2012届广东理科高考数学第一轮复习33
2012年广东高考理科数学试题及答案
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)题目及答案一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 . 设i 为虚数单位,则复数56i i-=A 6+5iB 6-5iC -6+5iD -6-5i 2 . 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM= A .U B {1,3,5} C {3,5,6} D {2,4,6}3 若向量BA=(2,3),C A=(4,7),则BC=A (-2,-4)B (3,4)C (6,10D (-6,-10) 4.下列函数中,在区间(0,+∞)上为增函数的是A.y=ln (x+2)(12)xD.y=x+1x5.已知变量x ,y 满足约束条件,则z=3x+y 的最大值为A.12B.11C.3D.-1 6,某几何体的三视图如图1所示,它的体积为A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数万恶哦0的概率是A. 49 B. 13C. 29D. 198.对任意两个非零的平面向量α和β,定义。
若平面向量a,b满足|a|≥|b|>0,a与b的夹角,且a·b和b·a都在集合中,则A.12 B.1 C. 32D. 52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9-13题)9.不等式|x+2|-|x|≤1的解集为_____。
10. 的展开式中x³的系数为______。
(用数字作答)11.已知递增的等差数列{a n}满足a1=1,a3=22a-4,则a n=____。
12.曲线y=x3-x+3在点(1,3)处的切线方程为。
13.执行如图2所示的程序框图,若输入n的值为8,则输出s的值为。
(二)选做题(14 - 15题,考生只能从中选做一题)14,(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和,则曲线C1与C2的交点坐标为_______。
2012年广东高考理科数学试题及答案
2012年广东高考理科数学题目及参考答案 --广东一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 . 设i 为虚数单位,则复数56ii-= A 6+5i B 6-5i C -6+5i D -6-5i 2 . 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM= A .U B {1,3,5} C {3,5,6} D {2,4,6}3 若向量BA=(2,3),CA =(4,7),则BC = A (-2,-4) B (3,4) C (6,10 D (-6,-10) 4.下列函数中,在区间(0,+∞)上为增函数的是A.y=ln (x+2)(12)x D.y=x+1x5.已知变量x ,y 满足约束条件,则z=3x+y 的最大值为A.12B.11C.3D.-1 6,某几何体的三视图如图1所示,它的体积为A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数万恶哦0的概率是A.49 B. 13 C. 29 D. 198.对任意两个非零的平面向量α和β,定义。
若平面向量a ,b 满足|a|≥|b|>0,a 与b 的夹角,且a ·b 和b ·a 都在集合中,则A .12 B.1 C. 32 D. 52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9-13题)9.不等式|x+2|-|x|≤1的解集为_____。
10. 的展开式中x ³的系数为______。
(用数字作答)11.已知递增的等差数列{a n }满足a 1=1,a 3=22a -4,则a n =____。
12.曲线y=x 3-x+3在点(1,3)处的切线方程为 。
13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为 。
(二)选做题(14 - 15题,考生只能从中选做一题) 14,(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为和,则曲线C 1与C 2的交点坐标为_______。
2012年高考数学广东卷含参考答案(理科)
2012年普通高等学校招生全国统一考试(广东卷)数学(理科A 卷)本试卷共4页,21小题,满分150分.考试用时120分钟.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,则复数56ii-= A .65i +B .65i -C .65i -+D .65i --2.设集合U {1,23,4,5,6}=,,M {1,2,4}=则M U =ðA .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3.若向量(2,3)BA = ,(4,7)CA = ,则BC =A .(2,4)--B .(3,4)C .(6,10)D .(6,10)--4.下列函数中,在区间(0,)+∞上为增函数的是A . ln(2)y x =+B y =C . 1()2xy =D . 1y x x=+5.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .-16.某几何体的三视图如图1所示,它的体积为 A .12π B .45π C .57π D .81π7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是 A .49 B .13 C .29 D .198.对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅ .若平面向量,a b 满足0a b ≥> ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且αβ 和βα 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =A .12 B .1 C .32 D .52二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9.不等式|2|||1x x +-≤的解集为___________. 10.261()x x+的展开式中3x 的系数为__________.(用数字作答) 11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =________. 12.曲线33y x x =-+在点(1,3)处的切线方程为__________.13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为_______.(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系中xoy 中,曲线1C 和曲线2C 的 参数方程分别为⎩⎨⎧==ty t x (t 为参数)和⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数),则曲线1C 和曲线2C 的交点坐标为 .15.(几何证明选讲选做题)如图3,圆O 的半径为1,A ,B ,C 是圆上三点,且满足︒=∠30ABC ,过点A 做圆O 的切线与OC 的延长线交与点P ,则PA= .图3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数)6cos(2)(πω+=x x f (其中R x ∈>,0ω)的最小正周期为π10.(1) 求ω的值;(2) 设,56)355(,2,0,-=+⎥⎦⎤⎢⎣⎡∈παπβαf 1716)655(=-πβf ,求)cos(βα+的值. 17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是: [40,50), [50,60), [60,70), [70,80), [80,90), [90,100], (1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(1)证明:BD ⊥平面PAC ;(2)若1PA =,2AD =,求二面角B PC A --的正切值.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,*n N ∈,且123,5,a a a +成等差数列. (1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有1211132n a a a ++⋅⋅⋅+<.20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1) 求椭圆C 的方程(2) 在椭圆C 上,是否存在点(,)M m n ,使得直线:1l mx ny +=与圆22:1O x y +=相交于不同的两点A 、B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.)21.(本小题满分14分)设1a <,集合2{0},{23(1)60}A x R x B x R x a x a =∈>=∈-++>,D A B = . (1) 求集合D (用区间表示);(2) 求函数32()23(1)6f x x a x ax =-++在D 内的极值点.2012年普通高等学校招生全国统一考试(广东卷)理科数学A 卷参考答案一、选择题:1. D2. C3. A4. A5. B6. C7. D8. C 二、填空题:9.12x x ⎧⎫≤-⎨⎬⎩⎭ 10. 20 11. 2n-1 12. y=2x+1 13. 814. (1,1) 15.三、解答题:16. 解:(1)由f(x)得: 其最小正周期(2)由(1)得:同理由:又17. 解:(1)由图得:(2)由图得:由题知:21105T w w ππ==⇒=15w ∴=0,w >又1()2cos()56f x x π=+515(5)2cos 53536f παπαπ⎡⎤⎛⎫∴+=++ ⎪⎢⎥⎝⎭⎣⎦62cos 25πα⎛⎫=+=-⎪⎝⎭3sin 5α⇒=5168(5)cos 61717f βπβ-==得:,0,παβ⎡⎤∈⎢⎥4cos 5α∴==15sin 17β=cos()cos cos sin sin αβαβαβ∴+=-483151351751785=⨯-⨯=-()0.0060.0060.010.0540.006101x +++++⨯=0.018x ⇒=()()8090100.18901000.006100.06P X x P X ≤<==≤<=⨯=[)8090∴⨯在,的学生人数为:0.1850=9[)90100⨯在,的学生人数为:0.0650=30,1,2ξ=()()()2122993322212121212910,1,2222222C C C C P P P C C C ξξξ=========18. 解: (1)证明:(2)由(1)得:在矩形ABCD 中,如图所示建立直角坐标系,由(1)知,所以,二面角B-PC-A 的正切值为:3。
2012年广东高考理科数学(全解析)逐题详解(纯净WORD)
