人教版八年级数学上难点探究专题:动态变化中的三角形全等
最新人教版初中八年级上册数学《动态变化中的全等三角形》精品教案
求证:△AFC≌△DEB.
E
AB
CD
F
如图,A、B、C、D在同一直线上,AB=CD,DE∥AF,且DE=AF,⑴
求证:△AFC≌△DEB.
证明:
在△AFC和△DEB中
∵DE∥AF
AC=BD
AB
E CD
∴∠A=∠D
∠A=∠D
F
∵AB=CD
DE=AF
∴AB+BC=CD+BC ∴△AFC≌△DEB
即AC=BD
即AC=BD
二、旋转
已知,在△ABC中,AB=AC,点P平面内一点,将AP绕A顺时针旋转至AQ,
使∠QAP=∠BAC,连接BQ、CP,
Q
⑴若点P在△ABC内部,求证BQ=CP;
A Q
⑵若点P在△ABC外部,以上结论还成立吗?
P
B
图⑴
A
P
CB
C
图⑵
已知,在△ABC中,AB=AC,点P平面内一点,将AP绕A顺时针旋转至AQ, 使∠QAP=∠BAC,连接BQ、CP,
=180°-150°=30°
∴∠θ=∠EBC+∠DCB
=2(∠ABC+∠ACB)
=2×30°=60°.
平移、翻折、旋转全等三角形中的一个,所得三角形与另一个三角形 仍然全等.
课后反思
1、和同桌说说今天学习的收获好吗? 2、师引导学生归纳本课知识重点。
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
E A
B
CD
类型一:动点变化
已知:AB⊥BD,ED⊥BD,垂足分别为B、D,点C为BD上一动点且满足 BC=DE,AB=CD试猜想线段AC与CE的数量关系,并证明你的结论.
解:AC=CE,理由如下:
难点探究专题:全等三角形中的动态问题
难点探究专题:全等三角形中的动态问题◆类型一全等三角形中的动点问题1.如图,在△MAB中,MA=MB,过M点作直线MN交AB于N点.P是直线MN 上的一个动点,在点P移动的过程中,若NA=NB,则∠PAM与∠PBM是否相等?说明理由.2.如图①,在△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为________;②线段BC,CD,CF之间的数量关系为______________ (将结论直接写在横线上);(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.◆类型二 全等三角形中的动图问题3.已知等边三角形的三条边相等、三个角都等于60°.如图,△ABC 与△CDE 都是等边三角形,连接AD ,BE.(1)如果点B ,C ,D 在同一条直线上,如图①所示,试说明:AD =BE ;(2)如果△ABC 绕C 点转过一个角度,如图②所示,(1)中的结论还能否成立?请说明理由.◆类型三 全等三角形中的翻折问题4.如图,将Rt △ABC 沿斜边翻折得到△ADC ,E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并说明理由.参考答案与解析1.解:∠P AM =∠PBM .理由如下:∵NA =NB ,MA =MB ,MN 是公共边,∴△AMN ≌△BMN (SSS),∴∠MAN =∠MBN ,∠MNA =∠MNB .又∵NA =NB ,PN 是公共边,∴△P AN ≌△PBN (SAS),∴∠P AN =∠PBN .∴∠P AM =∠PBM .2.解:(1)①垂直 ②BC =CD +CF(2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下:∵正方形ADEF 中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF .在△DAB 与△F AC 中,⎩⎪⎨⎪⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△F AC (SAS),∴∠ABD =∠ACF ,DB =CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .3.解:(1)∵△ABC ,△CDE 都是等边三角形,∴AC =BC ,CD =DE ,∠ACB =∠DCE =60°.∵点B ,C ,D 在同一条直线上,∴∠ACE =60°,∴∠BCE =∠ACD =120°.在△ACD与△BCE 中,∵⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE .(2)成立.理由如下:∵∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,即∠BCE =∠ACD .又∵AC =BC ,CD =CE ,∴△ACD ≌△BCE ,∴AD =BE .4.解:DE +BF =EF .理由如下:延长CB 至G ,作∠5=∠1,如图所示.∵将Rt △ABC沿斜边翻折得到△ADC ,∠EAF =12∠DAB ,∴AB =AD ,∠ABC =∠ADE =90°,∠2+∠3=∠1+∠4,∴∠ABG =90°=ADE .∵∠5=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠EAF .在△AGB 和△AED 中,⎩⎪⎨⎪⎧∠GAB =∠EAD ,AB =AD ,∠ABG =∠ADE ,∴△AGB ≌△AED (ASA),∴AG =AE ,BG =DE .在△AGF 和△AEF 中,⎩⎪⎨⎪⎧AG =AE ,∠GAF =∠EAF ,AF =AF ,∴△AGF ≌△AEF (SAS),∴GF =EF ,∴BG +BF=EF ,∴DE +BF =EF .。
人教版八年级数学上难点探究专题:动态变化中的三角形全等.docx
