通用高考数学二轮复习课时跟踪检测二十文

合集下载

通用高考数学二轮复习课时跟踪检测二十二文

通用高考数学二轮复习课时跟踪检测二十二文

——教学资料参考参考范本——通用高考数学二轮复习课时跟踪检测二十二文______年______月______日____________________部门A组——12+4提速练一、选择题1.设函数f(x)=则不等式f(x)>f(1)的解集是( )A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3)解析:选A 由题意得,f(1)=3,所以f(x)>f(1),即f(x)>3.当x<0时,x+6>3,解得-3<x<0;当x≥0时,x2-4x+6>3,解得x>3或0≤x<1.综上,不等式的解集为(-3,1)∪(3,+∞).2.在R上定义运算:x⊗y=x(1-y).若不等式(x-a)⊗(x-b)>0的解集是(2,3),则a+b=( )A.1 B.2C.4 D.8解析:选C 由题知(x-a)⊗(x-b)=(x-a)[1-(x-b)]>0,即(x -a)[x-(b+1)]<0,由于该不等式的解集为(2,3),所以方程(x-a)[x-(b+1)]=0的两根之和等于5,即a+b+1=5,故a+b=4.3.已知正数a,b的等比中项是2,且m=b+,n=a+,则m+n 的最小值是( )A.3 B.4C.5 D.6解析:选C 由正数a,b的等比中项是2,可得ab=4,又m=b+,n=a+,所以m+n=a+b++=a+b+=(a+b)≥×2=5,当且仅当a=b=2时等号成立,故m+n的最小值为5.4.(20xx·合肥质检)设变量x,y满足约束条件则目标函数z=x+2y的最大值为( )A.5 B.6C. D.7解析:选C 作出不等式组表示的平面区域,如图中阴影部分所示,由图易知,当直线z=x+2y 经过直线x-y=-1与x+y=4的交点,即时,z 取得最大值,zmax=+2×=,故选C.5.(20xx·全国卷Ⅲ)设x,y满足约束条件则z=x-y的取值范围是( )A.[-3,0] B.[-3,2]C.[0,2] D.[0,3]解析:选B 作出不等式组表示的可行域如图中阴影部分所示,作出直线l0:y=x,平移直线l0,当直线z=x-y过点A(2,0)时,z取得最大值2,当直线z=x-y过点B(0,3)时,z取得最小值-3,所以z=x-y的取值范围是[-3,2].6.(20xx·全国卷Ⅱ)设x,y满足约束条件则z=2x+y的最小值是( )A.-15 B.-9C.1 D.9解析:选 A 作出不等式组表示的可行域如图中阴影部分所示.易求得可行域的顶点A(0,1),B(-6,-3),C(6,-3),当直线z =2x +y 过点B(-6,-3)时,z 取得最小值,zmin =2×(-6)-3=-15.7.已知a>0,b>0,c>0,且a2+b2+c2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1解析:选B ∵a2+b2+c2=4,∴2ab+2bc +2ac≤(a2+b2)+(b2+c2)+(a2+c2)=2(a2+b2+c2)=8,∴ab+bc +ac≤4(当且仅当a =b =c =时等号成立),∴ab+bc +ac 的最大值为4.8.(20xx·惠州调研)已知实数x ,y 满足:若z =x +2y 的最小值为-4,则实数a =( )A .1B .2C .4D .8解析:选 B 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C 时,z 取得最小值-4,所以-a +2·=-4,解得a =2,故选B.9.当x ,y 满足不等式组时,-2≤kx-y≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.D.⎣⎢⎡⎦⎥⎤-15,0解析:选D 作出不等式组表示的平面区域,如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧x +2y =2,y -4=x ,得即B(-2,2),由得⎩⎪⎨⎪⎧x =2,y =0,即C(2,0),由得即A(-5,-1),要使不等式-2≤kx-y≤2恒成立,则即所以-≤k≤0,故选D.10.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A.12万元B .16万元C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元,则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y≤12,x +2y≤8,x≥0,y≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线z =3x +4y 过点B(2,3)时,z 取最大值18,故该企业每天可获得的最大利润为18万元.11.若两个正实数x ,y 满足+=1,且不等式x +<m2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选 B 由题可知,1=+≥2=,即≥4,于是有m2-3m>x +≥≥4,故m2-3m>4,化简得(m +1)(m -4)>0,解得m<-1或m>4,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.(20xx·天津高考)已知函数f(x)=设a∈R,若关于x 的不等式f(x)≥在R 上恒成立,则a 的取值范围是( )A.B.⎣⎢⎡⎦⎥⎤-4716,3916C .[-2,2]D.⎣⎢⎡⎦⎥⎤-23,3916 解析:选A 法一:根据题意,作出f(x)的大致图象,如图所示. 当x≤1时,若要f(x)≥恒成立,结合图象,只需x2-x +3≥-,即x2-+3+a≥0,故对于方程x2-+3+a =0,Δ=2-4(3+a)≤0,解得a≥-;当x>1时,若要f(x)≥恒成立,结合图象,只需x +≥+a ,即+≥a,又+≥2,当且仅当=,即x =2时等号成立,所以a≤2.综上,a 的取值范围是.法二:关于x 的不等式f(x)≥在R 上恒成立等价于-f(x)≤a+≤f(x),即-f(x)-≤a≤f(x)-在R上恒成立,令g(x)=-f(x)-.若x≤1,则g(x)=-(x2-x+3)-=-x2+-3=-2-,当x=时,g(x)max=-;若x>1,则g(x)=--=-≤-2,当且仅当=,且x>1,即x=时,等号成立,故g(x)max=-2.综上,g(x)max=-.令h(x)=f(x)-,若x≤1,则h(x)=x2-x+3-=x2-x+3=2+,当x=时,h(x)min=;若x>1,则h(x)=x+-=+≥2,当且仅当=,且x>1,即x=2时,等号成立,故h(x)min=2.综上,h(x)min=2.故a的取值范围为.二、填空题13.已知关于x的不等式2x+≥7在x∈(a,+∞)上恒成立,则实数a的最小值为________.解析:由x>a,知x-a>0,则2x+=2(x-a)++2a≥2 +2a=4+2a,由题意可知4+2a≥7,解得a≥,即实数a的最小值为.答案:3214.若2x+4y=4,则x+2y的最大值是________.解析:因为4=2x+4y=2x+22y≥2=2,所以2x+2y≤4=22,即x+2y≤2,所以当且仅当2x=22y=2,即x=2y=1时,x+2y取得最大值2.答案:215.如果实数x,y满足条件且z=的最小值为,则正数a的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x=1,y=1时,z取最小值,即=,所以a=1.答案:116.对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(-1,2),解关于x的不等式ax2-bx+c>0”,给出如下一种解法:解:由ax2+bx+c>0的解集为(-1,2),得a(-x)2+b(-x)+c>0的解集为(-2,1),即关于x的不等式ax2-bx+c>0的解集为(-2,1).参考上述解法,若关于x的不等式+<0的解集为∪,则关于x的不等式+<0的解集为________.解析:不等式+<0,可化为+<0,故得-1<<-或<<1,解得-3<x<-1或1<x<2,故+<0的解集为(-3,-1)∪(1,2).答案:(-3,-1)∪(1,2)B组——能力小题保分练1.已知x,y满足则z=8-x·y的最小值为( )A .1 B. C.D.132解析:选D 不等式组表示的平面区域如图中阴影部分所示,而z =8-x·y=2-3x -y ,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x -y 最小,最小值为.故选D.2.设x ,y 满足约束条件若目标函数z =ax +by(a>0,b>0)的最大值为6,则+的最小值为( )A .1B .3C .2D .4解析:选 B 依题意画出不等式组表示的平面区域,如图中阴影部分.∵a>0,b>0,∴当直线z =ax +by 经过点(2,4)时,z 取得最大值6,∴2a +4b =6,即a +2b =3.∵+=(a +2b)×=++≥3,当且仅当a =b =1时等号成立, ∴+的最小值为3.故选B.3.设不等式组所表示的平面区域为Dn ,记Dn 内的整点(横坐标和纵坐标均为整数的点)个数为an(n∈N*),若m>++…+对于任意的正整数恒成立,则实数m 的取值范围是( )A.B.⎝ ⎛⎭⎪⎫19,+∞C.D.⎝ ⎛⎭⎪⎫-∞,19解析:选 A 不等式组表示的平面区域为直线x =0,y =0,y =-nx +3n 围成的直角三角形(不含直角边),区域内横坐标为1的整点有2n 个,横坐标为2的整点有n 个,所以an =3n ,所以==,所以++…+==,数列为单调递增数列,故当n 趋近于无穷大时,趋近于,所以m≥.故选A.4.在平面直角坐标系中,点P 是由不等式组所确定的平面区域上的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|+|的最小值为( )A. B.55 C.D.33解析:选B 作出不等式组对应的可行域,如图中阴影部分所示.设P(x ,y),Q(a ,-2a),则+=(x +a ,y -2a),则|+|=,设z =|+|,则z 的几何意义为可行域内的动点P 到动点M(-a,2a)的距离,其中M 也在直线2x +y =0上,由图可知,当点P 为(0,1),M 为P 在直线2x +y =0上的垂足时,z 取得最小值d ===.5.设二次函数f(x)=ax2+bx +c 的导函数为f′(x).若∀x∈R,不等式f(x)≥f′(x)恒成立,则的最大值为( )A.+2 B .-2 C .2+2D .2-2解析:选B 由题意得f′(x)=2ax +b ,由f(x)≥f′(x)在R 上恒成立,得ax2+(b-2a)x+c-b≥0在R上恒成立,则a>0且Δ≤0,可得b2≤4ac-4a2,则≤=,又4ac-4a2≥0,∴4·-4≥0,∴-1≥0,令t=-1,则t≥0.当t>0时,≤=≤=-2(当且仅当t=时等号成立),当t=0时,=0<-2,故的最大值为-2,故选B.6.(20xx·广州模拟)满足不等式组的点(x,y)组成的图形的面积是5,则实数a的值为________.解析:不等式组等价于或画出不等式组所表示的平面区域如图中△ABC及其内部,易知A(1,2),因为S△ABC=×1×2=1<5,所以a>1.画出不等式组所表示的平面区域,如图中的△ABC和△ADE所示.不等式组所对应的平面区域是△ADE及其内部,易知D(a,a+1),E(a,3-a),所以S△ADE=×(a-1)×(a+1-3+a)=5-1,解得a=3(a=-1舍去).答案:311 / 11。

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:解析几何含答案

2020高考数学(理科)二轮专题复习课标通用版跟踪检测:解析几何含答案
(2)过点A(1,0)且斜率不为0的直线l与椭圆交于M,N两点,记MN中点为B,坐标原点为O,直线BO交椭圆于P,Q两点,当四边形MPNQ的面积为 时,求直线l的方程.
解析(1)设椭圆的焦距为2c,则 = ,又a2=b2+c2,所以b=c= .因为4× ×b× b=2 ,所以b=1,a= ,故所求椭圆的标准方程为 +y2=1.
所以弦长|PQ|=2 =2 .
不妨设点M在直线OB:y=- x上方,点N在直线OB:y=- x下方,即 x1+y1>0, x2+y2<0.
所以点M(x1,y1)到直线PQ的距离为d1= = = ,点N(x2,y2)到直线PQ的距离为d2= =- .
所以d1+d2=
= =2 .
所以面积S= |PQ|·(d1+d2)= ·2 ·2 =2 = ⇒m=±2.
(2)设A ,B ,S(xS,yS).
因为 - = - = ,所以 =2,所以y3-y4=8,
因为线段AB的中点的纵坐标为8,所以y3+y4=16,
联立解得y3=12,y4=4,所以A(36,12),B(4,4).
设直线SA的斜率为k,则直线SA的方程为y-12=k(x-36),
由 消去x得 -与y轴负半轴的交点,经过F的直线l与椭圆交于点M,N,经过B且与l平行的直线与椭圆交于点A,若|MN|= |AB|,求直线l的方程.
解析(1)设椭圆的标准方程为 + =1(a>b>0),
依题意知,c=1,e= = ,所以a= ,b2=a2-c2=1,
所以所求椭圆的标准方程为 +y2=1.
A. B.
C.2D.
D解析抛物线y2=4x的焦点为F(1,0),准线l的方程为x=-1,所以|OF|=1,又双曲线的渐近线方程为y=± x,不妨设A ,B ,所以|AB|= =4|OF|=4,所以b=2a,所以e= = = .故选D项.

通用高考数学二轮复习课时跟踪检测二十七文

通用高考数学二轮复习课时跟踪检测二十七文

——教学资料参考参考范本——通用高考数学二轮复习课时跟踪检测二十七文______年______月______日____________________部门1.(20xx·云南调研)已知函数f(x)=|x +1|+|m -x|(其中m∈R).(1)当m =2时,求不等式f(x)≥6的解集;(2)若不等式f(x)≥6对任意实数x 恒成立,求m 的取值范围. 解:(1)当m =2时,f(x)=|x +1|+|2-x|,①当x<-1时,f(x)≥6可化为-x -1+2-x ≥6,解得x ≤-; ②当-1≤x ≤2时,f(x)≥6可化为x +1+2-x ≥6,无实数解; ③当x>2时,f(x)≥6可化为x +1+x -2≥6,解得x ≥. 综上,不等式f(x)≥6的解集为或x≥)).(2)法一:因为|x +1|+|m -x|≥|x+1+m -x|=|m +1|, 由题意得|m +1|≥6,即m +1≥6或m +1≤-6,解得m≥5或m≤-7,即m 的取值范围是(-∞,-7]∪[5,+∞).法二:①当m<-1时,f(x)=⎩⎨⎧-2x+m-1,x<m,-m-1,m≤x≤-1,2x+1-m,x>-1,此时,f(x)min =-m -1,由题意知,-m -1≥6,解得m≤-7,所以m 的取值范围是m≤-7.②当m =-1时,f(x)=|x +1|+|-1-x|=2|x +1|, 此时f(x)min =0,不满足题意.③当m>-1时,f(x)=⎩⎨⎧-2x+m-1,x<-1,m+1,-1≤x≤m,2x+1-m,x>m,此时,f(x)min =m +1,由题意知,m +1≥6,解得m≥5,所以m 的取值范围是m≥5.综上所述,m的取值范围是(-∞,-7]∪[5,+∞).2.(20xx·郑州模拟)已知a>0,b>0,函数f(x)=|x+a|+|x-b|的最小值为4.(1)求a+b的值;(2)求a2+b2的最小值.解:(1)因为|x+a|+|x-b|≥|a+b|,所以f(x)≥|a+b|,当且仅当(x+a)(x-b)<0时,等号成立,又a>0,b>0,所以|a+b|=a+b,所以f(x)的最小值为a+b,所以a+b=4.(2)由(1)知a+b=4,b=4-a,a2+b2=a2+(4-a)2=a2-a+=2+,故当且仅当a=,b=时,a2+b2取最小值为.3.(20xx届高三·湖南五市十校联考)设函数f(x)=|x-1|-2|x+a|.(1)当a=1时,求不等式f(x)>1的解集;(2)若不等式f(x)>0在x∈[2,3]上恒成立,求a的取值范围.解:(1)a=1,f(x)>1⇔|x-1|-2|x+1|>1⇔或或⇔-2<x≤-1或-1<x<-或x∈∅⇔-2<x<-,故不等式f(x)>1的解集为.(2)f(x)>0在x∈[2,3]上恒成立⇔|x-1|-2|x+a|>0在x∈[2,3]上恒成立⇔|2x+2a|<x-1⇔1-x<2x+2a<x-1⇔1-3x<2a<-x-1在x∈[2,3]上恒成立⇔(1-3x)max<2a<(-x-1)min⇔-5<2a<-4⇔-<a<-2.故a的取值范围为.4.(20xx·宝鸡质检)已知函数f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.解:(1)由||x-1|+2|<5得-5<|x-1|+2<5,所以-7<|x-1|<3,解得-2<x<4,则不等式|g(x)|<5的解集为{x|-2<x<4}.(2)因为对任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x-a|+|2x+3|≥|(2x -a)-(2x+3)|=|a+3|,g(x)=|x-1|+2≥2,所以|a+3|≥2,解得a≥-1或a≤-5,所以实数a的取值范围为{a|a≥-1或a≤-5}.5.(20xx届高三·湘中名校联考)已知函数f(x)=|x-2|+|2x+a|,a∈R.(1)当a=1时,解不等式f(x)≥5;(2)若存在x0满足f(x0)+|x0-2|<3,求实数a的取值范围.解:(1)当a=1时,f(x)=|x-2|+|2x+1|.由f(x)≥5得|x-2|+|2x+1|≥5.当x≥2时,不等式等价于x-2+2x+1≥5,解得x≥2,所以x≥2;当-<x<2时,不等式等价于2-x+2x+1≥5,即x≥2,所以解集为空集;当x≤-时,不等式等价于2-x-2x-1≥5,解得x≤-,所以x≤-.故原不等式的解集为.(2)f(x)+|x -2|=2|x -2|+|2x +a|=|2x -4|+|2x +a|≥|2x +a -(2x -4)|=|a +4|,∵原命题等价于(f(x)+|x -2|)min<3,即|a +4|<3,∴-7<a<-1.即实数a 的取值范围为(-7,-1).6.已知函数f(x)=|2x -1|+|2x +a|,g(x)=x +3. (1)当a =-2时,求不等式f(x)<g(x)的解集;(2)设a >-1,且当x∈时,f(x)≤g(x),求a 的取值范围. 解:(1)当a =-2时,不等式f(x)<g(x)化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x,x<12,-x-2,12≤x≤1,3x-6,x>1.其图象如图所示.从图象可知,当且仅当x∈(0,2)时,y<0.所以原不等式的解集是{x|0<x <2}.(2)当x∈时,f(x)=1+a.不等式f(x)≤g(x)化为1+a≤x+3.所以x≥a-2对x∈都成立.故-≥a-2,即a≤.从而a 的取值范围是.7.(20xx·贵阳检测)已知|x +2|+|6-x|≥k 恒成立. (1)求实数k 的最大值;(2)若实数k 的最大值为n ,正数a ,b 满足+=n.求7a +4b 的最小值.解:(1)因为|x +2|+|6-x|≥k 恒成立,设g(x)=|x +2|+|6-x|,则g(x)min≥k.又|x +2|+|6-x|≥|(x+2)+(6-x)|=8,当且仅当-2≤x≤6时,g(x)min =8,所以k≤8,即实数k 的最大值为8. (2)由(1)知,n =8,所以+=8, 即+=4,又a ,b 均为正数,所以7a +4b =(7a +4b)⎝ ⎛⎭⎪⎫45a+b +12a+3b=14[]⎝⎛⎭⎪⎫45a+b +12a+3b =≥×(5+4)=,当且仅当=,即a =5b =时,等号成立,所以7a +4b 的最小值是. 8.设a ,b ,c∈R+,且a +b +c =1.求证: (1)2ab +bc +ca +≤; (2)++≥2.证明:(1)因为1=(a +b +c)2=a2+b2+c2+2ab +2bc +2ca≥4ab+2bc +2ca +c2,当且仅当a =b 时等号成立.所以2ab +bc +ca +=(4ab +2bc +2ca +c2)≤. (2)因为≥,≥,≥, 所以++c2+b2a≥++⎝ ⎛⎭⎪⎫ac b +bc a=a +b +c ⎝ ⎛⎭⎪⎫a b +b a≥2a+2b +2c =2,当且仅当a =b =c =时等号成立.。