正视图侧视图俯视图第6题图.2012年普通高等学校招生全国统一考试(广东卷)数学(理科)逐题详解一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.2012年12月26日星期三1.设i 为虚数单位,则复数56i i-=( )A.65i + B .65i - C .65i -+ D .65i --【解析】D ;()5656566511i ii i i i--+===----,故选D .2.设集合{1,23,4,5,6}U =,,{1,2,4}M =,则M U =ð( ) A .U B .{1,3,5} C .{3,5,6} D .{2,4,6}【解析】C ;送分题,直接考察补集的概念,{}M 3,5,6U =ð,故选C .3.若向量(2,3)B A = ,(4,7)C A = ,则BC =( )A .(2,4)--B .(3,4)C .(6,10)D .(6,10)--【解析】A ;考察向量的运算法则,()()()2,34,72,4BC BA AC =+=+--=--,故选A . 4.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+B .y =C .1(2xy =D .1y x x=+【解析】A ;函数ln(2)y x =+的图像可由函数ln y x =的图像向左平移2个单位得到,显然满足题意.5.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( ) A .12 B .11 C .3 D .1- 【解析】B ;画出可行域如图所示,将“三角”区域的角点代入比较可知,当3,2x y ==时,3z x y =+取得最大值为11. 6.某几何体的三视图如图所示,它的体积为( )A .12πB .45πC .57πD .81π 【解析】C ;三视图对应的实物图为“上部分为圆锥,下部分为圆柱”的几何体,易得圆锥的高为4,所以2213435573V πππ=⋅⋅⋅+⋅⋅=.7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是( ) A .49B .13C .29D .198.对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅ .若平面向量,a b 满足0a b ≥> ,a 与b的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b和b a都在集合|2nn Z ⎧⎫∈⎨⎬⎩⎭中,则a b = ( ) A .12B .1C .32D .52【解析】C ;因为||cos cos 1||b a b b a a a a θθ⋅==≤<⋅,且a b和b a 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,所以12b a = ,||12cos ||b a θ= ,所以2||cos 2cos 2||a ab b θθ==<,且22cos 1a b θ=> ,所以12a b <<,故有32a b = ,选C .【另解】C ;1||cos 2||k a a b b θ==,2||cos 2||k b b a a θ==,两式相乘得212cos 4k k θ=,因为0,4πθ⎛⎫∈ ⎪⎝⎭,12,k k 均为正整数,于是cos 122θ<=<,所以1224k k <<,所以123k k =,而0a b ≥> ,所以123,1k k ==,于是32a b = ,选C .二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分 (一)必做题(9~13题)9.不等式|2|||1x x +-≤的解集为___________. 【解析】1,2⎛⎤-∞-⎥⎝⎦;“|2|||x x +-”的几何意义为“点x 到2-和0的距离之差”,画出数轴,先找出临界“|2|||1x x +-=的解为12x =-”,然后可得解集为1,2⎛⎤-∞- ⎥⎝⎦.10.261()x x+的展开式中3x 的系数为__________.(用数字作答)【解析】20;通项()621231661rrrr rr T C x C xx --+⎛⎫== ⎪⎝⎭,令1233r -=得 3r =,此时对应系数为3620C =.11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =【解析】21n -;设公差为()0d d >,依题意可得()21214d d +=+-, 解得2d =(2-舍去),所以21n a n =-.12.曲线33y x x =-+在点(1,3)处的切线方程为__________. 【解析】21y x =+;求导得231y x '=-,1|2x y ='=,由直线的点斜式 方程得()321y x -=-,整理得21y x =+.13.执行如图所示的程序框图,若输入n 的值为8,则输出s 的值为____.【解析】8;第一次循环得2,4,2s i k ===;第二次循环得4s =,6,3i k ==;第三次循环得第17题图B.第15题图AC PO8,8,4s i k ===,此时不满足8i <,输出8s =.(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14. (坐标系与参数方程选做题)在平面直角坐标系中x O y 中,曲线1C 和曲线2C 的参数方程分别为⎩⎨⎧==t y t x (t 为参数)和⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数),则曲线1C 和曲线2C 的交点坐标为 .【解析】()1,1;对应的普通方程分别为y =222x y +=,联立得交点坐标为()1,1.15. (几何证明选做题)如图,圆O 的半径为1,,,A B C 是圆上三点,且满足︒=∠30ABC ,过点A 作圆O 的切线与O C 的延长线交 于点P ,则PA = .,OA AC ,易得60,30AOC CAP ∠=︒∠=︒,在 直角三角形O A P 中,根据题中的数量关系易得PA =.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()2cos()6f x x πω=+(其中R x ∈>,0ω)的最小正周期为π10.(Ⅰ) 求ω的值;(Ⅱ) 设,0,2παβ⎡⎤∈⎢⎥⎣⎦,56(535f πα+=-,516(5)617f πβ-=,求cos()αβ+的值.【解析】(Ⅰ)由210ππω=得15ω=. (Ⅱ)由(Ⅰ)知1()2cos()56f x x π=+,由56516(5,(535617f f ππαβ+=--=得3sin 5α=,8cos 17β=.又,0,2παβ⎡⎤∈⎢⎥⎣⎦,所以4cos 5α=,15sin 17β=,所以324513cos()cos cos sin sin 858585αβαβαβ+=-=-=-17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图所 示,其中成绩分组区间是:[)[)40,50,50,60,[)[)60,70,70,80,[)[]80,90,90,100.(Ⅰ) 求图中x 的值;(Ⅱ) 从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望. 【解析】(Ⅰ) 由()0.00630.010.054101x ⨯+++⨯= 解得0.018x =.(Ⅱ)成绩不低于80分的学生人数有()500.0180.0061012⨯+⨯=人. 成绩在90分以上(含90分)的人数有500.006103⨯⨯=人.P ABCDE第18题图随机变量ξ的可能取值为0,1,2,且 ()292126011C P Cξ===,()11392129122C C P Cξ===,()232121222C P Cξ===,所以ξ的分布列为ξ的数学期望0121122222E ξ=⨯+⨯+⨯=. 18.(本小题满分13分)如图所示,在四棱锥P A B C D -中,底面A B C D 为矩形,P A ⊥平面A B C D ,点E 在线段P C上,P C ⊥平面BD E .(Ⅰ) 证明:B D ⊥平面PAC ;(Ⅱ) 若1PA =,2AD =,求二面角B P C A --的正切值.【解析】(Ⅰ)因为P A ⊥平面A B C D ,BD ⊂平面A B C D , 所以PA BD ⊥,又P C ⊥平面BD E ,BD ⊂平面BD E ,所以PC BD ⊥,因为PA PC P = ,所以B D ⊥平面PAC .(Ⅱ) 由(Ⅰ)可知B D ⊥平面PAC ,所以B D A C ⊥,又底面A B C D 为矩形,从而底面A B C D 为正方形,设AC BD O = ,连结O E ,则,,OE PC BO PC ⊥⊥所以B E O ∠为二面角B P C A --的平面角, 在R t P A C ∆中,由等面积法可得112233PA AC O E PC ⋅=⋅==,又BO =在R t B O E ∆中,tan 3B O B E O O E∠==所以二面角B P C A --的正切值为3.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,*n N ∈,且123,5,a a a +成等差数列.(Ⅰ) 求1a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211132na a a ++⋅⋅⋅+<.【解析】(Ⅰ)因为11221n n n S a ++=-+,当1n =时,1223S a =-,即2123a a -=,当2n =时,2327S a =-,即321227a a a --=,又()21325a a a +=+联立上述三个式子可得11a =. (Ⅱ)由(Ⅰ)可知25a =当2n ≥时,由11221n n n S a ++=-+得1221n n n S a -=-+,两式相减整理得132nn n a a +=-,即11312222n n n n a a ++=⋅+,即11311222n n n n a a ++⎛⎫+=⋅+ ⎪⎝⎭,又2121311222a a ⎛⎫+=⋅+ ⎪⎝⎭, 所以12nn a ⎧⎫+⎨⎬⎩⎭为首项为113122a +=,公比为32的等比数列, 所以133312222n nnn a -⎛⎫⎛⎫+=⋅= ⎪⎪⎝⎭⎝⎭,所以32n n n a =-. (Ⅲ) 当1n =时,11312a =<显然成立,当2n =时,121113152a a +=+<显然成立.当3n ≥时,32(12)2n n n n n a =-=+-12211122222n n n nn n n C C C --=+⋅+⋅++⋅+-122111222n n n n nC C C --=+⋅+⋅++⋅ 2222(1)n C n n >⋅=-又因为2522(21)a =>⨯⨯-,所以2(1),2n a n n n >-≥, 所以11111()2(1)21na n n n n<=---所以12311111111111131(1)1(1)2234122na a a a n nn++++<+-+-++-=+-<- .20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b ab+=>>的离心率e =,且椭圆C 上的点到点()0,2Q 的距离的最大值为3.(Ⅰ) 求椭圆C 的方程(Ⅱ) 在椭圆C 上,是否存在点(,)M m n ,使得直线:1l mx ny +=与圆22:1O x y +=相交于不同的两点,A B ,且O AB ∆的面积最大?若存在,求出点M 的坐标及对应的O AB ∆的面积;若不存在,请说明理由.【解析】(Ⅰ)依题意2223c e c a a==⇒=,所以222213b ac a =-=,设(,)P x y 是椭圆C 上任意一点,则22221x y ab+=,所以222222(1)3y x a a y b=-=-,所以||PQ ===当1y =-时,||PQ3=,可得a =所以1,b c ==故椭圆C 的方程为2213xy +=.(Ⅱ)[韦达定理法]因为(,)M m n 在椭圆C 上,所以2213mn +=,2233m n =-,设11(,)A x y ,22(,)B x y由2211m x ny x y +=⎧⎨+=⎩,得2222()210m n x m x n +-+-=所以22222222244()(1)4(1)8(1)0m m n n n m n n n ∆=-+-=+-=->,可得21n <, 由韦达定理得12222m x x m n+=+,212221nx x m n-=+所以2212121212222111()1mx mx m x x m x x my y n n n m n---++-=⋅==+所以||AB ====设原点O 到直线A B 的距离为h ,则h =所以1||2O AB S AB h ∆=⋅=设221t m n=+,由201n <<,得22232(1,3)m n n +=-∈,所以,1(,1)3t ∈O AB S ∆==1(,1)3t ∈所以,当12t =时,OAB S ∆面积最大,且最大为12,此时,点M 的坐标为22⎛ ⎪⎝⎭或22⎛- ⎪⎝⎭或,22⎛⎫- ⎪ ⎪⎝⎭或22⎛-- ⎪⎝⎭. [垂径定理切入]因为点()n m P ,在椭圆C 上运动,所以2213mn +=,2233m n =-,圆心O 到直线1:=+ny mx l 的距离d =直线l 被圆O 所截的弦长为||AB ==所以1||2O AB S AB d ∆=⋅=,接下来做法同上.21.