中考数学常用的经典解题方法

合集下载

中考数学常用的解题方法

中考数学常用的解题方法

中考数学常用的解题方法1.倍数关系法:当题目中给出两个数之间的倍数关系时,可以利用倍数关系来求解问题。

例如,如果题目告诉你物品的单价是10元,那么100元就是它的10倍。

2.比例关系法:当题目中给出两个数之间的比例关系时,可以利用比例关系来解题。

例如,如果题目告诉你物品的价格和数量之间有一个比值是3:5,那么你可以通过建立一个比例方程来求解。

3.分析法:考虑问题的不同方面,分析每个方面的条件和限制,然后将它们综合起来求解问题。

例如,在一个题目中,可能给出了关于物体的重量、长度和宽度的信息,你可以分析出这些信息对于求解问题很重要,并综合运用它们来得到结论。

4.逻辑推理法:通过逻辑推理来解题。

例如,在一个题目中,可能给出了几个条件,你可以使用逻辑推理来得到题目要求的答案。

5.等式转化法:将一个等式转化为另一个等式,通过变形等式来解题。

例如,对于一个已知的等式,你可以通过移项、合并同类项等操作来得到题目所需的答案。

6.矩阵法:将题目中给出的信息用矩阵的形式表示,并通过矩阵运算来求解问题。

例如,在一个求解线性方程组的问题中,你可以将线性方程组用矩阵表示,并应用矩阵的求解方法来求解。

7.等式对称法:通过等式的对称性来解题。

例如,在一个等式题目中,如果你发现等号两边是对称的,可以利用对称性推导等式的解。

8.化简法:对于一个复杂的问题,可以通过化简步骤来使问题变得简单,然后再进行求解。

例如,对于一个复杂的代数方程,你可以通过合并同类项、移项等化简步骤来简化问题,然后再通过其他方法求解。

9.图形法:将问题的条件和要求用简单明了的图形表示出来,并通过观察图形来求解问题。

例如,在一个几何问题中,你可以通过绘制图形并观察图形的性质来得到问题的解。

10.暴力法:当其他方法难以求解问题时,可以通过暴力来尝试所有可能的解,然后找到符合条件的解。

例如,在一些组合问题中,你可以通过穷举法来尝试所有可能的组合,然后找到符合条件的解。

中考数学的各种题型做题方法

中考数学的各种题型做题方法

中考数学的各种题型做题方法中考数学的各种题型做题方法1选择题解法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。

方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

用特殊值法解题要注意所选取的值要符合条件,且易于计算。

方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。

我们在做解答题时大部分都是采用这种方法。

例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。

方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。

方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。

方法八:枚举法列举所有可能的情况,然后作出正确的判断。

例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。

方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。

数学中考答题技巧(集锦13篇)

数学中考答题技巧(集锦13篇)