马鸣风萧萧初中数学试卷马鸣风萧萧难点探究专题:动态变化中的三角形全等——以“静”制“动”,不离其宗◆类型一动点变化1.如图,Rt△ABC中,∠C=90°,AC=6,BC=3,PQ=AB,点P与点Q分别在AC和AC的垂线AD上移动,则当AP=_________时,△ABC 和△APQ全等.2.如图,△ABC中,AB=AC=12cm,∠B=∠C,BC=8cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q 的运动速度为v cm/s,则当△BPD与△CQP全等时,v的值为____________【提示:三角形中有两个角相等,则这两个角所对的边相等】.3.(2016·达州中考)△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.【方法11】(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为_______;②线段BC,CD,CF之间的数量关系为___________ (将结论直接写在横线上).(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.◆类型二图形变换4.如图甲,已知A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,且AB=CD,连接BD.(1)试问OE=OF吗?请说明理由;(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.5.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.参考答案与解析1.3或6解析:∵△ABC和△APQ全等,马鸣风萧萧马鸣风萧萧AB =PQ ,∴有△ABC ≌△QP A 或△ABC ≌△PQA .当△ABC ≌△QP A 时,则有AP =BC =3;当△ABC ≌△PQA 时,则有AP =AC =6,∴当AP =3或6时,△ABC 和△APQ 全等,故答案为3或6.2.2或3 解析:当BD =PC 时,△BPD 与△CQP 全等.∵点D 为AB 的中点,∴BD =12AB=6cm ,∴PC =6cm ,∴BP =8-6=2(cm).∵点P 在线段BC 上以2cm/s 的速度由B 点向C 点运动,∴运动时间为1s.∵△DBP ≌△PCQ ,∴CQ =BP =2cm ,∴v =2÷1=2(cm/s); 当BD =CQ 时,△BDP ≌△QCP .∴PB =PQ ,∠B =∠CQP .又∵∠B =∠C ,∴∠C =∠CQP ,∴PQ =PC ,∴PB =PC .∵BD =6cm ,BC =8cm ,PB =PC ,∴QC =6cm ,∴BP =4cm ,∴运动时间为4÷2=2(s),∴v =6÷2=3(cm/s),故答案为2或3.3.解:(1)①垂直 ②BC =CD +CF(2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下:∵正方形ADEF 中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF . 在△DAB 与△F AC 中,⎩⎪⎨⎪⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△F AC (SAS),∴∠ABD =∠ACF ,DB=CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .4.解:(1)OE =OF .理由如下:∵DE ⊥AC ,BF ⊥AC ,∴∠DEC =∠BF A =90°.∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .在Rt △ABF 和Rt △CDE中,⎩⎪⎨⎪⎧AB =CD ,AF =CE ,∴Rt △ABF ≌Rt △CDE (HL),∴BF =DE .在△BFO和△DEO 中,⎩⎪⎨⎪⎧∠BFO =∠DEO ,∠BOF =∠DOE ,BF =DE ,∴△BFO ≌△DEO (AAS),∴OE =OF .(2)结论依然成立.理由如下:∵AE =CF ,∴AE -EF =CF -EF ,∴AF =CE .同(1)可得△BFO ≌△DEO ,∴FO =EO ,即结论依然成立.5.(1)证明:∵将线段CD 绕点C 按顺时针方向旋转90°后得CE ,∴CD =CE ,∠DCE =90°.∵∠ACB =90°,∴∠BCD =90°-∠ACD =∠FCE .在△BCD 和△FCE 中,⎩⎪⎨⎪⎧CB =CF ,∠BCD =∠FCE ,CD =CE ,∴△BCD ≌△FCE (SAS).(2)解:由(1)可知∠DCE =90°,△BCD ≌△FCE ,∴∠BDC =∠E .∵EF ∥CD ,∴∠E =180°-∠DCE =90°,∴∠BDC =90°.。
全等三角形动态问题
全等三角形动态问题在初中数学的学习中,全等三角形是一个非常重要的知识点,而其中的动态问题更是让许多同学感到头疼。
今天,咱们就来好好探讨一下全等三角形的动态问题,争取把这个难题给攻克了。
首先,咱们得明白啥是全等三角形的动态问题。
简单来说,就是在一个几何图形中,三角形的某些顶点或者边在按照一定的规律运动,然后让我们去研究在这个运动过程中三角形全等的情况。
比如说,有一个三角形 ABC,其中点 A 沿着一条直线匀速移动,然后问在移动过程中,是否存在某个时刻,使得三角形 ABC 和另一个给定的三角形 A'B'C'全等。
解决这类问题,关键在于抓住全等三角形的判定条件。
咱们都知道,全等三角形的判定条件有“SSS”(三边对应相等)、“SAS”(两边及其夹角对应相等)、“ASA”(两角及其夹边对应相等)、“AAS”(两角及其中一角的对边对应相等)和“HL”(直角三角形的斜边和一条直角边对应相等)。
那在动态问题中,怎么运用这些判定条件呢?这就需要我们仔细观察图形的运动过程,找出那些不变的量和变化的量。
举个例子,假设在一个矩形 ABCD 中,E 是 AD 边上的一个动点,以 BE 为斜边作一个直角三角形 BEF,其中∠F = 90°,BF = EF。
当点 E 从 A 点运动到 D 点时,问三角形 BEF 和哪个三角形全等。
咱们来分析一下,在这个过程中,因为 BF = EF,所以这是一个等腰直角三角形。
而矩形的对边是相等的,所以 AB = DC。
如果我们连接 CE,那么就会发现三角形 BAE 和三角形 DCE 有可能全等。
当点 E 运动到使得 BE = CE 时,因为 AB = DC,AE = DE(矩形对边相等,E 是 AD 中点),根据“SSS”判定条件,就可以得出三角形 BAE ≌三角形 DCE。
再来看一个例子,在三角形 ABC 中,∠C = 90°,AC = BC,D 是AB 边上的一点,E 是 BC 边上的一个动点,连接 DE,将三角形 BDE沿着 DE 翻折,得到三角形 B'DE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
金戈铁骑整理制作
难点探究专题:动态变化中的三角形全等
——以“静”制“动”,不离其宗
◆类型一动点变化
1.如图,Rt△ABC中,∠C=90°,AC =6,BC=3,PQ=AB,点P与点Q分别在AC和AC的垂线AD上移动,则当AP=_________时,△ABC和△APQ全等.