(本小题满分14分)设1a <,集合2{0},{23(1)60}A x R x B x R x a x a =∈>=∈-++>,D A B = . (Ⅰ) 求集合D (用区间表示);(Ⅱ) 求函数32()23(1)6f x x a x ax =-++在D 内的极值点.【解析】(Ⅰ)由方程223(1)60x a x a -++=得判别式29(1)483(3)(31)a a a a ∆=+-=--因为1a <,所以30a -< 当113a <<时,0∆<,此时B R =,所以()0,D A ==+∞; 当13a =时,0∆=,此时{|1}B x x =≠,所以(0,1)(1,)D =+∞ ;当13a <时,0∆>,设方程223(1)60x a x a -++=的两根为12,x x 且12x x <,则 14x =,24x =,12{|}B x x x x x =<>或当103a <<时,123(1)02x x a +=+>,1230x x a =>,所以120,0x x >>此时,12(,)(,)D x x x =+∞)44=+∞当0a ≤时,1230x x a =≤,所以120,0x x ≤>此时,2(,))4D x =+∞=+∞.综上,1(0,),133(1)3(1)1(0,(),0443),04a a a D a a ⎧+∞<<⎪⎪⎪+-++=+∞<≤⎨⎪⎪+∞≤⎪⎩(Ⅱ) 2()66(1)66(1)()f x x a x a x x a '=-++=--,1a <所以函数()f x 在区间[,1]a 上为减函数,在区间(,]a -∞和[1,)+∞上为增函数 当113a <<时,因为()0,D =+∞,所以()f x 在D 内的极值点为,1a ; 当13a =时,(0,1)(1,)D =+∞ ,所以()f x 在D 内有极大值点13a =;当103a <<时,)44D =+∞由103a <<,很容易得到144a <<<(可以用作差法,也可以用分析法),所以()f x 在D 内有极大值点a ; 当0a ≤时,)4D =+∞由0a ≤,14>,此时()f x 在,内没有极值点.综上,当113a <<时,极值点为,1a ;当103a <≤时,极值点为a ;当0a ≤时,无极值点.。
2012年广东省高考理科数学试题(含答案)
2012年普通高等学校招生全国统一考试(广东卷)A一 、选择题:本大题共8小题,每小题5分,满分40分 1.设i 为虚数单位,则复数56ii-= A . 65i + B .65i -C .65i -+D .65i --2.设集合U={1,2,3,4,5,6}, M={1,2,4 } 则U C M =A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3.若向量BA =(2,3),CA =(4,7),则BC = A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10)4.下列函数中,在区间(0,+∞)上为增函数的是A .ln(2)y x =+ B.y = C .y=12x⎛⎫⎪⎝⎭D .1y x x =+5.已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z=3x+y 的最大值为A .12B .11C .3D .1-6.某几何体的三视图如图1所示,它的体积为 A .12πB .45πC .57πD .81π7.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是 A .49 B . 13C .29D .198.对任意两个非零的平面向量α和β,定义αβαβββ⋅=⋅.若平面向量,a b 满足0a b ≥>,a 与b 的夹角(0,)4πθ∈,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b = A .12 B .1C .32 D . 52二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分. (一)必做题(9-13题)9.不等式21x x +-≤的解集为_____. 10. 261()x x+的展开式中3x 的系数为______.(用数字作答)11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a = ____. 12.曲线33y x x =-+在点(1,3)处的切线方程为 .13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为 . (二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为)x tty =⎧⎪⎨=⎪⎩为参数和()x y θθθ⎧=⎪⎨=⎪⎩为参数,则曲线C 1与C 2的交点坐标为_______. 15.(几何证明选讲选做题)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足∠ABC=30°,过点A 做圆O 的切线与OC 的延长线交于点P ,则PA=_____________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数()2cos()(0,)6f x x x R πωω=+>∈其中的最小正周期为10π(1)求ω的值;(2)设56516,0,,(5),(5)235617f f παβαπβπ⎡⎤∈+=--=⎢⎥⎣⎦,求cos()αβ+的值.17. (本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)[)[)[)[)[]40,50,50,60,60,70,70,80,80,90,90,100(1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,点 E 在线段PC 上,PC ⊥平面BDE . (1) 证明:BD ⊥平面PAC ;(2) 若PA=1,AD=2,求二面角B-PC-A 的正切值;19. (本小题满分14分)设数列{}n a 的前n 项和为S n ,满足11221,,n n n S a n N +*+=-+∈且123,5,a a a +成等差数列. (1) 求a 1的值;(2) 求数列{}n a 的通项公式. (3) 证明:对一切正整数n ,有1211132n a a a +++<.20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C 1:22221(0)x y a b a b+=>>的离心率e =且椭圆C 上的点到Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m,n )使得直线l :mx+ny=1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及相对应的△OAB 的面积;若不存在,请说明理由.21.(本小题满分14分)设a <1,集合{}{}20,23(1)60A x R x B x R x a x a =∈>=∈-++>,D A B =(1)求集合D (用区间表示)(2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点.2012广东高考数学(理科)参考答案选择题答案:1-8: DCAAB CDC 填空题答案:9. 1,2⎛⎤-∞- ⎥⎝⎦10. 20 11. 21n - 12. 21y x =+ 13. 8 14. ()1,115.解答题16.(1)15ω=(2)代入得62cos 25πα⎛⎫+=- ⎪⎝⎭3sin 5α⇒=162cos 17β=8c o s 17β⇒= ∵ ,0,2παβ⎡⎤∈⎢⎥⎣⎦∴ 415cos ,sin 517αβ==∴ ()4831513cos cos cos sin sin 51751785αβαβαβ+=-=⨯-⨯=-17.(1)由300.006100.01100.054101x ⨯+⨯+⨯+=得0.018x =(2)由题意知道:不低于80分的学生有12人,90分以上的学生有3人 随机变量ξ的可能取值有0,1,2()292126011C P C ξ===()11932129122C C P C ξ===()232121222C P C ξ===∴ 69110121122222E ξ=⨯+⨯+⨯= 18.(1)∵ PA ABCD ⊥平面∴ PA BD ⊥ ∵ PC BDE ⊥平面 ∴ PC BD ⊥ ∴ BD PAC ⊥平面(2)设AC 与BD 交点为O ,连OE∵ PC BDE ⊥平面 ∴ PC OE ⊥ 又∵ BO PAC ⊥平面 ∴ PC BO ⊥ ∴ PC BOE ⊥平面∴ PC BE ⊥∴ BEO ∠为二面角B PC A --的平面角 ∵ BD PAC ⊥平面 ∴ BD AC ⊥∴ ABCD 四边形为正方形 ∴BO =在PAC ∆中,13OE PA OE OC AC =⇒=⇒=∴ tan 3BOBEO OE∠== ∴ 二面角B PC A --的平面角的正切值为319.(1)在11221n n n S a ++=-+中 令1n =得:212221S a =-+ 令2n =得:323221S a =-+解得:2123a a =+,31613a a =+ 又()21325a a a +=+ 解得11a =(2)由11221n n n S a ++=-+212221n n n S a +++=-+得 12132n n n a a +++=+又121,5a a ==也满足12132a a =+ 所以132n n n a a n N *+=+∈对成立 ∴ ()11+232n n n n a a ++=+ ∴ 23n n n a += ∴ 32n n n a =- (3)(法一)∵()()123211323233232...23n n n n n n n n a -----=-=-+⨯+⨯++≥∴1113n n a -≤ ∴21123111311111113...1 (1333213)n n n a a a a -⎛⎫⎛⎫⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭+++≤++++=<-(法二)∵1111322322n n n n n n a a ++++=->⨯-=∴11112n n a a +<⋅ 当2n ≥时,321112a a <⋅ 431112a a <⋅541112a a <⋅ ………11112n n a a -<⋅累乘得: 221112n n a a -⎛⎫<⋅⎪⎝⎭∴212311111111173...1 (5252552)n n a a a a -⎛⎫+++≤++⨯++⨯<< ⎪⎝⎭ 20. (1)由e =223a b =,椭圆方程为22233x y b += 椭圆上的点到点Q 的距离d ==)b y b =-≤≤当①1b -≤-即1b≥,max 3d ==得1b =当②1b ->-即1b <,max 3d ==得1b =(舍) ∴ 1b =∴ 椭圆方程为2213x y +=(2)11sin sin 22AOB S OA OB AOB AOB ∆=⋅∠=∠ 当90AOB ∠=,AOB S ∆取最大值12,点O 到直线l距离2d ==∴222m n +=又∵2213m n += 解得:2231,22m n ==所以点M的坐标为22222222⎛⎫⎛⎛⎛---- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭或或或AOB ∆的面积为1221.(1)记()()()223161h x x a x a a =-++<()()()291483139a aa a ∆=+-=-- ① 当0∆<,即113a <<,()0,D =+∞② 当103a <≤,D ⎛⎫=⋃+∞ ⎪ ⎪⎝⎭⎝⎭③ 当0a ≤,D ⎫=+∞⎪⎪⎝⎭(2)由()()266160=1f x x a x a x a '=-++=得,得① 当113a <<,()D f x a 在内有一个极大值点,有一个极小值点1② 当103a <≤,∵()()12316=310h a a a =-++-≤()()222316=30h a a a a a a a =-++->∴ 1,D a D ∉∈∴ ()D f x a 在内有一个极大值点 ③ 当0a ≤,则a D ∉又∵()()12316=310h a a a =-++-< ∴ ()D f x 在内有无极值点理科数学试卷评析——汪治平1. 整体分析:试卷难度偏易,题型较正统,解答题考查了常见六大板块:三角函数、概率统计、立体几何、数列、解析几何、函数与导数。