数学中考答题技巧(集锦13篇)数学中考答题技巧第1篇1、迅速摸清“题情”。

刚拿到试卷的时候心情一定会比较紧张,在这种紧张的状态下不要匆匆作答。

首先要从头到尾、正面反面浏览全卷,尽可能从卷面上获取最多的信息。

摸清“题情”的原则是:轻松解答那些一眼就可以看出结论来的简单选择题或者填空题;对不能立即作答的题目可以从心里分为比较熟悉和比较陌生两大类。

对这些信息的掌握,可以确保不出现“前面难题做不出,后面易题没时间做”的尴尬局面。

2、答卷顺序“三先三后”。

在浏览了试卷并做了简单题的第一遍解答之后,我们的情绪就应该稳定了很多,现在对自己也会信心十足。

我们要明白一点,对于数学学科而言,能够拿到绝大部分分数就已经实属不易,所以要允许自己丢掉一些分数。

在做题的时候我们要遵循“三先三后”的原则。

首先是“先易后难”。

这点很容易理解,就是我们要先做简单题,然后再做复杂题。

当全部题目做完之后,如果还有时间,就再回来研究那些难题。

当然,在这里也不是说在做题的时候,稍微遇到一点难题就跳过去,这样自己给自己遗留下的问题就太多了。

也就违背了我们的原意。

其次是“先高后低”。

这里主要是指的倘若在时间不够用的情况下,我们应该遵守先做分数高的题目再做分数低的题目的顺序。

这样能够拿到更多的总得分。

并且,高分题目一般是分段得分,第一个或者第二个问题一般来说不会特别难,所以要尽可能地把这两问做出来,从总体上说,这样就会比拿出相应时间来做一道分数低的题目“合算”。

最后是“先同后异”。

这里说的“先同后异”其实指的是,在大顺序不变的情况下,可以把难题按照题目的大类进行区分,将同类型的题目放在一起考虑,因为这些题目所用到的知识点比较集中,在思考的时候就容易提高单位时间效益。

3、做题原则“一快一慢”。

这里所谓的“一快一慢”指的是审题要慢,做题要快。

题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。

中考数学常考题型解题方法总结(超详细)

中考数学常考题型解题方法总结(超详细)

中考常考题型解题方法一、科学计数法亿位后面有8位数,万位后面有4位数,先判断亿位和万位,再判断次数。

比如:1、110亿的亿位是“0”,所以“0”后面有8位,8+2=10,所以10110 1.110=⨯亿;2、1234.56亿的亿位是“4”,所以“4”后面有8位,8+3=11,所以111234.56 1.2345610=⨯亿;3、51.2万的万位是“1”,所以“1”后面有4位,4+1=5,所以551.2 5.1210=⨯万;二、无理数判断无理数是指无限不循环小数,有以下几种:1.π2.不能完全开方的数(例如等)3.直接看出无限不循环的数,例如“1.2345678..........”4.Sin45°、Sin60°、cos45°、cos30°、tan60°、tan30°三、中心对称、轴对称注意审题,题目有可能是:1、“以下既是中心对称又是轴对称的图形”2、“以下是中心对称但不是轴对称的图形”3、“以下不是中心对称但是轴对称的图形”4、“以下既不是中心对称也不是轴对称的图形”判断中心对称的方法,看每个点与中心的延长线有无经过对应的点不是中心对称是中心对称四、求多边形边数1.已知多边形内角和,求多边形边数?用内角和公式“(n-2)x180°=内角和”求n,n是指边数;2.已知正多边形(每个内角都相等)的一个内角度数,求多边形边数?先用180°-一个内角度数=一个外角度数,再用外角和360°÷一个外角度数=外角个数(边数);3.已知正多边形(每个内角都相等)的一个外角度数,求多边形边数?用外角和360°÷一个外角度数=外角个数(边数);例如:若一个多边形的每一个外角都等于,那么它是()A.四边形B.五边形C.六边形D.八边形360°÷=6*注意:填空题填“边形”时,要填中文“四、五、六、七等”,问边数时可以填数字“4、5、6等”,比如“边数为”五、二次函数多结论1.判断a、b、c 大小a:看抛物线开口方向,开口向上(a>0),开口向下(a<0);b:看对称轴在y 轴左边还是右边,结合a 一起判断,对称轴在y 轴左边时,a和b 同号,对称轴在y 轴右边时,a 和b 异号(“左同右异”);“左同右异”的原理是对称轴公式“2a b x =-”,当对称轴在左边时2ab x =-是负数,则a 和b 同号,当对称轴在右边时2a b x =-是正数,则a 和b 异号;c:看抛物线与y 轴的交点,因为抛物线2y ax bx c =++与y 轴相交时,交点坐标为(0,c),所以交于y 轴正半轴时c 为正,交于y 轴负半轴时c 为负;2.已知抛物线与x 轴的一个交点(1,0x )和对称轴,求另一个交点(2,0x )?用中点公式“122x x +=对称轴”求另一个交点坐标;例:已知抛物线与x 轴的一个交点(-1,0)和对称轴x=1,求抛物线与x 轴的另一个交点,21=12x -+ ,解得2x =3,则与x 轴的另一个交点为(3,0)*注:只要12x x 、是两个关于对称轴对称的点,就可以用中点公式,比如:A(3,4)和B(7,4)在抛物线上,求对称轴,因为纵坐标相等,所以A 和B 一定关于对称轴对称,对称轴37==52+3.判断“a+b+c>0”、“4a-2b+c>0”是否正确?①该题型先观察解析式2y ax bx c =++与“a+b+c”、“4a-2b+c”的联系,可以看出当x=1时,ya b c =++,当x=-2时,y 42a b c =-+;②再看图像x=1、x=-2时所对应的y 的大小(从图像判断x 所对应的y 是关键)由上图可看出当x=1时,y<0,所以y=a+b+c<0当x=-2时,y>0,所以y=4a-2b+c>04.判断“0a c -+>”、“-4b+c>0”是否正确。