2020通用版高考数学二轮复习课时跟踪检测十八文2

2020通用版高考数学二轮复习课时跟踪检测十八文2

课时跟踪检测(十八)1.(2017·石家庄质检)设M ,N ,T 是椭圆x 216+y 212=1上的三个点,M ,N 在直线x =8上的射影分别为M 1,N 1.(1)若直线MN 过原点O ,直线MT ,NT 的斜率分别为k 1,k 2,求证:k 1k 2为定值;(2)若M ,N 不是椭圆长轴的端点,点L 的坐标为(3,0),△M 1N 1L 与△MNL 的面积之比为5∶1,求MN 中点K 的轨迹方程.解:(1)证明:设M (p ,q ),N (-p ,-q ),T (x 0,y 0),则k 1k 2=y 0-qy 0+q x 0-p x 0+p =y 20-q2x 20-p2,又⎩⎪⎨⎪⎧p 216+q 212=1,x 216+y 2012=1,故x 20-p 216+y 20-q212=0,即y 20-q2x 20-p 2=-34,所以k 1k 2=-34,为定值. (2)设直线MN 与x 轴相交于点R (r,0),S △MNL =12|r -3|·|y M -y N |,S △M 1N 1L =12·5·|yM 1-yN 1|.因为S △M 1N 1L =5S △MNL ,所以12·5·|yM 1-yN 1|=5·12|r -3|·|y M -y N |,又|yM 1-yN 1|=|y M -y N |,解得r =4(舍去),或r =2,即直线MN 经过点F (2,0). 设M (x 1,y 1),N (x 2,y 2),K (x 0,y 0),①当MN 垂直于x 轴时,MN 的中点K 即为F (2,0);②当MN 与x 轴不垂直时,设MN 的方程为y =k (x -2),则⎩⎪⎨⎪⎧x 216+y 212=1,y =k x -2消去y 得,(3+4k 2)x 2-16k 2x +16k 2-48=0.x 1+x 2=16k 23+4k 2,x 1x 2=16k 2-483+4k 2.x 0=8k 23+4k 2,y 0=-6k3+4k2.消去k ,整理得(x 0-1)2+4y 23=1(y 1≠0).经检验,(2,0)也满足(x 0-1)2+4y 23=1.综上所述,点K 的轨迹方程为(x -1)2+4y23=1(x >0).2.(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2. 联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22,x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.3.(2017·宁波模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)经过点P (-2,0)与点(1,1).(1)求椭圆的方程;(2)过P 点作两条互相垂直的直线PA ,PB ,交椭圆于A ,B ,求证:直线AB 经过定点.解:(1)由题意得,⎩⎪⎨⎪⎧4a 2+0b 2=1,1a 2+1b 2=1,解得a 2=4,b 2=43,椭圆的方程为x 24+3y24=1.(2)证明:由对称性知,若存在定点,则必在x 轴上, 当k PA =1时,l PA :y =x +2,∴⎩⎪⎨⎪⎧y =x +2,x 2+3y 2=4,∴x 2+3(x 2+4x +4)=4⇒x =-1. 以下验证:定点为(-1,0),由题意知,直线PA ,PB 的斜率均存在,设直线PA 的方程为y =k (x +2),A (x A ,y A ),B (x B ,y B ). 则x 2+3k 2(x 2+4x +4)=4⇒x A =2-6k 21+3k2,y A =4k1+3k2, 同理x B =2k 2-6k 2+3,y B =-4kk 2+3,则y Ax A +1=4k 3-3k 2=y B x B +1,得证. 4.已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,它的一个焦点恰好与抛物线y 2=4x 的焦点重合.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否恒过一定点?若经过,求出该定点坐标;若不经过,请说明理由.解:(1)由题意知椭圆的一个焦点为F (1,0),则c =1.由e =c a =22得a =2,∴b =1, ∴椭圆C 的方程为x 22+y 2=1.(2)由(1)知A (0,1),当直线BC 的斜率不存在时, 设BC :x =x 0,设B (x 0,y 0),则C (x 0,-y 0),k AB ·k AC =y 0-1x 0·-y 0-1x 0=1-y 20x 20=12x 20x 20=12≠14,不合题意.故直线BC 的斜率存在.设直线BC 的方程为:y =kx +m (m ≠1),并代入椭圆方程,得:(1+2k 2)x 2+4kmx +2(m 2-1)=0,①由Δ=(4km )2-8(1+2k 2)(m 2-1)>0, 得2k 2-m 2+1>0.②设B (x 1,y 1),C (x 2,y 2),则x 1,x 2是方程①的两根,由根与系数的关系得, x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-11+2k 2, 由k AB ·k AC =y 1-1x 1·y 2-1x 2=14得: 4y 1y 2-4(y 1+y 2)+4=x 1x 2,即(4k 2-1)x 1x 2+4k (m -1)(x 1+x 2)+4(m -1)2=0, 整理得(m -1)(m -3)=0, 又因为m ≠1,所以m =3, 此时直线BC 的方程为y =kx +3. 所以直线BC 恒过一定点(0,3).5.(2017·台州模拟)如图,已知椭圆C :x 24+y 2=1,过点P (1,0)作斜率为k 的直线l ,且直线l 与椭圆C 交于两个不同的点M ,N .(1)设点A (0,2),k =1,求△AMN 的面积;(2)设点B (t,0),记直线BM ,BN 的斜率分别为k 1,k 2.问是否存在实数t ,使得对于任意非零实数k ,(k 1+k 2)·k 为定值?若存在,求出实数t 的值及该定值;若不存在,请说明理由.解:(1)当k =1时,直线l 的方程为y =x -1.由⎩⎪⎨⎪⎧x 24+y 2=1,y =x -1,得x =0或x =85,当x =0时,y =-1, 当x =85时,y =35,不妨设N (0,-1),M ⎝ ⎛⎭⎪⎫85,35.所以|AN |=3.所以S △AMN =12×3×85=125.(2)由题意知,直线MN 的方程为y =k (x -1), 设M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 2=1,y =k x -1,得(1+4k 2)x 2-8k 2x +4k 2-4=0.所以x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.由k 1=y 1x 1-t,k 2=y 2x 2-t,得(k 1+k 2)·k =k ⎝ ⎛⎭⎪⎫y 1x 1-t +y 2x 2-t=k 2⎝ ⎛⎭⎪⎫x 1-1x 1-t +x 2-1x 2-t=k 2[x 1-tx 2-1+x 2-t x 1-1]x 1-t x 2-t=k 2[2x 1x 2-t +1x 1+x 2+2t ]x 1x 2-t x 1+x 2+t 2=k 22t -8k 24-8t +4t 2+t 2-4. 若2t -8=0,则t =4,(k 1+k 2)·k =0为定值. 若2t -8≠0,则当t 2-4=0, 即t =±2时,(k 1+k 2)·k =2t -84-8t +4t2为定值.所以当t =4时,(k 1+k 2)·k =0; 当t =2时,(k 1+k 2)·k =-1; 当t =-2时,(k 1+k 2)·k =-13.。

通用高考数学二轮复习课时跟踪检测二十五文

通用高考数学二轮复习课时跟踪检测二十五文
3.(20xx·石家庄质检)在平面直角坐标系中,不等式组(r为常数)表示的平面区域的面积为π,若x,y满足上述约束条件,则z=的最小值为( )
A.-1B.-
C.D.-
解析:选D 作出不等式组表示的平面区域,如图中阴影部分所示,由题意,知πr2=π,解得r=2.z==1+,表示可行域内的点与点P(-3,2)连线的斜率加上1,由图知当可行域内的点与点P的连线与圆相切时斜率最小.设切线方程为y-2=k(x+3),即kx-y+3k+2=0,则有=2,解得k=-或k=0(舍去),所以zmin=1-=-,故选D.
通用高考数学二轮复习课时跟踪检测二十五文
编 辑:__________________
时 间:__________________
撰写人:__________________
部 门:__________________
时 间:__________________
一、选择题
1.已知直线ax+by=1经过点(1,2),则2a+4b的最小值为( )
5.(20xx届高三·湖北七市(州)联考)已知函数f(x)=x2+(a+8)x+a2+a-12(a<0),且f(a2-4)=f(2a-8),则(n∈N*)的最小值为( )
A. B. C. D.
解析:选A 二次函数f(x)=x2+(a+8)x+a2+a-12图象的对称轴为直线x=-,由f(a2-4)=f(2a-8)及二次函数的图象,可以得出=-,解得a=-4或a=1,又a<0,∴a=-4,f(x)=x2+4x,∴===n+1++2≥2+2=2+2,当且仅当n+1=,即n=-1时等号成立,又n∈N*,∴当n=4时,=,n=3时,=<,∴最小值为,故选A.
二、填空题
7.若对于定义在R上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)是一个“λ 伴随函数”.有下列关于“λ 伴随函数”的结论:

【2019-2020】通用高考数学二轮复习课时跟踪检测十八文

【2019-2020】通用高考数学二轮复习课时跟踪检测十八文
①当MN垂直于x轴时,MN的中点K即为F(2,0);
②当MN与x轴不垂直时,设MN的方程为y=k(x-2),则 消去y得,(3+4k2)x2-16k2x+16k2-48=0.
x1+x2= ,x1x2= .
x0= ,y0= .
消去k,整理得(x0-1)2+ =1(y1≠0).
经检验,(2,0)也满足(x0-1)2+ =1.
解:(1)由题意知椭圆的一个焦点为F(1,0),则c=1.由e= = 得a= ,∴b=1,
∴椭圆C的方程为 +y2=1.
(2)由(1)知A(0,1),当直线BC的斜率不存在时,
设BC:x=x0,设B(x0,y0),则C(x0,-y0),
kAB·kAC= · = = = ≠ ,
不合题意.故直线BC的斜率存在.
解:(1)由题意得,
解得a2=4,b2= ,椭圆的方程为 + =1.
(2)证明:由对称性知,若存在定点,则必在x轴上,
当kPA=1时,lPA:y=x+2,

∴x2+3(x2+4x+4)=4⇒x=-1.
以下验证:定点为(-1,0),
由题意知,直线PA,PB的斜率均存在,
设直线PA的方程为y=k(x+2),A(xA,yA),B(xB,yB).
(2)若M,N不是椭圆长轴的端点,点L的坐标为(3,0),△M1N1L与△MNL的面积之比为5∶1,求MN中点K的轨迹方程.
解:(1)证明:设M(p,q),N(-p,-q),T(x0,y0),则k1k2= = ,
又 故 + =0,
即 =- ,所以k1k2=- ,为定值.
(2)设直线MN与x轴相交于点R(r,0),
(1)设点A(0,2),k=1,求△AMN的面积;
(2)设点B(t,0),记直线BM,BN的斜率分别为k1,k2.问是否存在实数t,使得对于任意非零实数k,(k1+k2)·k为定值?若存在,求出实数t的值及该定值;若不存在,请说明理由.