2012广东高考数学试题及答案
2012广东高考数学试题及答案2012年广东高考数学试题及答案一、选择题(本题共10小题,每小题5分,共50分)1. 下列哪个选项是无理数?A. √2B. 0.33333...C. 1/3D. 22/7答案:A2. 若函数f(x) = 3x^2 - 2x + 1,求f(-1)的值。
A. 4B. 6C. 8D. 10答案:A3. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},求A∩B。
A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:B4. 直线y = 2x + 3与x轴的交点坐标是?A. (-1, 0)B. (0, 3)C. (1, 0)D. (3, 0)答案:A5. 已知三角形ABC中,角A = 60°,边a = 3,边b = 4,求边c的长度。
A. √7B. √13C. 5D. √21答案:B6. 已知等差数列{an}的首项a1 = 1,公差d = 2,求第10项a10。
A. 19B. 21C. 23D. 25答案:A7. 抛物线y^2 = 4x的焦点坐标是?A. (1, 0)B. (0, 2)C. (2, 0)D. (0, -2)答案:C8. 已知向量a = (3, 1),向量b = (2, -1),求向量a与向量b的夹角θ。
A. 30°B. 45°C. 60°D. 90°答案:D9. 圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标。
A. (2, 3)B. (-2, -3)C. (0, 0)D. (3, 2)答案:A10. 已知双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程为y =±(b/a)x,求a与b的关系。
A. a = bB. a > bC. a < bD. 无法确定答案:C二、填空题(本题共5小题,每小题5分,共25分)11. 求函数f(x) = x^3 - 3x^2 + 2的极值点。
2012年广东高考数学试题及参考答案
2012年普通高等学校招生全国统一考试(广东卷)数学(理科) 第I 卷 选择题(共40分)一、选择题:本大题共8小题,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 为虚数单位,则复数56ii-= ( )A .65i +B .65i -C .65i -+D .65i -- 2.设集合{1,2,3,4,5,6}U =,{1,2,4}M =,则U M =ð( ) A .U B .{1,3,5}C .{3,5,6}D .{2,4,6} 3.若向量(2,3)BA = ,(4,7)CA =,则BC =( )A .(2,4)--B .(2,4)C .(6,10)D .(6,10)- 4.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+B.y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+5.已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩;则3z x y =+的最大值为( )A .12B .11C .3D .1- 6.某几何体的三视图如图1( )A .12πB .45πC .57πD .81π 7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是( ) A .49B .13C .29D .198.对任意两个非零的平面向量α和β,定义 αβαβ=ββ。
若平面向量a ,b 满足0≥>a b ,a 与b 的夹角(0,)4πθ∈,且 a b 和 b a 都在集合{}2nn ∈Z 中,则= a b( )正视图侧视图俯视图图1A .12B .1C .32D .52第II 卷 非选择题(共110分)二.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分 (一)必做题(9—12题)9.不等式21x x +-≤的解集为 。
10.621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为 。
(用数字作答)11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a = 。
2012广东高考数学理科试题及答案
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:(本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设i 为虚数单位,则复数56i i-= A .65i +B .65i -C .65i -+D .65i --2. 设集合{}{}1,2,3,4,5,6,1,2,4U M ==,则C M =,则BC =4)-B .(2,4)C .(6,10)(6,10)--6. 7. 个位C .29D .198. 对任意两个非零向量α,β,定义⋅⋅αβαβ=ββ,若向量a,b 满足||||0≥>a b ,a,b 的夹角(0,4πθ∈,且a b 和b a 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b = A .12B .1C .32D .52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9~13题)9. 不等式|2|||1x x +-≤的解集为。
10.261(x x+的展开式中3x 的系数为。
(用数字作答) 11.已知递增的等差数列{}n a 满足21321,4a a a ==-,则n a =。
12.曲线33y x x =-+在点(1,3)处的切线方程为。
13.执行如图2所示的程序框图,若输入n 则输出s (二)选做题(14~1514.)x t t y =⎧⎪⎨=⎪⎩为参数和()x y θθθ⎧=⎪⎨=⎪⎩为参数2C 的交点坐标为。
15.为OC12分)0,x R ω>∈)的最小正周期为10π ω的值;516(5)617f πβ-=,求cos()αβ+的值。
13分)4所示,其中成绩分组区间是: [)))))40,50,50,60,60,70,70,80,80,90,90,100。
1)求图中x 的值;2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望。
2012年广东省高考数学试卷(理科)答案与解析
A.6+5i B.6﹣5i C.﹣6+5i D.﹣6﹣5i 考点:复数代数形式的乘除运算.系的扩充和复数.专题:数系的扩充和复数.分析:把的分子分母同时乘以i,得到,利用虚数单位的性质,得,由此能求出结果.,由此能求出结果.解答:解:===﹣6﹣5i.故选D.题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答. 点评:本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.A.U B.{1,3,5} C.{3,5,6} D.{2,4,6} 考点:补集及其运算.合.专题:集合.分析:直接利用补集的定义求出C U M.解答:解:∵集合U={1,2,3,4,5,6},M={1,2,4},则∁U M={3,5,6},故选C.点评:本题主要考查集合的表示方法、求集合的补集,属于基础题.题主要考查集合的表示方法、求集合的补集,属于基础题.,向量,则A.(﹣2,﹣4)B.(3,4)C.(6,10)D.(﹣6,﹣10)考点:平面向量的坐标运算.面向量及应用.专题:平面向量及应用.分析:由向量,向量,知,再由,能求出结果.,能求出结果.解答:解:∵向量,向量,∴,∴=(﹣4,﹣7)﹣(﹣2,﹣3) =(﹣2,﹣4). 故选A . 点评: 本题考查平面向量的坐标运算,是基础题.解题时要认真解答,仔细运算.题考查平面向量的坐标运算,是基础题.解题时要认真解答,仔细运算. 4.(5分)(2012•广东)下列函数,在区间(0,+∞)上为增函数的是()上为增函数的是( )A .y =ln (x+2) B .C .D .考点: 对数函数的单调性与特殊点;函数单调性的判断与证明. 专题: 函数的性质及应用.数的性质及应用. 分析: 利用对数函数的图象和性质可判断A 正确;利用幂函数的图象和性质可判断B 错误;利用指数函数的图象和性质可判断C 正确;利用“对勾”函数的图象和性质可判断D 的单调性单调性 解答: 解:A ,y=ln (x+2)在(﹣2,+∞)上为增函数,故在(0,+∞)上为增函数,A 正确;确;B ,在[﹣1,+∞)上为减函数;排除B C ,在R 上为减函数;排除C D ,在(0,1)上为减函数,在(1,+∞)上为增函数,排除D 故选故选 A 点评: 本题主要考查了常见函数的图象和性质,题主要考查了常见函数的图象和性质,特别是它们的单调性的判断,特别是它们的单调性的判断,特别是它们的单调性的判断,简单复合函数简单复合函数的单调性,属基础题的单调性,属基础题5.(5分)(2012•广东)已知变量x ,y 满足约束条件,则z=3x+y 的最大值为( )A . 12 B . 11 C . 3D . ﹣1 考点: 简单线性规划. 专题: 不等式的解法及应用.等式的解法及应用. 分析: 先画出线性约束条件表示的可行域,画出线性约束条件表示的可行域,在将目标函数赋予几何意义,在将目标函数赋予几何意义,在将目标函数赋予几何意义,数形结合即可得目数形结合即可得目标函数的最值标函数的最值:画出可行域如图阴影部分,解答:解:画出可行域如图阴影部分,由得C(3,2)越大, 目标函数z=3x+y可看做斜率为﹣3的动直线,其纵截距越大,z越大,由图数形结合可得当动直线过点C时,z最大=3×3+2=11 故选 B 故选点评:本题主要考查了线性规划的思想、方法、技巧,二元一次不等式组表示平面区域的知识,数形结合的思想方法,属基础题识,数形结合的思想方法,属基础题6.(5分)(2012•广东)某几何体的三视图如图所示,它的体积为(广东)某几何体的三视图如图所示,它的体积为( )A.12πB.45πC.57πD.81π考点:由三视图求面积、体积.间位置关系与距离;空间角;空间向量及应用;立体几何.专题:空间位置关系与距离;空间角;空间向量及应用;立体几何.分析:由题设知,组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱,分别根据两几何体的体积公式计算出它们的体积再相加即可得到正确选项可得到正确选项解答:解:由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱的圆柱故它的体积是5×π×32+π×32×=57π故选C 点评: 本题考查三视图还原几何体及求组合体的体积,解题的关键是熟练记忆相关公式及由三视图得出几何体的长宽高等数据,且能根据几何体的几何特征选择恰当的公式进行求体积的运算,求体积的运算,7.(5分)(2012•广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是(的概率是( )A .B .C .D .考点: 古典概型及其概率计算公式. 专题: 概率与统计.率与统计. 分析: 先求个位数与十位数之和为奇数的两位数的个数n ,然后再求个位数与十位数之和为奇数的两位数的个数,由古典概率的求解公式可求奇数的两位数的个数,由古典概率的求解公式可求 解答: 解:个位数与十位数之和为奇数的两位数中,其个位数与十位数有一个为奇数,一个为偶数,共有=45 记:“个位数与十位数之和为奇数的两位数中,其个位数为0”为事件A ,则A 包含的结果:10,30,50,70,90共5个由古典概率的求解公式可得,P (A )=故选D 点评: 本题主要考查了古典概率的求解公式的应用,题主要考查了古典概率的求解公式的应用,解题的关键是灵活利用简单的排列、解题的关键是灵活利用简单的排列、解题的关键是灵活利用简单的排列、组组合的知识求解基本事件的个数合的知识求解基本事件的个数8.