二次函数画图2

合集下载

二次函数及其图像

二次函数及其图像

二次函数及其图像一般地,我们把形如y=ax^2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数(quadratic function),其中a称为二次项系数,b为一次项系数,c为常数项。

x为自变量,y为因变量。

等号右边自变量的最高次数是2。

注意:“变量”不同于“自变量”,不能说“二次函数是指自变量的最高次数为二次的多项式函数”。

“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。

在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。

从函数的定义也可看出二者的差别.如同函数不等于函数的关系。

[1]编辑本段几种表达式一般式y=ax^2+bx+c(a≠0,a、b、c为常数),顶点坐标为[-b/2a,(4ac-b^2)/4a]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c 的值。

[1]顶点式y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax^2的图像相同,当x=h 时,y最值=k.有时题目会指出让你用配方法把一般式化成顶点式。

例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。

解:设y=a(x-1)^2+2,把(3,10)代入上式,解得y=2(x-1)^2+2。

注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,-h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。

[1]交点式y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点A(x1,0)和B (x2,0)的抛物线,即b^2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

二次函数的图象课件

二次函数的图象课件
二次函数的图像可以呈现抛物线的形状,开口方向可能向上或向下。
二次函数的标准式和一般式
二次函数可以表示为标准式 y = a(x - h)^2 + k 或一般式 y = ax^2 + bx + c,其中 (h, k) 表示顶点 坐标。
二次函数图像的相关属性
1
开口方向和范围
2
开口向上的二次函数的最小值是负无穷大,
开口向下的二次函数的最大值是正无穷大。
范围是 y 值的取值范围。
3
最值和最值点
4
最值是函数的最高或最低点的 y 值,最值
点是函数的最高或最低点的坐标。
5
对称轴和顶点
二次函数的对称轴是通过顶点并垂直于 x 轴的直线,顶点是抛物线的最高或最低点。
零点和交点
零点是函数与 x 轴相交的点,交点是函数 与其他曲线相交的点。
总结与回顾
本次课程的主要内容 和要点
我们学习了二次函数的概念、 图像的属性、平移和伸缩的影 响,以及绘制和分析二次函数 图像的方法。
二次函数图像的应用 和拓展
二次函数图像的形态和属性在 物理、经济和工程等领域有广 泛的应用,可以用于建模和解 决实际问题。
课后习题和练习建议
通过练习,并结合实际应用进 行深入思考和拓展,加深对二 次函数图像的理解和掌握。
渐近线和渐近值
渐近线是抛物线的非实际部分趋近于的直 线,渐近值是渐近线的 y 值。
二次函数的平移和伸缩
1
伸缩变换对二次函数图像的影响
ห้องสมุดไป่ตู้
2
伸缩改变了抛物线的形状和大小,可以 使抛物线变得更宽或更窄,更高或更低。
平移变换对二次函数图像的影响
平移改变了抛物线的位置,会使得抛物 线在 x、y 轴上的相应坐标发生变化。

二次函数的图象和性质课件

二次函数的图象和性质课件

二次函数的解析试.
解:设所求的二次函数 为y ax2 bx c,由题意得:
{a b c 10 abc 4
4a 2b c 7
待定系数法
解得,a 2,b 3, c 5
所求的二次函数是 y 2x2 3x 5
对自己说,你有什么收获? 对老师说,你有什么疑惑? 对同学说,你有什么温馨提示?
x
y 1 x 22
3
y 1 x2
3
5.二次函数y=ax2 的图象和性质
抛物线 y=ax2(a>0)
y=ax2(a<0)
开口方向
对称轴
向上 直线x=0
向下 直线x=0
顶点坐标 (0,0)
(0,0)
增减性
在对称轴的左侧,y随着x的增大 在对称轴的左侧,y随着x的增大
而减小. 在对称轴的右侧, y随 而增大. 在对称轴的右侧, y随
问题3:多边形的对角线数d与边数n有什么关系?
由图可以想出,如果多边形有n
条边,那么它有 n 个顶点,从一
个顶点出发,连接与这点不相邻
M
N 的各顶点,可以作(n-3)条对角线.
此式表示了多边形
的对角线数d与边
数n之间的关系,对
于n的每一值,d都

有唯一的对应值,
即d是n的函数。
问题4:某工厂一种产品现在的年产量是20件,计划今后两年 增加产量。如果每年都比上一年的产量增加x倍,那么两年后 这种产品的产量y将随计划所定的x的值而确定,y与x之间的 关系怎样表示?
返回
在同一坐标系内画出y=2x2、y=2(x-1)2、 y=2(x-1)2+1 的图象
x
-3 -2 -1
0
1

2014最新版2.2二次函数图像2

2014最新版2.2二次函数图像2

问题2: 你能在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2 的图象,并比较它们的联系和区别吗?
你能在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2 y 的图象,并比较它们的联系和区别吗 ?
5
y=2x2
y=2(x+1)2
4. 3.
y=2(x-1)2
2.
1.
-3.
-2
-1
例1. 填空题 (1)二次函数y=2(x+5)2的图像是 ,开 口 ,对称轴是 ,当x= 时,y有最 值,是 . (2)二次函数y=-3(x-4)2的图像是由抛物线y= -3x2 向 平移 个单位得到的;开口 ,对称轴 是 ,当x= 时,y有最 值,是 . (3)将二次函数y=2x2的图像向右平移3个单位后得到 函数 的图像,其对称轴是 , 顶点是 ,当x 时,y随x的增大而 增大;当x 时,y随x的增大而减小. (4)将二次函数y= -3(x-2)2的图像向左平移3个单位 后得到函数 的图像,其顶点坐标 是 ,对称轴是 ,当x= 时,y有 最 值,是 .
画出二次函数y=2(x-1)2和二次函数y=2x2的图象,并加以观察
问题1: 在同一直角坐标系中,画出二次函数y=2x2与 y=2(x-1)2的图象 .观察两个图象的开口方向、 对称轴以及顶点坐标相同吗?这两个函数的图 象之间有什么关系?
x
y=2x2 y=2(x-1)2