[推荐学习]通用版2018年高考数学二轮复习课时跟踪检测二十理

[推荐学习]通用版2018年高考数学二轮复习课时跟踪检测二十理

课时跟踪检测(二十)一、选择题1.若过点P (2,1)的直线l 与圆C :x 2+y 2+2x -4y -7=0相交于两点A ,B ,且∠ACB =60°(其中C 为圆心),则直线l 的方程是( )A .4x -3y -5=0B .x =2或4x -3y -5=0C .4x -3y +5=0D .x =2或4x -3y +5=0解析:选B 由题意可得,圆C 的圆心为C (-1,2),半径为23,因为∠ACB =60°,所以△ABC 为正三角形,边长为23,所以圆心C 到直线l 的距离为3.若直线l 的斜率不存在,则直线l 的方程为x =2,与圆相交,且圆心C 到直线l 的距离为3,满足条件;若直线l 的斜率存在,设l :y -1=k (x -2),则圆心C 到直线l 的距离d =|3k +1|k 2+1=3,解得k =43,所以此时直线l 的方程为4x -3y -5=0.2.圆心在直线x -y -4=0上,且经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点的圆的方程为( )A .x 2+y 2-x +7y -32=0 B .x 2+y 2-x +7y -16=0 C .x 2+y 2-4x +4y +9=0 D .x 2+y 2-4x +4y -8=0解析:选A 设经过两圆的交点的圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0,即x 2+y 2+61+λx +6λ1+λy -4+28λ1+λ=0,其圆心坐标为⎝ ⎛⎭⎪⎫-31+λ,-3λ1+λ,又圆心在直线x -y -4=0上,所以-31+λ+3λ1+λ-4=0,解得λ=-7,故所求圆的方程为x 2+y 2-x +7y -32=0.3.(2017·洛阳统考)已知双曲线E :x 24-y 22=1,直线l 交双曲线于A ,B 两点,若线段AB 的中点坐标为⎝ ⎛⎭⎪⎫12,-1,则l 的方程为( )A .4x +y -1=0B .2x +y =0C .2x +8y +7=0D .x +4y +3=0解析:选C 依题意,设点A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 214-y 212=1,x 224-y222=1,两式相减得x 21-x 224=y 21-y 222,即y 1-y 2x 1-x 2=12×x 1+x 2y 1+y 2.又线段AB 的中点坐标是⎝ ⎛⎭⎪⎫12,-1,因此x 1+x 2=1,y 1+y 2=-2,x 1+x 2y 1+y 2=-12,则y 1-y 2x 1-x 2=-14,即直线AB 的斜率为-14,直线l 的方程为y +1=-14⎝⎛⎭⎪⎫x -12,即2x +8y +7=0,故选C.4.(2017·云南统考)抛物线M 的顶点是坐标原点O ,焦点F 在x 轴的正半轴上,准线与曲线E :x 2+y 2-6x +4y -3=0只有一个公共点,设A 是抛物线M 上一点,若OA ―→·AF ―→=-4,则点A 的坐标是( )A .(-1,2)或(-1,-2)B .(1,2)或(1,-2)C .(1,2)D .(1,-2)解析:选B 设抛物线M 的方程为y 2=2px (p >0),则其准线方程为x =-p2.曲线E 的方程可化为(x -3)2+(y +2)2=16,由题意知圆心E 到准线的距离d =3+p2=4,解得p =2,所以抛物线M 的方程为y 2=4x ,F (1,0).设A ⎝ ⎛⎭⎪⎫y 204,y 0,则OA ―→=⎝ ⎛⎭⎪⎫y 204,y 0,AF ―→=⎝ ⎛⎭⎪⎫1-y 204,-y 0,所以OA ―→·AF ―→=y 204⎝ ⎛⎭⎪⎫1-y 204-y 20=-4,解得y 0=±2,所以x 0=1,所以点A 的坐标为(1,2)或(1,-2),故选B.5.(2017·成都模拟)已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB ―→|=2,OC ―→=53OA―→-23OB ―→.若M 是线段AB 的中点,则OC ―→·OM ―→的值为( ) A .3 B .2 3 C .2D .-3解析:选 A 由条件易知△OAB 为正三角形,OA ―→·OB ―→=|OA ―→|·|OB ―→|·cos π3=2.又由M 为AB 的中点,知OM ―→=12(OA ―→+OB ―→),所以OC ―→·OM ―→=⎝ ⎛⎭⎪⎫53 OA ―→-23OB ―→·12(OA ―→+OB ―→)=12⎝ ⎛⎭⎪⎫53|OA ―→|2+OA ―→·OB ―→-23|OB ―→|2=3.6.(2017·武昌调研)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,经过右焦点F 垂直于l 1的直线分别交l 1,l 2于A ,B 两点.若|OA |,|AB |,|OB |成等差数列,且AF ―→与FB ―→反向,则该双曲线的离心率为( )A.52B. 3C. 5D.52解析:选C 由题可知,双曲线的实轴长为2a ,虚轴长为2b ,令∠AOF =α,则由题意知tan α=b a ,在△AOB 中,∠AOB =180°-2α,tan ∠AOB =-tan 2α=|AB ||OA |,∵|OA |,|AB |,|OB |成等差数列,∴设|OA |=m -d ,|AB |=m ,|OB |=m +d ,∵OA ⊥BF ,∴(m -d )2+m 2=(m +d )2,整理,得d =14m ,∴-tan 2α=-2tan α1-tan 2α=|AB ||OA |=m 34m =43,解得b a=2或b a =-12(舍去),∴b =2a ,c =4a 2+a 2=5a ,∴e =c a= 5. 二、填空题7.设P ,Q 分别为圆x 2+y 2-8x +15=0和抛物线y 2=4x 上的点,则P ,Q 两点间的最小距离是________.解析:由题意知,圆的标准方程为(x -4)2+y 2=1,则圆心C (4,0),半径为1.由题意知P ,Q 间的最小距离为圆心C (4,0)到抛物线上的点的最小距离减去半径1.设以(4,0)为圆心,r 为半径的圆的方程为(x -4)2+y 2=r 2,与y 2=4x 联立,消去y 整理得,x 2-4x +16-r 2=0,令Δ=16-4(16-r 2)=0,解得r =23,所以|PQ |min =23-1.答案:23-18.(2017·山东高考)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.解析:法一:设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知 |AF |=y 1+p 2,|BF |=y 2+p 2,|OF |=p2,由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .联立⎩⎪⎨⎪⎧x 2a 2-y 2b2=1,x 2=2py消去x ,得a 2y 2-2pb 2y +a 2b 2=0, 所以y 1+y 2=2pb 2a 2,所以2pb2a2=p ,即b 2a 2=12,故b a =22, 所以双曲线的渐近线方程为y =±22x . 法二:设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知|AF |=y 1+p 2,|BF |=y 2+p2,|OF |=p2,由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .k AB =y 2-y 1x 2-x 1=x 222p -x 212p x 2-x 1=x 2+x 12p.由⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y 22b 2=1,得k AB =y 2-y 1x 2-x 1=b 2x 1+x 2a 2y 1+y 2=b 2a 2·x 1+x 2p ,则b 2a 2·x 1+x 2p =x 2+x 12p , ∴b 2a 2=12,故b a =22, ∴双曲线的渐近线方程为y =±22x . 答案:y =±22x 9.(2017·洛阳统考)已知抛物线C :x 2=4y 的焦点为F ,直线AB 与抛物线C 相交于A ,B 两点,若2OA ―→+OB ―→-3OF ―→=0,则弦AB 中点到抛物线C 的准线的距离为________.解析:依题意得,抛物线的焦点F (0,1),准线方程是y =-1,因为2(OA ―→-OF ―→)+(OB ―→-OF ―→)=0,即2FA ―→+FB ―→=0,所以F ,A ,B 三点共线.设直线AB :y =kx +1(k ≠0),A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧y =kx +1,x 2=4y 得x 2-4kx -4=0,则x 1x 2=-4;①又2FA ―→+FB ―→=0,因此2x 1+x 2=0.②由①②解得x 21=2,x 22=8,弦AB 的中点到抛物线C 的准线的距离为12[]y 1++y 2+=12(y 1+y 2)+1=18(x 21+x 22)+1=94.答案:94三、解答题10.(2017·合肥质检)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点M ⎝⎛⎭⎪⎫1,233,离心率为33. (1)求椭圆E 的标准方程;(2)若A 1,A 2分别是椭圆E 的左、右顶点,过点A 2作直线l 与x 轴垂直,点P 是椭圆E 上的任意一点(不同于椭圆E 的四个顶点),连接PA 1交直线l 于点B ,点Q 为线段A 2B 的中点,求证:直线PQ 与椭圆E 只有一个公共点.解:(1)依题意得,⎩⎪⎨⎪⎧e =c a =33,1a +43b =1,a 2=b 2+c 2,解得⎩⎨⎧a =3,b =2,c =1,∴椭圆E 的标准方程为x 23+y 22=1.(2)证明:设P (x 0,y 0)(x 0≠0且x 0≠±3),则直线PA 1的方程为y =y 0x 0+3(x +3),令x =3, 得B ⎝⎛⎭⎪⎫3,23y 0x 0+3, 则线段A 2B 的中点Q ⎝⎛⎭⎪⎫3,3y 0x 0+3,∴直线PQ 的斜率k PQ =y 0-3y 0x 0+3x 0-3=x 0y 0x 20-3. ①∵P 是椭圆E 上的点,∴x 203+y 202=1,即x 2=3⎝ ⎛⎭⎪⎫1-y 202,代入①式,得k PQ =-2x 03y 0,∴直线PQ 的方程为y -y 0=-2x 03y 0(x -x 0),将其与椭圆方程联立, 得⎩⎪⎨⎪⎧y -y 0=-2x03y 0x -x 0,x 23+y 22=1.又2x 20+3y 20=6,整理得x 2-2x 0x +x 20=0, ∵Δ=0,∴直线PQ 与椭圆E 相切,即直线PQ 与椭圆E 只有一个公共点.11.(2018届高三·广西三市联考)已知右焦点为F 2(c,0)的椭圆C :x 2a 2+y 2b2=1(a >b >0)过点⎝ ⎛⎭⎪⎫1,32,且椭圆C 关于直线x =c 对称的图形过坐标原点. (1)求椭圆C 的方程;(2)过点⎝ ⎛⎭⎪⎫12,0作直线l 与椭圆C 交于E ,F 两点,线段EF 的中点为M ,点A 是椭圆C 的右顶点,求直线MA 的斜率k 的取值范围.解:(1)∵椭圆C 过点⎝ ⎛⎭⎪⎫1,32,∴1a 2+94b 2=1, ①∵椭圆C 关于直线x =c 对称的图形过坐标原点, ∴a =2c ,∵a 2=b 2+c 2,∴b 2=34a 2,②由①②得a 2=4,b 2=3, ∴椭圆C 的方程为x 24+y 23=1.(2)依题意,直线l 过点⎝ ⎛⎭⎪⎫12,0且斜率不为零,故可设其方程为x =my +12. 由⎩⎪⎨⎪⎧x =my +12,x 24+y 23=1消去x ,并整理得4(3m 2+4)y 2+12my -45=0.设E (x 1,y 1),F (x 2,y 2),M (x 0,y 0), ∴y 1+y 2=-3m 3m 2+4,∴y 0=y 1+y 22=-3m m 2+,∴x 0=my 0+12=23m 2+4,∴k =y 0x 0-2=m4m 2+4.当m =0时,k =0; 当m ≠0时,k =m4m 2+4=14m +4m, ∵⎪⎪⎪⎪⎪⎪4m +4m =4|m |+4|m |≥8,∴0<1⎪⎪⎪⎪⎪⎪4m +4m ≤18, ∴0<|k |≤18,∴-18≤k ≤18且k ≠0.综上可知,直线MA 的斜率k 的取值范围是⎣⎢⎡⎦⎥⎤-18,18.12.已知F 1,F 2为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P ⎝ ⎛⎭⎪⎫1,32在椭圆E 上,且|PF 1|+|PF 2|=4.(1)求椭圆E 的方程;(2)过F 1的直线l 1,l 2分别交椭圆E 于A ,C 和B ,D ,且l 1⊥l 2,问是否存在常数λ,使得1|AC |,λ,1|BD |成等差数列?若存在,求出λ的值,若不存在,请说明理由.解:(1)∵|PF 1|+|PF 2|=4, ∴2a =4,a =2.∴椭圆E :x 24+y 2b 2=1.将P ⎝ ⎛⎭⎪⎫1,32代入可得b 2=3,∴椭圆E 的方程为x 24+y 23=1.(2)①当AC 的斜率为零或斜率不存在时,1|AC |+1|BD |=13+14=712;②当AC 的斜率k 存在且k ≠0时,设AC 的方程为y =k (x +1),代入椭圆方程x 24+y 23=1,并化简得(3+4k 2)x 2+8k 2x +4k 2-12=0. 设A (x 1,y 1),C (x 2,y 2), 则x 1+x 2=-8k23+4k ,x 1·x 2=4k 2-123+4k 2.|AC |=1+k 2|x 1-x 2|=+k2[x 1+x 22-4x 1x 2]=+k 23+4k2.∵直线BD 的斜率为-1k,∴|BD |=12⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-1k 23+4⎝ ⎛⎭⎪⎫-1k 2=+k 23k 2+4.∴1|AC |+1|BD |=3+4k2+k 2+3k 2+4+k 2=712. 综上,2λ=1|AC |+1|BD |=712,∴λ=724.故存在常数λ=724,使得1|AC |,λ,1|BD |成等差数列.。

2020-2021学年高考总复习数学(文)二轮复习模拟试题及答案解析

2020-2021学年高考总复习数学(文)二轮复习模拟试题及答案解析

最新高考数学二模试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}2.命题“∀x∈R,x2﹣x+1>0”的否定是()A.∀x0∈R,x02﹣x0+1≤0 B.∀x0∈R,x02﹣x0+1≤0C.∃x0R,x02﹣x0+1≤0 D.∃x0∈R,x02﹣x0+1≤03.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i4.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.﹣C.D.5.执行如图的程序框图,若输入的a=209,b=76,则输出的a是()A.3 B.57 C.19 D.766.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣7.已知函数f(x)=+a,若f(x)是奇函数,则a=()A.0 B.C.D.8.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]9.某几何体的三视图如图所示,该几何体的体积为()A.B.C.D.310.当x∈[1,2],函数y=x2与y=a x(a>0)的图象有交点,则a的取值范围是()A.[,2] B.[,] C.[,2] D.[,]11.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=212.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A、B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣,] C.[﹣3,3] D.[﹣5,5]二、填空题(共4小题,每小题5分,满分20分)13.曲线y=e x在点(0,1)处的切线方程是.14.已知||=,||=2,若(+)⊥,则与的夹角是.15.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .16.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为.三、简答题,本大题共70分,17-21题为必考题,22-24为选考题17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.18.四棱锥P﹣ABCD的底面ABCD是平行四边形,PA=AD,M,N分别是棱PC,AB 的中点,且MN⊥CD.(Ⅰ)求证:PN=CN;(Ⅱ)直线MN与平面PBD相交于点F,求MF:FN.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出8家,然后从这8家中选出2家,求这2家中恰好中、小型企业各一家的概率K2=0.050 0.025 0.010P(K2≥k0)3.841 5.024 6.635K020.已知抛物线E:x2=4y,m,n是经过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D(Ⅰ)求m的斜率k的取值范围;(Ⅱ)当n过E的焦点时,求B到n的距离.21.设函数f(x)=x++alnx,其中a∈R.(Ⅰ)设f(x)的极小值点为x=t,请将a用t表示;(Ⅱ)记f(x)的极小值为g(t),证明:(1)g(t)=g();(2)函数y=g(t)恰有两个零点,且互为倒数.22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中不等式变形得:x(x﹣2)>0,解得:x<0或x>2,即B={x|x<0或x>2},∵A={﹣1,0,1,2,3},∴A∩B={﹣1,3},故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.命题“∀x∈R,x2﹣x+1>0”的否定是()A.∀x0∈R,x02﹣x0+1≤0 B.∀x0∈R,x02﹣x0+1≤0C.∃x0R,x02﹣x0+1≤0 D.∃x0∈R,x02﹣x0+1≤0考点:命题的否定.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题写出结果即可.解答:解:因为全称命题的否定是特称命题,所以,命题“∀x∈R,x2﹣x+1>0”的否定是:∃x0∈R,x02﹣x0+1≤0.故选:D.点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.3.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:化简复数为a+bi的形式,然后利用对称性求解即可.解答:解:==﹣2﹣i.在复平面内,复数z与的对应点关于虚轴对称,则z=2﹣i.故选:A.点评:本题考查复数的基本概念,复数的乘除运算,考查计算能力.4.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.﹣C.D.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:直接由已知结合等差数列的通项公式和前n项和列式求得公差.解答:解:设等差数列{a n}的首项为a1,公差为d,由a7=8,S7=42,得,解得:.故选:D.点评:本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础题.5.执行如图的程序框图,若输入的a=209,b=76,则输出的a是()A.3 B.57 C.19 D.76考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,b,c的值,当b=0时满足条件b=0,退出循环,输出a的值为19.解答:解:模拟执行程序框图,可得a=209,b=76c=57a=76,b=57,不满足条件b=0,c=19,a=57,b=19不满足条件b=0,c=0,a=19,b=0满足条件b=0,退出循环,输出a的值为19.故选:C.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模,本题属于基础知识的考查.6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣考点:正弦函数的图象.专题:三角函数的图像与性质.分析:结合图象,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解答:解:由函数的图象可得==﹣,∴ω=.再根据五点法作图可得•+φ=0,求得φ=﹣,故选:C.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于基础题.7.已知函数f(x)=+a,若f(x)是奇函数,则a=()A.0 B.C.D.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据奇函数的定义f(x)+f(﹣x)=0,x=1,特殊值求解即可.解答:解:∵函数f(x)=+a,f(x)是奇函数,∴f(1)+f(﹣1)=0,即++a=0,2a=1,a=,故选:B点评:本题考查了奇函数的定义性质,难度很小,属于容易题.8.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义以及斜率公式的计算,即可求z的取值范围.解答:解:作出不等式组对应的平面区域如图:(阴影部分).z=的几何意义是区域内的点(x,y)到定点D(﹣1,0)的斜率,由图象知BD的斜率最大,CD的斜率最小,由,解得,即B(,),即BD的斜率k==,由,解得,即C(,),即CD的斜率k==,即≤z≤,故选:D.点评:本题主要考查线性规划以及直线斜率的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.9.某几何体的三视图如图所示,该几何体的体积为()A.B.C.D.3考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是三棱柱与三棱锥的组合体,结合图中的数据,求出它的体积.解答:解:根据几何体的三视图,得;该几何体是下部为直三棱柱,上部为直三棱锥的组合体;如图所示:∴该几何体的体积是V几何体=V三棱柱+V三棱锥=×2×1×1+××2×1×1=.故选:A.点评:本题考查了利用空间几何体的三视图求体积的应用问题,是基础题目.10.当x∈[1,2],函数y=x2与y=a x(a>0)的图象有交点,则a的取值范围是()A.[,2] B.[,] C.[,2] D.[,]考点:函数的零点与方程根的关系.专题:计算题;作图题;函数的性质及应用.分析:作函数y=x2与y=a x(a>0)在[1,2]上的图象,结合图象写出a的取值范围即可.解答:解:作函数y=x2与y=a x(a>0)在[1,2]上的图象如下,结合图象可得,a的取值范围是[,],故选:B.点评:本题考查了函数的图象的应用,属于基础题.11.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=2考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:以AB所在直线为x轴,其中点为原点,建立坐标系,再通过椭圆及双曲线的基本概念即可得到答案.解答:解:以AB所在直线为x轴,其中点为原点,建立坐标系,则A(﹣1,0),B(1,0),C(1+cosθ,sinθ),所以AC==,对于椭圆而言,2c=2,2a=AC+BC=+1,所以==;对于双曲线而言,2c=2,2a=AC﹣BC=﹣1,所以==;故﹣=﹣=1,故选:A.点评:本题考查椭圆、双曲线的概念,建立坐标系是解决本题的关键,属于中档题.12.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A、B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣,] C.[﹣3,3] D.[﹣5,5]考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:确定A是MB的中点,利用圆x2+y2=1的直径是2,可得MA≤2,即点M到原点距离小于等于3,从而可得结论.解答:解:∵=,∴A是MB的中点,∵圆x2+y2=1的直径是2,∴MA≤2,∴点M到原点距离小于等于3,∴t2+4≤9,∴﹣≤t≤,故选:B.点评:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.曲线y=e x在点(0,1)处的切线方程是x﹣y+1=0 .考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出原函数的导函数,得到在x=0处的导数值,再求出f(0),然后直接写出切线方程的斜截式.解答:解:由f(x)=e x,得f′(x)=e x,∴f′(0)=e0=1,即曲线f(x)=e x在x=0处的切线的斜率等于1,曲线经过(0,1),∴曲线f(x)=e x在x=0处的切线方程为y=x+1,即x﹣y+1=0.故答案为:x﹣y+1=0.点评:本题考查利用导数研究曲线上某点的切线方程,曲线上某点处的导数值,就是曲线在该点处的切线的斜率,是中档题.14.已知||=,||=2,若(+)⊥,则与的夹角是150°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解答:解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.点评:考查两非零向量垂直的充要条件,以及数量积的计算公式,向量夹角的范围.15.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .考点:数列递推式.专题:等差数列与等比数列.分析:a n=4S n﹣3,当n=1时,a1=4a1﹣3,解得a1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,利用等比数列的通项公式即可得出.解答:解:∵a n=4S n﹣3,∴当n=1时,a1=4a1﹣3,解得a1=1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,∴数列是等比数列,首项为,公比为﹣,∴=.令n=4,则S4=+=.故答案为:.点评:本题考查了等比数列的通项公式,考查了变形能力,考查了推理能力与计算能力,属于中档题.16.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为20π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,求出x,可得r,即可求出该三棱锥的外接球的表面积.解答:解:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,所以x=1,所以该三棱锥的外接球的表面积为4πr2=20π.故答案为:20π.点评:本题考查求三棱锥的外接球的表面积,考查学生的计算能力,确定球的半径是关键.三、简答题,本大题共70分,17-21题为必考题,22-24为选考题17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.考点:余弦定理;正弦定理.专题:三角函数的求值;解三角形.分析:(Ⅰ)由余弦定理可得2accosB=a2+c2﹣b2,代入已知等式整理得cosA=﹣,即可求得A.(Ⅱ)由已知可求∠DAC=,由正弦定理有=,又BD=3CD,可得3sinB=2sinC,由B=﹣C化简即可得解.解答:解:(Ⅰ)因为2accosB=a2+c2﹣b2,所以2(a2﹣b2)=a2+c2﹣b2+bc.…(2分)整理得a2=b2+c2+bc,所以cosA=﹣,即A=.…(4分)(Ⅱ)因为∠DAB=,所以AD=BD•sinB,∠DAC=.…(6分)在△ACD中,有=,又因为BD=3CD,所以3sinB=2sinC,…(9分)由B=﹣C得cosC﹣sinC=2sinC,…(11分)整理得tanC=.…(12分)点评:本题主要考查了余弦定理,正弦定理,同角三角函数关系式,三角函数恒等变换的应用,综合性较强,属于基本知识的考查.18.四棱锥P﹣ABCD的底面ABCD是平行四边形,PA=AD,M,N分别是棱PC,AB 的中点,且MN⊥CD.(Ⅰ)求证:PN=CN;(Ⅱ)直线MN与平面PBD相交于点F,求MF:FN.考点:点、线、面间的距离计算;空间中直线与平面之间的位置关系.专题:综合题;空间位置关系与距离.分析:(Ⅰ)取PD中点E,连AE,EM,证明MN⊥平面PCD,可得MN⊥PC,即可证明PN=CN;(Ⅱ)设M,N,C,A到平面PBD的距离分别为d1,d2,d3,d4,则d3=2d1,d4=2d2,由V A﹣PBD=V C﹣PBD,得d3=d4,则d1=d2,即可得出结论.解答:(Ⅰ)证明:取PD中点E,连AE,EM,则EM∥AN,且EM=AN,四边形ANME是平行四边形,MN∥AE.由PA=AD得AE⊥PD,故MN⊥PD.又因为MN⊥CD,所以MN⊥平面PCD,则MN⊥PC,PN=CN.…(6分)(Ⅱ)解:设M,N,C,A到平面PBD的距离分别为d1,d2,d3,d4,则d3=2d1,d4=2d2,由V A﹣PBD=V C﹣PBD,得d3=d4,则d1=d2,故MF:FN=d1:d2=1:1.…(12分)点评:本题考查线面垂直的证明,考查等体积的运用,考查学生分析解决问题的能力,属于中档题.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出8家,然后从这8家中选出2家,求这2家中恰好中、小型企业各一家的概率K2=0.050 0.025 0.010P(K2≥k0)3.841 5.024 6.635K0考点:独立性检验.专题:计算题;概率与统计.分析:(Ⅰ)由题意知根据表中所给的数据,利用公式可求K2的值,从临界值表中可以知道K2>5.024,根据临界值表中所给的概率得到与本题所得的数据对应的概率是0.025,得到结论;(Ⅱ)由(Ⅰ)可知“支持”的企业中,中、小企业数之比为1:3,按分层抽样得到的8家中,中、小企业分别为2家和6家,列表确定基本事件,即可求出这2家中恰好中、小型企业各一家的概率.解答:解:(Ⅰ)K2=≈5.657,因为5.657>5.024,所以能在犯错概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关.…(4分)(Ⅱ)由(Ⅰ)可知“支持”的企业中,中、小企业数之比为1:3,按分层抽样得到的8家中,中、小企业分别为2家和6家,分别记为A1,A2,B1,B2,B3,B4,B5,B6,把可能结果列表如下:A1 A2 B1 B2 B3 B4 B5 B6A1﹣+ + + + + +A2﹣+ + + + + +B1 + + ﹣B2 + + ﹣B3 + + ﹣B4 + + ﹣B5 + + ﹣B6 + + ﹣结果总数是56,符合条件的有24种结果.(若用树状图列式是:)从8家中选2家,中、小企业恰各有一家的概率为=.…(12分)点评:本题考查独立性检验的应用,考查概率的计算,考查学生的计算能力,属于中档题.20.已知抛物线E:x2=4y,m,n是经过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D(Ⅰ)求m的斜率k的取值范围;(Ⅱ)当n过E的焦点时,求B到n的距离.考点:直线与圆锥曲线的关系.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),代入抛物线方程,运用判别式等于0和大于0,解不等式即可得到k的范围;(Ⅱ)k AF==﹣k,所以ak=2,确定B的坐标,再求出B到n的距离.解答:解:(Ⅰ)m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),分别代入x2=4y,得x2﹣4kx+4ka+4=0①,x2+4kx﹣4ka+4=0②,…(2分)由△1=0得k2﹣ka﹣1=0,由△2>0得k2+ka﹣1>0,…(4分)故有2k2﹣2>0,得k2>1,即k<﹣1或k>1.…(6分)(Ⅱ)F(0,1),k AF==﹣k,所以ak=2.…(8分)由△1=0得k2=ka+1=3,B(2k,k2),所以B到n的距离d===4 …(12分)点评:本题考查抛物线的方程和性质,主要考查直线和抛物线方程联立,运用判别式,考查运算化简的能力,属于中档题.21.设函数f(x)=x++alnx,其中a∈R.(Ⅰ)设f(x)的极小值点为x=t,请将a用t表示;(Ⅱ)记f(x)的极小值为g(t),证明:(1)g(t)=g();(2)函数y=g(t)恰有两个零点,且互为倒数.考点:利用导数研究函数的极值;函数的零点.专题:导数的综合应用.分析:(Ⅰ)求出导函数,利用f(x)的极小值点为x=t.推出t=>0,然后求解单调区间,a=﹣表示出a与t的关系.(Ⅱ)(ⅰ)由(Ⅰ)知f(x)的极小值,就是证明g()=g(t).(ⅱ)求出函数的g′(t)=﹣(1+)lnt,利用单调性以及极值,判断分别存在唯一的c ∈(1,1)和d∈(1,e2),推出g(c)=g(d)=0,化简即可.解答:解:(Ⅰ)f′(x)=1﹣+=.t=>0,…(2分)当x∈(0,t)时,f′(x)<0,f(x)单调递减;当x∈(t,+∞)时,f′(x)>0,f(x)单调递增.…(4分)由f′(t)=0得a=﹣t.…(6分)(Ⅱ)(ⅰ)由(Ⅰ)知f(x)的极小值为g(t)=t++(﹣t)lnt,则g()=+t+(t﹣)ln=t++(﹣t)lnt=g(t).…(8分)(ⅱ)g′(t)=﹣(1+)lnt,…(9分)当t∈(0,1)时,g′(t)>0,f(t)单调递增;当t∈(1,+∞)时,g′(t)<0,g(t)单调递减.…(10分)又g()=g(e2)=﹣e2<0,g(1)=2>0,分别存在唯一的c∈(1,1)和d∈(1,e2),使得g(c)=g(d)=0,且cd=1,所以y=g(t)有两个零点且互为倒数.…(12分)点评:本题考查函数的导数的综合应用,函数的单调性以及函数的极值的求法,函数的零点的应用,考查计算能力.22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.考点:与圆有关的比例线段;空间中直线与直线之间的位置关系.专题:选作题;立体几何.分析:(Ⅰ)利用切割线定理,可得PB=PC,且PO平分∠BPC,可得PO⊥BC,又AC ⊥BC,可得AC∥OP;(Ⅱ)由切割线定理得DC2=DA•DB,即可求出AB.解答:(Ⅰ)证明:因PB,PC分别与圆O相切于B,C两点,所以PB=PC,且PO平分∠BPC,所以PO⊥BC,又AC⊥BC,即AC∥OP.…(4分)(Ⅱ)解:由PB=PC得PD=PB+CD=5,在Rt△PBD中,可得BD=4.则由切割线定理得DC2=DA•DB,得DA=1,因此AB=3.…(10分)点评:本题考查切割线定理,考查学生分析解决问题的能力,正确运用切割线定理是关键.23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函数的单调性即可得出.解答:解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacosθ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.点评:本题考查了把圆与直线的极坐标方程分别化为直角坐标方程、直线与圆相切的性质、极坐标方程的应用、三角函数的单调性,考查了推理能力与计算能力,属于中档题.24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.考点:绝对值不等式的解法;基本不等式.专题:计算题;分类讨论;不等式的解法及应用.分析:(Ⅰ)运用零点分区间,讨论x的范围,去绝对值,由一次函数的单调性可得最大值;(Ⅱ)由a2+2b2+c2=(a2+b2)+(b2+c2),运用重要不等式,可得最大值.解答:解:(Ⅰ)当x≤﹣1时,f(x)=3+x≤2;当﹣1<x<1时,f(x)=﹣1﹣3x<2;当x≥1时,f(x)=﹣x﹣3≤﹣4.故当x=﹣1时,f(x)取得最大值m=2.(Ⅱ)a2+2b2+c2=(a2+b2)+(b2+c2)≥2ab+2bc=2(ab+bc),当且仅当a=b=c=时,等号成立.此时,ab+bc取得最大值=1.点评:本题考查绝对值不等式的解法和运用,主要考查分类讨论的思想方法和重要不等式的解法,属于中档题.。

