9.1.1不等式及其解集课件ppt

合集下载

人教版数学下册:9.1.1不等式及其解集 课件(共20张PPT)

人教版数学下册:9.1.1不等式及其解集 课件(共20张PPT)

D.18≤t≤27
2.无论x取什么数,下列不等式总成立的是(D )
A.x+5>0
B.x+5<0
C.x2<0 D.x2≥0
随堂检测
3.高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指( B )
A.每100克内含钙150毫克 B.每100克内含钙不低于150毫克 C.每100克内含钙高于150毫克 D.每100克内含钙不超过150毫克
本节目标
了解不等式概念,理解不等式的解集,能正确表示
1 不等式的解集 .
2 培养数感,渗透数形结合的思想. .
3 培养自主学习的能力,合作交流意识与探究精神 .
预习反馈
1.下面给出了5个式子:①3>0,②4x+3y>O,③x=3,④x﹣1,⑤x+2≤3,
其中不等式有(B )
A.2个 B.3个 C.4个 D.5个
2.若m是非负数,则用不等式表示正确的是( D )
A.m<0 B.m>0 C.m≤0
D.m≥0
预习反馈
3.用不等号“>、<、≥、≤”填空:a2+1 > 0.
4.“a<b”的反面是( C )
A.a≠b B.a>b
C.a≥b
D.a=b
课堂探究
问题
一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车 速应满足什么条件?
一般地,一个含有未知数的不等式的 所有的解,组成这个不等式的 解集.求不等式的 解集 的过程叫做解不等式.
典例精析
4.不等式的解集的表示方法 第一种:用式子(如x>3),即用最简形式的不等式(如x>a或x<a)来表示.
第二种:利用数轴表示不等式的解集.

人教版数学 七年级下册第9章9.1.1不等式及其解集 课件(公开课 )

人教版数学 七年级下册第9章9.1.1不等式及其解集 课件(公开课 )

拔河时力气的大小
新课探究
问题:一辆匀速行驶的汽车在11:20距离A地 50千米,要在12:00之前驶过A地,车速应满 足什么条件?
A
汽车
分析:设车速是x千米/时
从时间上看,汽车要在12:00之前驶过A地,则以 2 这个速度行驶50千米所用的时间不到 小时,即 3
50 2 x 3
2 x 50 3
标出数轴上某一区间,其中的 点对应的数值都是不等式的解. 10 20
0
5
15
例2: 用数轴表示下列不等式的解集: ⑴ x>-1; ⑵ x≥ -1; ⑶ x< -1; ⑷ x≤ -1.
解:
○ ●
-1
0
-1
0




-1
0
-1
0
⑷ 总结: ①第一步:画数轴; 第二步:定界点; 第三步:定方向. ②规律: 大于向右画,小于向左画; 有等号(≥ ,≤)画实心点,无等号(>,<)画空心圆.
解:x+y ≤-2; (5)a与b的和的20%至多为15.
解:20%(a+b) ≤15
二.不等式的解: 2 x 50 3
你能找出一个符合条件的x的值吗? 使方程等号两边相等的未知数的值叫方程的解. 使不等式成立的未知数的值叫做不等式的解.
动动脑: 不等式的解与方程的解有什 么区别?
注意:不等式的解与一元一次方程的解是 有区别的.不等式的解是不确定的,是一 个范围,而一元一次方程的解则是一个具 体的数值.
(6)a的相反数至少为1.
解:-a≥1.
请直接想出下列不等式的解集,并在数轴上 表示. (1) 2x<8
0 1 2 3 4

