活中的优化问语举例题举例3.4命题及其关系3.3.2定积分的概念1.5充分条件与必要选修1-21.4微积分基本定理条件第一章统计案例 1.7 定积分的简单应1.3 简单的逻辑联结用词1.1 回归分析的基本思想及其初步应用2.4全称量词与存在量词第二章推理与证明 1.2 独立性检验的基本思想及其初步应用2.5合情推理与演绎推理第二章圆锥曲线与方程第二章推理与证明 2.2 直接证明与间接证明 2.1 曲线与方程2.1 合情推理与演绎证明 2.3 数学归纳法2.2 椭圆2.2 直接证明与间接2.3 双曲线证明3.3抛物线第三章数系的扩充与复数的引入第三章数系的扩充 3.1 数系的扩充和复与复数的引入数的概念第三章空间向量与立体几何3.1 数系的扩充和复数 3.2 复数代数形式的的概念四则运算3.1空间向量及其运算3.2 复数代数形式的四则运算3.2立体几何中的向选修2-3 量方法第一章计数原理第四章框图选修 2-21.1分类加法计数原4.1 流程图理与分步乘法计数原理第一章导数及其应4.2 结构图1.2 排列与组合用1.3二项式定理 1.1 变化率与导数1.2导数的计算2人教A版高中数学目录第二章随机变量及第二讲直线与圆的其分布位置关系选修 3-22.8离散型随机变量第三讲圆锥曲线性及其分布列质的探讨选修 3-3 2.2 二项分布及其应用选修4-2 第一讲从欧氏几何3.5离散型随机变量看球面的均值与方差第一讲线性变换与二阶矩阵第二讲球面上的距3.6正态分布离和角第二讲变换的复合第三章统计案例与二阶矩阵的乘法第三讲球面上的基本图形3.3.3回归分析的基本第三讲逆变换与逆思想及其初步应用矩阵第四讲球面三角形3.3.4独立性检验的基第五讲球面三角形第四讲变换的不变本思想及其初步应用量与矩阵的特征向量的全等第六讲球面多边形与欧拉公式选修3-1 选修4-3第七讲球面三角形的第一讲早期的算术边角关系选修4-4 与几何第八讲欧氏几何与第一讲坐标系第二讲古希腊数学非欧几何第二讲参数方程第三讲中国古代数学瑰宝选修 3-4第四讲平面解析几选修4-5 何的产生第一讲平面图形的对称群第一讲不等式和绝第五讲微积分的诞对值不等式生第二讲代数学中的对称与抽象群的概念第二讲证明不等式第六讲近代数学两的基本方法巨星第三讲对称与群的故事第三讲柯西不等式第七讲千古谜题与排序不等式第八讲对无穷的深第四讲数学归纳法入思考选修 4-1证明不等式第九讲中国现代数第一讲相似三角形学的开拓与发展的判定及有关性质3人教 A 版高中数学目录2 .4 向量的应用 选修 4-6第二章 函数 2 .1 函数第一讲 整数的整除2 .2 一次函数和二次函数 2 .3 函数的应用(Ⅰ) 第三章 三角恒等变换3.1 和角公式2 .4 函数与方程3 .2 倍角公式和半角公式 第二讲 同余与同余 3 .3 三角函数的积化和差与方程和差化积 第三章 基本初等函数 (Ⅰ) 3 .1 指数与指数函数 程第三讲 一次不定方3 .2 对数与对数函数 3 .3 幂函数 3 .4 函数的应用(Ⅱ) 必修五 第一章 解直角三角形 1.1 正弦定理和余弦定理第四讲 数伦在密码中的应用必修二第一章 立体几何初步1 .2 应用举例 第二章 数列1.1 空间几何体 2 .1 数列 1 .2 点、线、面之间的位置 2 .2 等差数列 关系 2 .3 等比数列 选修 4-7第三章 不等式 第二章 平面解析几何初步第一讲 优选法 2 .1 平面真角坐标系中的基 本公式3 .1 不等关系与不等式 3 .2 均值不等式第二讲试验设计初2 .2 直线方程 2 .3 圆的方程3 .3 一元二次不等式及其解 法 步3 .4 不等式的实际应用 2 .4 空间直角坐标系3 .5 二元一次不等式(组) 与简单线性规划问题必修三选修 4-8选修 4-9第一章 算法初步1.1 算法与程序框图1 .2 基本算法语句1 .3 中国古代数学中的算法 案例选修 1-1 第一章 常用逻辑用语 1.1 命题与量词 1 .2 基本逻辑联结词1 .3 充分条件、必要条件与命题的四种形式第一讲 风险与决策的基本概念第二章 统计 2.1 随机抽样2 .2 用样本估计总体2 .3 变量的相关性第二章 圆锥曲线与方程2.1 椭圆2 .2 双曲线2 .3 抛物线第二讲 决策树方法第三章 概率 3 1 . 随机现象第三讲 风险型决策3 2第三章 导数及其应用3 .1 导数3 .2 导数的运算 3 .3 导数的应用WORD格式.古典概型的敏感性分析33.随机数的含义与应用34.概率的应用第四讲马尔可夫型决策简介必修四选修 1-2第一章统计案例第二章推理与证明第一章基本初等函( Ⅱ)高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1 .2 集合之间的关系与运算1 .1 任意角的概念与弧度制1 .2 任意角的三角函数1 .3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2 .3 平面向量的数量积第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1 2 .基本不等式4WORD格式人教A版高中数学目录1 .3 绝对值不等式的解法1 .4 绝对值的三角不等式1 .5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2 .2 排序不等式2 .3 平均值不等式( 选学)2 .4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3 .2 用数学归纳法证明不等式,贝努利不等式5。