- 3 -2 -1 18 32 8 18 2 8
<3 3.函数y= 时,y随x的增大而增大; 当x >3 时,y 随x的增大而减小。
4 y=4(x+1)2的图象是由 抛物线__________
2 y=4x
2 –5(x–3) ,当x

第1讲 二次函数的图像及性质

第1讲 二次函数的图像及性质

第1讲二次函数的图形及性质题型1:二次函数的概念1.下列函数表达式中,一定为二次函数的是()A.y=5x−1B.y=ax2+bx+c C.y=3x2+1D.y=x2+1x题型2:利用二次函数定义求字母的值2.已知y=(m+1)x|m−1|+2m是y关于x的二次函数,则m的值为()A.−1B.3C.−1或3D.0题型3:二次函数的一般形式3.二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分別是()A.2、0、﹣3B.2、﹣3、0C.2、3、0D.2、0、3A.2B.﹣2C.﹣1D.﹣4题型4:根据实际问题列二次函数4.一个矩形的周长为16cm,设一边长为xcm,面积为y cm2,那么y与x的关系式是【变式4-1】如图,用长为20米的篱笆(AB+BC+CD=20),一边利用墙(墙足够长),围成一个长方形花圃.设花圃的宽AB为x米,围成的花圃面积为y米2,则y关于x的函数关系式是.【变式4-2】某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=(200﹣5x)(40﹣20+x)B.y=(200+5x)(40﹣20﹣x)C.y=200(40﹣20﹣x)D.y=200﹣5x题型5:自变量的取值范围5..若y=(a−2)x2−3x+4是二次函数,则a的取值范围是()A.a≠2B.a>0C.a>2D.a≠0【变式5-1】函数y=√x+2的自变量取值范围是()x−1A.x≥−2B.−2≤x<1C.x>1D.x≥−2且x≠1【变式5-2】若y=(m+1)x m2−2m−1是二次函数,则m=,其中自变量x的取值范围是.22.1.2二次函数y=ax2的图像和性质二次函数y=ax2(a≠0)的图象用描点法画出二次函数y=ax2(a≠0)的图象,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.二次函数y=ax2(a ≠0)的图象的画法用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值,这样的对应值选取越密集,描出的图象越准确.注意:用描点法画二次函数y=ax 2(a≠0)的图象,该图象是轴对称图形,对称轴是y 轴.画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.题型1:利用描点法作函数图像1.在直角坐标系中,画出函数y =2x 2的图象(取值、描点、连线、画图).【变式1-1】在如图所示的同一平面直角坐标系中,画出函数y =2x 2,y =x 2,y =﹣2x 2与y =﹣x 2的图象.x y =2x 2 y =x 2 y =﹣2x 2 y =﹣x 2x ya>0a<0题型2:二次函数y=ax2的图像2.在同一坐标系中画出y1=2x2,y2=﹣2x2,y3=x2的图象,正确的是()A.B.C.D.【变式2-1】下列图象中,是二次函数y=x2的图象的是()A.B.C.D.【变式2-2】如图,在同一平面直角坐标系中,作出函数①y=3x2;②y=;③y=x2的图象,则从里到外的三条抛物线对应的函数依次是()A.①②③B.①③②C.②③①D.③②①题型3:二次函数y=ax2的性质3.抛物线y=﹣3x2的顶点坐标为()A.(0,0)B.(0,﹣3)C.(﹣3,0)D.(﹣3,﹣3)【变式3-1】抛物线,y=x2,y=﹣x2的共同性质是:①都开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴.其中正确的个数有()A.0个B.1个C.2个D.3个【变式3-2】.对于函数y=4x2,下列说法正确的是()A.当x>0时,y随x的增大而减小B.当x>0时,y随x的增大而增大C.y随x的增大而减小D.y随x的增大而增大【变式3-3】二次函数y=﹣3x2的图象一定经过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限题型4:函数图像位置的识别4.已知a≠0,b<0,一次函数是y=ax+b,二次函数是y=ax2,则下面图中,可以成立的是()A.B.C.D.【变式4-1】函数y=ax2与y=ax+a,在第一象限内y随x的减小而减小,则它们在同一平面直角坐标系中的图象大致位置是()A.B.C.D.【变式4-2】在图中,函数y=﹣ax2与y=ax+b的图象可能是()A.B.C.D.题型5:函数值的大小比较5.二次函数y1=﹣3x2,y2=﹣x2,y3=5x2,它们的图象开口大小由小到大的顺序是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y3题型6:简单综合-三角形面积6.求直线y=3x+4与抛物线y=x2的交点坐标,并求出两交点与原点所围成的三角形面积.22.1.3二次函数y=a(x-h)²+k的图像和性质二次函数y=ax2+c(a≠0)的图象(1)(2)0 a>0 a<题型1:二次函数y=ax²+k的图象1.建立坐标系,画出二次函数y=﹣x2及y=﹣x2+3的图象.向上向下题型2:二次函数y=ax²+k的性质2.抛物线的开口方向是()A.向下B.向上C.向左D.向右【变式2-2】抛物线y=2x2+1的对称轴是()A.直线x=B.直线x=﹣C.直线x=2D.y轴题型3:二次函数y=a(x-h)²的图象3.画出二次函数(1)y=(x﹣2)2(2)y=(x+2)2的图象.课堂总结:题型4:二次函数y=a(x-h)²的性质4.对于二次函数y=﹣(x﹣1)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=1C.顶点坐标为(1,0)D.当x<1时,y随x的增大而减小题型5:二次函数y=a(x-h )²+k 的图象和性质5.对于二次函数y =﹣5(x +4)2﹣1的图象,下列说法正确的是( ) A .图象与y 轴交点的坐标是(0,﹣1) B .对称轴是直线x =4C .顶点坐标为(﹣4,1)D .当x <﹣4时,y 随x 的增大而增大 【变式5-1】再同一直角坐标系中画出下列函数的图象 (1)y =(x ﹣2)2+3 (2)y =(x +2)2﹣3【变式5-2】画函数y =(x ﹣2)2﹣1的图象,并根据图象回答: (1)当x 为何值时,y 随x 的增大而减小.(2)当x 为何值时,y >0.【变式5-3】写出下列二次函数图象的开口方向、对称轴和顶点坐标. (1)y =5(x +2)2﹣3;(2)y =﹣(x ﹣2)2+3;(3)y =(x +3)2+6.