平方差公式.5《平方差公式》ppt课件

合集下载

平方差公式(PPT课件)

平方差公式(PPT课件)

①(x + 4)( x-4)=x2 - 16 x2 - 42
②(1 + 2a)( 1-2a)=1 -4a2 12-(2a)2
③(m+ 6n)( m-6n)=m2 - 36n2 m2 - (6n)2 ④(5y + z)(5y-z)= 25y2 - z2 (5y)2 - z2
它们的结果有什么特点?
平方差公式
平方差公式
原来
现在
5米
(a+5)米
a a米
2
(a-5) (a+5)(a-5)
5米
a2 相等吗?a2-25 平方差公式
算一算,比一比,看谁算得又快又准
计算下列各题 ①(x + 4)( x-4) ②(1 + 2a)( 1-2a) ③(m+ 6n)( m-6n) ④(5y + z)(5yng 平方差公式
多项式与多项式是如何相乘的?
(a+b)(m+n) =am+an +bm+bn
(x + 1)( x-1) =x2- +1·X -1·1 =x2 1-·x1
平方差公式
• 灰太狼开了租地公司,一天他把一边 长为a米的正方形土地租给慢羊羊种植. 有一年他对慢羊羊说:“我把这块地的一 边增加5米,另一边减少5米,再继续租给 你, 你也没吃亏,你看如何?”慢羊羊一 听觉得没有吃亏,就答应了.回到羊村,就 把这件事对喜羊羊他们讲了,大家一听, 都说道:“村长,您吃亏了!” 慢羊羊村长 很吃惊…同学们,你能告诉慢羊羊这是 为什么吗?
平方差公式
小结 平方差公式
相同为a
适当交换
(a+b)(a-b)=(a)2-(b)2
相反为b
合理加括号
平方差公式
医路顺风
平方差公式

平方差公式课件ppt

平方差公式课件ppt
(1) (x+3)(X-3)=x2-9 (2) (-1-2x)( 2x-1)= 1-4x2 (3) (m+n)(n-m)=n2-m2 (4) (-1+y)(-y-1)=1-y2 (5) (-3a2+2b2)(-3a2-2b2)=9a4-4b4
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
= x2 − 4y2
你还有其它的计 算方法吗?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
⑴ (a+1)(a-1)= a2-1 ⑵ (3+x)(3-x)= 9-x2 ⑶ (a+2b)(a-2b)= a2-(2b)2 =a2-4b2 ⑷ (3x+5y)(3x-5y)= (3x)2-(5y)2 =9x2-25y2 ⑸ (10s-3t)(10s+3t)= (10s)2-(3t)2
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例2:计算 (1)102×98 (2) (y+2)(y-2)-(y-1)(y+5)
(2)解:原式=y2-4-(y2+4y-5) =y2-4-y2-4y+5 =-4y+1
= (2a)2 − b2 = 4a2 − b2
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例1 运用平方差公式计算: (1) (3x+2)(3x − 2)

平方差公式PPT教学课件

平方差公式PPT教学课件

0-1律:
A∪O = A,A∩O = O; A∪E = E,A∩E = A; E
1
...
1
还原律:(Ac)c = A;
1 ... 1
对偶律: (A∪B)c =Ac∩Bc, (A∩B)c =Ac∪Bc.
模糊矩阵的合成运算与模糊方阵的幂
设A = (aik)m×s,B = (bkj)s×n,定义模糊矩阵A 与B 的合成为:
B
0.2 0.3
00..21, C0.源自 0.300..21(
A∩B
)
°
C
0.1 0.2
00..11 00..53
00..21
0.1 0.2
00..11
( A ° C )∩( B ° C )
0.3 0.2
00..21
0.2 0.3
00..21
0.2 0.2
00..11
( A∩B ) ° C ( A ° C )∩( B ° C )
模糊矩阵的转置
定义 设A = (aij)m×n, 称AT = (aijT )n×m为A的转 置矩阵,其中aijT = aji. 转置运算的性质:
性质1:( AT )T = A; 性质2:( A∪B )T = AT∪BT,
( A∩B )T = AT∩BT; 性质3:( A ° B )T = BT ° AT;( An )T = ( AT )n ; 性质4:( Ac )T = ( AT )c ; 性质5:A≤B AT ≤BT .
13、(5+a)( ) =25-a²
小结
相同为a
适当交换
(a+b)(a-b)=(a)2-(b)2
相反为b
合理加括
推广 !
一个长方形的长为 (√19 + √7)厘米,宽 为(√19 - √7) 厘米, 它的面积是多少?