(部编版)2020通用版高考数学二轮复习课时跟踪检测二文92

(部编版)2020通用版高考数学二轮复习课时跟踪检测二文92

课时跟踪检测(二)A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝⎛⎭⎪⎫k π2-π12,k π2+5π12 (k ∈Z),故选B.2.函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4C .f (x )=sin ⎝⎛⎭⎪⎫4x +π4 D .f (x )=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f (x )的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f (x )=sin(2x+φ).又函数f (x )的图象经过点⎝⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4,故选A.3.(2017·天津高考)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z), ①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k ′π(k ′∈Z),②由①②得ω=-23+43(k ′-2k ).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z. 又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f (x )=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f (x )=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x →π2时,y <0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m (m >0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m >0,故当k =0时,m 最小,此时m =π6.⎝⎛⎭⎪⎫ω>0,|φ|<π2的部6.(2017·云南检测)函数f (x )=sin(ωx +φ)分图象如图所示,则f (x )的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k ),k ∈ZD .(-3+8k,1+8k ),k ∈Z解析:选 D 由题图,知函数f (x )的最小正周期为T =4×(3-1)=8,所以ω=2πT=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫π4x +φ.把(1,1)代入,得sin ⎝ ⎛⎭⎪⎫π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k ∈Z),得8k -3≤x ≤8k +1(k ∈Z),所以函数f (x )的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B .1 C.35D.15解析:选A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f (x )=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f (x )的最大值为65.8.(2017·武昌调研)若f (x )=cos 2x +a cos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( ) A .[-2,+∞) B .(-2,+∞) C .(-∞,-4)D .(-∞,-4]解析:选D f (x )=1-2sin 2x -a sin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g (t )=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a ≤-4,故选D.9.已知函数f (x )=sin(2x +φ)(0<φ<π),若将函数f (x )的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3D.π6解析:选D 函数f (x )的图象向左平移π6个单位长度后所得图象对应的函数解析式为y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f (x )=sin ωx +3cos ωx (ω>0)满足f (α)=-2,f (β)=0,且|α-β|的最小值为π2,则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3B .f (x )=2sin ⎝ ⎛⎭⎪⎫x -π3C .f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6D .f (x )=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f (x )=sin ωx +3cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π3.因为f (α)=-2,f (β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f (x )的最小正周期),故ω=2πT =1,所以f (x )=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( )A .-2B .-1C .- 2D .- 3解析:选B f (x )=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -3π4+π3=-2sin ⎝ ⎛⎭⎪⎫2x -π6,则g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 解析:选D f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,得k π2+π8≤x ≤k π2+3π8,k ∈Z ,令k =0,得π8≤x ≤3π8,此时f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.二、填空题13.(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解析:依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1. 答案:114.已知函数f (x )=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________. 解析:函数f (x )=2sin(ωx +φ)对任意的x 都有f ⎝⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其图象的一条对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.答案:±215.(2017·深圳调研)已知函数f (x )=cos x sin x (x ∈R),则下列四个结论中正确的是________.(写出所有正确结论的序号)①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上是增函数; ④f (x )的图象关于直线x =3π4对称. 解析:因为f (x )=cos x sin x =12sin 2x ,所以f (x )是周期函数,且最小正周期为T =2π2=π,所以①②错误;由2k π-π2≤2x ≤2k π+π2(k ∈Z),解得k π-π4≤x ≤k π+π4(k ∈Z),当k =0时,-π4≤x ≤π4,此时f (x )是增函数,所以③正确;由2x =π2+k π(k ∈Z),得x =π4+k π2(k ∈Z),取k =1,则x =3π4,故④正确.答案:③④16.已知函数f (x )=A cos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,f (x )的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f (1)+f (2)+…+f (2 016)+f (2 017)=________.解析:∵函数f (x )=A cos 2(ωx +φ)+1=A ·1+ωx +2φ2+1=A 2cos(2ωx +2φ)+1+A2⎝⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,∴A 2+1+A 2=3,∴A =2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即2π2ω=4,∴ω=π4.再根据f (x )的图象与y 轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<π2,∴2φ=π2,φ=π4.故函数f (x )的解析式为f (x )=cos ⎝ ⎛⎭⎪⎫π2x +π2+2=-sin π2x+2,∴f (1)+f (2)+…+f (2 016)+f (2 017)=-⎝ ⎛⎭⎪⎫sin π2+sin 2π2+sin 3π2+…+sin 2 016π2+sin 2 017π2+2×2 017=504×0-sin π2+4 034=0-1+4 034=4 033.答案:4 033B 组——能力小题保分练1.曲线y =2cos ⎝⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4和直线y =12在y 轴右侧的交点的横坐标按从小到大的顺序依次记为P 1,P 2,P 3,…,则|P 3P 7|=( )A .πB .2πC .4πD .6π解析:选B y =2cos ⎝⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4=cos 2x -sin 2x =cos 2x ,故曲线对应的函数为周期函数,且最小正周期为π,直线y =12在y 轴右侧与函数y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4在每个周期内的图象都有两个交点,又P 3与P 7相隔2个周期,故|P 3P 7|=2π,故选B.2.已知函数f (x )=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,则φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤-π3,π6C.⎣⎢⎡⎭⎪⎫-π4,0 D.⎣⎢⎡⎦⎥⎤-π3,0 解析:选D 因为函数f (x )=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,又-π6+φ<2x +φ≤π3+φ,所以2×π6+φ≤π3,且2×⎝ ⎛⎭⎪⎫-π12+φ≥-π2,解得-π3≤φ≤0,故选D.3.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f (x )的图象关于直线x =-2π3对称B .f (x )的图象关于点⎝ ⎛⎭⎪⎫-5π12,0对称 C .若方程f (x )=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,- 3 ] D .将函数y =2sin ⎝⎛⎭⎪⎫2x -π6的图象向左平移π6个单位长度得到函数f (x )的图象 解析:选 C 根据题中所给的图象,可知函数f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫2x +π3,∴当x =-2π3时,2×⎝ ⎛⎭⎪⎫-2π3+π3=-π,f ⎝ ⎛⎭⎪⎫-2π3=2sin(-π)=0,从而f (x )的图象关于点⎝ ⎛⎭⎪⎫-2π3,0对称,而不是关于直线x=-2π3对称,故A 不正确;当x =-5π12时,2×⎝ ⎛⎭⎪⎫-5π12+π3=-π2,∴f (x )的图象关于直线x =-5π12对称,而不是关于点⎝ ⎛⎭⎪⎫-5π12,0对称,故B 不正确;当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,2x +π3∈⎣⎢⎡⎦⎥⎤-2π3,π3,f (x )∈[-2, 3 ],结合正弦函数图象的性质,可知若方程f (x )=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,-3 ],故C 正确;根据图象平移变换的法则,可知应将y =2sin ⎝ ⎛⎭⎪⎫2x -π6的图象向左平移π4个单位长度得到f (x )的图象,故D 不正确.故选C.4.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数: ①f (x )=sin x +cos x ;②f (x )=2(sin x +cos x ); ③f (x )=sin x ;④f (x )=2sin x + 2. 其中互为生成函数的是( )A .①②B .①④C .③④D .②④解析:选 B 首先化简题中①②两个函数解析式可得:①f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4,②f (x )=2sin ⎝⎛⎭⎪⎫x +π4,可知③f (x )=sin x 的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f (x )=sin x 不与其他函数互为生成函数;同理①f (x )=2sin ⎝⎛⎭⎪⎫x +π4(④f (x )=2sin x +2)的图象与②f (x )=2sin ⎝⎛⎭⎪⎫x +π4的图象也必须经过伸缩变换才能重合,而④f (x )=2sin x +2的图象向左平移π4个单位长度,再向下平移2个单位长度即可得到①f (x )=2sin ⎝⎛⎭⎪⎫x +π4的图象,∴①④互为生成函数,故选B.5.已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正常数)的最小正周期为π,且当x =2π3时,函数f (x )取得最小值,则( )A .f (1)<f (-1)<f (0)B .f (0)<f (1)<f (-1)C .f (-1)<f (0)<f (1)D .f (1)<f (0)<f (-1)解析:选C 因为函数f (x )=A sin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,故f (x )=A sin(2x +φ),因为当x =2π3时,函数f (x )取得最小值,所以2×2π3+φ=2k π-π2,k ∈Z ,解得φ=2k π-11π6,k ∈Z ,又φ>0,故可取k =1,则φ=π6,故f (x )=A sin ⎝ ⎛⎭⎪⎫2x +π6,所以f (-1)=A sin ⎝ ⎛⎭⎪⎫-2+π6<0,f (1)=A sin ⎝ ⎛⎭⎪⎫2+π6>0,f (0)=A sin π6=12A >0,故f (-1)最小.又sin ⎝ ⎛⎭⎪⎫2+π6=sin ⎝ ⎛⎭⎪⎫π-2-π6=sin ⎝ ⎛⎭⎪⎫5π6-2>sin π6,故f (1)>f (0).综上可得f (-1)<f (0)<f (1),故选C.6.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g (x )=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,则φ=________.解析:因为函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g (x )=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,故它们的最小正周期相同,即2πω=2π2,所以ω=2,故函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z ,故函数f (x )的图象的对称轴为x =k π2+π8,k ∈Z.令2x +φ=m π,m ∈Z ,则x =m π2-φ2,m ∈Z ,故函数g (x )的图象的对称轴为x =m π2-φ2,m ∈Z ,故k π2+π8-m π2+φ2=n π2,m ,n ,k ∈Z ,即φ=(m +n -k )π-π4,m ,n ,k ∈Z ,又|φ|<π2,所以φ=-π4.答案:-π4。