二次函数的平移 1.平移步骤:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: ()2y a x h k =-+()h k ,2y ax =()h k ,2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左h k加右减,上加下减”.题型6:二次函数几种形式之间的关系(平移)6.将抛物线y=(x﹣3)2﹣4先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的函数表达式为()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣2D.y=(x﹣4)2﹣2【变式6-1】将抛物线向上平移2个单位长度,再向右平移1个单位长度,能得到抛物线y =2(x﹣2)2+3的是()A.y=2(x﹣1)2+1B.y=2(x﹣3)2+1C.y=﹣2(x﹣1)2+1D.y=﹣2x2﹣1【变式6-2】将二次函数y=x2﹣3的图象向右平移3个单位,再向上平移5个单位后,所得抛物线的表达式是.题型7:利用增减性求字母取值范围7.抛物线y=(k﹣7)x2﹣5的开口向下,那么k的取值范围是()A.k<7B.k>7C.k<0D.k>0【变式7-1】已知点(x1,y1)、(x2,y2)是函数y=(m﹣3)x2的图象上的两点,且当0<x1<x2时,有y1>y2,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【变式7-2】二次函数y=(x﹣h)2+k(h、k均为常数)的图象经过P1(﹣3,y1)、P2(﹣1,y2)、P3(1,y3)三点.若y2<y1<y3,则h的取值范围是.题型8:识别图象位置8.如果二次函数y=ax2+c的图象如图所示,那么一次函数y=ax+c的图象大致是()A.B.C.D.【变式8-1】在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是()A.B.C.D.【变式8-2】已知m是不为0的常数,函数y=mx和函数y=mx2﹣m2在同一平面直角坐标系内的图象可以是()A.B.C.D.题型9:比较函数值的大小9.已知二次函数y=(x﹣1)2+h的图象上有三点,A(0,y1),B(2,y2),C(3,y3),则y1,y2,y3的大小关系为()A.y1=y2<y3B.y1<y2<y3C.y1<y2=y3D.y3<y1=y2题型10:简单综合问题10.已知抛物线y=(x﹣5)2的顶点为A,抛物线与y轴交于点B,过点B作x轴的平行线交抛物线于另外一点C.(1)求A,B,C三点的坐标;(2)求△ABC的面积;(3)试判断△ABC 的形状并说明理由.【变式10-1】如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y =x 2于点B 、C ,求BC 的长度.【变式10-2】在同一坐标系内,抛物线y =ax 2与直线y =x +b 相交于A ,B 两点,若点A 的坐标是(2,3).(1)求B 点的坐标;(2)连接OA ,OB ,AB ,求△AOB 的面积.22.1.4 二次函数y=ax 2+bx+c 的图象与性质二次函数一般式与顶点式之间的相互关系 1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式. 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++⎪⎝⎭代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.题型1:一般式化成顶点式-配方法1.将二次函数y=x2−4x+5用配方法化为y=(x−ℎ)2+k的形式,结果为()A.y=(x−4)2+1B.y=(x−4)2−1C.y=(x−2)2−1D.y=(x−2)2+1题型2:一般式化成顶点式-应用2.已知:二次函数y=x2﹣2x﹣3.将y=x2﹣2x﹣3用配方法化成y=a(x﹣h)2+k的形式,并求此函数图象与x轴、y轴的交点坐标.题型3:公式法求顶点坐标及对称轴3.已知二次函数 y =−12x 2+bx +3 ,当 x >1 时,y 随x 的增大而减小,则b 的取值范围是( ) A .b ≥−1B .b ≤−1C .b ≥1D .b ≤10a >0a <题型4:二次函数y=ax2+bx+c图像与性质4.若二次函数y=ax2+bx+c的图象如图所示,则下列说法不正确的是()A.当1<x<3时,y>0B.当x=2时,y有最大值C.图像经过点(4,−3)D.当y<−3时,x<0【变式4-2】二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是()A.y⩽9B.y⩽2C.y<2D.y⩽3 4题型5:利用二次函数的性质比较函数值5.函数y=﹣x2﹣2x+m的图象上有两点A(1,y1),B(2,y2),则()A.y1<y2B.y1>y2几种常考的关系式的解题方法题型6:二次函数y=ax2+bx+c图像与系数的关系6.已知二次函数y=ax2+bx+c(a≠0,a,b,c为常数),如果a>b>c,且a+b+c=0,则它的图象可能是()A.B.C.D.【变式6-1】已知函数y=ax2+bx+c(a≠0)的对称轴为直线x=−4.若x1,x2是方程ax2+bx+c=0的两个根,且x1<x2,1<x2<2,则下列说法正确的是A.x1x2>0B.−10<x1<−9C.b2−4ac<0D.abc>0【变式6-2】如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),,有下列结论:①b<0;②a+b>0;③4a+2b+3c<0;④无且对称轴为直线x=12,0).其中正确结论有()论a,b,c取何值,抛物线一定经过(c2aA.1个B.2个C.3个D.4个【变式6-3】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线x=−1,点B的坐标为(1,0),则下列结论:①AB=4;②b2−4ac>0;③b>0;④a−b+c<0,其中正确的结论有()个.A.1个B.2个C.3个D.4个7.二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32题型8:利用二次函数的性质求字母的范围8.已知二次函数y=x2+bx+1当0<x<12的范围内,都有y≥0,则b的取值范围是A.b≥0B.b≥﹣2C.b≥﹣52D.b≥﹣32a题型9:利用二次函数的性质求最值9.二次函数y=−x2+2x+4的最大值是.题型10:给定范围内的最值问题10.已知二次函数y=ax2+bx+1.5的图象(0≤x≤4)如图,则该函数在所给自变量的取值范围内,最大值为,最小值为.。