中考数学常考题型与解题技巧

中考数学常考题型与解题技巧

中考数学常考题型与解题技巧数学作为中考必考科目之一,占据了学生综合素质评价的重要位置。

掌握中考数学常考题型以及相应的解题技巧,对于学生的考试成绩至关重要。

本文将介绍中考数学常考题型及解题技巧,并为学生提供一些实用的学习方法。

一、选择题选择题是中考数学考试的常见题型,也是学生们备考中的重点之一。

在解答选择题时,学生需要注意以下几个技巧:1. 仔细阅读题目:选择题往往在问题描述中隐藏了一些关键信息,学生需要仔细阅读题目,理解问题的要求。

2. 排除法:当遇到选择题时,如果不确定答案,可以先排除一些明显错误的选项,然后再从剩下的选项中选择正确答案。

3. 插入法:有些选择题可以使用插入法来解答,即将选项依次代入问题,直到找到满足条件的选项。

二、填空题填空题在中考数学中也是常见的一种题型。

解答填空题的技巧如下:1. 代入法:对于一些简单的填空题,可以通过将选项代入等式或不等式中,验证是否符合题目要求。

2. 观察法:填空题有时会给出一些特殊条件,学生可以通过观察这些条件以及题目的整体结构,找到填空的规律。

三、解答题解答题在中考数学中占据很大的比重,解答题要求学生具备一定的思维能力和解题技巧。

1. 分析题目:在解答题目之前,学生需要仔细阅读并理解题目,分析问题所给条件和要求,明确解题思路。

2. 列式解法:对于一些需要运用多个步骤解题的问题,学生可以运用列式解法,将问题按步骤进行拆解和计算。

3. 逆向思维:有些解答题可以通过逆向思考来解答,即从结果出发,反推过程。

这种思维方式可以帮助学生更好地理解问题,找到问题的本质,提高解题效率。

四、实用学习方法为了提高中考数学的成绩,除了掌握常考题型和解题技巧外,学生还可以尝试以下学习方法:1. 阅读理解题:数学中的阅读理解题常常需要将文字描述转化为数学表达式,学生可以通过多读题目,理解问题中的数学意义,提高解题能力。

2. 刷题并总结:学生可以通过刷题的方式,熟悉各种题型,并总结题目中常见的解题思路和方法,形成自己的解题经验。

中考数学常见解题技巧方法总结七篇

中考数学常见解题技巧方法总结七篇

中考数学常见解题技巧方法总结篇1中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气、军心的影响。

1、线段、角的计算与证明2、一元二次方程与函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。

3、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。

这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。

所以在中考中面对这类问题,一定要做到避免失分。

4、列方程(组)解应用题在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。

方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。

从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。

实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。

5、动态几何与函数问题整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。

而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。

中考数学做题技巧及方法3篇

中考数学做题技巧及方法3篇

中考数学做题技巧及方法3篇有些同学天天趴在那里做题,但解出的题量多,花的时间却很多。

这到底是什么原因呢?其中的原因之一,就是解题速度太慢。

下面是小编给大家带来的中考数学做题技巧及方法,欢迎大家阅读参考,我们一起来看看吧!中考数学备考:中考数学做题技巧及方法中考数学做题技巧一、熟悉习题中所涉及的内容,包括定义、公式、定理和规则。