(5分)(2012•广东)对任意两个非零的平面向量和,定义○=,若平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,则○=( )A .B .1 C .D .考点: 平面向量数量积的运算. 专题: 空间向量及应用.间向量及应用. 分析:由题意可得•==,同理可得•==,故有n ≥m 且m 、n ∈z .再由cos 2θ=,与的夹角θ∈(0,),可得cos 2θ∈(,1),即∈(,1),由此求得n=3,m=1,从而得到,从而得到 •== 的值.的值.解答:解:由题意可得解:由题意可得 •====.同理可得同理可得 •====.由于||≥||>0,∴n ≥m 且 m 、n ∈z . ∴cos 2θ=.再由与的夹角θ∈(0,),可得cos 2θ∈(,1),即∈(,1).故有故有 n=3,m=1,∴•==, 故选C .点评: 本题主要考查两个向量的数量积的定义,得到本题主要考查两个向量的数量积的定义,得到n ≥m 且m 、n ∈z ,且∈(,1),是解题的关键,属于中档题.解题的关键,属于中档题.的解集为的解集为.考点: 绝对值不等式的解法. 专题: 集合.合. 分析: 由题意,可先将不等式左边变形为分段函数的形式,然后再分三段解不等式,将每一段的不等式的解集并起来即可得到所求不等式的解集段的不等式的解集并起来即可得到所求不等式的解集 解答:解:∵|x+2|﹣|x|=∴x ≥0时,不等式|x+2|﹣|x|≤1无解;无解; 当﹣2<x <0时,由2x+2≤1解得x ≤,即有﹣2<x ≤;当x ≤﹣2,不等式|x+2|﹣|x|≤1恒成立,恒成立, 综上知不等式|x+2|﹣|x|≤1的解集为故答案为点评: 本题考查绝对值不等式的解法,题考查绝对值不等式的解法,其常用解题策略即将其变为分段函数,其常用解题策略即将其变为分段函数,其常用解题策略即将其变为分段函数,分段求解不等分段求解不等式.式.10.(5分)(2012•广东)中x 3的系数为的系数为20 .(用数字作答)(用数字作答)考点: 二项式定理. 专题: 排列组合.列组合.分析: 由题意,可先给出二项式的通项,再由通项确定出x 3是展开式中的第几项,从而得出其系数出其系数 解答:解:由题意,的展开式的通项公式是Tr+1==x 12﹣3r令12﹣3r=3得r=3 所以中x 3的系数为=20 故答案为20 点评: 本题考查二项式定理的通项,属于二项式考查中的常考题型,题考查二项式定理的通项,属于二项式考查中的常考题型,解答的关键是熟练掌握解答的关键是熟练掌握二项式的通项公式二项式的通项公式11.(5分)(2012•广东)已知递增的等差数列{a n }满足a 1=1,a 3=a 22﹣4,则a n = 2n ﹣1 .考点: 等差数列的通项公式. 专题: 等差数列与等比数列.差数列与等比数列. 分析: 由题意,设公差为d ,代入,直接解出公式d ,再由等差数列的通项公式求出通项即可得到答案求出通项即可得到答案 解答: 解:由于等差数列{a n }满足a 1=1,,令公差为d 所以1+2d=(1+d )2﹣4,解得d=±2 又递增的等差数列{a n },可得d=2 所以a n =1+2(n ﹣1)=2n ﹣1 故答案为:2n ﹣1. 点评: 本题考查等差数列的通项公式,题考查等差数列的通项公式,解题的关键是利用公式建立方程求出参数,解题的关键是利用公式建立方程求出参数,解题的关键是利用公式建立方程求出参数,需要熟练需要熟练记忆公式.记忆公式.12.(5分)(2012•广东)曲线y=x 3﹣x+3在点(1,3)处的切线方程为)处的切线方程为2x ﹣y+1=0 .考点: 利用导数研究曲线上某点切线方程. 专题: 导数的概念及应用.数的概念及应用. 分析: 先求出导函数,然后将x=1代入求出切线的斜率,利用点斜式求出直线的方程,最后化成一般式即可.化成一般式即可.解答: 解:y ʹ=3x 2﹣1,令x=1,得切线斜率2,所以切线方程为y ﹣3=2(x ﹣1), 即2x ﹣y+1=0.故答案为:2x ﹣y+1=0. 点评: 本题主要考查导数的几何意义:在切点处的导数值为切线的斜率、考查直线的点斜式,属于基础题.属于基础题.13.(5分)(2012•广东)执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为的值为 8 .考点: 循环结构. 专题: 算法和程序框图.法和程序框图. 分析: 由已知中的程序框图及已知中输入8,可得:进入循环的条件为i <8,即i=2,4,6模拟程序的运行结果,即可得到输出的s 值.值. 解答: 解:当i=2,k=1时,s=2,;当i=4,k=2时,s=(2×4)=4; 当i=6,k=3时,s=(4×6)=8;当i=8,k=4时,不满足条件“i <8”,退出循环,,退出循环,则输出的s=8 故答案为:8 点评: 本题主要考查的知识点是程序框图,题主要考查的知识点是程序框图,在写程序的运行结果时,在写程序的运行结果时,在写程序的运行结果时,我们常使用模拟循环的我们常使用模拟循环的变法,同时考查了运算求解能力,属于基础题.变法,同时考查了运算求解能力,属于基础题.14.(5分)(2012•广东)(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C 1与C 2的参数方程分别为(t 为参数)和(θ为参数),则曲线C 1与C 2的交点坐标为的交点坐标为 (1,1) .考点: 抛物线的参数方程;圆的参数方程. 专题: 坐标系和参数方程.标系和参数方程.分析: 把曲线C 1与C 2的参数方程分别化为普通方程,解出对应的方程组的解,即得曲线C 1与C 2的交点坐标.的交点坐标.解答: 解:在平面直角坐标系xOy 中,曲线C 1与C 2的普通方程分别为的普通方程分别为 y 2=x ,x 2+y 2=2.解方程组解方程组可得可得,故曲线C 1与C 2的交点坐标为(1,1),故答案为故答案为 (1,1). 点评: 本题主要考查把参数方程化为普通方程的方法,求两条曲线的交点坐标,属于中档题. .考点: 与圆有关的比例线段. 专题: 直线与圆.线与圆.分析: 连接OA ,根据同弧所对的圆周角等于圆心角的一半,根据同弧所对的圆周角等于圆心角的一半,得到∠得到∠AOC=60°.因为直线PA 与圆O 相切于点A ,且OA 是半径,得到△P AO 是直角三角形,最后利用三角函数在直角三角形中的定义,结合题中数据可得PA=OAtan60°=.解答: 解:连接OA ,∵圆O 的圆周角∠ABC 对弧AC ,且∠ABC=30°, ∴圆心角∠AOC=60°.又∵直线P A 与圆O 相切于点A ,且OA 是半径,是半径, ∴OA ⊥PA , ∴Rt △P AO 中,OA=1,∠AOC=60°, ∴PA=OAtan60°= 故答案为:点评: 本题给出圆周角的度数和圆的半径,题给出圆周角的度数和圆的半径,求圆的切线长,着重考查了圆周角定理和圆的切求圆的切线长,着重考查了圆周角定理和圆的切线的性质,属于基础题.线的性质,属于基础题.(其中的值;(1)求ω的值;(2)设,,,求cos(α+β)的值.的值.考点:两角和与差的余弦函数;由y=Asin(ωx+φ)的部分图象确定其解析式.角函数的求值;三角函数的图像与性质.专题:三角函数的求值;三角函数的图像与性质.分析:(1)由题意,由于已经知道函数的周期,可直接利用公式ω==解出参数ω的值;值;(2)由题设条件,可先对,与进行化简,)的值. 求出α与β两角的函数值,再由作弦的和角公式求出cos(α+β)的值.解答:解:(1)由题意,函数(其中ω>0,x∈R)的最小正周期为10π所以ω==,即所以(2)因为,,分别代入得及∵∴∴点评:本题考查了三角函数的周期公式及两角和与差的余弦函数,同角三角函数的基本关系,属于三角函数中有一定综合性的题,属于成熟题型,计算题.系,属于三角函数中有一定综合性的题,属于成熟题型,计算题.17.(13分)(2012•广东)某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].的值;(1)求图中x的值;分)的的(2)从成绩不低于80分的学生中随机选取2人,(含90分)分以上(含人,该该2人中成绩在90分以上的数学期望.人数记为ξ,求ξ的数学期望.考点:离散型随机变量的期望与方差;频率分布直方图;古典概型及其概率计算公式.率与统计.专题:概率与统计.分析:(1)根据所以概率的和为1,即所求矩形的面积和为1,建立等式关系,可求出所求;(2)不低于80分的学生有12人,90分以上的学生有3人,则随机变量ξ的可能取值有0,1,2,然后根据古典概型的概率公式求出相应的概率,从而可求出数学期望.解答:解:(1)由30×0.006+10×0.01+10×0.054+10x=1,得x=0.018 (2)由题意知道:不低于80分的学生有12人,90分以上的学生有3人随机变量ξ的可能取值有0,1,2 ∴点评:本题主要考查了频率分布直方图,以及古典概型的概率公式和离散型随机变量的数学期望,同时考查了计算能力和运算求解的能力,属于基础题.期望,同时考查了计算能力和运算求解的能力,属于基础题.18.(13分)(2012•广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,P A⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面P AC;的正切值.(2)若P A=1,AD=2,求二面角B﹣PC﹣A的正切值.考点:二面角的平面角及求法;直线与平面垂直的判定.间位置关系与距离;空间角;立体几何.专题:空间位置关系与距离;空间角;立体几何.分析:(1)由题设条件及图知,可先由线面垂直的性质证出P A⊥BD与PC⊥BD,再由线面垂直的判定定理证明线面垂直即可;面垂直的判定定理证明线面垂直即可;(2)由图可令AC与BD的交点为O,连接OE,证明出∠BEO为二面角B﹣PC﹣A 的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.解答:解:(1)∵P A⊥平面ABCD ∴P A⊥BD ∵PC⊥平面BDE ∴PC⊥BD,又P A∩PC=P ∴BD⊥平面P AC (2)设AC与BD交点为O,连OE ∵PC⊥平面BDE ∴PC⊥平面BOE ∴PC⊥BE 的平面角∴∠BEO为二面角B﹣PC﹣A的平面角∵BD⊥平面P AC ∴BD⊥AC ∴四边形ABCD为正方形,又P A=1,AD=2,可得BD=AC=2,PC=3 ∴OC=在△P AC∽△OEC中,又BD⊥OE,∴∴二面角B﹣PC﹣A的平面角的正切值为3 点评: 本题考查二面角的平面角的求法及线面垂直的判定定理与性质定理,属于立体几何中的基本题型,二面角的平面角的求法过程,作,证,求三步是求二面角的通用步骤,要熟练掌握要熟练掌握19.(14分)(2012•广东)设数列{a n }的前n 项和为S n ,满足2S n =a n+1﹣2n+1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列.成等差数列.(1)求a 1的值;的值; (2)求数列{a n }的通项公式;的通项公式; (3)证明:对一切正整数n ,有.考点: 数列与不等式的综合;等差数列的性质;数列递推式. 专题: 等差数列与等比数列.差数列与等比数列.分析: (1)在2S n =a n+1﹣2n+1+1中,令分别令n=1,2,可求得a 2=2a 1+3,a 3=6a 1+13,又a 1,a 2+5,a 3成等差数列,从而可求得a 1; (2)由2S n =a n+1﹣2n+1+1,得a n+2=3a n+1+2n+1①,a n+1=3a n +2n②,由①②可知{a n +2n}为首项是3,3为公比的等比数列,从而可求a n ;(3)(法一),由a n =3n ﹣2n =(3﹣2)(3n ﹣1+3n ﹣2×2+3n ﹣3×22+…+2n ﹣1)≥3n ﹣1可得≤,累加后利用等比数列的求和公式可证得结论;,累加后利用等比数列的求和公式可证得结论;(法二)由a n+1=3n+1﹣2n+1>2×3n﹣2n+1=2a n 可得,<•,于是当n ≥2时,<•,<•,,…,<•,累乘得:<•,从而可证得+++…+<.