平方差公式课件PPT

平方差公式课件PPT

$(a+b-c)^2 = a^2 + b^2 - c^2 + 2ab - 2bc$
$(a-b+c)^2 = a^2 - b^2 + c^2 + 2(ab)c$
平方差公式的其他变种形式
$(a+b)^3 = (a+b)(a^2 - ab + b^2)$ $(a-b)^3 = (a-b)(a^2 + ab + b^2)$
平方差公式课件
目录
CONTENTS
• 平方差公式的基本概念 • 平方差公式的推导过程 • 平方差公式的证明 • 平方差公式的应用举例 • 平方差公式的变种 • 总结与回顾
01 平方差公式的基本概念
平方差公式的定义
总结词
平方差公式是数学中一个重要的恒等 式,用于表示两个数的平方差与这两 个数之间的关系。
$(a+b+c)^3 = (a+b+c)(a^2 - ab + b^2 - ac + bc - c^2)$
06 总结与回顾
本节课的重点回顾
01
02
03
04
平方差公式的形式和结 构
平方差公式的推导过程
平方差公式的应用范围 和条件
平方差公式的代数表示 和几何意义
本节课的难点解析
01
02
03
04
如何理解和记忆平方差公式的 形式和结构
目标
证明该公式成立
证明的步骤
01
02
03
步骤1
展开左侧,得到 $(a+b)(a-b) = a^2 b^2 + ab - ab$
步骤2
合并同类项,得到 $(a+b)(a-b) = a^2 b^2$

《平方差公式》PPT课件 (共18张PPT)

《平方差公式》PPT课件 (共18张PPT)


1、实现自己既定的目标,必须能耐得住寂寞单干。

2、世界会向那些有目标和远见的人让路。

3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。

5、无论你觉得自己多么的了不起,也永远有人比你更强。

6、打击与挫败是成功的踏脚石,而不是绊脚石。
2、利用平方差公式填表。
(a-b)(a+b)
a b a2-b2
(1+x)(1-x)
1x
12-x2
(-3+a)(-3-a) -3 a (-3)2-a2
(1+a)(-1+a)
a1
a2-12
(0.3x-1)(1+0.3x) 0.3x 1 ( 0.3x)2-12
3、判断下列式子是否可用平方差公式。
(1)(-a+b)(a+b)
随堂练习
1、a 3ba 3b
2、3 2a 3 2a
3、51 49
4、3x 43x 4 2x 33x 2
拓展应用
1、 利用平方差公式计算:
2 12 122 124 128 1
2 (1 1) (1 1) (1 1) (1 1 ) (1 1 )
2
2
4
16
256
小结:
通过本节课的学习你有什么收获?

4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德

激励自己的座右铭

1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。

2、 要有梦想,即使遥远。

平方差公式 (课件)

平方差公式 (课件)
对于不符合平方差公式标准形式者, 或提取两“−”号中的“−”号,要利用加 法交换律,变成公式标准形式后,再用公 式.
Bye bye
(3)公式中的 a和b 可以是数,也可以是 代数式.
例2 运用平方差公式计算: (1) (3x+2 )( 3x-2 ) ; (2) (-x+2y)(-x-2y).
解:(1)(3x+2)(3x-2) =(3x)2-22 =9x2-4;
(2) (-x+2y)(-x-2y) =(-x)2-(2y)2 = x2-4y2
某中学计划将边长m米的正方形花坛改造成 长为 (m+1)米,宽为(m-1)米的长方形花坛,你会 计算改造后的花坛面积么?花坛的面积有什么变化?
(m+1)(m-1) 解原式: =m2−m+m-1
=m2-1
课堂小结
平方差公式
(a+b)(a−b)=a2−b2.
两数和与这两数差的积,等于它们 的平方差.
平方差公式
[来源:学科网ZXXK]
(a+b)(a-b)=?
学习目标
1.理解平方差公式的意义; 2.掌握平方差公式的结构特征; 3.正确地运用平方差公式进行计算;
探索发现
1. (x+1)(x-1) =x2-x+x-1 =x2-1 =x22. (m+2)(m-2)=m2-2m+2m-4=m122-4 =m2-22 3. (2x+1)(2x-1)=4x2-2x+2x-1 =4x2-1 =(2x)2-12
图2 的阴影部分的面积是—(a— b—)(a—b)
b
(a+b)(a-b)=a2-b2
a-b b
互为相反数
(a+b)(a−b)=a2−b2