解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。

解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。

解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。

因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。

二、熟悉习题中所涉及到的以前学过的知识,以及与其他学科相关的知识。

有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低。

这时,我们应先补充一些必须补充的相关知识,弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。

三、熟悉基本的解题步骤和解题方法。

解题的过程,是一个思维的过程。

对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。

否则,走了弯路就多花了时间。

四、认真做好归纳总结。

在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。

五、先易后难,逐步增加习题的难度。

九年级数学上多种解题技巧

九年级数学上多种解题技巧

九年级数学上多种解题技巧九年级数学上涉及多种解题技巧,以下列举几种常用的方法:1.观察猜想法:在探索规律性的问题时,常用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

这种方法主要适用于从题目所给的特殊值或图形中找出规律,从而解决问题。

2.数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义。

这种方法使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

3.特殊值法:有些选择题所涉及的数学命题与字母的取值范围有关,在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。

这种方法通常称为特殊值法。

4.直接求解法:有些选择题本身就是由一些填空题、判断题解答题改编而来的,因此往往可采用直接法直接由从题目的条件出发通过正确的运算或推理直接求得结论再与选择项对照来确定选择项。

这种方法通常适用于计算或推导的过程中。

5.逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。

这种方法也称为逐步淘汰法。

6.代入验证法:与直接法的思考方向相反,它将选择支中给出的答案逐一代入已知条件中进行验证,与已知相矛盾的为错误选项,符合条件的为正确选项。

这种方法通常称为代入验证法。

7.枚举法:列举所有可能的情况,然后作出正确的判断。

这种方法通常用于解决一些涉及多种可能性的问题。

以上方法并非孤立的,解题时常常需要综合运用几种方法。

在解题过程中,要灵活运用各种方法,不断尝试、不断总结经验,提高解题效率。

中考数学解题方法及技巧最新5篇

中考数学解题方法及技巧最新5篇

中考数学解题方法及技巧最新5篇中考数学常见解题技巧方法总结篇一1.如果把解题比做打仗,那么解题者的“兵器”就是数学基础知识,“兵力”就是数学基本方法,而调动数学基础知识、运用数学思想方法的数学解题思想则正是“兵法”。

2.数学家存在的主要理由就是解决问题。

因此,数学的真正的组成部分是问题和解答。

“问题是数学的心脏”。

3.问题反映了现有水平与客观需要的矛盾,对学生来说,就是已知和未知的矛盾。

问题就是矛盾。

对于学生而言,问题有三个特征:(1)接受性:学生愿意解决并且具有解决它的知识基础和能力基础。

(2)障碍性:学生不能直接看出它的解法和答案,而必须经过思考才能解决。

(3)探究性:学生不能按照现成的的套路去解,需要进行探索,寻找新的处理方法。

4.练习型的问题具有教学性,它的结论为数学家或教师所已知,其之成为问题仅相对于教学或学生而言,包括一个待计算的答案、一个待证明的结论、一个待作出的图形、一个待判断的命题、一个待解决的实际问题。