9.1.1不等式及其解集

9.1.1不等式及其解集
9.1.1 不等式及其解集
教学目标
使学生经历“把实际问题抽象为不等式”的过程,能够“列出不等式 表示问题中的不等关系”,将符号化、模型化的思想进一步发展和加 强,体会不等式是刻画现实世界中不等关系的一种有效模型;通过类 比,了解不等式及其解与解集的概念;通过在数轴上表示出不等式的 解集,体会数形结合的思想;通过创设情境,增强应用意识和问题意 识,培养勇于探索、善于合作的精神品质.
类比 用等号连接表示相等关系的式子叫等式
教材114页
“<”或“>”
不等
不等式
定义:用“<”或“>” 表示大小关系的式子,叫做不等式.
像 a + 2 ≠ a-2 这样用符号 “≠” 表示不等关系的式子也是不等式.
持续探索,破茧成蝶
例1、请判断下列哪些是不等式?如果不是,请说明理由.
①-2<5 √ ②3+3=6 ×
数学智能AI:小度
徽章数:1
持续探索,破茧成蝶
小组抽盲盒
盲盒一:请用不等式表示: 1. x是正数; 2. a减1的差小于3
盲盒二:请用不等式表示: 1. y是负数; 2. x的两倍大于-1.
盲盒三:请用不等式表示: 1. m与n的和大于-2; 2. x的一半不等于6.
盲盒四:请用不等式表示: 一辆匀速行驶的汽车在11:20距离A地50km,要 在12:00之前驶过A地,车速x(km/h)应满足什 么条件?
持续探索,破茧成蝶
例4、在数轴上表示出教材116页第3题的解集:
(1)x 3
解:
(2)x 4
解:
(3)x 2
解:
0
3
0
4
0
2
在大家的帮助下,我获取了一些在数轴上表示不等式 的解集的图片,第三阶段学习顺利完成,获得第三枚徽章! 我终于可以回答部分人们关于不等关系的问题啦.

9.1.1不等式及其解集

9.1.1不等式及其解集

填一填
像 2x = 6 这类,表
示左__右__两__边__相__等__关系 的式子,叫做等式
类比
像 2x>6 这类,表
示_大__小___关系的式子, 叫做不等式
方程 2x = 6 的解是 __x__=__3
不等式 2x>6 的解 集是_x__>___3
练一练
判断下列说法是否正确,正确的打“√”,错误的打“×”.
(2)“不小于”;__≥__;
(3)“至多”;___≤_____;
(4)“至少”;__≥___; (5)“高出”:___>_____; (6)“不足”__<____; (7)“不超过”;_≤_____; (8)“不低于”:__≥__; (9)“不相等”;__≠_____.
4.(1)x的5倍与2的差大于x与1的和的3倍,用不等式表示
改为:自然数? 0、1、2、3、4、5 3、不等式x-5<1的解集是( C )
A、x<4 B、x>5 C、x<6 D、x<7
知识点 3:在数轴上表示不等式的解集
问题 如何在数轴上表示出不等式 x>25 的解集呢?
先A则都的在大 点点因不数于表等此A轴示可式右 2上的5以的,边标数像解而所出都下集点有表小图的x示于A那点>左样22表25边5表5.示.的所示的点有数
把表示 25 的点上 画空心圆圈,表示 不包含这一点.
A
0
25
画一画:利用数轴来表示下列不等式的解集.
空心圆圈表 示不含此点
(1)
x>-1

(2)1 2
.x<
表示
1 2
的点
-1 0 表示-1的点 方向向右
01 1 2
方向向左

人教版七年级数学下册_9.1.1不等式及其解集

人教版七年级数学下册_9.1.1不等式及其解集

A.5
B.4
C.3
D.2
感悟新知
知识点 3 不等式的解集的表示方法
在数轴上表示不等式的解集:
特别提醒 在数轴上表示不等式的解集时,
大于向右画, 小于向左画;界点处 用空心圆圈圈住该点.
知3-讲
感悟新知
知3-讲
不等式的解集表示的是未知数的取值范围,所以不等
式的解集可以在数轴上直观地表示出来. 一般地,利用数
C. 3
D. 2
感悟新知
例2 用不等式表示: (1)a 的一半与3 的和大于5; (2)x 的3 倍与1 的差小于2; (3)a 的 1 与1 的差是正数;
2
(4)m 与2 的差是负数.
知1-练
解题秘方:紧扣不等关系中的关键词语列出不等式.
感悟新知
解:(1) 1 a+3>5.
2
(2)3x-1<2.
第9章 不等式与不等式组
9.1 不等式
9.1.1 不等式及其解集
学习目标
1 课时讲解 2 课时流程
不等式 不等式的解与解集 不等式的解集的表示方法
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 不等式
知1-讲
1. 定义:用符号“<”或“>”表示大小关系的式子叫做不等
式. 用符号“≠”表示不等关系的式子也是不等式.
轴表示不等式的解集通常有以下四种情况(设a>0):
不等式的解集 x>a
x>-4a
x<a
x<-a
数轴表示
感悟新知
知3-练
例4 在数轴上表示下列不等式的解集: (1)x>2 (2)x<-2 解题秘方:紧扣不等式解集在数轴上的表示方法, 看清不等号和端点值是解决问题的关键.