高中数学必修二目录

高中数学必修二目录

高中数学必修二目录高中数学必修二的目录如下:
第一章:不等式
1.1 一次不等式
知识点1:一次不等式的解集
知识点2:一次不等式的性质
知识点3:一次不等式的应用
1.2 二次不等式
知识点1:二次不等式的解集
知识点2:二次不等式的性质
知识点3:二次不等式的应用
第二章:函数概念与初等函数
2.1 函数的概念
知识点1:函数的定义和性质
知识点2:函数的表示方法
2.2 幂函数
知识点1:幂函数的概念与性质
知识点2:常用幂函数的图像与性质
2.3 指数函数
知识点1:指数函数的概念与性质
知识点2:常用指数函数的图像与性质
2.4 对数函数
知识点1:对数函数的概念与性质
知识点2:常用对数函数的图像与性质第三章:三角函数
3.1 弧度制与角度制
知识点1:弧度制与角度制的换算
知识点2:弧度的性质与应用
3.2 正弦函数与余弦函数
知识点1:正弦函数与余弦函数的定义
知识点2:正弦函数与余弦函数的性质与图像
3.3 正切函数与余切函数
知识点1:正切函数与余切函数的定义
知识点2:正切函数与余切函数的性质与图像第四章:平面向量
4.1 平面向量的表示与运算
知识点1:平面向量的定义与表示方法
知识点2:平面向量的运算法则
4.2 平面向量的数量积
知识点1:平面向量的数量积的定义与性质知识点2:平面向量的数量积的应用
4.3 平面向量的叉积
知识点1:平面向量的叉积的定义与性质
知识点2:平面向量的叉积的应用
以上是高中数学必修二的目录,涵盖了不等式、函数概念与初等函数、三角函数以及平面向量等内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时圆柱、圆锥、圆台、球的结构特征
一、综合体
1.圆锥的母线有( )
A.1条
B.2条
C.3条
D.无数条
答案:D
2.圆柱的母线长为10,则其高等于( )
A.5
B.10
C.20
D.不确定
解析:圆柱的母线长与高相等,则其高等于10.
答案:B
3.圆台的母线( )
A.平行
B.相等
C.与高相等
D.与底面平行
解析:圆台的母线延长线交于一点,则A项不正确;圆台的母线大于高,则C项不正确;圆台的母线与底面相交,则D项不正确;很明显B项正确.
答案:B
4.下列命题中真命题的个数是( )
①圆锥的轴截面是所有过顶点的截面中面积最大的一个;②圆柱的所有平行于底面的截面都是
圆面;③圆台的两个底面可以不平行.
A.0
B.1
C.2
D.3
解析:①中,过顶点的截面是等腰三角形,两腰均为圆锥母线,当且仅当两腰垂直即两条母线垂直时,截面面积最大,所以①不正确;很明显②正确,③不正确.
答案:B
5.用一个平面去截一个几何体,得到的截面是圆面,这个几何体不可能是( )
A.圆锥
B.圆柱
C.球
D.棱柱
解析:棱柱的任何截面都不可能是圆面.
答案:D
6.在圆柱、圆锥、圆台、球中,没有底面的几何体是.
答案:球
7.有下列说法:
①球的半径是球面上任意一点与球心的连线;
②球的直径是球面上任意两点间的连线.
其中正确说法的序号是.
解析:利用球的结构特征判断:①正确;②不正确,因为直径必过球心.
答案:①
1
8.在Rt△ABC中,AB=3,BC=4,∠ABC=90°,△ABC绕直线AB旋转一周所得几何体是,母线长l=.
解析:所得几何体是圆锥,母线长l=AC= AB2+B C2=32+42=5.
答案:圆锥 5
9.说出下列7种几何体的名称.
解:(1)是圆柱,(2)是圆锥,(3)是球,(4)(5)是棱柱,(6)是圆台,(7)是棱锥.
10.已知圆锥SO的底面半径为2,求过圆锥的高SO的中点且垂直于轴SO的截面面积.
解:如图所示,过圆锥的轴作截面,其中O'是SO的中点,则O'D∥OA,OA=2.
∴O'D是△SOA的中位线,
∴O'D=1OA=1.
则所求截面圆的面积为π×12=π.
2。

相关文档
最新文档