2020通用版高考数学二轮复习课时跟踪检测十二文

2020通用版高考数学二轮复习课时跟踪检测十二文

课时跟踪检测(十二)A 组——12+4提速练一、选择题1.(2017·南昌模拟)某校为了解学生学习的情况,采用分层抽样的方法从高一1 000人、高二1 200人、高三n 人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n =( )A .860B .720C .1 020D .1 040解析:选D 根据分层抽样方法,得 1 2001 000+1 200+n×81=30,解得n =1 040.2.(2018届高三·西安八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是( )(注:下表为随机数表的第8行和第9行)⎭⎪⎬⎪⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79第8行⎭⎪⎬⎪⎫33 21 12 34 29 78 64 56 07 82 52 42 0744 38 15 51 00 13 42 99 66 02 79 54第9行 A .07 B .25 C .42D .52解析:选D 依题意得,依次选出的个体分别为12,34,29,56,07,52,…因此选出的第6个个体是52,故选D.3.(2017·宝鸡质检)对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,如图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则该样本中三等品的件数为( )A .5B .7C .10D .50解析:选D 根据题中的频率分布直方图可知,三等品的频率为1-(0.050 0+0.062 5+0.037 5)×5=0.25,因此该样本中三等品的件数为200×0.25=50,故选D.4.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n mB.2nmC.4m nD.2mn解析:选C 因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在边长为1的正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC 内的数对有m 个.用随机模拟的方法可得S 扇形S 正方形=m n ,即π4=m n,所以π=4mn.5.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12D .1解析:选D 因为所有样本点都在直线y =12x +1上,所以这组样本数据完全正相关,故其相关系数为1.6.甲、乙两位歌手在“中国新歌声”选拔赛中,5次得分情况如图所示.记甲、乙两人的平均得分分别为x 甲,x 乙,则下列判断正确的是( )A.x 甲<x 乙,甲比乙成绩稳定B.x 甲<x 乙,乙比甲成绩稳定C.x 甲>x 乙,甲比乙成绩稳定D.x 甲>x 乙,乙比甲成绩稳定 解析:选B x 甲=76+77+88+90+945=85,x 乙=75+88+86+88+935=86,s 2甲=15[(76-85)2+(77-85)2+(88-85)2+(90-85)2+(94-85)2]=52,s 2乙=15[(75-86)2+(88-86)2+(86-86)2+(88-86)2+(93-86)2]=35.6,所以x 甲<x 乙,s 2甲>s 2乙,故乙比甲成绩稳定,故选B.7.(2017·洛阳统考)若θ∈[0,π],则sin ⎝ ⎛⎭⎪⎫θ+π3>12成立的概率为( )A.13B.12C.23D .1 解析:选B 依题意,当θ∈[0,π]时,θ+π3∈⎣⎢⎡⎦⎥⎤π3,4π3,由sin ⎝ ⎛⎭⎪⎫θ+π3>12得π3≤θ+π3<5π6,即0≤θ<π2.因此,所求的概率为π2π=12. 8.将一枚骰子先后抛掷两次,并记朝上的点数分别为m ,n ,m 为2或4时,m +n >5的概率为( )A.227 B.29 C.13 D.23解析:选D 依题意得,先后抛掷两次骰子所得的点数对(m ,n )为:(1,1),(1,2),(1,3),(1,4),(1,5),…,(6,5),(6,6),共有36组,其中当m =2或4时,相应的点数对(m ,n )共有12组.当m =2时,满足m +n >5,即n >3的点数对(m ,n )共有3组;当m =4时,满足m +n >5,即n >1的点数对(m ,n )共有5组,因此所求的概率为3+512=23. 9.(2017·惠州调研)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中各随机选一匹进行一场比赛,则田忌的马获胜的概率为( )A.13B.14C.15D.16解析:选A 设田忌的上、中、下三个等次的马分别为A ,B ,C ,齐王的上、中、下三个等次的马分别为a ,b ,c ,从双方的马匹中各随机选一匹进行一场比赛的所有可能结果有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,共9种,田忌马获胜有Ab ,Ac ,Bc ,共3种,所以田忌的马获胜的概率为13.10.(2018届高三·西安八校联考)在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为( )A.34B.23C.12D.14解析:选D 依题意得,不等式组⎩⎪⎨⎪⎧0≤x ≤1,1≤y ≤2表示的平面区域为如图所示的正方形ABCD 的内部(含边界),其面积为1×1=1,不等式组⎩⎪⎨⎪⎧0≤x ≤1,1≤y ≤2,y ≤2x表示的平面区域为图中阴影部分(含边界),其面积为12×12×1=14,因此所求的概率为14.11.(2018届高三·广东五校联考)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( )A.12B.13C.24D.23解析:选C 若直线y =k (x +3)与圆x 2+y 2=1相交,则圆心到直线的距离d =|3k |1+k2<1,解得-24<k <24,故在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为P =222=24.12.已知样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =a x +(1-a )y ,其中0<a <12,则n ,m 的大小关系为( )A .n <mB .n >mC .n =mD .不能确定解析:选A 由题意可得,x =x 1+x 2+…+x nn,y =y 1+y 2+…+y mm,则z=x1+x2+…+x n+y1+y2+…+y mn+m=nn+m·x1+x2+…+x nn+mn+m·y1+y2+…+y mm=nn+m·x+mn+m·y=a x+(1-a)y,所以nn+m=a,mn+m=1-a,又0<a<12,所以0<nn+m<12 <mn+m,故n<m.二、填空题13.(2017·石家庄质检)设样本数据x1,x2,…,x2 017的方差是4,若y i=2x i-1(i=1,2,…,2 017),则y1,y2,…,y2 017的方差为________.解析:设样本数据的平均数为x-,则y i=2x i-1的平均数为2x--1,则y1,y2,…,y2 017的方差为12 017[(2x1-1-2x-+1)2+(2x2-1-2x-+1)2+…+(2x2 017-1-2x-+1)2]=4×12 017 [(x1-x-)2+(x2-x-)2+…+(x2 017-x-)2]=4×4=16.答案:1614.(2018届高三·广西三市联考)已知函数f(x)=log a x+log1a8(a>0,且a≠1),在集合⎩⎨⎧⎭⎬⎫14,13,12,3,4,5,6,7中任取一个数a,则f(3a+1)>f(2a)>0的概率为________.解析:∵3a+1>2a,f(3a+1)>f(2a),f(x)=log a x-log a8,∴a>1.又f(2a)>0,∴2a>8,即a>4,符合条件的a的值为5,6,7,故所求概率为38.答案:3815.(2017·张掖模拟)在区间[0,π]上随机取一个数θ,则使2≤2sin θ+2cos θ≤2成立的概率为________.解析:由2≤2sin θ+2cos θ≤2,得22≤sin⎝⎛⎭⎪⎫θ+π4≤1,结合θ∈[0,π],得满足条件的θ∈⎣⎢⎡⎦⎥⎤0,π2,∴使2≤2sin θ+2cos θ≤2成立的概率为π2π=12.答案:1216.甲、乙两人在5次综合测评中成绩的茎叶图如图所示,其中一个数字被污损,记甲、乙的平均成绩分别为x-甲,x-乙,则x-甲>x-乙的概率是________.解析:设污损处的数字为m ,由15(84+85+87+90+m +99)=15(86+87+91+92+94),得m=5,即当m =5时,甲、乙两人的平均成绩相等.m 的取值有0,1,2,3,…,9,共10种可能,其中,当m =6,7,8,9时,x -甲>x -乙,故所求概率为410=25.答案:25B 组——能力小题保分练1.(2017·成都模拟)两位同学约定下午5:30~6:00在图书馆见面,且他们5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,若15分钟后还未见面便离开.则这两位同学能够见面的概率是( )A.1136 B.14 C.12 D.34解析:选D 如图所示,以5:30作为原点O ,建立平面直角坐标系,设两位同学到达的时刻分别为x ,y ,设事件A 表示两位同学能够见面,所构成的区域为A ={(x ,y )||x -y |≤15},即图中阴影部分,根据几何概型概率计算公式得P (A )=30×30-2×12×15×1530×30=34.2.(2017·广州模拟)四个人围坐在一张圆桌旁,每个人面前放着一枚完全相同的硬币,所有人同时抛出自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为( )A.14B.716C.12D.916解析:选B 四个人按顺序围成一桌,同时抛出自己的硬币抛出的硬币正面记为0,反面记为1,则总的基本事件为(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,1,1,1),(1,0,0,0),(1,0,0,1),(1,0,1,0),(1,0,1,1),(1,1,0,0)(1,1,0,1),(1,1,1,0),(1,1,1,1),共有16种情况.若四个人同时坐着,有1种情况;若三个人坐着,一个人站着,有4种情况;若两个人坐着,两个人站着,此时没有相邻的两个人站起来有2种情况.所以没有相邻的两个人站起来的情况共有1+4+2=7种,故所求概率为716.3.一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n },若a 3=8,且a 1,a 3,a 7成等比数列,则此样本的平均数和中位数分别是( )A .13,12B .13,13C .12,13D .13,14解析:选B 设等差数列{a n }的公差为d (d ≠0),a 3=8,a 1a 7=a 23=64,即(8-2d )(8+4d )=64,又d ≠0,所以d =2,故样本数据为:4,6,8,10,12,14,16,18,20,22,平均数为S 1010=4+22×510=13,中位数为12+142=13.4.根据如下样本数据:x 3 4 5 6 7y4.0a -5.4 -0.50.5b -0.6得到的回归方程为y =bx +a .若样本点的中心为(5,0.9),则当x 每增加1个单位时,y 就( )A .增加1.4个单位B .减少1.4个单位C .增加7.9个单位D .减少7.9个单位解析:选B 依题意得,4.0+a -5.4-0.5+0.5+b -0.65=0.9,故a +b =6.5;①又样本点的中心为(5,0.9),故0.9=5b +a ,②联立①②,解得b =-1.4,a =7.9,则y ^=-1.4x +7.9, 所以当x 每增加1个单位时,y 就减少1.4个单位.5.正六边形ABCDEF 的边长为1,在正六边形内随机取点M ,则使△MAB 的面积大于34的概率为________.解析:如图所示,作出正六边形ABCDEF ,其中心为O ,过点O 作OG ⊥AB ,垂足为G ,则OG 的长为中心O 到AB 边的距离.易知∠AOB =360°6=60°,且OA =OB ,所以△AOB 是等边三角形,所以OA =OB =AB =1,OG=OA ·sin 60°=1×32=32,即对角线CF 上的点到AB 的距离都为32. 设△MAB 中AB 边上的高为h ,则由S △MAB =12×1×h >34,解得h >32.所以要使△MAB 的面积大于34,只需满足h >32,即需使M 位于CF 的上方.故由几何概型得,△MAB 的面积大于34的概率P =S 梯形CDEF S 正六边形ABCDEF =12. 答案:126.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n 的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n +1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n 为________.解析:总体容量为6+12+18=36.当样本容量为n 时,由题意可知,系统抽样的抽样距为36n,分层抽样的抽样比是n 36,则采用分层抽样法抽取的乒乓球运动员人数为6×n 36=n6,篮球运动员人数为12×n 36=n 3,足球运动员人数为18×n 36=n2,可知n 应是6的倍数,36的约数,故n =6,12,18.当样本容量为n +1时,剔除1个个体,此时总体容量为35,系统抽样的抽样距为35n +1,因为35n +1必须是整数,所以n 只能取6,即样本容量n 为6.答案:6。

通用高考数学二轮复习课时跟踪检测二十三文

通用高考数学二轮复习课时跟踪检测二十三文
A.和(1,+∞)
B.(0,1)和(2,+∞)
C.和(2,+∞)
D.(1,2)
解析:选C 函数f(x)=x2-5x+2ln x的定义域是(0,+∞),令f′(x)=2x-5+==>0,解得0<x<或x>2,故函数f(x)的单调递增区间是和(2,+∞).
6.已知函数f(x)=x3+bx2+cx+d的图象如图所示,则函数y=log2的单调递减区间为( )
8.已知f(x)的定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)<-xf′(x),则不等式f(x+1)>(x-1)·f(x2-1)的解集是( )
A.(0,1)B.(1,+∞)
C.(1,2)D.(2,+∞)
解析:选D 因为f(x)+xf′(x)<0,所以[xf(x)]′<0,故xf(x)在(0,+∞)上为单调递减函数,又(x+1)f(x+1)>(x2-1)·f(x2-1),所以0<x+1<x2-1,解得x>2.
10.设函数f(x)=x-ln x(x>0),则f(x)( )
A.在区间,(1,e)上均有零点
B.在区间,(1,e)上均无零点
C.在区间上有零点,在区间(1,e)上无零点
D.在区间上无零点,在区间(1,e)上有零点
解析:选D 因为f′(x)=-,所以当x∈(0,3)时,f′(x)<0,f(x)单调递减,而0<<1<e<3,又f=+1>0,f(1)=>0,f(e)=-1<0,所以f(x)在区间上无零点,在区间(1,e)上有零点.
通用高考数学二轮复习课时跟踪检测二十三文
编 辑:__________________

通用高考数学二轮复习课时跟踪检测十三文

通用高考数学二轮复习课时跟踪检测十三文
解:(1)∵K2=≈4.545>3.841,
∴有95%的把握认为该网站会员给汽车加油时进行的型号选择与汽车排量有关.
(2)由题意可知,抽出的5辆汽车中加92号汽油的有4辆,分别记为A1,A2,A3,A4;加95号汽油的有1辆,记为B.
从已经抽出的5辆汽车中抽取3辆,有:
{B,A1,A2},{B,A1,A3},{B,A1,A4},{B,A2,A3},{B,A2,A4},{B,A3,A4},{A1,A2,A3},{A1,A2,A4},{A1,A3,A4},{A2,A3,A4},共计10种结果,
通用高考数学二轮复习课时跟踪检测十三文
编 辑:__________________
时 间:__________________
撰写人:__________________
部 门:__________________
时 间:__________________
1.汽车发动机排量可以分为两大类,高于1.6 L的称为大排量,否则称为小排量.加油时,有92号与95号两种汽油可代选择.某汽车网站的注册会员中,有300名会员参与了网络调查,结果如下:
满足条件的有:{A1,A2,A3},{A1,A2,A4},{A1,A3,A4},{A2,A3,A4},共计4种结果.
由古典概型的概率计算公式可得所求概率为=.
2.(20xx·北京高考)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:
汽车排量
加油类型
小排量
大排量
92号
160
96

高考数学二轮复习 考点二十算法与框图课件 理

高考数学二轮复习 考点二十算法与框图课件 理

揭秘解题绝招
试题体验应用
限时规范训练
类型一 类型二 类型五 类型四 类型三
第六页,共22页。
考题 ●解法类编
类型二 求运算计数(jì shù)变量
例题(lìtí)精编
例 2:(2013·高考天津卷)阅读 如图所示的程序框图,运行相应 的程序,则输出 n 的值为( ) A.7 B.6 C.5 D.4
例题(lìtí)精编
例 3:(2013·高考福建卷)阅读如图
所示的程序框图,运行相应的程
序.如果输入某个正整数 n 后,
输出的 S∈(10,20),那么 n 的值
为( )
A.3
B.4
C.5
D.6
考题解法类编
揭秘解题绝招
通性通法 名师推荐 探究演练
【解析】先读出框图的计算功能,再结合等比
数列求和公式求解.框图功能为求和,
例题(lìtí)精编
例 1:(2013·高考辽宁卷)
执行如图所示的程序框图,
若输入 n=8,
则输出 S=( )
A.49
B.67
C.89
D.1101
考题解法类编
揭秘解题绝招
通性通法 创新发现 探究演练
试题体验应用
第三页,共22页。
限时规范训练
类型一 类型二 类型五 类型四 类型三
考题 ●解法类编
类型(lèixíng)一 求运算输出结果
例题(lìtí)精编
例 3:(2013·高考福建卷)阅读如图
所示的程序框图,运行相应的程
序.如果输入某个正整数 n 后,
输出的 S∈(10,20),那么 n 的值
为( )
A.3
B.4
C.5
D.6

通用版高考数学二轮复习课时跟踪检测二文92

通用版高考数学二轮复习课时跟踪检测二文92

①若 f(x1)=- f(x2),则 x1=- x2; ②f (x)的最小正周期是 2π;
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
ππ ③f (x)在区间 - 4, 4 上是增函数;
3π ④f (x)的图象关于直线 x= 4 对称.
1
解析:因为
f(x)=

π
得 8 ω+ φ= 2+ 2kπ(k∈ Z) ,

11π
11π
由 f 8 = 0,得 8 ω+ φ= k′π(k′∈ Z) ,

24
由①②得
ω=-
+ (k 33
′-
2k).

2
又最小正周期
T

ω>2
π,所以
0<
ω<1

ω=
. 3
2
π
又| φ|< π,将ω= 代入①得 φ= .选项 A 符合.
π
kπ π kπ 5π
tan
2x- 3
的单调递增区间为
-,+ 2 12 2 12
(k∈ Z) ,故选 B.
π
2.函数 f(x)= sin(ωx+ φ) x∈R, ω>0 , | φ|< 2 的部分图象如图所
示,
则函数 f (x)的解析式为 ( )
π A. f(x)= sin 2x+ 4
π B. f (x)=sin 2x- 4
函数 f (x)的解析式为 ( ) π
A. f(x)= 2sin x+ 3
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
π B. f(x)= 2sin x- 3