9.1.1不等式及其解集(杜永宝)

9.1.1不等式及其解集(杜永宝)

第二种: 用数轴。标出数轴上某一区间,其中的点对 应的数值都是不等式的解。
例题讲解
例:用数轴表示下列不等式的解集:
⑴ x>-1;
⑶ x< -1;
⑵ x≥ -1;
⑷ x≤ -1.
例: 用数轴表示下列不等式的解集:
⑴ x>-1; ⑵ x≥ -1; ⑶ x< -1; ⑷ x≤ -1.
解:
○ ●
-1 ⑴
问题:
一辆匀速行驶的汽 车在11:20距离A地50km, 要在12:00之前行驶过A 地,车速应满足什么条 件?
分 析: 设车速为 x km/h 从时间上看:
从路程上看:
50 2 x 3 2 x 50 3
① ②
不等式的定义: 像①和②这样,用符号“<” 或“>”表示大小关系的式子, 叫做不等式。
第9章
不等式与不等式组
§9.1.1 不等式及其解集
济宁孔子国际学校 初一数学组
【学习目标】
(1)了解不等式的概念,会用不等 式符号表示不等式。
(2)理解不等式的解、不等式的解 集,知道什么叫解不等式。 (3)在理解不等式的解集的基础上 会用数轴准确的表示简单不等式的解 集。 课堂效率要提高,学习目标少不了!
【思考】:
还有其他解吗?如果有,这些解应
满足什么条件?
2 除了80和78,不等式 x 50 3
可以发现: 2 当x>75时,不等式 x 50 总成立; 3 2 而当x<75或x=75时,不等式 x 50 不成立。 3
因此: 2 x>75表示了能使不等式 x 50 成立的x的 3 取值范围,它可以在数轴上表示:
同学们,通过本节课的学习,你 有哪些收获?
畅 谈 收 获!

第 九章 不等式9.1.1不等式及其解集

第 九章 不等式9.1.1不等式及其解集
(1)x的一半不小于-1 (1) 0.5x≥-1.如 x=-1,1.
(2) y+4>0.5. 如y=0,1.
(2)y与4的和大于0.5 (3) a<0 . 如a=-3,-4.
(3)a是负数; (4)b是非负数;
(4) b是非负数,就是b不是 负数,它可以是正数或零, 即b>0或b=0.如b=0,2.
(3)x=3;
(4) x2+xy+y2;
(5)x≠5; (6)x+2>y+5.
解 : (1)(2)(5)(6)是不等式; (3)(4)不是不等式.
知识讲解
练一练
C
知识讲解
2 用不等式表示数量关系
例2 用不等式表示下列数量关系:
(1)x的5倍大于-7; (2)a与b的和的一半小于-1;
5x >-7
知识讲解
例4 直接写出x+4<6的解集,并在数轴上表示出来. 解:x<2. 这个解集可以在数轴上表示为:
0 12 变式1 已知x的解集如图所示,你能写出x的解集吗?
(1)
-4
0
解:(1)x<-4;
(2)
0
4
(2)x>4.
知识讲解
变式2 直接写出不等式2x>8的解集,并在数轴上表示 出来.
解:x>4. 这个解集在数轴上表示为:
二、如何在小学数学教学活动中体现数学核心素养 1.数学抽象(符号意识、数感;几何直观、空间想象) 2.逻辑推理(推理能力、运算能力) 3.数学模型(模型思想、数据分析观念)
三、如何在数学教学评价中考查数学核心素养
教育质量监测的四个原则 1.不要求计算速度(速度的训练是课业负担重的主要原因) 2.监测内容蕴含的数学素养(概念、推理、计算、想象) 3.应当有一道开放题(超市的位置,加分原则) 4.说学生能懂的话(对可 直接写出不等式-2x>8的解集.