5.“问题解决”有不同的解释,比较典型的观点可归纳为4种:(1)问题解决是心理活动。

面临新情境、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理办法的一种活动。

(2)问题解决是一个探究过程。

把“问题解决”定义为“将先前已获得的知识用于新的、不熟悉的情境的过程”。

这就是说,问题解决是一个发现的过程、探索的过程、创新的过程。

(3)问题解决是一个学习目的。

“学习数学的主要目的在于问题解决”。

因而,学习怎样解决问题就成为学习数学的根本原因。

此时,问题解决就独立于特殊的问题,独立于一般过程或方法,也独立于数学的具体内容。

(4)问题解决是一种生存能力。

重视问题解决能力的培养、发展问题解决的能力,其目的之一是,在这个充满疑问、有时连问题和答案都是不确定的世界里,学习生存的本领。

6.解题研究存在一些误区,首先一个表现是,用现成的例子说明现成的观点,或用现成的观点解释现成的例子。

初三数学解题思路方法技巧

初三数学解题思路方法技巧

初三数学解题思路方法技巧
初三数学是中学数学教育中一个重要的阶段,学生需要掌握更深入的数学知识,也需要解决更复杂的数学问题。

在这个阶段,学生需要学习一些解题的思路方法和技巧,以便提高解题效率和准确性。

一、问题分析
在解决数学问题时,首先要对问题进行分析,弄清楚问题的难点和需要解决的问题。

这需要学生具备良好的数学思维和分析能力。

学生可以通过以下步骤进行问题分析:
1. 仔细阅读题目,理解题意。

2. 分析问题,确定需求,明确目标。

3. 画图或列式子,寻找解题方案。

二、问题解决
一旦问题分析完成,学生需要开始解决问题。

这需要学生掌握一些问题解决的技巧和方法。

以下是一些可能有用的技巧和方法:
1. 巧用等式
学生可以通过巧妙运用等式解决一些数学问题,比如通过乘法分配律将式子拆分为更容易计算的部分,或者通过正负相消来简化式子。

2. 充分利用条件
在解决数学问题时,往往会提供一些条件。

学生可以充分利用这些条件来解决问题,比如通过等式和比例关系求出未知量,或者利用图形的几何关系解决几何问题。

3. 针对性查找资料
当遇到一些不熟悉或难以解决的问题时,学生可以查找相应的数学资料或者教材,找到相应的解决方法和技巧。

三、总结归纳
在解决数学问题时,学生需要总结归纳,把已经解决的问题记录下来,以便在以后的学习中更快地解决类似的问题。

这需要学生具备良好的记忆和总结能力。

以上是初三数学解题思路方法技巧的一些基本内容。

通过分析问题,解决问题,总结归纳,学生可以提高解题效率和准确性,进而提高数学成绩。

关于中考数学答题技巧及方法归纳

关于中考数学答题技巧及方法归纳

关于中考数学答题技巧及方法归纳中考数学答题技巧一、基础题熟练掌握相关的数学概念、法则、性质是能够完整解题的前提。

解题过程,可先将题目中重要的已知条件标注出,达到节约读题时间,有效防止做题粗心大意,忘记考虑一些条件的目的。

1、选择、填空题:应做到对概念明了、思路清晰、计算准确,力求有100%的正确率,不在简单题目上失分。

解答选择题时主要采用直接推演法、排除法、图解法、特殊值法等。

解答填空题时要填最简的最终答案、多个正确选项做到不要漏选。

要保持大脑清醒,第一遍答题就要保证正确率,防止简单题做错了难于纠正。

2、计算题:主要是绝对值、零指数幂、负整数指数幂、三角函数、二次根式的综合,解答时要注意算理和运算顺序,逐一计算或化简,结果应为最简。

化简求值时必须要注意运算顺序及相关法则,在化成最简结果后,才代入计算。

3、证明题:要求做到每一步都有理有据,答题完整,简单的题目不容失分。

4、统计与概率:能从三种统计图(条形统计图、扇形统计图和折线统计图)及统计表中获取有用的信息,根据要求解答问题。

①根据条形统计图的矩形高度可得各部分数目,进行大小比较,便能计算各部分的比例;②根据扇形统计图的百分数值,可计算各部分的数目;③根据折线统计图可得各部分的数目和它们的变化情况及趋势规律;④对某些特征数要能理解、进行基本的计算和运用:能反映一组数据平均水平的平均数会受某些偏大或偏小数据的影响,应当小心使用;中位数也反映一组数据的平均水平(大多数水平),可以平衡平均数的不足之处;众数目的是提供一些问题的处理方式;通过方差、标准差的大小可以比较数据之间的稳定程度;⑤计算概率的基础是掌握绘制树状图或进行列表,值得注意的是所取出的样品是否有放回。