平方差公式 (课件)

平方差公式 (课件)


2
y)(2x

y)
2
4x2

y2
(4)不能忘记写公式中 的“平方”.
【课堂总结】
这节课你有哪些收获?
平方差公式:(a+b)(a-b)=a 2 -b2
两个数的和与这两个数的差的积, 等于这两个数的平方差.
注意:(1)看是否具备公式的结构特征;
(2)要找准哪个数或式相当于公式中的a,b。 且a的符号相同 ,b 的符号相反。 (3)a ,b 可以是具体的数、单项式、多项式等; (4)不能忘记写公式中 的“平方”.
(2)102×98.;
(3)( x 1)( x 1)( x2 1)
【自检诊学】 【独立完成,举手板演】 练习3 运用平方差公式计算: (1) 51×49; (2)(3x+4)(3x-4)-(2x+3)(2x-3)
第2题做完上台板演,格式规范准确无误可得一个音符
【达标检测】 【独立思考,举手回答】
(5)(2a b)(2b a) 4a2 b2 当于公式中的a,b。且a的
(6)(3x y)(3x y) 9x2 y2
(7)(1 x 1)(1 x 1) 1 x2 1
符号相同 ,b 的符号相反。
(3)a ,b 可以是具体的数、 单项式、多项式等
2
(8)(2x
【一、激趣导入 】
【独立作业,举手回答】
1、复习
(a b)(m n)
2、计算:
(1)(x+1)(x-1) = x2 -1 ;
(2)(m+2)(m-2) = m2-4 ;
(3)(2x+1)(2x-1) = 4x2 -1 .
二、合作互助

北师大版七年级数学下册第1章第5节平方差公式课件

北师大版七年级数学下册第1章第5节平方差公式课件
1、2218 ?
2、10199 ?
主持人话音刚落,就立刻有一个学生站起 来抢答说:“第一题等于396,第二题等于 9999”其速度之快,简直就是脱口而出.同 学们,你知道是如何计算的吗?你想不想掌 握他的简便、快捷的运算招数呢?
a
b
ab
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
Hale Waihona Puke 条件化简结果新知学习
平方差公式 (a+b)(a-b) = a2-b2
你能用文字语言表示所发现的规律吗?
语言表述:
两个数的和与这两个数的差的积, 等于这两个数的平方差
新知学习
(a+b)(a-b)=a2-b2
用相同数的平 相同 一对 方做被减数 的数 相反数
公式基本特征:
1、两大项(即同号项、异号项)
1.5平方差公式
图形法则 相同相反 混合计算 实际应用
学习目标
1.体验平方差的法则推导,能画出图形的推导过程。 2.能熟练判断使用平方差的条件,计算混算结果。 3.能利用平方差解决简单的应用问题。 4.学会小组合作,解决遇到的代数与几何问题。 5.学会独立思考,练习理解,增强自信心。
情境引入
在一次智力抢答中,主持人提供了两道题:
a
a ba b a2 b2
根据平方差公式,在图中标注字母a,b.
根据图形,你能得到 的等式为:
新知探究
计算下列多项式的积,你能发现什么规律?
(1)(x+1)(x-1)=______x_2_-_1__;
(2)(m+2)(m-2)=_____m_2_-_4__;

平方差公式ppt课件

平方差公式ppt课件

1. 计算 (+)(−) 的结果是(
A. −
B. −
)
A
C. −
D. −
2. 下列多项式相乘中,不能用平方差公式计算的是( A )
A. ( − )( − )
B. (− + )(− − )
C. ( − )( + )
D. ( + )( − )
3.(1)(2021德阳)已知a+b=2,a-b=3,则a 2-b2 的值

6

(2)计算:(x+2)(x-2)(x 2+4)=
x 4-16 .
知识点三:巧用平方差公式计算
技巧:当出现多个因式相乘时,要仔细观察式子的特点,
看是不是符合平方差公式的结构特征或根据题意“凑”出
符合平方差公式结构的形式,然后依次运用公式,一直到
小结:正确列式表示图①和图②中的阴影面积是关键.
例1 判断下列各式是否满足平方差公式的结构特征,若满足,则运用平方差公式计算.
【点拨】先观察题中的式子是否符合“ ( + )( − ) ”的结构特征,若符合,进
而确定式子中的“ ”与“ ”,然后依据公式可得出运算结果.