解答: 解:(1)在2S n =a n+1﹣2n+1+1中,中,令n=1得:2S 1=a 2﹣22+1,令n=2得:2S 2=a 3﹣23+1, 解得:a 2=2a 1+3,a 3=6a 1+13 又2(a 2+5)=a 1+a 3 解得a 1=1 (2)由2S n =a n+1﹣2n+1+1,得a n+2=3a n+1+2n+1,又a1=1,a2=5也满足a2=3a1+21,成立所以a n+1=3a n+2n对n∈N*成立∴a n+1+2n+1=3(a n+2n),又a1=1,a1+21=3,∴a n+2n=3n,∴a n=3n﹣2n;(法一)(3)(法一)∵a n=3n﹣2n=(3﹣2)(3n﹣1+3n﹣2×2+3n﹣3×22+…+2n﹣1)≥3n﹣1∴≤,∴+++…+≤1+++…+=<;(法二)∵a n+1=3n+1﹣2n+1>2×3n﹣2n+1=2a n,∴<•,当n≥2时,<•,<•,,…<•,累乘得:<•,∴+++…+≤1++×+…+×<<.点评:本题考查数列与不等式的综合,考查数列递推式,着重考查等比数列的求和,着重考查放缩法的应用,综合性强,运算量大,属于难题.查放缩法的应用,综合性强,运算量大,属于难题.20.(14分)(2012•广东)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.的方程;(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.积;若不存在,请说明理由.圆与圆锥曲线的综合;直线与圆相交的性质;椭圆的标准方程.考点:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.专圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.题:分析:(1)由得a 2=3b 2,椭圆方程为x 2+3y 2=3b 2,求出椭圆上的点到点Q 的距离,利用配方法,确定函数的最大值,即可求得椭圆方程;用配方法,确定函数的最大值,即可求得椭圆方程;(2)假设M (m ,n )存在,则有m 2+n 2>1,求出|AB|,点O 到直线l 距离,表示出面积,利用基本不等式,即可确定三角形面积的最大值,从而可求点M 的坐标.的坐标.解答:解:(1)由得a 2=3b 2,椭圆方程为x 2+3y 2=3b 2椭圆上的点到点Q 的距离=①当﹣b ≤﹣1时,即b ≥1,得b=1 ②当﹣b >﹣1时,即b <1,得b=1(舍)(舍)∴b=1 ∴椭圆方程为(2)假设M (m ,n )存在,则有m 2+n 2>1 ∵|AB|=,点O 到直线l 距离∴=∵m 2+n 2>1 ∴0<<1,∴当且仅当,即m 2+n 2=2>1时,S △AOB 取最大值,又∵解得:所以点M 的坐标为或或或,△AOB 的面积为.点评: 本题考查椭圆的标准方程,考查三角形面积的求解,考查基本不等式的运用,正确表示三角形的面积是关键.三角形的面积是关键.考点: 利用导数研究函数的极值;交集及其运算;一元二次不等式的解法. 专题: 导数的综合应用.数的综合应用.分析: (1)根据方程2x 2﹣3(1+a )x+6a=0的判别式讨论a 的范围,求出相应D 即可;即可;(2)由f ʹ(x )=6x 2﹣6(1+a )x+6a=0得x=1,a ,然后根据(1)中讨论的a 的取值范围分别求出函数极值即可.范围分别求出函数极值即可. 解答: 解:(1)记h (x )=2x 2﹣3(1+a )x+6a (a <1)△=9(1+a )2﹣48a=(3a ﹣1)(3a ﹣9),当△<0,即,D=(0,+∞),当,当a ≤0,.(2)由f ʹ(x )=6x 2﹣6(1+a )x+6a=0得x=1,a , ①当,f (x )在D 内有一个极大值点a ,有一个极小值点;,有一个极小值点; ②当,∵h (1)=2﹣3(1+a )+6a=3a ﹣1≤0,h (a )=2a 2﹣3(1+a )a+6a=3a ﹣a 2>0, ∴1∉D ,a ∈D ,∴f (x )在D 内有一个极大值点a . ③当a ≤0,则a ∉D ,又∵h (1)=2﹣3(1+a )+6a=3a ﹣1<0. ∴f (x )在D 内有无极值点.内有无极值点. 点评: 本题主要考查了一元二次不等式的解法9,以及利用导数研究函数的极值,同时考查了计算能力和分类讨论的数学思想,属于中档题.了计算能力和分类讨论的数学思想,属于中档题.。
2012年高考理科数学广东卷-答案
所以椭圆 的方程为: ,设椭圆 上的一动点 , ,
则 .
①若 ,当 时, ,解得 ;
②若 , ;
综合①②, ,所以椭圆 的方程为 ;
(Ⅱ)假设在椭圆 上,存在点 满足题意,则 ,在 中, , ,所以当 时, 有最大值 ,此时,点 到直线 的距离 ,即 , , ,
所以在椭圆 上存在点 ,使得直线 与圆 相交于不同的两点 、 ,且 的面积最大,最大值为 .
体积 .
【提示】由题设知,组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱,分别根据两几何体的体积公式计算出它们的体积再相加即可得到正确选项.
【考点】由三视图求几何体的体积
7.【答案】D
【解析】设个位数与十位数分别为 , 则 , , , , , , , , , 所以 , 分别为一奇一偶;
【考点】排列与组合及其应用
8.【答案】C
【解析】设 , , , .
因为 ,所以 ,所以 或 或 或 ,
因为 ,所以 ,即 ,则 , ,
因为 ,所以 ,所以只能取 , ,
则 .
【提示】定义两向量间的新运算,根据数量积运算与新运算间的关系进行化简,再运用集合的知识求解即可.
【考点】集合的含义,平面向量的数量积的运算
所以为 的数学期望为 .
【提示】(Ⅰ)根据所以概率的和为1,即所求矩形的面积和为1,建立等式关系,可求出所求;
(Ⅱ)不低于8(0分)的学生有12人,9(0分)以上的学生有3人,则随机变量 的可能取值有0,1,2,然后根据古典概型的概率公式求出相应的概率,从而可求出数学期望.
【考点】分布列与期望
18.【答案】(Ⅰ)因为 平面 , 平面 ,
【考点】函数单调性的判断
2012年高考数学理(广东卷)及答案!!!!
2012年普通高等学校招生全国统一考试(广东卷)A数学(理科)本试卷共4页,21题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:主体的体积公式V=Sh ,其中S 为柱体的底面积,h 为柱体的高。
锥体的体积公式为13V sh =,其中S 为锥体的底面积,h 为锥体的高。
一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的1.设i 为虚数单位,则复数56ii-= A . 65i + B .65i - C .65i -+ D .65i -- 2.设集合U={1,2,3,4,5,6}, M={1,2,4 } 则U C M =A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3.若向量BA=(2,3),CA =(4,7),则BC =A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10) 4.下列函数中,在区间(0,+∞)上为增函数的是A .ln(2)y x =+B .y =C .y=12x⎛⎫⎪⎝⎭D .1y x x =+5.已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z=3x+y 的最大值为A .12B .11C .3D .1- 6.某几何体的三视图如图1所示,它的体积为 A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为0的概率是 A.49 B. 13 C. 29 D. 198.对任意两个非零的平面向量α和β,定义αβαβββ⋅=⋅.若平面向量,a b 满足0a b ≥> ,a 与b 的夹角(0,)4πθ∈,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =A .12 B.1 C. 32 D. 52二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分。
2012广东高考数学试题及答案
2012广东高考数学试题及答案2012年广东省高考数学试题一、选择题(每题3分,共36分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 22. 已知函数f(x) = 2x + 3,求f(-1)的值。
A. -1B. 1C. 3D. 53. 不等式3x - 5 > 2x + 1的解集是:A. x > 3B. x > 6C. x < 3D. x < 64. 已知三角形ABC中,∠BAC = 90°,AB = 3cm,AC = 4cm,求BC的长。
A. 5cmB. 6cmC. 7cmD. 8cm5. 圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心到直线x + y - 6 = 0的距离。
A. 3B. 4C. 5D. 66. 已知数列1, 3, 5, 7, ...,其第15项的值为:A. 29B. 30C. 31D. 327. 函数y = |x - 1| + |x + 2|的最小值是:A. 0B. 1C. 3D. 48. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 2, 3, 4, 5}9. 根据题目信息,下列哪个选项是错误的?A. 正确B. 错误C. 无法判断D. 正确10. 已知复数z = 2 + 3i,求其共轭复数。
A. 2 - 3iB. 3 + 2iC. 3 - 2iD. -2 + 3i11. 一个袋子里有3个红球和2个蓝球,随机抽取2个球,抽到一个红球和一个蓝球的概率是:A. 1/2B. 3/5C. 2/5D. 3/1012. 已知向量a = (1, 2),b = (3, 4),求a·b。
A. 5B. 6C. 8D. 10二、填空题(每题4分,共24分)13. 已知等差数列的前三项和为24,第二项为8,求首项a1。
2012年高考数学理(广东)
2012年普通高等学校招生全国统一考试(广东卷)A数学(理科)本试卷共4页,21题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:主体的体积公式V=Sh ,其中S 为柱体的底面积,h 为柱体的高。
锥体的体积公式为,其中S 为锥体的底面积,h 为锥体的高。
一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的1 设i 为虚数单位,则复数56i i-=A 6+5iB 6-5iC -6+5iD -6-5i2 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM= A .U B {1,3,5} C {3,5,6} D {2,4,6}3 若向量BA=(2,3),C A =(4,7),则BC =A (-2,-4)B (3,4)C (6,10D (-6,-10)4.下列函数中,在区间(0,+∞)上为增函数的是A.y=ln (x+2)B.y=-C.y=(12)xD.y=x+1x5.已知变量x ,y 满足约束条件,则z=3x+y 的最大值为A.12B.11C.3D.-16,某几何体的三视图如图1所示,它的体积为A.12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数万恶哦0的概率是A. 49B.13C.29D.198.对任意两个非零的平面向量α和β,定义。
2012年高考真题——理科数学(广东卷)