2014..9.1.1.不等式及其解集

2014..9.1.1.不等式及其解集

比较等式与不等式的性质
等式的基本性质1
等式两边加(或 减)同一个数或式 子,结果仍相等。 等式的基本性质2 不等式的性质1 不等式两边加(或减) 同一个数(或式子),不 等号的方向不变。
不等式的性质2 不等式两边乘(或除以) 等式两边乘同一个 正数 同一个正数,不等号的方 数,或除以同一个 不变 向不变。 不为零的数,结果 不等式的性质3 仍相等. 不等式的两边乘(或除以)同 一个负数,不等号的方向改变 负数 改变.
达标检测
1、已知a>b,下列不等式不成立的是( B)
A: a-3>b-3 B:-2a>-2b C: D: -a<-b 2、由m>n到km<kn成立的条件是( B ) A: k>0 B :k<0 C: k≥0 D: k≤0 3、已知a>b,用“<”或“>”填空: > -3 < -3b (1) a-3____b (2) -3a____ > < -3b (4) a-b____0 (3) 3-3a____3 <-2,依据____________. 不等式的性质3 4、若-2x>4,则x___ 若m-2>3,则m___ _________. 1 >5 ,依据不等式的性质
正数:7×3
7 ×2 7 ×1 零: 7× 0
> > >
4×3
4× 2 4× 1
负数:7×(-1)
7 ×(-2) 7 × (-3)
< 4 × (-1) < 4 × (-2) <
4 × (-3)
= 4× 0
发现:同乘以一个正数,不等号方向不变,同乘以一
个 负数不等号方向改变,同乘以0的时候相等.

人教版七年级下册数学第9章 不等式与不等式组全章课件

人教版七年级下册数学第9章 不等式与不等式组全章课件
10天的工作量 < 500件
(2)“提前完成任务”是什么意思?
10天的工作量 ≥ 500件
(三)深入探究,阶段小结
解:每个小组每天生产x件产品,
依题意得: 3×10x<500, ① 3×10(x+1)>500. ②
①式解得:x
<
16
2 3
②式解得:x
>15
2 3
∴不等式组的解集为
15
2 3
<x
< 16
问题3:
从刚才的练习中你发现了什么?请你把你的发现和合作小组的同学 交流.
⑴ 5>3, 5+2 > 3+2, 5-2 > 3-2; ⑵ -1<3, -1+2 < 3+2,-1-3< 3-3; ⑶ 6<2, 6×5 < 2×5,
6×(-5) >2×(-5); ⑷ -2<3, (-2)×6 < 3×6,
依题意得:40x≤2400 且 40x≥2000
(二)概念认识
c>10-3 且 c<10+3
c >10-3 c <10+3
一元一次 不等式组
40x≤2400 且 40x≥2000
40x≤2400
【问题3】
40x≥2000
请大家判断一下,下列式子是一元一次不等式
组吗?一元一次不等式组有什么特点?
x - 3 >0
23 从图中可以找到两个不等式解集的公共部分, 得不等式组的解集是: x >3
(五)练习巩固
【问题 7】完成课本 140 页练习 1.
(六)课堂小结
【问题 8】本节课你学到了哪些知识?
第九章 不等式与不等式组