例3 计算:
【点拨】 (1) (−) 与 (+) 符合平方差公式的形式,其结果再与 ( +) 结合.(2)
观察式子的特点, (+) 可以理解为 × (+) = (−)(+) = − ,这样可借助平方差公
式计算.
(1) (−)( +)(+) ;
【解】原式 = (−)(+)( +)

平方差公式 —初中数学课件PPT

平方差公式 —初中数学课件PPT

-3
a
(1+a)(-1+a)
a
1
(0.3x-1)(1+0.3x) 0.3x
1
a2-b2 12-1x22-x2
(-3)2-a2
a2-12 ( 0.3x)2-12
练一练:口答下列各题: (l)(-a+b)(a+b)=____b_2_-a_2__; (2)(a-b)(b+a)= ___a_2_-b_2____; (3)(-a-b)(-a+b)= __a_2_-_b_2 __; (4)(a-b)(-a-b)= ___b_2_-_a_2 __.
(4)(5y + z)(5y-z).
(5y)2 - z2
想一想:这些计算结果有什么特点?
(a+b)(a−b)= a2−b2 也就是说,两个数的和与这两个数的差的积 ,等于这两数的平方差.这个公式叫做(乘法的 )平方差公式.
1.(a – b ) ( a + b) = a2 - b2 2.(b + a )( -b + a ) = a2 - b2
例计1 算: (1) (3x+2 )( 3x-2 ) ; (2)(-x+2y)(-x-2y).
解:(1)原式=(3x)2-22 =9x2-4. (2) 原式= (-x)2 - (2y)2 =x2 - 4y2.
应用平方差公式计算时,应注意以下几 点:(1)左边是两个二项式相乘,并且这两个二项式 中一项完全相同,另一项互为相反数;(2)右边是相 同项的平方减去相反项的平方;(3)公式中的a和b可 以是具体的数,也可以是单项式或多项式.
D.(a-b-c)(-a+b+c)
解析:(-3a+4b)(-4b-3a)=(-3a+4b)(-3a-4b) =9a2-16b2

《平方差公式》PPT优质课件

《平方差公式》PPT优质课件
= 9x2–16–6x2–5x+6 = 3x2–5x–10.
探究新知
素养考点 3 利用平方差公式进行化简求值
例3 先化简,再求值:(2x–y)(y+2x)–(2y+x)(2y–x), 其中x=1,y=2.
解:原式=4x2–y2–(4y2–x2) =4x2–y2–4y2+x2 =5x2–5y2.
当x=1,y=2时, 原式=5×12–5×22=–15.
探究新知
素养考点 5 利用平方差公式解决实际问题
例5 王大伯家把一块边长为a米的正方形土地租给了邻居 李大妈.今年王大伯对李大妈说:“我把这块地一边减少 4米,另外一边增加4米,继续租给你,你看如何?”李大 妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
解:李大妈吃亏了. 理由:原正方形的面积为a2, 改变边长后面积为(a+4)(a–4)=a2–16, ∵a2>a2–16, ∴李大妈吃亏了.
巩固练习
如果两个连续奇数分别是2n–1,2n+1(其中n为正 整数),证明两个连续奇数的平方差是8的倍数.
证明:(2n+1)2–(2n–1)2 =[(2n+1)+(2n–1)][(2n+1)–(2n–1)] =(2n+1+2n–1)(2n+1–2n+1) =4n×2 =8n 因为8n是8的倍数,所以结论成立.
探究新知 知识点 平方差公式
多项式与多项式是如何相乘的?
(a+b)(m+n) =am +an +bm +bn
(x + 3)( x+5) =x2 +5x +3x +15 =x2 +8x +15.
探究新知
面积差变了吗?
a米
a米 5米