2012年高考真题——理科数学(广东卷)设i为虚数单位,则复数=A.6+5i B.6-5i C.-6+5i D.-6-5i【答案解析】D=.故选D.设集合U={1,2,3,4,5,6},M={1,2,4 },则CuM=A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}【答案解析】C,故选C.若向量=(2,3),=(4,7),则=A.(-2,-4)B.(3,4) C.(6,10) D.(-6,-10)【答案解析】A.故选A.下列函数中,在区间(0,+∞)上为增函数的是A.y=ln(x+2)B.y=-C.y=()xD.y=x+【答案解析】A函数y=ln(x+2)在区间(0,+∞)上为增函数;函数y=-在区间(0,+∞)上为减函数;函数y=()x在区间(0,+∞)上为减函数;函数y=x+在区间(0,+∞)上为先减后增函数.故选A.已知变量x,y满足约束条件,则z=3x+y的最大值为A.12B.11C.3D.-1【答案解析】B画约束区域如图所示,令得,化目标函数为斜截式方程得,当时,,故选B。
某几何体的三视图如图所示,它的体积为A.12πB.45πC.57π D.81π【答案解析】C该几何体的上部是一个圆锥,下部是一个圆柱,根据三视图中的数量关系,可得.故选C.从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是A. B.C. D.【答案解析】D法一:对于符合条件“个位数与十位数之和为奇数的两位数”分成两种类型:一是十位数是奇数,个位数是偶数,共有个,其中个位数为0的有10,30,50,70,90共5个;二是十位数是偶数,个位数是奇数,共有,所以.故选D.法二:设个位数与十位数分别为,则,1,2,3,4,5,6,7,8,9,所以分别为一奇一偶,第一类为奇数,为偶数共有个数;第二类为偶数,为奇数共有个数。
两类共有45个数,其中个位是0,十位数是奇数的两位有10,30,50,70,90这5个数,所以其中个位数是0的概率是,选D。
2012年广东省高考理科数学试题及参考答案+试题分析(高清word版)
2012年普通高等学校招生全国统一考试(广东卷)数学(理科A 卷)本试卷共4页,21小题,满分150分.考试用时120分钟.试卷分析 陈功文一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,则复数56ii-= A .65i +B .65i -C .65i -+D .65i --解:分子分母同乘以-i ,得D 选项为正确答案。
2.设集合U {1,23,4,5,6}=,,M {1,2,4}=则M U =ðA .UB .{1,3,5}C .{3,5,6}D .{2,4,6}解:选C3.若向量(2,3)BA = ,(4,7)CA = ,则BC =A .(2,4)--B .(3,4)C .(6,10)D .(6,10)--解:BC =BA+AC=(2,3)+(-4,-7)=(-2,-4),选A 4.下列函数中,在区间(0,)+∞上为增函数的是A . ln(2)y x =+B 1y x =-+C . 1()2xy =D . 1y x x=+解:B 、C 为减函数,D 为双钩函数,双钩函数在(0,)+∞上先减后增,选A 分析:前4题难度都不大,掌握概念和基本方法就可以拿到分。
5.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .-1解:可行域如图:所3z x y =+的最大值为3*3+2=11,选B6.某几何体的三视图如图1所示,它的体积为 A .12π B .45π C .57π D .81π解:根据三视图可知,该几何体上部分为圆锥,下部分为圆柱,选C7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是 A .49 B .13 C .29 D .19解:个位数为0且“个位+十位=奇数”的两位数是10 30 50 70 90 共5个 若十位数为奇数,则个位数为偶数,共有C (5,1)*C (5,1)=25 若十位数为偶数,则个位数为奇数,共有C (4,1)*C (5,1)=20 5/(25+20)=1/9选D分析:5-7题难度中等,考察的方法较简单,计算量比前4题大些。
2012年高考理科数学广东卷有答案
数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设i 为虚数单位,则复数56ii-= ( )A .65i +B .65i -C .65i -+D .65i -- 2. 设集合{1,2,3,4,5,6}U =,{1,2,4}M =,则U M =ð( )A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3. 若向量(2,3)BA =,(4,7)CA =,则BC = ( ) A .(2,4)-- B .(2,4) C .(6,10)D .(6,10)--4. 下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =C .1()2x y =D .1y x x=+5. 已知变量x ,y 满足约束条件211 y x y x y ⎧⎪+⎨⎪-⎩≤≥≤,则3z x y =+的最大值为( )A .12B .11C .3D .1- 6. 某几何体的三视图如图1所示,它的体积为( )A .12πB .45πC .57πD .81π7. 从个位数与十位数之和为奇数的两位数中任取一个,其个 位数为0的概率是( )A .49 B .13C .29D .198. 对任意两个非零的平面向量α和β,定义=αβαβββ.若平面向量a ,b 满足||||0a b ≥>,a 与b 的夹角π(0,)4θ∈,且a b 和b a 都在集合{|}2nn ∈Z 中,则=a b ( )A .12B .1C .32D .52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式|2||1|x x +-≤的解集为_______.10.261()x x+的展开式中3x 的系数为_______.(用数字作答)11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =_______.12.曲线33y x x =-+在点(1,3)处的切线方程为________.13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为________.(二)选做题(14—15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x ty =⎧⎪⎨=⎪⎩t为参数)和x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 与2C 的交点坐标为________.15.(几何证明选讲选做题)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足30ABC ∠=,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA =_______.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数π()2cos()6f x xω=+(其中0ω>,x∈R)的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设π[0,]2αβ,∈,56(5π)35fα+=-,516(5π)617fβ-=,求cos()αβ+的值.17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求图中x的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P ABCD-中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若1PA=,2AD=,求二面角B PC A--的正切值.19.(本小题满分14分)设数列{}na的前n项和为nS,满足11221nn nS a++=-+,*n∈N,且1a,25a+,3a成等差数列.(Ⅰ)求1a的值;(Ⅱ)求数列{}n a的通项公式;(Ⅲ)证明:对一切正整数n,有1211132na a a+++<.20.(本小题满分14分)在平面直角坐标系xOy中,已知椭圆C:22221x ya b+=(a b>>)的离心率e=且椭圆C上的点到点(0,2)Q的距离的最大值为3.(Ⅰ)求椭圆C的方程;(Ⅱ)在椭圆C上,是否存在点(,)M m n,使得直线l:1mx ny+=与圆O:221x y+=相交于不同的两点A、B,且OAB△的面积最大?若存在,求出点M的坐标及对应的OAB△的面积;若不存在,请说明理由.21.(本小题满分14分)设1a<,集合{|0}A x x=∈>R,2{|23(1)60}B x x a x a=∈-++>R,D A B=.(Ⅰ)求集合D(用区间表示);(Ⅱ)求函数32()23(1)6f x x a x ax=-++在D内的极值点.数学试卷第4页(共18页)数学试卷第5页(共18页)数学试卷第6页(共18页)数学试卷 第7页(共18页)数学试卷 第8页(共18页)数学试卷 第9页(共18页)2012年普通高等学校招生全国统一考试(广东卷)数学(理科)答案解析【答案】A【解析】()2,4BC BA AC BA CA =+=-=--.【提示】由向量(2,3)BA =,向量(4,7)CA =,知(2,AB =-,(4,7)AC =--BC AC AB =-能求出结果.4.【答案】A借助于图像可知:当3x =,2y =时,max 11z =.||cos ||a b θ,||cos ||y b a θ,x ,,所以4cos Z ,所以cos θ2223||||a b ,3||||b a ∈Z , ||||0a b ≥>,所以||1||a b ≥,所以只能取||3||a b =,||1||3a b =, 则||cos 33322||a ab b θ==⨯=.【提示】定义两向量间的新运算,根据数量积运算与新运算间的关系进行化简,再运用集数学试卷 第10页(共18页)数学试卷 第11页(共18页)数学试卷 第12页(共18页)60,所以60,因为直是直角三角形,最后利用三角函数tan603=【考点】同弧所对的圆周角与圆心角的关系,切线的有关性质 (Ⅰ)10T =π=65f ⎛-= ⎝3sin 5α∴=1617f ⎛= ⎝cos β∴=110(0.054x f =-0.018x ∴=(Ⅱ)成绩不低于PA PC P =,PAC ; ACBD O =,连结数学试卷 第13页(共18页)数学试卷 第14页(共18页) 数学试卷 第15页(共18页)所以(0,0,1)P ,(0,2,0),所以(2,DB =-的一个法向量,(0,2,0)BC =,(2,0,1)BP =-设平面PBC 的法向量为(,,)n x y z =22n BC y n BP x z ⎧==⎪⎨=-+⎪⎩2,取(1,0,2)n =,PC A -的平面角为θ,21||||8510DB n DB n ==所以二面角BPC A --的正切值为3.(Ⅰ)2n n S a +=127a a ⎧⎪-⇒⎨⎪133n -,所以1221122222n n n n n n n C C --++⋯++- 122-1-1222222n n n n n n C C C +++>1)-522(21)=>⨯⨯-,数学试卷 第16页(共18页)数学试卷 第17页(共18页)数学试卷 第18页(共18页)1||||sin 2OA OB AOB ∠点O 到直线AB 的距离d 1)x a+2)(,)x +∞,,2(,A x B +∞=13a <≤时,2)(,)x +∞,30a =>,所以2212339309339309(0,)(,)0,,44a a AB a a a a x x ⎛⎫⎛+--+++-++∞=+∞ ⎪⎪ ⎝⎝⎭=()0g x >AB =(0,+∞综上所述,当0a ≤时,33a ⎫⎛++⎪ ⎪ ⎭⎝2)(,)x +∞,()f x 随x 的变化情况如下表:a。
2012高考数学理一轮复习(人教A版)精品课件8-6
[课堂记录] 设 N 为 PF1 的中点,则 NO∥PF2,故 PF2⊥x 轴,故|PF2|=ba2= 23,而|PF1|+|PF2|=2a=4 3,∴|PF1|=7 2 3, t=7.故选 D.
答案:D
即时训练 已知 F1、F2 是椭圆 C:ax22+by22=1(a>b>0)的两个 焦点,P 为椭圆 C 上的一点,且P→F1⊥P→F2,若△PF1F2 的面积为 9, 则 b=________.
即 m2-n2=4,又 e= mm2-n2=m2 =12,∴m=4,n2=12.