二次函数的定义、图像及性质

二次函数的定义、图像及性质

二次函数的定义、图像及性质一、基本概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位加下减”. 方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y ax bx c =++的比较 从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a=-时,y 有最大值244ac b a -. 七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1.二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:①当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.②当0∆=时,图象与x 轴只有一个交点; ③当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

赵振英2.2.2二次函数的图像与性质(2)

赵振英2.2.2二次函数的图像与性质(2)

5.已知一个二次函数图像的顶点在y轴上,并 且离原点1个单位,图像经过点(–1,0),求该 二次函数解析式。
1 2 6.已知抛物线 y 2 x ,把它向下平移,得到 的抛物线与x轴交于A、B两点,与y轴交于C 点,若⊿ABC是直角三角形,那么原抛物线 应向下平移几个单位?
(1)已知二次函数y=3x2+4,点A(x1,y1), B(x2,y2),
y=-x2 y=-x2-2
-4
-6
图象向上移还是向下移,移多少个 单位长度,有什么规律吗? 函数y=ax2 (a≠0)和函数y=ax2+c (a≠0)的图象形 状相同 ,只是位置不同;当k>0时,函数y=ax2+c 的图象可由y=ax2的图象向 上 平移 c 个单位得到, 当k〈0时,函数y=ax2+c的图象可由y=ax2的图象
3、可有函数y=2x² 的性质,得到函数 y=2x² +1 的一些性质。
二次函数y=2x2, y=2x2+1, y=2x2-1的图象都是抛物 线,并且形状相同,
y=2x2+1 y=2x2-1
只是位置不同.
?
将二次函数y=2x2 的图象向上平移1 个单位,就得到函 数y=2x2+1的图象.
将二次函数y=2x2的图象向下平移1 个单位,就得到函数y=2x2-1的图 象.
1、抛物线 y=ax2+k 的图象可由 y=ax2 的图象上下
当 k>0时,向上平移,当 k<0时,向下平移, 平移得到, 平移︱k︱个单位 2、 抛物线 y=ax2+k 的性质: ① 当a>0时,开口向上,当a<0时,开口向下; ② 对称轴:y轴; ③ 顶点坐标 (0,k).
达标检测
1 2 1.把抛物线 y x 向下平移2个单位,可以得 2 2 1 到抛物线 y 2 x 2,再向上平移5个单位, 1 2 可以得到抛物线 y 2 x 3 ; 2.对于函数y= –x2+1,当x <0 时,函数值y随

二次函数的图像与性质

二次函数的图像与性质

06
二次函数与一元二次方程的关 系
一元二次方程的基本概念
1 2
一元二次方程的标准形式
ax² + bx + c = 0,其中a、b、c是系数,且a≠0 。
判别式
Δ = b² - 4ac,用于判断一元二次方程的实数根 的个数。
3
根的求解
通过配方或公式法求解,若Δ > 0,方程有两个 实数根,若Δ = 0,方程有一个实数根,若Δ < 0 ,方程没有实数根。
顶点式
表达式
$y = a(x - h)^{2} + k$
描述
顶点式表示二次函数的顶点坐标,其中$(h, k)$是顶点坐标,$a$是二次项系数。
焦点式
表达式
$y = a\sqrt{x^{2} + 2ax + b}$
描述
焦点式主要用于描述二次函数的 焦点位置和形状,其中$a$和$b$ 分别是二次项和一次项的系数。
05
二次函数的应用
求最值问题
定义
设f(x)=ax2+bx+c(a,b,c是常数, a≠0),当a>0时,函数f(x)的图像是 一个开口向上的抛物线;当a<0时, 函数f(x)的图像是一个开口向下的抛物 线。
顶点
极值点
当a>0时,二次函数f(x)的图像在x=b/2a处取得最小值f(-b/2a);当a<0 时,二次函数f(x)的图像在x=-b/2a处 取得最大值f(-b/2a)。
对称
二次函数图像的对称主要改变函数的单调性。如果一个二次函数图像关于y轴对 称,那么它的单调性将发生改变;如果一个二次函数图像关于x轴对称,那么它 的单调性不变。
04
二次函数的解析式

二次函数的图像_课件

二次函数的图像_课件
此时,a决定了图像的 开口方向 和在同一直角坐标系 中的 开口大小 .
函数y=ax2(a≠0)与函数y=a(x+h)2+k(a≠0)的变换
【问题导思】 1.函数y=x2的图像与函数y=(x-1)2的图像有怎样的 关系?如何由y=x2的图像得到y=(x-1)2的图像? 【提示】 它们的形状相同,位置不同.把y=x2的图 像向右平移1个单位就可得到y=(x-1)2的图像. 2.如何由y=x2的图像得到y=x2-1的图像? 【提示】 把y=x2的图像向下平移1个单位.
(2)把y=2x2的图像,向右平移3个单位长度,再向上平 移4个单位长度,就得到函数y=2(x-3)2+4,即y=2x2- 12x+22的图像.
(3)y=4x2+2x+1
=4(x2+12x)+1
=4(x2+12x+116-116)+1
=4[(x+14)2-116]+1
=4(x+14)2+34.
把y=4x2的图像向左平移
1 4
个单位长度,再向上平移
3 4

单位长度,就可得到函数y=4x2+2x+1的图像.
求二次函数的解析式
根据下列条件,求二次函数y=f(x)的解析式. (1)图像过点(2,0),(4,0),(0,3); (2)图像顶点为(1,2)并且过点(0,4); (3)过点(1,1),(0,2),(3,5).
2.二次函数y=a(x+h)2+k的图像可由y=ax2向右平移 |h| 个单位长度(h<0),再向 下 平移|k| 个单位长度(k<0)得到.
在二次函数y=a(x+h)2+k(a≠0)中,a决定了二次函数图
像的开口大小及方向.
3.将二次函数y=ax2+bx+c(a≠0)通过配方化为y=a(x +h)2+k (a≠0)的形式,然后通过函数y=ax2(a≠0)的图像左