通用版高考数学二轮复习课时跟踪检测六文2.doc

通用版高考数学二轮复习课时跟踪检测六文2.doc

课时跟踪检测(六)A 组——12+4提速练一、选择题1.(2017·成都模拟)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( ) A .12 B .18 C .24D .30解析:选B ∵a 3+a 5+a 7=a 3(1+q 2+q 4)=6(1+q 2+q 4)=78,解得q 2=3,∴a 5=a 3q 2=6×3=18.故选B.2.(2017·兰州模拟)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144D .288解析:选B ∵a 8+a 10=2a 9=28,∴a 9=14,∴S 9=a 1+a 92=72.3.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.4.设等比数列{}a n 的前n 项和为S n ,若S 1=13a 2-13,S 2=13a 3-13,则公比q =( )A .1B .4C .4或0D .8解析:选B ∵S 1=13a 2-13,S 2=13a 3-13,∴⎩⎪⎨⎪⎧a 1=13a 1q -13,a 1+a 1q =13a 1q 2-13,解得⎩⎪⎨⎪⎧a 1=1,q =4或⎩⎪⎨⎪⎧a 1=-13,q =0(舍去),故所求的公比q =4.5.已知S n 是公差不为0的等差数列{}a n 的前n 项和,且S 1,S 2,S 4成等比数列,则a 2+a 3a 1的值为( )A .4B .6C .8D .10解析:选C 设数列{}a n 的公差为d ,则S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d ,故(2a 1+d )2=a 1(4a 1+6d ),整理得d =2a 1,所以a 2+a 3a 1=2a 1+3d a 1=8a 1a 1=8. 6.(2018届高三·湖南十校联考)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( )A .72B .88C .92D .98解析:选C 由S n +1=S n +a n +3,得a n +1-a n =3,所以数列{a n }是公差为3的等差数列,S 8=a 1+a 82=a 4+a 52=92.7.已知数列{}a n 满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n<12,2a n-1,12≤a n<1.若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 因为a 1=35,根据题意得a 2=15,a 3=25,a 4=45,a 5=35,所以数列{}a n 以4为周期,又2 018=504×4+2,所以a 2 018=a 2=15,故选A.8.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( )A.32B.94C .1D .2解析:选D 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814,化简得a 21q 3=92,则1a 1+1a 1q +1a 1q 2+1a 1q3=a 1+a 1q +a 1q 2+a 1q 3a 21q3=2. 9.(2017·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12 B.5+12C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3+q2a 4+q2=1q=25+1=5-12,故选A. 10.(2017·张掖模拟)等差数列{a n }中,a na 2n是一个与n 无关的常数,则该常数的可能值的集合为( )A .{1}B.⎩⎨⎧⎭⎬⎫1,12C.⎩⎨⎧⎭⎬⎫12 D.⎩⎨⎧⎭⎬⎫0,12,1解析:选Ba n a 2n =a 1+n -d a 1+n -d =a 1-d +nd a 1-d +2nd ,若a 1=d ≠0,则a n a 2n =12;若a 1≠0,d =0,则a n a 2n =1.∵a 1-d +nd ≠0,∴a na 2n ≠0,∴该常数的可能值的集合为⎩⎨⎧⎭⎬⎫1,12.11.(2018届高三·湖南十校联考)等差数列{a n }的前n 项和为S n ,且a 1<0,若存在自然数m ≥3,使得a m =S m ,则当n >m 时,S n 与a n 的大小关系是( )A .S n <a nB .S n ≤a nC .S n >a nD .大小不能确定解析:选C 若a 1<0,存在自然数m ≥3,使得a m =S m ,则d >0,否则若d ≤0,数列是递减数列或常数列,则恒有S m <a m ,不存在a m =S m .由于a 1<0,d >0,当m ≥3时,有a m =S m ,因此a m >0,S m >0,又S n =S m +a m +1+…+a n ,显然S n >a n .故选C.12.(2017·洛阳模拟)等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56解析:选C 依题意得,S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=1-⎝ ⎛⎭⎪⎫-12n.当n 为奇数时,S n =1+12n 随着n 的增大而减小,1<S n =1+12n ≤S 1=32,S n -1S n 随着S n 的增大而增大,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n -1S n <0.因此S n -1S n 的最大值与最小值分别为56,-712,其最大值与最小值之和为56+⎝ ⎛⎭⎪⎫-712=14.二、填空题13.(2017·合肥质检)已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项和S 9=________.解析:由已知,得a 2n +1=4a n a n +1-4a 2n ,即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0,所以a n +1=2a n ,又因为a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故S 9=-291-2=210-2=1022.答案:1 02214.(2017·兰州模拟)已知数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且当n ≥2时,有2a na n S n -S 2n=1成立,则S 2 017=________.解析:当n ≥2时,由2a n a n S n -S 2n =1,得2(S n -S n -1)=(S n -S n -1)S n -S 2n =-S n S n -1,∴2S n -2S n -1=1,又2S 1=2,∴⎩⎨⎧⎭⎬⎫2S n 是以2为首项,1为公差的等差数列,∴2S n =n +1,故S n =2n +1,则S 2 017=11 009. 答案:11 00915.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12-12n n ()=223+22n n n -=227+22n n -.记t =-n 22+7n2=-12(n 2-7n )=-12⎝ ⎛⎭⎪⎫n -722+498,结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:6416.(2017·广州模拟)设S n 为数列{a n }的前n 项和,已知a 1=2,对任意p ,q ∈N *,都有a p +q=a p +a q ,则f (n )=S n +60n +1(n ∈N *)的最小值为________. 解析:a 1=2,对任意p ,q ∈N *,都有a p +q =a p +a q ,令p =1,q =n ,则有a n +1=a n +a 1=a n + 2.故{a n }是等差数列,所以a n =2n ,S n =2×+n n 2=n 2+n ,f (n )=S n +60n +1=n 2+n +60n +1=n +2-n ++60n +1=n +1+60n +1-1.当n +1=8,即n =7时,f (7)=8+608-1=292;当n+1=7,即n =6时,f (6)=7+607-1=1027,因为292<1027,则f (n )=S n +60n +1(n ∈N *)的最小值为292.答案:292B 组——能力小题保分练1.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值为( )A .6B .7C .8D .9解析:选D 不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴⎩⎪⎨⎪⎧ab =-2,a -2=2b ,∴⎩⎪⎨⎪⎧a =4,b =1,∴p =5,q =4,∴p +q =9.2.(2017·郑州质检)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎣⎢⎡⎭⎪⎫13,+∞C.⎝ ⎛⎭⎪⎫23,+∞ D.⎣⎢⎡⎭⎪⎫23,+∞ 解析:选D 依题意得,当n ≥2时,a n =a 1a 2a 3…a na 1a 2a 3…a n -1=2n2n -2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1=12×⎝ ⎛⎭⎪⎫14n -1,即数列⎩⎨⎧⎭⎬⎫1a n 是以12为首项,14为公比的等比数列,等比数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和等于12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n <23,因此实数t 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞. 3.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n n +2,1S n =2nn +=2⎝ ⎛⎭⎪⎫1n -1n +1, 因此∑k =1n1S k =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2n n +1.答案:2nn +14.(2017·兰州模拟)已知数列{a n },{b n },若b 1=0,a n =1nn +,当n ≥2时,有b n =b n-1+a n -1,则b 2 018=________.解析:由b n =b n -1+a n -1,得b n -b n -1=a n -1,∴b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n -1,∴b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -1n,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -n =11-12+12-13+…+1n -1-1n =1-1n =n -1n,∵b 1=0,∴b n =n -1n ,∴b 2 018=2 0172 018.答案:2 0172 0185.(2017·石家庄质检)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n,…,若S k =14,则a k =________. 解析:因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+n n +1=1+2+…+nn +1=n 2,所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n 4.令T n =n 2+n 4=14,解得n =7(n =-8舍去),所以a k =78.答案:786.在数列{a n }和{b n }中,a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,a 1=1,b 1=1.设c n=1a n +1b n,则数列{c n }的前2 018项和为________.解析:由已知a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 得a n +1+b n +1=2(a n +b n ),又a 1+b 1=2,所以数列{a n +b n }是首项为2,公比为2的等比数列,即a n +b n =2n,将a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 相乘并化简,得a n +1b n +1=2a n b n ,即a n +1b n +1a n b n =2.所以数列{a n b n }是首项为1,公比为2的等比数列,所以a n b n =2n -1,因为c n =1a n +1b n ,所以c n =a n +b n a n b n =2n2n -1=2,数列{c n }的前2 018项和为2×2 018=4 036.答案:4 036。

通用版高考数学二轮复习课时跟踪检测十八文2.doc

通用版高考数学二轮复习课时跟踪检测十八文2.doc

课时跟踪检测(十八)1.(2017·石家庄质检)设M ,N ,T 是椭圆x 216+y 212=1上的三个点,M ,N 在直线x =8上的射影分别为M 1,N 1.(1)若直线MN 过原点O ,直线MT ,NT 的斜率分别为k 1,k 2,求证:k 1k 2为定值;(2)若M ,N 不是椭圆长轴的端点,点L 的坐标为(3,0),△M 1N 1L 与△MNL 的面积之比为5∶1,求MN 中点K 的轨迹方程.解:(1)证明:设M (p ,q ),N (-p ,-q ),T (x 0,y 0),则k 1k 2=y 0-qy 0+q x 0-p x 0+p =y 20-q2x 20-p2,又⎩⎪⎨⎪⎧p 216+q 212=1,x 216+y 2012=1,故x 20-p 216+y 20-q212=0,即y 20-q2x 20-p 2=-34,所以k 1k 2=-34,为定值. (2)设直线MN 与x 轴相交于点R (r,0),S △MNL =12|r -3|·|y M -y N |,S △M 1N 1L =12·5·|yM 1-yN 1|.因为S △M 1N 1L =5S △MNL ,所以12·5·|yM 1-yN 1|=5·12|r -3|·|y M -y N |,又|yM 1-yN 1|=|y M -y N |,解得r =4(舍去),或r =2,即直线MN 经过点F (2,0). 设M (x 1,y 1),N (x 2,y 2),K (x 0,y 0),①当MN 垂直于x 轴时,MN 的中点K 即为F (2,0);②当MN 与x 轴不垂直时,设MN 的方程为y =k (x -2),则⎩⎪⎨⎪⎧x 216+y 212=1,y =k x -消去y 得,(3+4k 2)x 2-16k 2x +16k 2-48=0.x 1+x 2=16k 23+4k 2,x 1x 2=16k 2-483+4k2.x 0=8k 23+4k 2,y 0=-6k3+4k2. 消去k ,整理得(x 0-1)2+4y 23=1(y 1≠0).经检验,(2,0)也满足(x 0-1)2+4y 23=1.综上所述,点K 的轨迹方程为(x -1)2+4y23=1(x >0).2.(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2. 联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22,x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.3.(2017·宁波模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)经过点P (-2,0)与点(1,1).(1)求椭圆的方程;(2)过P 点作两条互相垂直的直线PA ,PB ,交椭圆于A ,B ,求证:直线AB 经过定点.解:(1)由题意得,⎩⎪⎨⎪⎧4a 2+0b2=1,1a 2+1b 2=1,解得a 2=4,b 2=43,椭圆的方程为x 24+3y24=1.(2)证明:由对称性知,若存在定点,则必在x 轴上, 当k PA =1时,l PA :y =x +2,∴⎩⎪⎨⎪⎧y =x +2,x 2+3y 2=4,∴x 2+3(x 2+4x +4)=4⇒x =-1. 以下验证:定点为(-1,0),由题意知,直线PA ,PB 的斜率均存在,设直线PA 的方程为y =k (x +2),A (x A ,y A ),B (x B ,y B ). 则x 2+3k 2(x 2+4x +4)=4⇒x A =2-6k 21+3k2,y A =4k1+3k2, 同理x B =2k 2-6k 2+3,y B =-4kk 2+3,则y Ax A +1=4k 3-3k 2=y B x B +1,得证. 4.已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,它的一个焦点恰好与抛物线y 2=4x 的焦点重合.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否恒过一定点?若经过,求出该定点坐标;若不经过,请说明理由.解:(1)由题意知椭圆的一个焦点为F (1,0),则c =1.由e =c a =22得a =2,∴b =1, ∴椭圆C 的方程为x 22+y 2=1.(2)由(1)知A (0,1),当直线BC 的斜率不存在时, 设BC :x =x 0,设B (x 0,y 0),则C (x 0,-y 0),k AB ·k AC =y 0-1x 0·-y 0-1x 0=1-y 2x 20=12x 20x 20=12≠14,不合题意.故直线BC 的斜率存在.设直线BC 的方程为:y =kx +m (m ≠1),并代入椭圆方程,得:(1+2k 2)x 2+4kmx +2(m 2-1)=0,①由Δ=(4km )2-8(1+2k 2)(m 2-1)>0, 得2k 2-m 2+1>0.②设B (x 1,y 1),C (x 2,y 2),则x 1,x 2是方程①的两根,由根与系数的关系得, x 1+x 2=-4km 1+2k 2,x 1x 2=m 2-1+2k 2, 由k AB ·k AC =y 1-1x 1·y 2-1x 2=14得: 4y 1y 2-4(y 1+y 2)+4=x 1x 2,即(4k 2-1)x 1x 2+4k (m -1)(x 1+x 2)+4(m -1)2=0, 整理得(m -1)(m -3)=0, 又因为m ≠1,所以m =3, 此时直线BC 的方程为y =kx +3. 所以直线BC 恒过一定点(0,3).5.(2017·台州模拟)如图,已知椭圆C :x 24+y 2=1,过点P (1,0)作斜率为k 的直线l ,且直线l 与椭圆C 交于两个不同的点M ,N .(1)设点A (0,2),k =1,求△AMN 的面积;(2)设点B (t,0),记直线BM ,BN 的斜率分别为k 1,k 2.问是否存在实数t ,使得对于任意非零实数k ,(k 1+k 2)·k 为定值?若存在,求出实数t 的值及该定值;若不存在,请说明理由.解:(1)当k =1时,直线l 的方程为y =x -1.由⎩⎪⎨⎪⎧x 24+y 2=1,y =x -1,得x =0或x =85,当x =0时,y =-1, 当x =85时,y =35,不妨设N (0,-1),M ⎝ ⎛⎭⎪⎫85,35.所以|AN |=3.所以S △AMN =12×3×85=125.(2)由题意知,直线MN 的方程为y =k (x -1), 设M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 2=1,y =k x -,得(1+4k 2)x 2-8k 2x +4k 2-4=0.所以x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.由k 1=y 1x 1-t,k 2=y 2x 2-t,得(k 1+k 2)·k =k ⎝ ⎛⎭⎪⎫y 1x 1-t +y 2x 2-t=k 2⎝ ⎛⎭⎪⎫x 1-1x 1-t +x 2-1x 2-t=k 2x 1-tx 2-+x 2-t x 1-x 1-t x 2-t=k 2[2x 1x 2-t +x 1+x 2+2t ]x 1x 2-t x 1+x 2+t 2=k 2t -k2-8t +4t 2+t 2-4. 若2t -8=0,则t =4,(k 1+k 2)·k =0为定值. 若2t -8≠0,则当t 2-4=0, 即t =±2时,(k 1+k 2)·k =2t -84-8t +4t2为定值.所以当t =4时,(k 1+k 2)·k =0; 当t =2时,(k 1+k 2)·k =-1; 当t =-2时,(k 1+k 2)·k =-13.。