从而椭圆的方程为1x62 +1y22 =1.
答案:(1)C (2)1x62 +1y22 =1
热点之四 直线与椭圆的位置关系 1.直线与椭圆位置关系的判定 把椭圆方程ax22+by22=1(a>b>0)与直线方程 y=kx+b1 联立消去 y,整理成形如 Ax2+Bx+C=0 的形式,对比一元二次方程有: (1)Δ>0,直线与椭圆相交,有两个公共点. (2)Δ=0,直线与椭圆相切,有一个公共点. (3)Δ<0,直线与椭圆相离,无公共点.
简图
范围
|x|≤a,|y|≤b
顶点坐标 (±a,0),(0,±b)
|y|≤a,|x|≤b (0,±a),(±b,0)
标准方程 ax22+by22=1(a>b>0) ay22+bx22=1(a>b>0)
对称轴
x 轴、y 轴
x 轴、y 轴
对称中心 坐标原点 O
坐标原点 O
答案:3
热点之二 椭圆的标准方程 椭圆标准方程的求法
1.定义法:确定 c 及 a 值,确定焦点所在坐标轴,直接写出 方程.
2.待定系数法:若已知焦点的位置可唯一确定标准方程;若 焦点位置不确定,可采用分类讨论法来确定方程的形式,也可以 直接设椭圆的方程为 Ax2+By2=1,其中 A,B 为不相等的正常数 或由已知条件设椭圆系(如ax22+by22=λ,λ>0)来求解,以避免讨论和 繁琐的计算.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 证明:方法1:猜想:an n.
2 由2 S n an n,① 2 可知,当n 2时, 2 S n 1 an 1 n 1.② 2 2 2 2 ① ②,得2an an an 1 ,即 a 2 a a 1 n n n 1 1.
解析:在第二步的推理中,没有使用归纳假设,而 是通过不等式的放缩法直接证明,不符合数学归纳 法的证明要求.故选D.
2.凸n边形有f n 条对角线,则凸n 1边形的对角线 数f n 1 为 C A.f n n 1 C.f n n 1 B.f n n D.f n n 2
bn 1 b1 1 b2 1 的n N ,不等式 n 1成立. b1 b2 bn
*
解析: 1因为对任意的n N * ,点(n,Sn )均在函数y b x r (b 0且b 1,b,r均为常数)的图象上,所以S n b n r. 当n 1时,a1 S1 b r; b 1 b n 1. 因为b 0,且b 1,所以,当n 2时,数列an 是以b为 公比的等比数列.又a1 b r,a2 b b 1, a2 b(b 1) 所以 b,即 b,得r 1. a1 br 当n 2时,an S n S n 1 b n r b n 1 r b n b n 1
2 1 . k 1 1 2 所以,当n k 1时,不等式成立.
由 1 2 知,不等式对所有正整数都成立.
反思小结: 1 数学归纳法证明命题,思路严谨,必须严 格按步骤进行; 2 归纳递推是证明的难点,应看准“目 标”进行变形; 3由k推到k 1时,有时可以“套”用其 他证明方法,如比较法、分析法等,表现出数学归纳法 “灵活”的一面.
例1:用数学归纳法证明 n 1 n 2 n n 2n 1 3 2n 1 (n N* ),从 " n k " 到" n k 1" 左端需乘的代 数式是( ) A. 2k 1 B. 2 2k 1 2k 1 C. k 1 2k 3 D. k 1 Nhomakorabea
k 1 即ak tan[ x],则 4 (k 1) 1 tan[ x ] 1 ak k 4 ak 1 tan( x). 1 ak 1 tan[ (k 1) x] 4 4 所以,当n k 1时,猜想也成立. 综合ⅰ ( )(ⅱ)知,对n N*,猜想都成立.
方法3:可先证 a b 2(a b). 因为( a b ) 2 a b 2 ab, [ 2(a b)]2 2a 2b,a b 2 ab, 所以2a 2b a b 2 ab, 所以 2(a b) a b,当且仅当a b时取等号. 令a nx 1,b ny 1, 即得 nx 1 ny 1 2(nx 1 ny 1) 2(n 2), 1 当且仅当nx 1 ny 1,且x y 1,即x y 时取等号. 2
拓展练习3: (2009 山东卷)等比数列an 的前n项和为S n . 已知对任意的n N*,点(n,S n )均在函数y b x r (b 0 且b 1,b,r均为常数)的图象上.
1 求r的值; 2 当b 2时,记bn 2 log 2 an 1 (n N* ).证明:对任意
D. 1 x x 2 x3
解析:当n 1时,左边式子是二次式, 为1 x x 2,故选C.
4.用数学归纳法证明命题 "当n N*时, 1 2 22 23 25n 1 是31的倍数 "时,当n 1时,原式为 1 2 22 23 24 ,证命题从 n k到n k 1成立时,需要增添的项是 25k 25k 1 25k 2 25k 3 25k .4
3 方法1:要证
nx 1 ny 1 2(n 2),
只要证nx 1 2 (nx 1)( ny 1) ny 1 2 n 2 , 即证n x y 2 2 n 2 xy n( x y ) 1 2 n 2 . 将x y 1代入,得2 n 2 xy n 1 n 2, 即要证4 n 2 xy n 1 n 2 ,即证4 xy 1.
2k 1 2k 2 解析:左端需乘的代数式是 2 2k 1. k 1 答案:B
反思小结:用数学归纳法证明时,要注意观察下列几个 方面: 1 n的范围以及递推的起点; 2 观察首末两项的次 数(或其他),确定n k时命题的形式f k ; 3 从f k 1 和f k 的差异,寻找由k到k 1递推中,左边要加(乘)上 的式子.
1)当n 2时,a 2a2 12 1.因为a2 0,所以a2 2; 2)假设当n k (k 2)时,ak k .
那么当n k 1时,ak21 2ak 1 ak2 1 因为ak 1 0,k 2,所以ak 1 k 1 0,所以ak 1 k 1. 这就是说,当n k 1时,猜想也成立. 所以an n(n 2).显然,n 1时,也适合. 故对于n N *,均有an n. 方法2:猜想:an n. 1)当n 1时,a1 1成立; 2)假设当n k时,ak k .那么当n k 1时, 2 S k 1 ak21 k 1, 所以2 ak 1 S k ak21 k 1,所以ak21 2ak 1 2S k k 1 2ak 1 k 2 k k 1 2ak 1 k 2 1.(以下同方法1) 2ak 1 k 2 1 ak 1 k 1 ak 1 k 1 0.
解析: 不等式左边共有 2n 1 项,当n k 1时,共有 2 k 1 1 2k 1项,增加了两项,即 k 1 k 2 .
2
数学归纳法在数列问题中的应用
例2: 设数列an 的前n项和为Sn,并且满足2Sn a n,
1 求a1,a2,a3; 2 猜想an 的通项公式,并加以证明; 3 设x 0,y 0,且x y 1,
则 1 2 2 3 k (k 1) ( k 1)( k 2) 1 2 k 1 (k 1)(k 2). 2 1 (k 2) 2 2 因为 k 1 (k 1)(k 2) 2 2 (k 1) ( k 2) (k 1)(k 2) 0,所以 2 1 2 2 3 k ( k 1) ( k 1)( k 2)
数学归纳法在不等式中的应用
例3:用数学归纳法证明不等式:1 2 2 3 1 2 n n 1 n 1 (n N* ). 2
证明: 1当n 1时,左边 2,右边 2,不等式成立.
2 假设当n k时不等式成立,
即 1 2 2 3 k k 1 1 2 k 1 , 2
1.对于不等式 n 2 n n 1(n N * ),某学生证明过程如下: ①当n 1时,12 1 1 1,不等式成立; ②假设n k (k N * )时,不等式成立,即 k 2 k k 1, 那么当n k 1时,(k 1) 2 k 1 k 2 3k 2 (k 2 3k 2) (k 2) (k 2) 2 k 1 1, 所以当n k 1时,不等式成立. 对上述证明方法你认为 D A.过程全部正确 C.归纳假设不正确 B.第一步证明不正确 D.第二步的推理不正确
解析:在n个顶点的基础上增加一个顶点,则增加
n 1 条对角线.
n2 1 x 3.用数学归纳法证明"1 x x 2 x n 1 ( x 1, 1 x n N* )",验证n 1成立时,左边的项是 C
A. 1
B. 1 x
C. 1 x x2
拓展练习1:用数学归纳法证明: 12 22 n 2
2 n 2 n 1 2 2 2 1 ,第二步证明由" k到k 1"时, 3 左边应加
A.k 2 C.k k 1 k
2 2 2
B. k 1
2 2
2 D. k 1 k
1 an 拓展练习2:在数列an 中,a1 tan x,an 1 . 1 an
1 写出a1,a2,a3; 2 求数列an 的通项公式.
解析: 1 a1 tanx,a2 tan( x),a3 tan( x). 4 2 n 1 2 猜想 a tan[ x]. n 4 下面用数学归纳法证明: ⅰ当 ( ) n 1时,由上面的探求可知猜想成立. (ⅱ)假设n k时猜想成立,
证明:an x 1 an y 1 2 n 2.
an 0(n N* ).
2a1 a12 1 解析: 1 分别令n 1, 2,3,得 2(a1 a2 ) a22 2 . 2 2( a a a ) a 3 3 1 2 3 因为an 0,所以a1 1,a2 2,a3 3.
2
x y 1 因为x 0,y 0,且x y 1,所以 xy , 2 2 1 即xy ,故4 xy 1成立.所以原不等式成立 4
方法2:因为x 0,y 0,且x y 1, n nx 1 1 n 2 ,① 所以 nx 1 1 2 2 n ny 1 1 1 n 2 ,② 当且仅当x 时取“ ”号.所以 ny 1 1 2 2 2 1 当且仅当x 时取“ ”号. 2 n n x y 4 n ① ②得( nx 1 ny 1) 1 n 2, 2 2 1 当且仅当x y 时取“ ”号.所以 nx 1 ny 1 2 n 2 . 2