二次函数的图像与性质

二次函数的图像与性质

学情分析:本节内容是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习的函数知识,是函数知识螺旋发展的一个重要环节.二次函数曲线——抛物线,也是人们最为熟悉的曲线之一.喷泉的水流、标枪的投掷等都形成抛物线路径.同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等.本节课研究最简单的二次函数y=±x2的图象,是学生学习函数知识的过程中的一个重要环节,既是前面所学知识的延续,又是探究其它二此函数的图象及其性质的基础,起到承上启下的作用.教学目标:1. 知识与技能目标(1)能够利用描点法作出函数y=x2的图象,并能根据图象认识和理解二次函数y= ax2的性质.(2)猜想并能作出y=- x2的图象,能比较它与y= x2的图象的异同.2.过程与方法目标(1)经历探索二次函数y= x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.(2)由函数y= x2的图象及性质,对比地学习y=- x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.3.情感、态度与价值观目标(1)经历探索的过程发现抛物线的性质,体会探索发现的乐趣,增强学习数学的自信心.(2)通过小组交流、讨论、比较,研究二次函数y= x2和y=- x2的图象,培养学生合作意识和交流能力.教学重点:经历探索二次函数y=±x2的图象的作法和性质的过程,理解二次函数y=a x2的性质.教学难点:描点法画y= x2的图象,体会数与形的相互联系。

教学过程:一、创设情境,提出问题学生观察:喷泉的水流、篮球的投掷形成的路径,抛物线型拱桥、抛物线型隧道,都与抛掷一个物体形成的路径的曲线类似,由此导入课题.紧接着提出两个问题:1.我们已经学过哪些函数?研究函数问题的一般步骤是怎样的?2.一次函数、反比例函数的图象各是怎样的图形?(设计意图:让学生回顾已学的函数类型、图象及研究函数问题的一般思路,以便学生运用类比的方法研究二次函数的相关问题.)二、合作交流,探究新知1.认识抛物线问题:一次函数的图象是一条直线,二次函数的图象是什么形状呢?让我们先来研究最简单的二次函数y=x2的图象.大家还记得画函数图象的一般步骤吗?(设计意图:通过这个问题让学生回忆起用描点法画图的一般步骤,以便于学生下一步的画图.)画一画:你能试着用描点法画二次函数y= x2的图象吗?(两名学生上台板演,其他学生在下面尝试画图.在学生画图时,教师溶入到学生中,了解并搜集学生可能出现的各种问题.比如:学生可能会画成折线、半个抛物线、没画出延伸的趋势等情形,这时正好针对问题鼓励小组间互相讨论、相互比较,交流各自的观点.)问题:通过刚才的分析你认为在画y= x2的图象时:(1)列表取值应注意什么问题?(取对称的7或5个点)(2)点和点之间用什么样的线连接? (用平滑曲线按自变量从小到大或从大到小的顺序连接)(学生尝试描述y= x2的图象,建立和实际问题的联系.再通过投篮的动态演示,形象的描述并体会y= x2的图象的形状是抛物线,并且与开始的引例相呼应.)(设计意图:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了.事实上,数学学习应该与学生的生活经验融合起来,让他们在生活中去发现数学、发现生活中的数学、探究数学、认识并掌握数学.)2.探究抛物线y= x2的性质议一议:请你观察y=x2的图象,你能得到哪些方面的性质,然后分组讨论.(在学生讨论交流之后,请每组的学生代表一一发表自己的观察结果.在此过程中,教师不能作裁判,而要把评判权交给学生,注意培养学生语言的规范化、条理化 .待学生发表自己的观点之后系统地总结一下y= x2的图象的性质)抛物线y=x2的性质(1)开口:抛物线的开口向上.(2)对称性:它是轴对称图形,对称轴是y轴(或x=0).(3)增减性:在对称轴的左侧(x<0时),y随x的增大而减小;在对称轴的右侧(x>0),y随着x的增大而增大.(4)顶点:图象与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的顶点,同时也是图象的最低点,坐标为(0,0).(5)最值:因为图象有最低点,所以函数有最小值,当x=0时,y最小=0.1x2的图像,后总结图像的性质类似地:让学生再分组画出函数y= 2x2 y=2(设计意图:在此问题上,不再按课本上的问题一一叠列给学生,而是给学生一个开放的空间,给学生一个交流的平台,一个展现自我的空间.仁者见仁,智者见智,不同的学生肯定会有不同的认识,通过小组讨论与交流,学生可以相互学习,共同提高.)3.探究抛物线y=-x2的性质想一想:(1)二次函数y=- x2的图象是什么形状?先想一想,然后作出它的图象.(2) 类似的你能说出它的性质吗?(让学生先猜想再画图验证,在学生画图时可让每一小组部分同学将y= x2与y=-x2的图象画在一个坐标系内,而后学生通过讨论交流得出结论,教师只给以必要的引导.)1x2的图像,后总结图像的性质类似地:让学生再分组画出函数y=- 2x2 y= -2(设计意图:这一问题设计为学生提供思考的空间,培养学生在观察、分析、对比、交流中发展分析能力和从图象中获取信息的能力.)议一议:函数y=x2与y=-x2的图象及其性质有何异同?(学生观察图形,通过小组讨论,归纳y=x2与y=-x2的图象及其性质的异同,然后回答,学生想不到的,及时给予引导.)不同点:开口方向不同:函数值随自变量的增大的变化趋势而不同:函数的最值不同:相同点:关系:它们的图像关于x轴对称(设计意图:通过比较y=x2与y=-x2的性质的异同,让学生更充分地理解y =±x2的性质.)三、变式训练,巩固提高(课堂检测)1.在二次函数y= x2的图象上,与点A(-5,25)对称的点的坐标是.顶点为:_____2.点(x1,y1)、 (x2,y2)在抛物线y=-3x2上,且x1> x2>0,则y1_____y2. 3.设边长为x cm的正方形的面积为y cm2,y是x的函数,该函数的图象是下列各图形中()(设计意图:通过一组简单的练习题,及时巩固所学知识,使学生品尝到成功的喜悦.)四、总结反思,纳入系统通过今天的学习,你是否对二次函数y=a x2有了一些新的认识?能谈谈你的想法吗?(由学生总结本节课所学习的主要内容.在学生归纳的基础上总结它们的区别与生的素质,并且逐渐培养学生的良好的个性品质.)五、课后延伸,提升能力你能类比地画出函数:12+y的图象吗?动手画一下吧!=x教学反思:针对本节课的特点,采用“创设情境—作图探索—总结归纳—知识运用”为主线的教学方法.把教学的重心放在如何促进学生的“学”上,引导学生采用观察、实验、自主探索、小组活动、集体交流等多样化的学习方式.教学过程中始终坚持学生为主体,教师为主导的方针,使探究知识和培养能力融为一体,让学生不仅学到科学探究的方法,而且体验到探究的甘苦,领会到成功的喜悦.。