2020—2021年最新高考总复习数学(文)二轮复习质检试题及答案解析.docx

2020—2021年最新高考总复习数学(文)二轮复习质检试题及答案解析.docx

2018-2019学年高三(下)第一次质检数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={﹣1,0,1},,则P∩Q=()A.{﹣1,0,1} B.{0,1} C.{0} D.{1}2.设复数z满足,则z=()A.1﹣i B.1+i C.﹣1+i D.﹣1﹣i3.从1,2,3,4这四个数中,随机取出两个数字,剩下两个数字的和是奇数的概率是()A.B.C.D.4.已知sinα=2cosα,则=()A.B.C.2 D.5.抛物线y2=4x的焦点到双曲线x2﹣y2=2的渐近线的距离是()A.B. C.D.26.函数f(x)=log2x﹣的零点包含于区间()A.(1,2)B.(2,3)C.(3,4)D.(4,+∞)7.执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5 B.4 C.3 D.28.同时具有性质“①最小正周期是4π;②是图象的一条对称轴;③在区间上是减函数”的一个函数是()A.B.C.D.9.下列说明正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.{a n}为等比数列,则“a1<a2<a3”是“a4<a5”的既不充分也不必要条件C.∃x0∈(﹣∞,0),使成立D.“”必要不充分条件是“”10.已知点P的坐标(x,y)满足,过点P的直线l与圆C:x2+y2=16相交于A,B两点,则|AB|的最小值为()A.B.C.D.11.在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则tanA=()A. B.C.D.12.设方程2x|lnx|=1有两个不等的实根x1和x2,则()A.x1x2<0 B.x1x2=1 C.x1x2>1 D.0<x1x2<1二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量,且与共线,则x的值为.14.已知定义在R上的偶函数f(x)满足:当x≥0时,f(x)=x3﹣8,则关于x的不等式f(x﹣2)>0的解集为.15.古埃及数学中有一个独特现象:除用一个单独的符号表示以外,其他分数都要写成若干个单位分数和的形式.例如=+,可以这样来理解:假定有两个面包,要平均分给5个人,每人不够,每人余,再将这分成5份,每人得,这样每人分得+.形如(n=5,7,9,11,…)的分数的分解:=+,=+,=+,…,按此规律,则(1)= .(2)= .(n=5,7,9,11,…)16.一个三棱锥的三视图如图所示,则该三棱锥的外接球的表面积为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等比数列{a n}为递增数列,且,2(a1+a3)=5a2.(1)求数列{a n}的通项公式;(2)令,求数列{b n}的前n项和S n.18.如图,在直三棱柱ABC﹣A1B1C1中,底面是正三角形,点D 是A1B1中点,AC=2,CC1=.(Ⅰ)求三棱锥C﹣BDC1的体积;(Ⅱ)证明:A1C⊥BC1.19.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间(分钟)[0,20)[20,40)[40,60)[60,80)[80,100)人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘车时间t (分钟)的关系是,其中表示不超过的最大整数.以样本频率为概率:(I)求公司一名职工每月用于路途补贴不超过300元的概率;(II)估算公司每月用于路途补贴的费用总额(元).20.已知椭圆+=1(a>b>0)的右焦点为F,右顶点为A,上顶点为B,已知|AB|=|OF|,且△A0B的面积为.(1)求椭圆的方程;(2)直线y=2上是否存在点M,便得从该点向椭圆所引的两条切线相互垂直?若存在,求点M的坐标,若不存在,说明理由.21.已知函数f(x)=(a﹣)x2+lnx,(a∈R).(Ⅰ)当a=0时,求f(x)在区间[,e]上的最大值;(Ⅱ)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax 下方,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,等腰△ABC的一条腰及底边中线分别与圆O相交于点A,D和E、F,圆O的切线FG与CE相交于点G.(I)证明:FG⊥CE;(Ⅱ)若BA=4BD,BF=3BE,求FG:CE.[选修4-4:坐标系与参数方程]23.在极坐标系中,曲线C的方程为ρ2=,点R(2,).(Ⅰ)以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,把曲线C的极坐标方程化为直角坐标方程,R点的极坐标化为直角坐标;(Ⅱ)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值,及此时P点的直角坐标.[选修4-5:不等式选]24.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b满足+=,求证:+≥m.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={﹣1,0,1},,则P∩Q=()A.{﹣1,0,1} B.{0,1} C.{0} D.{1}【考点】交集及其运算.【分析】化简集合B,然后直接利用交集运算求解.【解答】解:集合P={﹣1,0,1},=[0,4)∴P∩Q={0,1},故选:B.2.设复数z满足,则z=()A.1﹣i B.1+i C.﹣1+i D.﹣1﹣i【考点】复数求模.【分析】利用复数的运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:∵,∴(1﹣i)(1﹣i),2z=2(1﹣i),解得z=1﹣i.故选:A.3.从1,2,3,4这四个数中,随机取出两个数字,剩下两个数字的和是奇数的概率是()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出剩下两个数字的和是奇数包含的基本事件个数,由此能求出剩下两个数字的和是奇数的概率.【解答】解:从1,2,3,4这四个数中,随机取出两个数字,基本事件总数n==6,剩下两个数字的和是奇数包含的基本事件个数m==4,∴剩下两个数字的和是奇数的概率p==.故选:C.4.已知sinα=2cosα,则=()A.B.C.2 D.【考点】三角函数的化简求值.【分析】利用诱导公式以及二倍角公式化简所求的表达式为正切函数的形式,代入求解即可.【解答】解:sinα=2cosα,可得tanα=2,则=﹣sin2α=﹣=﹣==.故选:B.5.抛物线y2=4x的焦点到双曲线x2﹣y2=2的渐近线的距离是()A.B. C.D.2【考点】双曲线的简单性质.【分析】容易求出抛物线焦点及双曲线的渐近线方程分别为(1,0),y=±x,所以根据点到直线的距离公式即可求得该焦点到渐近线的距离.【解答】解:抛物线的焦点为(1,0),双曲线的渐近线方程为y=±x;∴由点到直线的距离公式得抛物线焦点到双曲线渐近线的距离为:.故选A.6.函数f(x)=log2x﹣的零点包含于区间()A.(1,2)B.(2,3)C.(3,4)D.(4,+∞)【考点】二分法求方程的近似解.【分析】由题意知函数f(x)=log2x﹣在(0,+∞)上连续,再由函数的零点的判定定理求解.【解答】解:函数f(x)=log2x﹣在(0,+∞)上连续,f(3)=log23﹣<0;f(4)=log24﹣=>0;故函数f(x)=log2x﹣的零点所在的区间是(3,4).故选:C.7.执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5 B.4 C.3 D.2【考点】程序框图.【分析】执行程序框图,依次写出每次循环得到的P,Q值,不满足条件P≤Q,程序终止即可得到结论.【解答】解:执行程序框图,有n=0,0≤1,P=1,Q=3,n=1;n=1,1≤3,P=1+4=5,Q=7,n=2;n=2,5≤7,P=5+16=21,Q=15,n=3;n=3,21≤15不成立,输出,n=3;故选:C8.同时具有性质“①最小正周期是4π;②是图象的一条对称轴;③在区间上是减函数”的一个函数是()A.B.C.D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】利用函数的周期,求出ω,利用图象关系直线x=对称,即可判断选项的正误.【解答】解:对于选项A、B,∵T==π,故A,B不正确;对于选项C,如果x=为对称轴.所以+=kπ,k∈Z,可得=kπ,k不存在,不满足题意,故C不正确;对于选项D,因为T==4π,且由=k,k∈Z,解得图象的对称轴方程为:x=2kπ+,k∈Z,当k=0时,x=为图象的一条对称轴.由2kπ≤≤2kπ,k∈Z,解得单调递减区间为:[4kπ+,4kπ+],k∈Z,可得函数在区间上是减函数,故D正确.故选:D.9.下列说明正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.{a n}为等比数列,则“a1<a2<a3”是“a4<a5”的既不充分也不必要条件C.∃x0∈(﹣∞,0),使成立D.“”必要不充分条件是“”【考点】命题的真假判断与应用.【分析】真假写出原命题的否命题判断A;由a1<a2<a3,说明数列为递增数列,可得a4<a5,反之,由a4<a5,不一定有数列为递增数列判断B;由幂函数的单调性判断C;由正切函数值的求法结合充分必要条件的判断方法判断D.【解答】解:“若a>1,则a2>1”的否命题是“若a<1,则a2≤1”,故A错误;{a n}为等比数列,a1<a2<a3,说明数列为递增数列,则a4<a5,反之,由a4<a5,不一定有a1<a2<a3,∴“a1<a2<a3”是“a4<a5”的充分不必要条件,故B错误;当x0∈(﹣∞,0)时,幂函数在(0,+∞)上为减函数,,故C错误;由,不一定有,反之由,一定有,∴是的必要不充分条件,故D正确.故选:D.10.已知点P的坐标(x,y)满足,过点P的直线l与圆C:x2+y2=16相交于A,B两点,则|AB|的最小值为()A.B.C.D.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,画出以原点为圆心,半径是4的圆,利用数形结合即可得到在哪一个点的直线与圆相交的弦最短.【解答】解:作出不等式组对应的平面区域如图由图象可知,当P点在直线x=1与x+y=4的交点时,与圆心距离最远,作出直线与圆相交的弦短.P的坐标为(1,3),圆心到P点距离为d=,根据公式|AB|=2,可得:|AB|=2.故选:A.11.在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则tanA=()A. B.C.D.【考点】正弦定理.【分析】利用正弦定理,分别求得b和c,b和a的关系,最后利用余弦定理求得cosA的值,可得sinA,则tanA可求得.【解答】解:△ABC中,∵,∴c=2b.若=,∴a2=19b2,∴cosA====,∴sinA==,∴tanA==.故选:C.12.设方程2x|lnx|=1有两个不等的实根x1和x2,则()A.x1x2<0 B.x1x2=1 C.x1x2>1 D.0<x1x2<1【考点】根的存在性及根的个数判断.【分析】由题意可得y=|lnx|和y=()x的图象有两个交点,如图可得设0<x1<1,x2>1,求得ln(x1x2)的范围,即可得到所求范围.【解答】解:方程2x|lnx|=1有两个不等的实根x1和x2,即为y=|lnx|和y=()x的图象有两个交点,如图可得设0<x1<1,x2>1,由ln(x1x2)=lnx1+lnx2=﹣+=,由0<x1<1,x2>1,可得2x1﹣2x2<0,2x1+x2>0,即为ln(x1x2)<0,即有0<x1x2<1.故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量,且与共线,则x的值为﹣2 .【考点】向量的物理背景与概念.【分析】根据平面向量的坐标运算以及两向量共线的坐标表示,列出方程求出x的值.【解答】解:∵向量,∴﹣=(2﹣x,2),又与共线,∴(2﹣x)×(﹣1)﹣2x=0,解得x=﹣2.故答案为:﹣2.14.已知定义在R上的偶函数f(x)满足:当x≥0时,f(x)=x3﹣8,则关于x的不等式f(x﹣2)>0的解集为{x|x<0或x >4} .【考点】函数的单调性与导数的关系;函数单调性的性质.【分析】根据函数奇偶性和单调性的关系,不等式f(x﹣2)>0等价为f(|x﹣2|)>f(2),即|x﹣2|>2,即可得到结论.【解答】解:当x≥0时,f(x)=x3﹣8,∴f(2)=0,且函数单调递增∵f(x)是偶函数,∴f(﹣x)=f(x)=f(|x|),则不等式f(x﹣2)>0等价为f(|x﹣2|)>f(2)∴|x﹣2|>2,∴x>4或x<0,∴不等式的解集为{x|x<0或x>4},故答案为:{x|x<0或x>4}.15.古埃及数学中有一个独特现象:除用一个单独的符号表示以外,其他分数都要写成若干个单位分数和的形式.例如=+,可以这样来理解:假定有两个面包,要平均分给5个人,每人不够,每人余,再将这分成5份,每人得,这样每人分得+.形如(n=5,7,9,11,…)的分数的分解:=+,=+,=+,…,按此规律,则(1)= +.(2)= +.(n=5,7,9,11,…)【考点】归纳推理.【分析】(1)由已知中=+,可以这样来理解:假定有两个面包,要平均分给5个人,每人不够,每人余,再将这分成5份,每人得,这样每人分得+,类比可推导出=+;(2)由已知中=+,可以这样来理解:假定有两个面包,要平均分给5个人,每人不够,每人余,再将这分成5份,每人得,这样每人分得+,类比可推导出=+.【解答】解:(1)假定有两个面包,要平均分给11个人,每人不够,每人分则余,再将这分成11份,每人得,这样每人分得+.故=+;(2)假定有两个面包,要平均分给n(n=5,7,9,11,…)个人,每人不够,每人分则余,再将这分成n份,每人得,这样每人分得+.故=+;故答案为:+,+16.一个三棱锥的三视图如图所示,则该三棱锥的外接球的表面积为29π.【考点】球内接多面体;球的体积和表面积.【分析】该三棱锥为长方体切去四个小三棱锥得到的,故长方体的体对角线等于外接球的直径.【解答】解:由三视图可知该三棱锥为边长为2,3,4的长方体切去四个小棱锥得到的几何体.设该三棱锥的外接球半径为R,∴2R==,∴R=.∴外接球的表面积为S=4πR2=29π.故答案为:29π.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等比数列{a n}为递增数列,且,2(a1+a3)=5a2.(1)求数列{a n}的通项公式;(2)令,求数列{b n}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(1)利用等比数列的通项公式即可得出;(2)对n分类讨论,利用等比数列的求和公式即可得出.【解答】解:(1)设{a n}的首项为a1,公比为q,∴,解得a1=q.又∵2(a n+a n+2)=5a n+1,∴,则2(1+q2)=5q,2q2﹣5q+2=0,解得(舍)或q=2.∴.(2)∵,n为偶数时,;n为奇数时,.∴S n=.18.如图,在直三棱柱ABC﹣A1B1C1中,底面是正三角形,点D 是A 1B1中点,AC=2,CC1=.(Ⅰ)求三棱锥C﹣BDC1的体积;(Ⅱ)证明:A1C⊥BC1.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的性质.【分析】(Ⅰ)利用,求三棱锥C﹣BDC1的体积;(Ⅱ)取C1B1的中点E,连接A1E,CE.通过证明面A1CE,证明:A1C⊥BC1.【解答】(Ⅰ)解:过D作DH⊥C1B1,直三棱柱中C1B1⊥面A1B1C1,∴C1B1⊥DH,∴DH⊥面BCC1,∴DH是高,DH=,…∵,∴•…(Ⅱ)证明:取C1B1的中点E,连接A1E,CE∵底面是正三角形,∴A1E⊥B1C1•…矩形C1B1BC中,Rt△C1CE中,,Rt△BCC1中,,∴,∴△C1CE∽△BCC1,∴∠C1BC=∠EC1C,∵,∴,∴CE⊥BC1•…∴面A1CE,∴A1C⊥BC1•…19.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间(分[0,[20,[40,[60,[80,钟)20)40)60)80)100)人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘车时间t (分钟)的关系是,其中表示不超过的最大整数.以样本频率为概率:(I)求公司一名职工每月用于路途补贴不超过300元的概率;(II)估算公司每月用于路途补贴的费用总额(元).【考点】等可能事件的概率;频率分布表.【分析】(Ⅰ)当0≤t<60时,y≤300,所求事件的概率为++,运算求得结果.(Ⅱ)依题意,故公司一名职工每月的平均路途补贴为=,再把乘以公司总人数,即为所求.【解答】解:(Ⅰ)当0≤t<60时,y≤300.记事件“公司1人每月用于路途补贴不超过300元”为A.…则P(A)=++=0.9,即公司一名职工每月用于路途补贴不超过300元的概率为0.9.…(Ⅱ)依题意,当t∈[0,20 )时,[]=0;当t∈[20,40 )时,[]=1;当t∈[40,60 )时,[]=2;当t∈[60,80 )时,[]=3;当t∈[80,100 )时,[]=4.故公司一名职工每月的平均路途补贴为==246(元),…该公司每月用于路途补贴的费用总额约为×8000=246×8000=1968000(元).…20.已知椭圆+=1(a>b>0)的右焦点为F,右顶点为A,上顶点为B,已知|AB|=|OF|,且△A0B的面积为.(1)求椭圆的方程;(2)直线y=2上是否存在点M,便得从该点向椭圆所引的两条切线相互垂直?若存在,求点M的坐标,若不存在,说明理由.【考点】椭圆的简单性质.【分析】(1)通过椭圆+=1(a>b>0)的右焦点为F,右顶点为A,上顶点为B,已知|AB|=|OF|,且△A0B的面积为,建立关于a,b,c的方程,解出a,b,即求出椭圆的标准方程.(2)对于存在性问题,要先假设存在,先设切线y=k(x﹣m)+2,与椭圆联立,利用△=0,得出关于斜率k的方程,利用两根之积公式k1k2=﹣1,求出Q点坐标.【解答】解:(1)∵椭圆+=1(a>b>0)的右焦点为F,右顶点为A,上顶点为B,已知|AB|=|OF|,且△A0B的面积为,∴=c,=,∴a=2,b=,∴椭圆方程为=1.(2)假设直线y=2上存在点Q满足题意,设Q(m,2),当m=±2时,从Q点所引的两条切线不垂直.当m≠±2时,设过点Q向椭圆所引的切线的斜率为k,则l的方程为y=k(x﹣m)+2,代入椭圆方程,消去y,整理得:(1+2k2)x2﹣4k(mk﹣2)x+2(mk﹣2)2﹣4=0,∵△=16k2(mk﹣2)2﹣4(1+2k2)[2(mk﹣2)2﹣4]=0,∴(m2﹣4)k2﹣4mk+2=0,*设两条切线的斜率分别为k1,k2,则k1,k2是方程(m2﹣4)k2﹣4mk+2=0的两个根,∴k1k2==﹣1,解得m=±,点Q坐标为(,2),或(﹣,2).∴直线y=2上两点(,2),(﹣,2)满足题意.21.已知函数f(x)=(a﹣)x2+lnx,(a∈R).(Ⅰ)当a=0时,求f(x)在区间[,e]上的最大值;(Ⅱ)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax 下方,求a的取值范围.【考点】利用导数求闭区间上函数的最值;函数恒成立问题.【分析】(Ⅰ)当a=0时,求得函数f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间,进而得到f(x)的最大值为f(1);(Ⅱ)令g(x)=f(x)﹣2ax=(a﹣)x2+lnx﹣2ax,求得g(x)的定义域,由题意可得在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方等价于g(x)<0 在区间(1,+∞)上恒成立.求得,讨论①若,②若a≤,求得单调区间,可得g(x)的范围,由恒成立思想,进而得到a 的范围.【解答】解:(Ⅰ)当a=0时,,导数,当x∈[,1],有f'(x)>0;当x∈(1,e],有f′(x)<0,可得f(x)在区间[,1]上是增函数,在(1,e]上为减函数,又f(x)max=f(1)=﹣;(Ⅱ)令g(x)=f(x)﹣2ax=(a﹣)x2+lnx﹣2ax,则g(x)的定义域为(0,+∞),在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方等价于g(x)<0 在区间(1,+∞)上恒成立.,①若,令g′(x)=0,得极值点,当x1<x2,即时,在(0,1)上有g′(x)>0,在(1,x2)上有g′(x)<0,在(x2,+∞)上有g′(x)>0,此时g(x)在区间(x2,+∞)上是增函数,并且在该区间上有g(x)∈(g(x2),+∞)不合题意;当x2≤x1,即a≥1时,同理可知,g(x)在区间(1,+∞)上,有g(x)∈(g(1),+∞),也不合题意;②若a≤,则有x1>x2,此时在区间(1,+∞)上恒有g′(x)<0,从而g(x)在区间(1,+∞)上是减函数;要使g(x)<0在此区间上恒成立,只须满足,由此求得a的范围是.综合①②可知,当a∈[﹣,]时,函数f(x)的图象恒在直线y=2ax下方.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,等腰△ABC的一条腰及底边中线分别与圆O相交于点A,D和E、F,圆O的切线FG与CE相交于点G.(I)证明:FG⊥CE;(Ⅱ)若BA=4BD,BF=3BE,求FG:CE.【考点】与圆有关的比例线段.【分析】(1)连结AE,则∠EFC=90°,∠EAF=∠EFG,∠EAF=∠ECF,从而∠ECF=∠EFG,由此能证明FG⊥CE.(2)设BE=t,EF=2t,推导出EG=FG=,AB=2,CF=,CE=,由此能求出FG:CE的值.【解答】证明:(1)连结AE,∵等腰△ABC的一条腰及底边中线分别与圆O相交于点A,D和E、F,圆O的切线FG与CE相交于点G,∴∠EFC=90°,∠EAF=∠EFG,∠EAF=∠ECF,∴∠ECF=∠EFG,∴∠ECF+∠CFG=∠CFG+∠EFG=90°,∴FG⊥CE.解:(2)设BD=k,则AD=3k,BC=4k,设BE=t,EF=2t,EG=FG=,∵BD•BA=BE•BF,∴4k2=3t2,∴k=,AB=4×=2,=,∴CE==,∴FG:CE==.[选修4-4:坐标系与参数方程]23.在极坐标系中,曲线C的方程为ρ2=,点R(2,).(Ⅰ)以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,把曲线C的极坐标方程化为直角坐标方程,R点的极坐标化为直角坐标;(Ⅱ)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值,及此时P点的直角坐标.【考点】简单曲线的极坐标方程.【分析】(Ⅰ)首先根据变换关系式把极坐标方程转化成直角坐标方程,进一步把极坐标转化成直角坐标.(Ⅱ)把椭圆的直角坐标形式转化成参数形式,进一步把矩形的周长转化成三角函数的形式,通过三角恒等变换求出最小值,进一步求出P的坐标.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,则:曲线C的方程为ρ2=,转化成.点R的极坐标转化成直角坐标为:R(2,2).(Ⅱ)设P()根据题意,得到Q(2,sinθ),则:|PQ|=,|QR|=2﹣sinθ,所以:|PQ|+|QR|=.当时,(|PQ|+|QR|)min=2,矩形的最小周长为4,点P().[选修4-5:不等式选]24.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b满足+=,求证:+≥m.【考点】二维形式的柯西不等式;绝对值三角不等式.【分析】(1)根据绝对值三角不等式f(x)=|x﹣5|+|x﹣3|≥|(x ﹣5)﹣(x﹣3)|=2;(2)根据柯西不等式(+)•(1+)≥(+)2.【解答】解:(1)根据绝对值三角不等式,f(x)=|x﹣5|+|x﹣3|≥|(x﹣5)﹣(x﹣3)|=2,当且仅当,x∈[3,5]时,函数f(x)取得最小值2,所以,m=2;(2)根据柯西不等式,(+)•(1+)≥(+)2=3,所以,+≥=2,因此,+≥2,而m=2,即,+≥m,证毕.2016年10月25日美好的未来不是等待,而是孜孜不倦的攀登。