二、综合题解答综合题时候,经常一个问题需要运用到几个知识点,应当注意大条件跟子条件之间的本质区别,大条件是全解题过程适用,而子条件是有分不同题目的,至于何时不能再适用,应进行考量。

解答时必须计算准备,才不至于影响下一步的解答。

中考 数学解题小妙招

中考 数学解题小妙招

中考数学解题小妙招数学解题是中考数学考试的重点和难点之一,以下是一些解题小妙招,可以帮助学生更好地应对中考数学解题:1.仔细阅读题目:在解题之前,先仔细阅读题目,理解题目所给的信息和要求。

标注关键词、画图或写下关键数据,以便更好地理清思路。

2.确定解题方法:根据题目的性质和要求,选择合适的解题方法。

常见的解题方法包括列方程、设未知数、利用等式性质、几何图形分析等。

3.制定解题计划:在解题之前,制定一个解题计划,将解题过程分解为几个步骤,有条不紊地进行解题。

这样可以避免遗漏或混乱的情况发生。

4.注意单位换算:在涉及到单位换算的题目中,要注意将所有数据换算成同一单位进行比较或计算。

例如,长度单位的换算、时间单位的换算等。

5.掌握常用公式和定理:熟练掌握中考范围内的常用公式和定理,可以帮助快速解题。

例如,勾股定理、平行线性质、圆的面积公式等。

6.利用逻辑推理:在一些复杂的问题中,可以利用逻辑推理的方法解题。

通过分析题目的条件和要求,运用逻辑思维找出解题的关键。

7.反复检查答案:在完成解题之后,要反复检查答案是否符合题目的要求,并且逐步回顾解题过程,确保每一步的操作都是正确的。

8.多做题、多总结:数学解题需要积累经验,所以要多做题目,尤其是历年中考真题和模拟试题。

同时,在解题过程中要注意总结解题技巧和方法,形成自己的解题思路。

9.勤于思考、不放弃:遇到困难题目时,不要轻易放弃,要坚持思考,尝试不同的解题思路和方法。

相信自己的能力,相信自己可以解决问题。

10.练习时间管理:中考数学考试时间紧张,要学会合理安排时间,根据题目的难易程度和分值分配时间。

做好时间规划,控制好解题速度,防止因时间不足而影响整体发挥。

以上是一些中考数学解题的小妙招,希望能够帮助学生在中考数学考试中取得好成绩。

最重要的是,要保持积极的学习态度,勤于练习和思考,相信自己的能力,才能在考试中发挥出最佳水平。

中考数学核心26题答题技巧

中考数学核心26题答题技巧

中考数学核心26题答题技巧1.有理数的加法运算同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。

2.合并同类项合并同类项,法则不能忘,只求系数和,字母、指数不变样。

3.去、添括号法则去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

4.一元一次方程已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

5.平方差公式平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

6.完全平方公式完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

7.因式分解一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

8.单项式运算加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

9.一元一次不等式解题的一般步骤去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

10.一元一次不等式组的解集大大取较大,小小取较小,小大、大小取中间,大小、小大无处找。

一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

11.分式混合运算法则分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

12.分式方程的解法步骤同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍,别含糊。

13.最简根式的条件最简根式三条件,号内不把分母含,幂指数(根指数)要互质、幂指比根指小一点。

初三数学解题思路方法技巧

初三数学解题思路方法技巧

初三数学解题思路方法技巧首要就是认真,数学并不难,关键是要找到方法!还有,要学好数学,最为关键的就是要将数学中的公式、定理、定义等之间的关系理清楚,对于数学中的所有的公式、定理、定义都不能靠背,首先你要理解它们,将每个公式、定理、定义的关系推导清楚。