二次函数的图像与性质课件

二次函数的图像与性质课件

一阶导数等于零的点是函数的拐点,也是单调性的分界点。通过分析这
些点的左右两侧的导数符号变化,可以判断出函数的单调性。
二次函数的极值问题
极值的概念
01
02
03
极值
函数在某点的值大于或小 于其邻近点的值,称为该 函数在该点有极值。
极大值
函数在某点的左侧递减, 右侧递增,则该点为极大 值点。
极小值
函数在某点的左侧递增, 右侧递减,则该点为极小 值点。
顶点坐标
总结词
顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点坐标可以通过公式计算得出,顶点的x坐标为-b/2a,y坐标为cb^2/4a。这个顶点是抛物线的最低点或最高点,取决于抛物线的开口方向。
对称轴
总结词
二次函数的对称轴为x=-b/2a。
详细描述
二次函数的对称轴是一条垂直于x轴的直线,其方程为x=-b/2a。这是抛物线的对称轴,也是顶点的x 坐标。
对于形式为$f(x) = ax^2 + bx + c$的二次函数,其图像关于x轴对称当且仅当$a > 0$,关于y轴对称当且仅当 $a < 0$。
点对称
总结词
二次函数的图像关于某点对称。
详细描述
对于形式为$f(x) = ax^2 + bx + c$的二次函数,其图像关于点$(h, k)$对称当且仅当 $f(h+x) = f(h-x)$且$f(k+y) = f(k-y)$。
解方程问题
总结词
通过二次函数的图像与x轴的交点,可以求 解一元二次方程的根。
详细描述
一元二次方程的根即为二次函数图像与x轴 的交点横坐标。通过观察二次函数的开口方 向和与x轴的交点数,可以判断一元二次方 程实数根的个数。

《二次函数》ppt课件

《二次函数》ppt课件

判别式意义
当 $Delta > 0$ 时,方程有两个不相等 的实根,抛物线与 $x$ 轴有两个交点。
02
二次函数与一元二次方程 关系
一元二次方程求解方法
01
02
03
公式法
对于一般形式的一元二次 方程,可以使用求根公式 进行求解。
配方法
通过配方将一元二次方程 转化为完全平方形式,从 而求解。
因式分解法
首先,通过配方将二次函数转 化为顶点式f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。然后, 根据二次函数的性质,对称轴 为x = h,顶点坐标为(h, k)。最 后,代入具体的a、b、c值求解。
已知二次函数f(x) = x^2 - 2x, 求在区间[-1, 3]上的最值。
首先,将二次函数配方为f(x) = (x - 1)^2 - 1,确定对称轴为x = 1。然后,根据二次函数的单 调性,在区间[-1, 1]上单调递减, 在[1, 3]上单调递增。因此,在x = 1处取得最小值f(1) = -1,在 x = 3处取得最大值f(3) = 3。
04
根的判别式Δ=b²-4ac可 以用于判断二次函数与x 轴交点的个数。
当Δ>0时,二次函数与x 轴有两个不同的交点。
当Δ=0时,二次函数与x 轴有一个重根,即一个 交点。
当Δ<0时,二次函数与x 轴无交点。
03
二次函数图像变换与性质 分析
平移变换对图像影响
平移方向
二次函数图像在平面直角坐标系中可 沿x轴或y轴方向进行平移。
04
二次函数在实际问题中应 用举例
利润最大化问题建模与求解
1 2 3
问题描述
某公司生产一种产品,其成本和销售价格与产量 之间存在一定的关系。公司希望通过调整产量来 实现利润最大化。

九年级下期2.2 二次函数的图像与性质(2)课件

九年级下期2.2 二次函数的图像与性质(2)课件
y
O
x
x
开口方向
对称轴 顶点坐标
向上 y轴(或直线x=0)
向下 y轴(或直线x=0)
原点(0,0)
当x>0时,y随x的增大 而增大;当x<0时,y随 x的增大而减小。
原点(0,0)
当x>0时,y随x的增大 而减小;当x<0时,y随 x的增大而增大。
增减性
最值
当x=0时,y有最小值0
当x=0时,y有最大值0
-5 -4
-3 -2
-1 O -1
1
2
3
4
5
x
1 y x2 2 y=-x2 y=-2x2
新知归纳
二次函数y=ax2的图像及性质:
函数 大致图像
O
y ax2 (a 0)
y
y ax2 (a 0)
y
O
x
x
开口方向
对称轴 顶点坐标
向上 y轴(或直线x=0)
向下 y轴(或直线x=0)
(2)当c<0时,将抛物线y=ax2向下平移|c|个单位,可得到 y=ax2 +c的图像。
范例讲解
例1、二次函数 y 5x2 3 与二次函数 y 5x2的图像有什么 关系?它们是轴对称图形吗?它的开口方向、对称轴和顶点 坐标分别是什么?
巩固练习
3、二次函数 y 5x2 2与二次函数 y 5x2 3的图像有 什么关系?它们是轴对称图形吗?它的开口方向、对称轴和 顶点坐标分别是什么?
4
3
(-1,2)
2
(1,2)
1 -5 -4 -3 -2 -1 O (0,0) 1 2 -1 3 4 5
x
合作交流