《不等式及其解集》课件

《不等式及其解集》课件

1.下列结论中,错误的是(C ) (A)-1不是2x>0的解 (B)x-4<1的解有无限个 (C)3是x+1<4的解 (D)x-2>7的解是x>9 2.下列各数中,能使不等式 3x-1<5-2x 成立的是(D ) (A)4 ( B ) 2 ( C ) 3/2 ( D ) 0 3.列出不等式: (1)x+1是负数 (2)根据“x与-5的差不大于1” (3)“a的2倍与1的和是非负数”
练一练
在-3、-2、-3/2、-1、0、1、3/2中,哪些 数值能使不等式x+2>0成立?能使x+2>0 成立的x的取值共有多少个?
你的学习任务:
1.了解不等式和一元一次不等式的概念 2.根据条件列出不等式 3.理解不等式的解及不等式的解集的概念 4.掌握不等式解集在数轴上: 含有一个未知数,未知数的次数是1 含有一个未知数,未知数的次数是1的不等式叫做一 元一次不等式。 元一次不等式。如4x>8
在我们的 实际生活中, 实际生活中, 有很多事物蕴 含着大量的不 等关系。 等关系。 比如我们 的地球, 的地球,是一 个美丽的水球。 个美丽的水球。 在太空上 看,海洋的面 积远远大于陆 地的面积。 地的面积。
再比如, 再比如,国际巨星 李连杰站在姚明身旁, 李连杰站在姚明身旁, 顿时感觉“ 顿时感觉“小鸟依人 了”。 这是因为李连杰的 身高是1.69 1.69米 身高是1.69米,而姚明 的身高已经达到了2.29 的身高已经达到了2.29 米。 那么, 那么,聪明的你们 还能举出日常生活中一 些类似的不相等关系的 例子吗? 例子吗?
不等式: 用“>”、“≥” 、“<”、“≤”符
号表示大小关系的式子叫做不等式。 用“≠”表示不等关系的式子也叫不等式。 比如: 40>30 40≠30

人教版_《不等式及其解集》PPT1

人教版_《不等式及其解集》PPT1
有4个正整数解,分别是4,3,2,1。
课 结堂

同学们,本节课你收获了什么?
课后作业 1.整理本节知识点 2.选做题: 同步检测题
答案:①②③⑤⑦⑧是不等式,④⑥不是.
检测目标
实数a,b在数轴上的位置关系如图 所示,选择适当的不等号填空: (1)a__<___b
(2) ab__<___0 (3)a+b__<___0
检测目标
在数轴上表示x≥-2正确的是 ( D )

-2
A

-2 0
B

-2 0
C

-2 0
D
检测目标
不等式x<5有多少个解?有多少个正整数解? 解:不等式x<5有无数个解;
(2)关键词“小于”可以转化为符号__<___; (2) 0.5 (a+b)<-1; (3)长方形面积为_x_y_c_m_2,正方形面积为_a_2_cm__2 ;关键词“小
于”可以转化为符号_<___. (3) xy<a2 . 注意:在表示数量关系时,一定要注意“大于”、“小于”、
“不小于”等关键性词语.
联系 某个解定是解集中
的一员
全体 如:x<5是2x-3<7 的解集
解集一定包括了 某个解
即学即练
() () ()
目标导学四:在数轴上表示不等式的解集
例4:直接想出不等式的解集: ⑴ x+2>6 ⑵ 3x>9 ⑶ x-3>0
解: ⑴ x>4 ;
⑵ x>3 ; ⑶ x>3.
如何在数轴上表示出不等式x>2的解集呢?
认真阅读课本中9.1.1 不 等式及其解集的内容,完成下 面练习并体验知识点的形成过 程。

人教版七年级数学下册第九章《 9.1.1 不等式及其解集》公开课课件(共39张PPT)

