初三数学圆的专项培优练习题含答案
初三数学圆的综合的专项培优练习题(含答案)及答案解析
初三数学圆的综合的专项培优练习题(含答案)及答案解析
一、圆的综合
1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:
(1)求证:CD 是⊙O 的切线;
(2)若BC=4,CD=6,求平行四边形OABC 的面积.
【答案】(1)证明见解析(2)24
【解析】
试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;
(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解.
试题解析:(1)证明:连接OD ,
∵OD=OA ,
∴∠ODA=∠A ,
∵四边形OABC 是平行四边形,
∴OC ∥AB ,
∴∠EOC=∠A ,∠COD=∠ODA ,
∴∠EOC=∠DOC ,
在△EOC 和△DOC 中,
OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩
∴△EOC ≌△DOC (SAS ),
∴∠ODC=∠OEC=90°,
即OD ⊥DC ,
∴CD 是⊙O 的切线;
(2)由(1)知CD 是圆O 的切线,
∴△CDO 为直角三角形,
∵S △CDO =
12
CD•OD , 又∵OA=BC=OD=4,
∴S△CDO=1
2
×6×4=12,
∴平行四边形OABC的面积S=2S△CDO=24.
2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).
中考数学圆的综合(大题培优)及详细答案
一、圆的综合 真题与模拟题分类汇编(难题易错题)
1.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .
(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD = 12
,求AB 和FC 的长.
【答案】(1)见解析;(2) ⑵AB=20 , 403
CF =
【解析】 分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;
(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.
详解:⑴证明:连结OC
∵AB 是⊙O 的直径
∴∠ACB=90°
∴∠B+∠BAC=90°
∵OA=OC
∴∠BAC=∠OCA
∵∠B=∠FCA
∴∠FCA+∠OCA=90°
即∠OCF=90°
∵C 在⊙O 上
∴CF 是⊙O 的切线
⑵∵AE=4,tan ∠ACD
12
AE EC = ∴CE=8
∵直径AB ⊥弦CD 于点E
∴AD AC =
∵∠FCA =∠B
∴∠B=∠ACD=∠FCA
∴∠EOC=∠ECA
∴tan ∠B=tan ∠ACD=
1=2
CE BE ∴BE=16
∴AB=20
∴OE=AB÷2-AE=6
∵CE ⊥AB
∴∠CEO=∠FCE=90°
∴△OCE ∽△CFE ∴
OC OE CF CE
= 即106=8CF ∴40CF 3
= 点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.
初三数学圆的综合的专项培优练习题(含答案)及答案
初三数学圆的综合的专项培优练习题(含答案)及答案
一、圆的综合
1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.
【答案】(1)证明见解析;(2)25°. 【解析】
试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.
(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数. 试题解析:(1)∵∠AOC=∠BOD ∴∠AOC -∠COD=∠BOD-∠COD 即∠AOD=∠BOC ∵四边形ABCD 是矩形 ∴∠A=∠B=90°,AD=BC ∴AOD BOC ∆≅∆ ∴AO=OB (2)解:∵AB 是O 的直径,PA 与O 相切于点A ,
∴PA ⊥AB , ∴∠A=90°. 又∵∠OPA=40°, ∴∠AOP=50°, ∵OB=OC , ∴∠B=∠OCB. 又∵∠AOP=∠B+∠OCB , ∴1
252
B OCB AOP ∠=∠=
∠=︒.
2.如图,AB 为⊙O 的直径,点D 为AB 下方⊙O 上一点,点C 为弧ABD 的中点,连接CD ,CA .
(1)求证:∠ABD =2∠BDC ;
(2)过点C 作CH ⊥AB 于H ,交AD 于E ,求证:EA =EC ;
中考数学圆的综合(大题培优)及答案
一、圆的综合 真题与模拟题分类汇编(难题易错题)
1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:
(1)求证:CD 是⊙O 的切线;
(2)若BC=4,CD=6,求平行四边形OABC 的面积.
【答案】(1)证明见解析(2)24
【解析】
试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;
(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解.