2020届高考数学大二轮复习刷题首秧第一部分刷考点考点二十坐标系与参数方程文2

2020届高考数学大二轮复习刷题首秧第一部分刷考点考点二十坐标系与参数方程文2

考点二十 坐标系与参数方程解答题1.在直角坐标系xOy 中,直线l :y =x ,圆C :Error!(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求直线l 与圆C 的极坐标方程;(2)设直线l 与圆C 的交点为M ,N ,求△CMN 的面积.解 (1)将C 的参数方程化为普通方程,得(x +1)2+(y +2)2=1,∵x =ρcos θ,y =ρsin θ,∴直线l 的极坐标方程为θ=(ρ∈R ),π4圆C 的极坐标方程为ρ2+2ρcos θ+4ρsin θ+4=0.(2)将θ=代入ρ2+2ρcos θ+4ρsin θ+4=0,π4得ρ2+3ρ+4=0,解得ρ1=-2,ρ2=-,222|MN |=|ρ1-ρ2|=,2∵圆C 的半径为1,∴△CMN 的面积为××1×sin =.122π4122.已知在平面直角坐标系xOy 中,曲线C 1的参数方程为Error!(t 是参数).以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为 ρ=4cos θ.(1)求曲线C 1的普通方程及曲线C 2的直角坐标方程并说明各曲线名称;(2)判断曲线C 1与曲线C 2的位置关系?若相交,求出弦长.解 (1)由Error!消去t 得x -2y -3=0,所以曲线C 1的普通方程为x -2y -3=0,是斜率为的直线.12由ρ=4cos θ两边同乘以ρ得ρ2=4ρcos θ,所以x 2+y 2=4x ,配方得(x -2)2+y 2=4,即曲线C 2的普通方程为(x -2)2+y 2=4,是以(2,0)为圆心,2为半径的圆.(2)由(1)知,曲线C 2:(x -2)2+y 2=4的圆心为(2,0),半径为2,由点到直线的距离公式得,圆心(2,0)到直线x -2y -3=0的距离为d ==<2,|2-0-3|555所以曲线C 1与曲线C 2相交,弦长为2=.22-(55)229553.在平面直角坐标系xOy 中,曲线C 的参数方程是Error!(θ为参数),以射线Ox 为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ-ρsin θ-=0.3(1)求曲线C 的普通方程,及直线l 的参数方程;(2)求直线l 与曲线C 相交所得的弦AB 的长.解 (1)曲线C 的参数方程化成普通方程为+=1,x 24y 23因为x =ρcos θ,y =ρsin θ,所以l 的直角坐标方程为x -y -=0,其倾斜角为,3π4过点(,0),3所以直线方程化成参数方程为Error!(t 为参数,且t ∈R ).(2)将Error!代入+=1,x 24y 23得7t 2+6t -6=0,6Δ=(6)2-4×7×(-6)=384>0,6设方程的两根是t 1,t 2,则t 1+t 2=-,t 1t 2=-,66767所以AB =|t 1-t 2|= ==.t 1+t 2 2-4t 1t 23847867故直线l 与曲线C 相交所得的弦AB 的长为.8674.(2019·全国卷Ⅲ)如图,在极坐标系Ox 中,A (2,0),B,C ,D (2,π),弧,,所在圆的圆心分别是(1,0),,(1,π),(2,π4)(2,3π4)AB ︵ BC ︵ CD︵(1,π2)曲线M 1是弧,曲线M 2是弧,曲线M 3是弧.AB ︵ BC ︵ CD ︵(1)分别写出M 1,M 2,M 3的极坐标方程;(2)曲线M 由M 1,M 2,M 3构成,若点P 在M 上,且|OP |=,求P 的极坐标.3解 (1)由题设可得,弧,,所在圆的极坐标方程分别为AB ︵ BC ︵ CD︵ρ=2cos θ,ρ=2sin θ,ρ=-2cos θ,所以M 1的极坐标方程为ρ=2cos θ,(0≤θ≤π4)M 2的极坐标方程为ρ=2sin θ,(π4≤θ≤3π4)M 3的极坐标方程为ρ=-2cos θ.(3π4≤θ≤π)(2)设P (ρ,θ),由题设及(1)知若0≤θ≤,则2cos θ=,解得θ=;π43π6若≤θ≤,则2sin θ=,解得θ=或θ=;π43π43π32π3若≤θ≤π,则-2cos θ=,解得θ=.3π435π6综上,P 的极坐标为或或或.(3,π6)(3,π3)(3,2π3)(3,5π6)5.(2019·河南洛阳第三次统考)已知极点与坐标原点O 重合,极轴与x 轴非负半轴重合,M 是曲线C :ρ=2sin θ上任一点,点P 满足=3.设点P 的轨迹为曲线Q .OP → OM→(1)求曲线Q 的平面直角坐标方程;(2)已知曲线Q 向上平移1个单位后得到曲线N ,设曲线N 与直线l :Error!(t 为参数)相交于A ,B 两点,求|OA |+|OB |的值.解 (1)设P (ρ,θ),∵=3,∴点M 的极坐标为,代入曲线C ,得OP → OM→ (ρ3,θ)=2sin θ,ρ3即曲线Q 的极坐标方程为ρ=6sin θ,∵ρ2=6ρsin θ,∴x 2+y 2=6y ,∴x 2+(y -3)2=9,∴曲线Q 的平面直角坐标方程为x 2+(y -3)2=9.(2)曲线Q 向上平移1个单位后得到曲线N 的方程为x 2+(y -4)2=9.l 的参数方程化为Error!两方程联立得t 2-4t +7=0,2∴t 1+t 2=4,t 1t 2=7,2∴|OA |+|OB |=|t 1|+|t 2|=t 1+t 2=4.26.(2019·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为Error!(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+ρsin θ+11=0.3(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.解 (1)因为-1<≤1,1-t 21+t 2且x 2+2=2+=1,(y2)(1-t 21+t 2)4t 21+t 2 2所以C 的直角坐标方程为x 2+=1(x ≠-1),y 24l 的直角坐标方程为2x +y +11=0.3(2)由(1)可设C 的参数方程为Error!(α为参数,-π<α<π).C 上的点到l 的距离为=.|2cos α+23sin α+11|74cos (α-π3)+117当α=-时,4cos+11取得最小值7,2π3(α-π3)故C 上的点到l 距离的最小值为.7解答题1.(2019·全国卷Ⅱ)在极坐标系中,O 为极点,点M (ρ0,θ0)(ρ0>0)在曲线C :ρ=4sin θ上,直线l 过点A (4,0)且与OM 垂直,垂足为P .(1)当θ0=时,求ρ0及l 的极坐标方程;π3(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.解 (1)因为M (ρ0,θ0)在曲线C 上,当θ0=时,ρ0=4sin =2.π3π33由已知得|OP |=|OA |cos =2.π3设Q (ρ,θ)为l 上除P 外的任意一点.连接OQ ,在Rt△OPQ 中,ρcos =|OP |=2.(θ-π3)经检验,点P在曲线ρcos =2上,(2,π3)(θ-π3)所以,l 的极坐标方程为ρcos=2.(θ-π3)(2)设P (ρ,θ),在Rt△OAP 中,|OP |=|OA |cos θ=4cos θ,即ρ=4cos θ.因为P 在线段OM 上,且AP ⊥OM ,所以θ的取值范围是.[π4,π2]所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈.[π4,π2]2.在平面直角坐标系xOy 中,直线l 的参数方程为Error!(t 为参数),圆C 的方程为(x -2)2+(y -1)2=5.以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求直线l 及圆C 的极坐标方程;(2)若直线l 与圆C 交于A ,B 两点,求cos∠AOB 的值.解 (1)由直线l 的参数方程Error!得,其普通方程为y =x +2,∴直线l 的极坐标方程为ρsin θ=ρcos θ+2.又∵圆C 的方程为(x -2)2+(y -1)2=5,将Error!代入并化简得ρ=4cos θ+2sin θ,∴圆C 的极坐标方程为ρ=4cos θ+2sin θ.(2)将直线l :ρsin θ=ρcos θ+2,与圆C :ρ=4cos θ+2sin θ联立,得(4cos θ+2sin θ)(sin θ-cos θ)=2,整理得sin θcos θ=3cos 2θ,∴θ=或tan θ=3.π2不妨记点A 对应的极角为,点B 对应的极角为θ,且tan θ=3.π2于是,cos∠AOB =cos =sin θ=.(π2-θ)310103.(2019·湖北4月调研)在直角坐标系xOy 中,曲线C 1的参数方程为Error!(α是参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin θ.(1)求曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)若射线θ=β与曲线C 1交于O ,A 两点,与曲线C 2交于O ,B 两点,(0<β<π2)求|OA |+|OB |取最大值时tan β的值.解 (1)由Error!得x 2-2x +y 2=0,2将Error!代入得ρ=2cos θ,2故曲线C 1的极坐标方程为ρ=2cos θ.2由ρ=4sin θ得ρ2=4ρsin θ,将Error!代入得x 2+y 2=4y ,故曲线C 2的直角坐标方程为x 2+y 2-4y =0.(2)设点A ,B 的极坐标分别为(ρ1,θ),(ρ2,θ),将θ=β分别代(0<β<π2)入曲线C 1,C 2的极坐标方程得ρ1=2cos β,ρ2=4sin β,2则|OA |+|OB |=2cos β+4sin β=2=2sin(β+φ),26(sin β·63+cos β·33)6其中φ为锐角,且满足sin φ=,cos φ=,3363当β+φ=时,|OA |+|OB |取最大值,π2此时β=-φ,tan β=tan ====.π2(π2-φ)sin (π2-φ)cos (π2-φ)cos φsin φ633324.已知直线l 的参数方程为Error!(t 为参数,0≤φ<π),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=1,l 与C 交于不同的两点P 1,P 2.(1)求φ的取值范围;(2)以φ为参数,求线段P 1P 2中点M 的轨迹的参数方程.解 (1)曲线C 的极坐标方程为ρ=1,根据ρ2=x 2+y 2可得曲线C 的直角坐标方程为x 2+y 2=1,将Error!代入x 2+y 2=1,得t 2-4t sin φ+3=0. (*)由Δ=16sin 2φ-12>0得|sin φ|>.32又0≤φ<π,所以φ的取值范围是.(π3,2π3)(2)由(1)中的(*)可知=2sin φ,t 1+t 22代入Error!得Error!整理得P 1P 2中点M 的轨迹的参数方程为Error!.(φ为参数,π3<φ<2π3)5.在平面直角坐标系xOy 中,直线l 的参数方程为Error!(t 为参数,0≤α<π),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ2=.21+sin2θ(1)求曲线C 的直角坐标方程;(2)设点M 的坐标为(1,0),直线l 与曲线C 相交于A ,B 两点,求+的值.1|MA |1|MB |解 (1)曲线ρ2=,即ρ2+ρ2sin 2θ=2,21+sin2θ∵ρ2=x 2+y 2,ρsin θ=y ,∴曲线C 的直角坐标方程为x 2+2y 2=2,即+y 2=1.x 22(2)将Error!代入x 2+2y 2=2并整理得(1+sin 2α)t 2+2t cos α-1=0,∴t 1+t 2=-,t 1·t 2=,2cos α1+sin2α-11+sin2α∴+===,1|MA |1|MB ||MA |+|MB ||MA |·|MB ||AB ||MA |·|MB ||t 1-t 2|-t 1·t 2∵|t 1-t 2|== =,t 1+t 2 2-4t 1t 24cos2α 1+sin2α 2+41+sin2α221+sin2α∴+==2.1|MA |1|MB |221+sin2α11+sin2α26.(2019·江西省名校5月联考)在平面直角坐标系xOy 中,曲线C 1过点P (a,1),其参数方程为Error!(t 为参数,a ∈R ),以O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1和曲线C 2交于A ,B 两点,且|PA |=2|PB |,求实数a 的值.解 (1)C 1的参数方程为Error!消参得普通方程为x -y -a +1=0,C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0,两边同乘ρ得ρ2cos 2θ+4ρcos θ-ρ2=0,得y 2=4x ,所以曲线C 2的直角坐标方程为y 2=4x .(2)曲线C 1的参数方程可转化为Error!(t 为参数,a ∈R ),代入曲线C 2:y 2=4x ,得t 2-t +1-4a =0,由Δ=(-)2-4××(1-4a )>0,得a >0,122212设A ,B 对应的参数分别为t 1,t 2,由|PA |=2|PB |得|t 1|=2|t 2|,即t 1=2t 2或t 1=-2t 2,当t 1=2t 2时,Error!解得a =;136当t 1=-2t 2时,Error!解得a =,94综上,a =或.13694。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.(20xx·长春质检)下列函数中,既是奇函数又在(0,+∞)上单调递增的是( )
A.y=ex+e-xB.y=ln(|x|+1)
C.y=D.y=x-
解析:选D 选项A,B是偶函数,排除;选项C是奇函数,但在(0,+∞)上不是单调函数,不符合题意;选项D中,y=x-是奇函数,且y=x和y=-在(0,+∞)上均为增函数,故y=x-在(0,+∞)上为增函数,所以选项D正确.故选D.
通用高考数学二轮复习课时跟踪检测二十文
编 辑:__________________
时 间:__________________
撰写人:__________________
部 门:__________________
时 间:__________________
A组——12+4提速练
一、选择题
1.函数f(x)= 的定义域为( )
3.(20xx·合肥模拟)函数y=4cos x-e|x|(e为自然对数的底数)的图象可能是( )
解析:选A 令f(x)=4cos x-e|x|,因为f(-x)=4cos(-x)-e|-x|=f(x),所以函数f(x)是偶函数,其图象关于y轴对称,排除选项B,D.又f(0)=4cos 0-e0=3>0,所以选项A满足条件.故选A.
9.已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>时,f =f ,则f(6)=( )
A.-2B.-1
C.0D.2
解析:选D 由题意知当x>时,f =f ,则f(x+1)=f(x).又当-1≤x≤1时,f(-x)=-f(x),∴f(6)=f(1)=-f(-1).又当x<0时,f(x)=x3-1,∴f(-1)=-2,∴f(6)=2.故选D.
6.(20xx·陕西质检)奇函数f(x)的定义域为R,若f(x+2)为偶函数,则f(8)=( )
A.-1 B.0 C.1 D.-2
解析:选B 由奇函数f(x)的定义域为R,可得f(0)=0,由f(x+2)为偶函数,可得f(-x+2)=f(x+2),故f(x+4)=f[(x+2)+2]=f[-(x+2)+2]=f(-x)=-f(x),则f(x+8)=f[(x+4)+4]=-f(x+4)=-[-f(x)]=f(x),即函数f(x)的周期为8,所以f(8)=f(0)=0,故选B.
4.已知函数f(x-1)是定义在R上的奇函数,且在[0,+∞)上是增函数,则函数f (x)的图象可能是( )
解析:选B 函数f(x-1)的图象向左平移1个单位,即可得到函数f(x)的图象.因为函数f(x-1)是定义在R上的奇函数,所以函数f(x-1)的图象关于原点对称,所以函数f(x)的图象关于点(-1,0)对称,排除A,C,D,故选B.
A.(0,2)B.(0,2]
C.(2,+∞)D.[2,+∞)
解析:选C 由题意可知x满足log2x-1>0,即log2x>log22,根据对数函数的性质得x>2,即函数f(x)的定义域是(2,+∞).
2.已知函数f(x)=则下列结论正确的是( )
A.函数f(x)是偶函数
B.函数f(x)是减函数
C.函数f(x)是周期函数
7.(20xx届高三·湖南五市十校联考)函数y=的图象大致为( )
选A 当x>2时,2-x<0,ex>0,(x-1)2>0,∴y<0,此时函数的图象在x轴的下方,排除B;当x<2且x≠1时,2-x>0,ex>0,(x-1)2>0,∴y>0,此时函数的图象在x轴的上方,故选A.
8.(20xx·天津高考)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为( )
A.a<b<cB.c<b<a
C.b<a<cD.b<c<a
解析:选C 由f(x)为奇函数,知g(x)=xf(x)为偶函数.因为f(x)在R上单调递增,f(0)=0,所以当x>0时,f(x)>0,所以g(x)在(0,+∞)上单调递增,且g(x)>0.又a=g(-log25.1)=g(log25.1),b=g(20.8),c=g(3),20.8<2=log24<log25.1<log28=3,所以b<a<c.
12.(20xx·洛阳统考)已知函数f(x)=若f(x)的值域为R,则实数a的.[2,+∞)
若方程f(x)=x+a有两个不同的实数根,则函数f(x)的图象与直线y=x+a有两个不同交点,
故a<1,即a的取值范围是(-∞,1).
11.(20xx届高三·广西三市联考)已知函数f(x)=e|x|,函数g(x)=对任意的x∈[1,m](m>1),都有f(x-2)≤g(x),则m的取值范围是( )
A.(1,2+ln 2)B.
10.已知函数f(x)的定义域为R,且f(x)=若方程f(x)=x+a有两个不同实根,则a的取值范围为( )
A.(-∞,1)B.(-∞,1]
C.(0,1)D.(-∞,+∞)
解析:选A x≤0时,f(x)=2-x-1,0<x≤1时,-1<x-1≤0,f(x)=f(x-1)=2-(x-1)-1.故当x>0时,f(x)是周期函数,f(x)的图象如图所示.
C.(ln 2,2]D.
解析:选D 作出函数y1=e|x-2|和y=g(x)的图象,如图所示,由图可知当x=1时,y1=g(1),又当x=4时,y1=e2<g(4)=4e,当x>4时,由ex-2≤4e5-x,得e2x-7≤4,即2x-7≤ln 4,解得x≤+ln 2,又m>1,∴1<m≤+ln 2.
D.函数f(x)的值域为[-1,+∞)
解析:选D 由函数f(x)的解析式,知f(1)=2,f(-1)=cos(-1)=cos 1,f(1)≠f(-1),则f(x)不是偶函数.当x>0时,f(x)=x2+1,则f(x)在区间(0,+∞)上是增函数,且函数值f(x)>1;当x≤0时,f(x)=cos x,则f(x)在区间(-∞,0]上不是单调函数,且函数值f(x) ∈[-1,1].所以函数f(x)不是单调函数,也不是周期函数,其值域为[-1,+∞).故选D.
相关文档
最新文档