《二次函数的图像》ppt课件

《二次函数的图像》ppt课件

二次函数的顶点及其性质
顶点坐标
指引如何求解二次函数的顶点坐 标。
凹凸性
讨论二次函数图像的凹凸性及其 与二次函数的系数关系。
图像特点
解释顶点与图像特点的关系,如 开口方向、对称轴和伸缩。
二次函数与判别式
判别式的定义
解释二次函数的判别式及其含义,如何通过判别式判断函数图像的性质。
判别式的示例
提供实际的例子,演示如何使用判别式确定二次函数图像的形状。
二次函数的图像
二次函数的概念。了解二次函数的基本定义和特点,包括函数的二次项、一 次项和常数项。
二次函数的标准式和一般式
1 标准式
介绍二次函数的标准形式,形如y=ax^2释二次函数的一般形式,形如y=ax^2+bx+c。
二次函数图像的基本性质
开口方向
讲解二次函数图像的开口方向, 以及如何通过系数判断。
对称轴
解释二次函数图像的对称轴, 如何确定并绘制。
顶点坐标
介绍二次函数图像的顶点坐标 的求法,以及其意义。
二次函数图像的平移、翻转和伸缩
1
平移
说明二次函数图像的平移,如何改变顶
翻转
2
点的横纵坐标。
讨论二次函数图像的翻转,如何改变函
数的开口方向。
3
伸缩
探讨二次函数图像的伸缩,如何调整二 次函数图像的形状和大小。
二次函数与实际问题的应用
介绍二次函数在实际问题中的应用,如抛物线的运动轨迹、物体的抛体运动 等。

1.2二次函数的图象(2)课件

1.2二次函数的图象(2)课件
____向__右_(_当_m__<_0_)或__向__左_(_当__m_>_0_)平__移__|m_|_个_单__位_______得到.
特征:函数y=a(x+m)2的图象的顶点坐标是_(-___m_,__0),对 称轴是直线__x_=__-_m_____.图象的开口方向与函数y=ax2的图
象__相__同_____.
解:(1)顶点(-1,-4),开口向上,对称轴为直 线x=-1; (2)y=(x-1)2; (3)y=(x+1)2- 4向右平移1个单位,再向上平移4个单位.
课堂总结
1.二次函数y=a(x+m)2(a≠0)型的图象及其特征 平移:(1)一般地,函数y=a(x+m)2(a≠0)的图象与函数 y=ax2的图象只是位置不同,它可由y=ax2的图象
对称轴是 __直__线__x_=_-_m____,
顶点坐标是 _(_-_m_,__k_)___。
函数y=a(x+m)2+k的图象的性质: 一般地函数y=a(x+m)2+k的图象,函数y=ax2的图象只是位置不同,
(1)可以由y=ax2的图象先向右(当m<0)或向左(当m>0)平移 ∣m∣个单位,再向上(当k>0)或向下(当k<0)平移∣k∣个单位 得到,
(2)顶点坐标是(-m,k),对称轴是直线x=-m, (3)图象在x轴的上方还是下方,开口方向向上还是向下等性质由 y=ax2来决定的。
记忆方法:
1. 左加右减 2.根据顶点坐标的变化(0,0)
(-m.0)
课堂练习
1.将抛物线y=2x2向上平移3个单位,再向右平移2个单
位,所得到的抛物线为( B )
【点悟】 解此类题可以将不同形式的解析式
统一为y=a(x+m)2+k的形式,便于解答.

21.2 二次函数的图像和性质

21.2  二次函数的图像和性质
学科素养课件
新课标沪科版·数学 九年级上
第21章 二次函数与 反比例函数
21.2 二次函数的图像和性质
知识点 二次函数y=ax²的图象和性质
投篮命中率是衡量一名篮球运动员得分能力 的重要标志,要提高投篮命中率,应该将球的运动路 线想象成抛物线,在心中建立如图所示的抛物线模 型,这种类型的抛物线表达式为y=ax²(a≠0),尽量向 高处抛出篮球,落点就是篮筐,这样投篮命中率会高 一些,同学们不妨多尝试几次,效果会不错的呦!
精度最高的望远镜,用来探测来自太空的无线电波.根
据有关资料显示,该望远镜的轴截面呈抛物线状,口径
AB为500米,最低点C到口径面AB的距离是100米,若按
图(2)中方式建立平面直角坐标系,则抛物线的表达式
就是y=
1 625
x²-100.
知识点 二次函数y=a(x+ቤተ መጻሕፍቲ ባይዱ)²的图象和性质
太阳镜,也称遮阳镜,作遮阳之用.人在阳光下 通常要靠调节瞳孔大小来调节光通量,当光线强 度超过人眼调节能力时,就会对人眼造成伤害.所 以在户外活动场所,特别是在夏天,需要采用遮阳 镜来遮挡阳光,以减轻眼睛调节造成的疲劳或强 光刺激造成的伤害.如图所示的是一副太阳镜,
知识点 用待定系数法求二次函数表达式
跳台滑雪简称“跳雪”.就是运动员脚着特 制的滑雪板,沿着跳台的倾斜助滑道下滑.跳雪是 冬季奥运会比赛项目之一,运动员起跳后的飞行 路线可以看作是抛物线的一部分,运动员起跳后 的竖直高度y(单位:m)与水平距离x(单位:m)近似 满足函数关系y=ax²+bx+c(a≠0).下图记录了某 运动员起跳后的x与y的三组数据,根据上述函数 模型和数据,可推断出该运动员起跳后飞行到最 高点时的水平距离.