试题解析:(1)证明:连接OD ,
∵OD=OA ,
∴∠ODA=∠A ,
∵四边形OABC 是平行四边形,
∴OC ∥AB ,
∴∠EOC=∠A ,∠COD=∠ODA ,
∴∠EOC=∠DOC ,
在△EOC 和△DOC 中,
OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩
∴△EOC ≌△DOC (SAS ),
∴∠ODC=∠OEC=90°,
即OD ⊥DC ,
∴CD 是⊙O 的切线;
(2)由(1)知CD 是圆O 的切线,
∴△CDO 为直角三角形,
∵S △CDO =
12
CD•OD , 又∵OA=BC=OD=4,
∴S△CDO=1
2
×6×4=12,
∴平行四边形OABC的面积S=2S△CDO=24.
2.如图,△ABC中,∠A=45°,D是AC边上一点,⊙O经过D、A、B三点,OD∥BC.(1)求证:BC与⊙O相切;
中考数学圆的综合(大题培优 易错 难题)及详细答案
中考数学圆的综合(大题培优易错难题)及详细答案
一、圆的综合
1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.
(1)求证:直线DM是⊙O的切线;
(2)若DF=2,且AF=4,求BD和DE的长.
【答案】(1)证明见解析(2)23
【解析】
【分析】
(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;
(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.
【详解】
(1)如图所示,连接OD.
∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD
=,∴OD⊥BC.
又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.
又∵OD为⊙O半径,∴直线DM是⊙O的切线.
(2)连接BE.∵E为内心,∴∠ABE=∠CBE.
∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即
∠BED=∠DBE,∴BD=DE.
又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DB
DB DA
=,即DB2=DF•DA.
∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】
本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
初三数学 圆的综合的专项 培优 易错 难题练习题及详细答案
初三数学圆的综合的专项培优易错难题练习题及详细答案
一、圆的综合
1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.
(1)OC的长为;
(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;
(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
【答案】(1)4;(2)3
5
;(3)点E的坐标为(1,2)、(
5
3
,
10
3
)、(4,2).
【解析】
分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.
(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则
MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,
初三数学圆的综合的专项培优练习题附答案
初三数学圆的综合的专项培优练习题附答案
一、圆的综合
1.如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.
(1)求∠AOC的度数;
(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;
(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.
【答案】(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3).
【解析】
【分析】
(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.
(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.
【详解】
(1)∵OA=OC,∠OAC=60°,
∴△OAC是等边三角形,
故∠AOC=60°.
(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;
∴AC=1
OP,因此△OCP是直角三角形,且∠OCP=90°,
2
而OC是⊙O的半径,
故PC与⊙O的位置关系是相切.
(3)如图;有三种情况:
①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣
初三数学 圆的综合的专项 培优 易错 难题练习题含答案解析
初三数学圆的综合的专项培优易错难题练习题含答案解析
一、圆的综合
1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.
(1)如图1,求证:∠DAC=∠PAC;
(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,»»
BF FA
=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;
(3)在(2)的条件下,如图3,若AE=2
3
DG,PO=5,求EF的长.
【答案】(1)证明见解析;(2)证明见解析;(3)EF=32.
【解析】
【分析】
(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;
(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;
(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出
EH∥DG,求出OM=1
2
AE,设OM=a,则HM=a,AE=2a,AE=
2
3
DG,DG=3a,
求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=
1
2
MO
BM
=,tanP=
1
2
CO
PO
=,设
OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】
(1)证明:连接OC,
∵PC为⊙O的切线,
∴OC⊥PC,
∵AD⊥PC,
∴OC∥AD,
∴∠OCA=∠DAC,
∵OC=OA,
∴∠PAC=∠OCA,
∴∠DAC=∠PAC;
(2)证明:连接BE交GF于H,连接OH,
∵FG∥AD,
初三数学 圆的综合的专项 培优 易错 难题练习题附详细答案
初三数学圆的综合的专项培优易错难题练习题附详细答案
一、圆的综合
1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.