初三数学常用解题方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

初三数学考试技巧1.规划好答题时间在考试的时候要分配好不同题型的答题时间,对于比较难的题目可以分配更多的时间,但是也不能完全把时间花在思考难题上,要在确保简单的题都能够做正确的情况下才去把时间用在难题上。

2.先易后难进行答题先解容易的题再做难题是任何考试都可以采取的方法之一,对于初三数学考试更是如此。

对于暂时不会的题目要迅速跳过,可以先把简单的题做完之后,再回过头来解答这些难题。

不能将时间耽误在很难的题目上,尤其是最开始答题的时候,遇到难题要及时跳过。

3.认真仔细审题在考试的时候最容易出现的问题不是不知道怎么答题,而是没有看清楚题目就开始答题,这是考试丢分的主要原因。

中考数学八大常见解题方法

中考数学八大常见解题方法

中考数学八大常见解题方法常见解题方法一:因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

常见解题方法二:换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

常见解题三:方法判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

常见解题方法四:待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

常见解题方法五:构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

中考数学解题技巧:十大方法

中考数学解题技巧:十大方法

2019年中考数学解题技巧:十大方法中考将近,学生们都进入到了紧张的复习阶段,那么有没有什么好的复习方法呢?尤其是数学,相对来说拉开的分数比较大,下面就让我们一起来了解一下中考数学的复习方法吧。

2019年中考数学解题技巧:十大方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

这是中考数学的复习方法之一。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

中考数学所有题型应试技巧

中考数学所有题型应试技巧

中考数学所有题型应试技巧01.选择题的解法(1)直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。

(2)特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。

(3)淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。

(4)逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。

(5)数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

02.常用的数学思想方法(1)数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

(2)联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。

数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

(3)分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

(4)待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

中考数学答题技巧和注意事项

中考数学答题技巧和注意事项

中考数学应试技巧和注意事项一、应试技巧1、认真审题,不慌不忙,先易后难,不能忽视题目中旳任何一种条件。

做题次序:一般按照试题次序做,实在做不出来,可先放一放,先做别旳题目,不要在一道题上花费太多旳时间,而影响其他题目;做题慢旳同学,要掌握好时间,力争一次成功率;做题速度快旳同学要注意做题旳质量,要细心,不要马虎。

2、考虑多种简便措施解题。

选择题、填空题更是如此。

选择题-----注意选择题要看完所有选项,做选择题可运用多种解题旳措施,常见旳措施如直接法,特殊值法,排除法,验证法,图解法,假设法(即反证法),动手操作法(例如折一折,量一量等措施)。

采用淘汰法和代入检查可节省时间。

有些判断几种命题对旳个数旳题目,一定要谨慎,你认为错误旳最佳能找出反例,要注意分类思想旳运用;假如选项中存在多种状况旳,要思索与否适合题意;找规律题可以多写某些状况,或对原式进行变形,以便找出规律,也可用特殊值进行检查。

对于选择题中有“或”和“且”旳选项一定要警惕,看看要不要取舍。

填空题-----1.注意一题多解旳状况。

2.注意题目旳隐含条件,例如二次项系数不为0,实际问题中旳正数、整数等;3.要注意与否带单位,体现形式一定是最简成果;4.求角、线段旳长,实在不会时,可以尝试猜测或度量法。