人教版七年级数学下册第九章《 9.1.1 不等式及其解集》公开课课件(共39张PPT)
第九章 不等式与不等式组 9.1 不等式 9.1.1 不等式及其解集
1.用“__>__”或“__<__”表示大小关系的式子叫做不等式,用“__≠__”表示不等 关系的式子也是不等式.
2.使不等式成立的__未知数的值__叫做不等式的解;一般地,一个含有未知数的不等式 的__所有的解__组成这个不等式的解集.求不等式的__解集__的过程叫做解不等式.
21.(16分)阅读下列材料,并完成填空. 你能比较2 0142015和2 0152014的大小吗? 为 了 解 决 这 个 问 题 , 先 把 问 题 一 般 化 , 比 较 nn + 1 和 (n + 1)n(n≥1 , 且 n 为 整 数 ) 的 大 小.然后从分析n=1,n=2,n=3…的简单情形入手,从中发现规律,经过归纳、猜 想得出结论. (1)通过计算(可用计算器)比较下列①~⑦组两数的大小;(在横线上填上“>”“=”或“<”) ①12__<__21;②23__<__32;③34__>__43; ④45__>__54;⑤56__>__65;⑥67__>__76; ⑦78__>__87. (2)归纳第(1)问的结果,可以猜想出nn+1和(n+1)n的大小关系; (3)根据以上结论,请判断2 0142 015和2 0152 014的大小关系. 解:(2)当n=1或2时,nn+1<(n+1)n;当n≥3时,nn+1>(n+1)n
第九章 不等式与不等式组 9.1.2 不等式的性质
4.(4分)平面直角坐标系中,点Q(2,-3m+1)在第四象限,则m的取 值范围是( D ) A.m< B.m>- C.m<- D.m>
5.(3分)在下列不等式的变形后面填上依据: (1)如果a-3>-3,那么a>0;__不等式的性质1__ (2)如果3a<6,那么a<2;__不等式的性质2__ (3)如果-a>4,那么a<-4.__不等式的性质3__

9.1.1不等式及其解集.课件

9.1.1不等式及其解集.课件

补充题2: 补充题 : 为任何正数时, 当x为任何正数时,都能使不等式 +3>2成 为任何正数时 都能使不等式x+ 成 能不能说不等式x+ 的解集是x>0?为什 立,能不能说不等式 +3>2的解集是 的解集是 ? 么?
补充题3: 补充题 : 世纪公园的票价是:每人 元 一次购票满30张 世纪公园的票价是:每人5元;一次购票满 张, 每张可少收1元 某班有27名少先队员去世纪公园进 每张可少收 元。某班有 名少先队员去世纪公园进 行活动。当领队王小华准备好了零钱到售票处买27张 行活动。当领队王小华准备好了零钱到售票处买 张 票时,爱动脑筋的李敏同学喊住了王小华,提议买30 票时,爱动脑筋的李敏同学喊住了王小华,提议买 张票。你认为李敏的提议有道理吗,为什么? 张票。你认为李敏的提议有道理吗,为什么?
0
1
5 2 3 5 2 3
0
1
5 2 3 5 2 3
(C)
0
1(D)01来自补充题1: 补充题 :
不等式x< 有多少个解 有多少个正整数解? 有多少个解? 不等式 <5有多少个解?有多少个正整数解? 不等式x< 有无数个解 有无数个解; 个正整数解, 不等式 <5有无数个解;有4个正整数解,分别 个正整数解 4,3,2,1。 是 4, 3, 2, 1。
至少要有多少人去世纪公园,多买票反而合算呢? 至少要有多少人去世纪公园,多买票反而合算呢?
四.一元一次不等式 一元一次不等式
① -x+2 = 4 ③ x-(-1) = 0 -- ⑤ x+2= 2x ② -x+2 ﹥ 4 ④ x-(-1) ﹤0 -- ⑥ x+2≠ 2x
一元一次 不等式 一元一次方程 ① 未知数个数:一个 未知数个数: 未知数次数: ② 未知数次数:一次 等号连接 不等号连接 ③ 用等号连接 ③ 用不等号连接 含有一个未知数,未知数的次数是1 含有一个未知数,未知数的次数是1 的不等式,叫做一元一次不等式 的不等式,叫做一元一次不等式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x = 16
8 5