平方差公式ppt课件

平方差公式ppt课件
解:(4)
例 在括号中填入适当的整式
(1)(b+a(a -b)=a²-b²; (2)(m-n(-n -m)=n²-m²;
(3)(=1-3x)(=1
+3x)=1-9x²;(4)(a²+b²)(a²-b²)=a⁴-b4
分析:观察此题的结果,是两数的平方差,再对比左侧已知的 因式,分析出谁是相同项,谁是相反项.
=9996
例 计算:
(3)(x"+4)(x"-4);
分析:(3)xn 可以看成公式中的a,4 可以看成公式中的b, 根据平方差公式,结果为(xn)²-42.
解:
(3) (x”+4)(xn-4)
=(x”)²-4²
=x²n-16.
例 计算: (3)(x”+4)(x”-4);
分析:(4)需要先把前两项利用平方差公式计算出来,然 后利用结果二次利用平方差公式,从而得到最终结果.
平方差公式
阅读小故事,并回答问题:
小明和小兰分别负责两块区域的值日工作.小明负责一块边长为a 米 的正方形空地,小兰则负责一块长方形空地,长为正方形空地边长加5 米,宽度是正方形空地边长减5米.有一天,小明对小兰说:“咱们换 一下值日的区域吧,反正这两块地大小都一样. ”你觉得小明说的对吗? 为什么?
符号语言: (a+b)(a-b)=a²-b²
atb(a-b)=a²-b²→ 平方差公式
代数推导:(a+b)(a-b)=a²-ab+ab-b²
=a²-b².
文字描述:两个数的和与这两个数差的积,等于这两个数的 平方差.
结构特点:左边:a 符号相同,b 符号相反. 右边:符号相同项a的平方减去符号相反项b的平方.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运用平方差公式时,要紧扣公式的特征,
倍 找出相等的“项”和符号相反的“项”,然后应用公
速 课
式;
时 对于不符合平方差公式标准形式者,

练 要利用加法交换律,变成公式标准形式后,再用公式。
(3) (3m+2n)(3m−22nn)=3m2−22nn2 第一数与第二数被平方时,

都未添括号。





判断 练 习
本题是公式的变式训练,以加深对公式本质特征的理解
下列式子可用平方差公式计算吗? 为什么? 如果能够, 怎样计算?
(1) (a+b)(a−b) ; (不能) (第一个数不完全一样 )
(3)(−x+1)(−x−1) ;
倍 速 课 时 学 练
(4)(−4k+3)(−4k−3) .
扩展训练:利用平方差公式计算:
3(22+1)(24+1) (28+1)(216+1) +1
=(22−1)(22+1) (24+1)(28+1)(216+1) +1
=(24−1)(24+1) (28+1)(216+1) +1

批改并交流。(10分钟)





初识平方差公式 (a+b)(a−b)=a2−b2
(1) 公式左边两个二项式必须是
相同两数的和与差相乘;
且左边两括号内的第一项相等、
第二项符号相反[互为相反数(式)];
特征
(2) 公式右边是这两个数的平方差;
倍 速
结构
即右边是左边括号内的第一项的平方

减去第二项的平方.

学 练
(3) 公式中的 a和b 可以代表数, 也可以是代数式.
纠错练习
本题对公式的直接运用,以加深对公式本质特征的理解.
指出下列计算中的错误: (1) (1+2x)(1−2x)=1−22xx2
第二数被平方时,未添括号。
(2) (22aa22+b2)(22aa22−b2)=22aa4−b4 第一 数被平方时,未添括号。
(2) (a−b)(b−a) ;
(不能)
倍 (3) (a+2b)(2b+a);
速 课
(4) (a−b)(a+b) ;

学 (5) (2x+y)(y−2x).

(不能)
(能) −(a2 −b2)= −a2 + b2 ;
(不能)
随堂练习
随堂练习
1、计算:
(1)(a+2)(a−2);
(2)(3a +2b)(3a−2b) ;
=(28−1)(28+1) (216+1) +1

倍 =(216−1)(216+1) +1

课 时
=(232−1)+1

练 =232
逆用平方差公式
倍 速 课 时 学 练
本节课你的收获是什么?
试用语言表述平方差公式 (a+b)(a−b)=a2−b2。
两数和与这两数差的积,等于它们的平方差。
应用平方差公式 时要注意一些什么?
自学目标:
1、经历探索平方差公式的过程,通过计算、观察、归纳、 概 括得出平方差公式。
2、能灵活运用平方差公式进行计算。
自学指导:
请同学们自学教材20页的内容,观察上面的4个算式及其运算结
果。你有什么发现?以小组为单位再举两个例子验证你的发现,并
探究分析公式的特征。自学例题后,完成学案中的自学检测。小组
倍 速 课 时 学 练
如图所示,有一位狡猾的地主,把一块边长为A米 的正方形土地,租给李老汉种植.今年,他对李老汉说: “我把你这块地的一边减少4米,另一边增加4米,继 续租给你,你也没有吃亏,你看如何?”李老汉一听,觉 得好像没有吃亏,就答应了,同学们,你们觉得李老汉 有没有吃亏?
倍 速 课 时 学 练
相关文档
最新文档