解答题-----(1)注意规范答题,过程和结论都要书写规范。

(2)计算题一定要细心,最终答案要最简,要保证绝对对旳。

(3)先化简后求值问题,要先化到最简,再代入求值。

这时要注意:分母不为零;合适考虑技巧,如整体代入。

(4)解分式方程一定要检查,应用题中也是如此。

注意两种检查旳区别。

(5)解直角三角形问题,注意交代辅助线旳作法,解题环节。

关注直角、特殊角。

取近似值时一定要按照题目规定,还要注意单位名称。

(6)实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式(组)或函数关系式。

注意题目当中旳等量关系,是为了构造方程,不等量关系是为了求自变量旳取值范围,求出方程旳解后,要注意验根,与否符合实际问题,要记得取舍。

中考数学24题解题技巧

中考数学24题解题技巧

中考数学24题解题技巧
以下是 6 条关于中考数学 24 题解题技巧:
1. 嘿,你知道吗,仔细审题那可是关键啊!就像在黑暗中找到那盏明灯一样。

比如那道让很多人头疼的几何题,你得瞪大眼睛把题目里的每个条件都挖出来呀!别放过任何一个小细节,不然就像在大海里没了方向的小船啦!
2. 哎呀呀,合理运用公式定理那绝对不能忘!这就好比有了一把万能钥匙。

像算那道复杂的函数题时,突然想起某个公式,一下子不就豁然开朗啦!
3. 喂喂喂,思路要清晰呀!别像无头苍蝇一样乱撞。

比如说遇到一个证明题,你就得有条理地分析,一步一步来,别一下子跳到十万八千里之外去,那样能做对才怪呢!
4. 嘿,别忘了多尝试几种方法呀!别在一棵树上吊死。

拿那道要找规律的题来说,你可以试着用列举法呀,画图法呀,说不定哪种方法就突然把答案给你蹦出来啦!
5. 哇塞,检查也很重要好不好!就像给自己的成果再上一道保险。

你做完题后,回头看看,说不定就会发现之前犯下的小错误呢,难道要因为粗心丢分吗,那多可惜呀!
6. 哈哈,保持冷静的心态最重要啦!遇到难题别着急上火。

就好像在爬山时遇到陡峭的地方,不能慌呀,静下心来慢慢想,总会找到路的,你说是不?
我觉得呀,掌握这些解题技巧,中考数学 24 题就没那么可怕啦,反而会变得有趣起来呢!。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学常用的经典解题方法
新一轮中考复习备考周期正式开始,为各位初三考生整理了中考五大必考学科的知识点,主要是对初中三年各学科知识点的梳理和细化,帮助各位考生理清知识脉络,熟悉答题思路,希望各位考生可以在考试中取得优异成绩!下面是«2019初中数学常用的几种经典解题方法»,仅供参考!
1、配方法。

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是初中数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0〔a、b、c属于R,a ≠0〕根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程〔组〕,解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了一元二次方程的一个根,求另一根;两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,假设先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程〔组〕、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。

反证法可以分为归谬反证法〔结论的反面只有一种〕与穷举反证法〔结论的反面不只一种〕。

用反证法证明一个命题的步骤,大体上分为:〔1〕反设;〔2〕归谬;〔3〕结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大〔小〕于/不大〔小〕于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有〔n一1〕个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否那么推导将成为无源之水,无本之木。

推理必须严谨。

导出的矛盾有如下几种类型:与条件矛盾;与的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8、面积法平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。

运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。

面积法的特点是把和未知各量用面积公式联系起来,通过运算达到求证的结果。

所以用面积法来解几何题,几何元
素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

要练说,得练听。

听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。

我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。

当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。

平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。

9、几何变换法在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。

所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。

中学数学中所涉及的变换主要是初等变换。

有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。

另一方面,也可将变换的观点渗透到中学数学教学中。

将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:〔1〕平移;〔2〕旋转;〔3〕对称。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

为什么?还是没有彻底〝记死〞的缘故。

要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一那么名言警句即可。

可以写在后黑板的〝积累专栏〞上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往
笔记本上抄写,教师定期检查等等。

这样,一年就可记300多条成语、300多那么名言警句,日积月累,终究会成为一笔不小的财富。

这些成语典故〝贮藏〞在学生脑中,自然会出口成章,写作时便会随心所欲地〝提取〞出来,使
文章增色添辉。

相关文档
最新文档