二次函数图像与性质

二次函数图像与性质

3.函数y=3x2+5与y=3x2的图象的不同之处是( C)
A.对称轴 B.开口方向 C.顶点 D.形状 4.已知抛物线y=2x2–1上有两点(x1,y1 ) ,(x2,y2 )且x1<x2<0,则y1 y2(填“<”或“>”)
5.已知抛物线
,把它向下平移,得到的
抛物线与x轴交于A、B两点,与y轴交于C点,
9
(1)形状是开口向上的抛物线
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
-3
3
二次函数 y = x2的图象是一条曲线,它的 形状类似于投篮球时球在空中所经过的路线, 只是这条曲线开口向上,这条曲线叫做抛物 线 y = x2 ,
二次函数的图象都是抛物线。
一般地,二次函数 y = ax2 + bx + c(a≠0)的图象叫做抛物线y = ax2 + bx + c
4、二次函数y=2x2+1的图象与二次函数 y=2x2的图象开口方向、对称轴和顶点坐 标是否相同?它们有什么关系?我们应该 采取什么方法来研究这个问题?
画出函数y=2x2和函数y= 2x2+1的图象, 并加以比较
x … –1.5 –1 –0.5 0 0.5 1 1.5 … y=2x2 … 4.5 2 0.5 0 0.5 2 4.5 … y=2x2+1 … 5.5 3 1.5 1 1.5 3 5.5 …
向左平移对称轴:y轴 向右平移 直线x=2 2个单位即直线: x=0 2个单位
一般地,抛物线y=a(x-h)2有如下
特点:
y
(1)对称轴是x=h;
x
(2)顶点是(h,0).
(3)抛物线y=a(x-h)2 可以由抛物线y=ax2向左 或向右平移|h|得到.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
练习1
y
若抛物线如图
y ax
2 1
2
x
-2 -1 -1 -2 -3 0 1 2
那么抛物线的解析式是:
-4
-5
y ax 5
2
y
练习2
4
3
那么抛物线的解析式是:
2
1 -2 -1 -1 -2 0 1 2
y ax 2
2
x
y ax
2
若抛物线如图
抛物线 1、函数 y 3x 2 2 的图象是_____,开口方 y (0,2) 下 向 ___,对称轴是___轴。顶点坐标____,x<0 增大 时,函数值y随增大而__ ,x>0时,函数值随增 大 2 大而__ ,x= 0 时,有最__值是___。 ___ 减小
y x2 1
… -3 … 10 … -3
-2 -1 5 2
0 1
1
2
2 5
3
10
… … 2 3 3 …
x
-2 -1 -0.5 0 3 0 0.75 1
0.5 1
0.75 0
y x2 1 … 8
8 …
y
y x 1
2
5 4 3 2 1 -2 -1 -1 -2 0 1 2
yx
2
2
y x 1
或向下(k<0)平行移动IkI个单位得到。 抛物线
2
y ax k 由抛物线 y ax
2
向上(k>0)
或向下(k<0)平行移动IkI个单位得到。
抛物线 y x 2 1 的顶点(0,1)对称轴y轴开口向上 x <0函数值y随增大x而减小,x >0函数值y随x增 大而增大。X=0时函数值y有最小值1 2 抛物线 y x 1 的顶点(0,1)对称轴y轴开口向下 x <0函数值y随增大x而增大,x >0函数值y随x增 大而减小。X=0时函数值y有最大值-1 抛物线 y ax k 由抛物线 y ax 沿x轴向 上(k >0)或向下(k <0)平行移动IkI个单位得到。 增减性: a>0时x <0函数值y随增大x而减小,x >0函数值y随x增大而增大; a<0时x <0函数值y随增大x而增大,x >0函数值y 随x增大而减小。
y ax k
2
复习与回顾
抛物线 1、函数 y ax 的图象是_____,对称轴是 上 y (0,0) ___轴顶点坐标____, a >0时开口向___,。 减小 x<0时,函数值y随增大而__ ,x>0时,函数值 小 0 增大 随x增大而__ ,x= ___时,有最__值是 0 ___。 下 a < 0时开口向 ___,。x<0时,函数值y随x增大 增大 而__ ,x>0时,函数值随增大而 减小 , __ 大 0 0 x= ___时,有最__值是___。
2
y ax 2、抛物线___ ___ 对称轴是y轴,顶点在坐标 原点,开口的方向由a的符号确定, a >0时开口向 上, a < 0开口向下;开口的大小由IaI确定: IaI 越大 开口越小。
2
在同一直角坐标系中,画出函数 y x 1 和
2
y x 1 的图象
2
解:分别列表,再画它们的图象 x
x
1 2 在同一直角坐标系中,画出函数 y x 和 1 2 2 y x 2 y 1 x2 2 , 的图象 2 2
解:分别列表,再画它们的图象
y
1 2 y x 2 2
y
2
1 2 x 2
y
0 1 2
1 2 x 2 2
x
-2 -1 -2
1 2 1 2 抛物线 y x k 由抛物线 y x 向上(k>0) 2 2
2
2、把抛物线 抛物线是 3、抛物线
2
向下平移2个单位得到的 y 2x 2 y 2x 2
2
y 3x
2
可以看作 5
向 下 平移 5
结束寄语
•生活是数学的源泉.

探索是数学的生命线.
这节课什么收获和体会?
2、抛物线的开口向上对称轴是y轴,和上面1题的形 状大小一样,顶点在坐标原点下一个单位它的解析式 2 是____ 1 y 3x x<0时,函数值y随增大而__ ,x>0时,函数值随 增大 减小 -1 增大而__ ,x= ___时,有最__值是___ 小 0
练习3
练习
1、把抛物线 y x 向上平移3个单位得到的抛物 线是 y x 2 3 若再向下平移 5个单位 得到的 抛物线是 y x 2 2
相关文档
最新文档