x < 16
像这样用等 号连接表示相等 用等号 关系的式子叫等 连接 式。
像这样用不等号 连接表示不等关“ < ” 读作小于、“>”读作大于、“≠”读作不等 于。都是不等号.
请用适当的式子表示下列问题中的数量关系: (1)-3小于2. - 3< 2
……
不等式3x>5的解
2、不等式3x>5的解集是:_________ 3 3、在数轴上表示不等式3x>5的解集,正确的是( A ) (A) (B)
0
1
5 2 3
0
1
5 2 3 5 2 3
(C)
0
1
5 2 3
(D)
0
1
4、请直接想出下列不等式的解集,并在数轴上表示。
(1) 2x<8
(2)x-2>0
0
含有未知数的不等式的所有解组成这个不等式 的解集(solution set) 。
怎样表示不等式的解集?
文字语言 小于10的数 数学式子 数轴表示 x<10
0
5
10
15
20
求不等式解集的过程叫做解不等式.
1、已知下列各数,请将是不等 式3x>5的解的数填到椭圆 中.-4,-2.5,0,1, 2,4.8, 3, 8 5 x>
(2)用字母y表示一个数,若y有倒数,则y需满足 y≠0 什么条件? (3)某数a与2的差小于-1 . (4)数a与b的差为1 . a- 2 < - 1 a-b=1
(5)如图二,天平左盘放3个小球, 右盘放5g砝码,天平倾斜。设每个小 球的质量为x(g),怎样表示x与5之 间的关系? 3x>5
所列出的关系式,都是不等式吗? (1)-3小于2. - 3< 2 是
1
2 x<4
3
4
0
1 2 x>2
找点
定向
画线
问题2:老师买了2件圣诞礼品,每件礼品按 八折出售,付费少于16元,你知道礼品的标价 每件是多少元吗?


x <16
若该礼品的进价是5元,如果要保证商店有盈 利,如何用不等式表示标价的范围?如何在数轴 上表示这个范围?
5<x<10
0
5
10
15
20
礼品标价是10元,八折出售,老师问服务员: “能否再优惠?”,服务员说:“如果一次性买
观察它们未知数的个数与次数有何特点? 一元一次方程 8 一元一次不等式 8
x = 16
x < 16
5 5 只含有一个未知数,未知数的次数是一次
像这样,含有 一个未知数,未知数的次 未知数,未知数的次数 类似地, 含有一个 是一次 的方 程,叫做一元一次方程 数是 一次 的不等式,叫做一元一次不等式
(2)用字母y表示一个数,若y有倒数,则y需满足 什么条件? y≠0 是 (3)某数a与2的差小于-1 . a-2 < -1 是 (4)数a与b的差为1 . a-b=1 不是
(5)如图二,天平左盘放3个小 球,右盘放5g砝码,天平倾斜。设 每个小球的质量为x(g),怎样表 示x与5之间的关系?
3x>5 是
在前面出现的不等式中哪些一元一次不等式吗?
(1)-3< 2 (3) a-2 < -1

(2) 3x>5 (4)
1 6 >2
(5)

x < 16
(2)(3)(5)是一元一次不等式


x < 16
你能找出一个符合条件的x的值吗? 使方程等号两边相等的未 使不等式成立的未知数的值叫做 知数的值叫 方程的解。 不等式的解。
问题1:老师按八折买了2件圣诞礼品, 共付了16元钱,
你知道礼品的标价每件是多少元吗?
用x表示礼品的标价,由题意,得: 8
x = 16
问题2:老师按八折买了2件圣诞礼品,付费少于16元
,你知道礼品的标价每件是多少元吗?
用x表示礼品的标价,由题意,得: 8 5 16

x < 16
0.8 x
>2
观察所得到的式子,它们之间有何区别?
☻你还有其它的体会与收获吗?
作 业
必做题: 作业本9.1.1不等式及其解集 选做题: 能否寻求用其它方法求一元一次不等式的解集。
10件及以上可打6折”,你能给老师提供省钱的购
买方案吗?
回 眸 课 堂
☻谈谈你对不等式有了哪些认识?
不等式的解
继续探 索……
一元一次 不等式
用数轴表 示不等式 解集


不等式 的解集

生活中的不等关系
回 眸 课

☻谈谈你对不等式有了哪些认识? ☻我们是如何认识不等式有关的知识?
类比于一元一次方程
相关文档
最新文档