2.如图,△ABC中,AB=AC=12cm,∠B=∠C,BC=8cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C 点向A点运动.若点Q的运动速度为v cm/s,则当△BPD与△CQP全等时,v的值为____________【提示:三角形中有两个角相等,则这两个角所对的边相等】.
3.(2016·达州中考)△ABC中,∠BAC =90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.【方法11】
(1)观察猜想:如图①,当点D在线段BC上时,
①BC与CF的位置关系为_______;
②线段BC,CD,CF之间的数量关系为___________ (将结论直接写在横线上).
(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
◆类型二图形变换
4.如图甲,已知A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,且AB=CD,连接BD.
(1)试问OE=OF吗?请说明理由;
(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.
5.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)求证:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度数.
参考答案与解析
1.3或6 解析:∵△ABC 和△APQ 全等,AB =PQ ,∴有△ABC ≌△QP A 或△ABC ≌△PQA .当△ABC ≌△QP A 时,则有AP =BC =3;当△ABC ≌△PQA 时,则有AP =AC =6,∴当AP =3或6时,△ABC 和△APQ 全等,故答案为3或6.
2.2或3 解析:当BD =PC 时,△BPD 与△CQP 全等.∵点D 为AB 的中点,∴BD =1
2AB =6cm ,∴PC =6cm ,∴BP =8-6=2(cm).∵点P 在线段BC 上以2cm/s 的速度由B 点向C 点运动,∴运动时间为1s.∵△DBP ≌△PCQ ,∴CQ =BP =2cm ,∴v =2÷1=2(cm/s); 当BD =CQ 时,△BDP ≌△QCP .∴PB =PQ ,∠B =∠CQP .又∵∠B =∠C ,∴∠C =∠CQP ,∴PQ =PC ,∴PB =PC .∵BD =6cm ,BC =8cm ,PB =PC ,∴QC =6cm ,∴BP =4cm ,∴运动时间为4÷2=2(s),∴v =6÷2=3(cm/s),故答案为2或3.
3.解:(1)①垂直 ②BC =CD +CF (2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下: ∵正方形ADEF 中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF . 在△DAB 与△F AC 中,⎩⎪⎨⎪
⎧AD =AF ,∠BAD =∠CAF ,
AB =AC ,
∴△DAB ≌△F AC (SAS),∴∠ABD =
∠ACF ,DB =CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .
4.解:(1)OE =OF .理由如下:∵DE ⊥AC ,BF ⊥AC ,∴∠DEC =∠BF A =90°.∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .在Rt △ABF 和Rt △CDE 中,
⎩⎪⎨⎪⎧AB =CD ,AF =CE ,
∴Rt △ABF ≌Rt △CDE (HL),∴BF =DE .在△BFO 和△DEO 中,⎩⎪⎨⎪
⎧∠BFO =∠DEO ,∠BOF =∠DOE ,BF =DE ,
∴△BFO ≌△DEO (AAS),∴OE =OF .
(2)结论依然成立.理由如下:∵AE =CF ,∴AE -EF =CF -EF ,∴AF =CE .同(1)可得△BFO ≌△DEO ,∴FO =EO ,即结论依然成立.
5.(1)证明:∵将线段CD 绕点C 按顺时针方向旋转90°后得CE ,∴CD =CE ,∠DCE =90°.∵∠ACB =90°,∴∠BCD =90°-∠ACD =∠FCE .在△BCD 和△FCE 中,⎩⎪⎨⎪
⎧CB =CF ,∠BCD =∠FCE ,CD =CE ,
∴△BCD ≌△FCE (SAS).
(2)解:由(1)可知∠DCE =90°,△BCD ≌△FCE ,∴∠BDC =∠E .∵EF ∥CD ,∴∠E =180°-∠DCE =90°,∴∠BDC =90°.。