(1)OC的长为;
(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;
(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
【答案】(1)4;(2)3
5
;(3)点E的坐标为(1,2)、(
5
3
,
10
3
)、(4,2).
【解析】
分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.
(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则
MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,
中考数学圆的综合(大题培优 易错 难题)附答案解析
中考数学圆的综合(大题培优易错难题)附答案解析
一、圆的综合
1.如图,⊙A过OBCD的三顶点O、D、C,边OB与⊙A相切于点O,边BC与⊙O相交于点H,射线OA交边CD于点E,交⊙A于点F,点P在射线OA上,且∠PCD=2∠DOF,以O为原点,OP所在的直线为x轴建立平面直角坐标系,点B的坐标为(0,﹣2).
(1)若∠BOH=30°,求点H的坐标;
(2)求证:直线PC是⊙A的切线;
(3)若OD=10,求⊙A的半径.
【答案】(1)(1,﹣3);(2)详见解析;(3)5 3.
【解析】
【分析】
(1)先判断出OH=OB=2,利用三角函数求出MH,OM,即可得出结论;
(2)先判断出∠PCD=∠DAE,进而判断出∠PCD=∠CAE,即可得出结论;(3)先求出OE═3,进而用勾股定理建立方程,r2-(3-r)2=1,即可得出结论.【详解】
(1)解:如图,过点H作HM⊥y轴,垂足为M.
∵四边形OBCD是平行四边形,
∴∠B=∠ODC
∵四边形OHCD是圆内接四边形
∴∠OHB=∠ODC
∴∠OHB=∠B
∴OH=OB=2
∴在△Rt OMH中,
∵∠BOH=30°,
∴MH=1
OH=1,OM=3MH=3,2
∴点H的坐标为(1,﹣3),
(2)连接AC.
∵OA=AD,
∴∠DOF=∠ADO
∴∠DAE=2∠DOF
∵∠PCD=2∠DOF,
∴∠PCD=∠DAE
∵OB与⊙O相切于点A
∴OB⊥OF
∵OB∥CD
∴CD⊥AF
∴∠DAE=∠CAE
∴∠PCD=∠CAE
∴∠PCA=∠PCD+∠ACE=∠CAE+∠ACE=90°∴直线PC是⊙A的切线;
九年级数学圆的综合的专项培优 易错 难题练习题(含答案)附答案
九年级数学圆的综合的专项培优易错难题练习题(含答案)附答案
一、圆的综合
1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.
(1)求证:直线DM是⊙O的切线;
(2)若DF=2,且AF=4,求BD和DE的长.
【答案】(1)证明见解析(2)23
【解析】
【分析】
(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;
(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.
【详解】
(1)如图所示,连接OD.
∵点E是△ABC的内心,∴∠BAD=∠CAD,∴¶¶
BD CD
=,∴OD⊥BC.
又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.
又∵OD为⊙O半径,∴直线DM是⊙O的切线.
(2)连接BE.∵E为内心,∴∠ABE=∠CBE.
∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即
∠BED=∠DBE,∴BD=DE.
又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DB
DB DA
=,即DB2=DF•DA.
∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.
【点睛】
初三数学圆的综合的专项培优 易错 难题练习题(含答案)及答案
初三数学圆的综合的专项培优易错难题练习题(含答案)及答案
一、圆的综合
1.如图,⊙A过▱OBCD的三顶点O、D、C,边OB与⊙A相切于点O,边BC与⊙O相交于点H,射线OA交边CD于点E,交⊙A于点F,点P在射线OA上,且∠PCD=2∠DOF,以O为原点,OP所在的直线为x轴建立平面直角坐标系,点B的坐标为(0,﹣2).
(1)若∠BOH=30°,求点H的坐标;
(2)求证:直线PC是⊙A的切线;
(3)若OD=10,求⊙A的半径.
【答案】(1)(132)详见解析;(3)5 3 .
【解析】
【分析】
(1)先判断出OH=OB=2,利用三角函数求出MH,OM,即可得出结论;
(2)先判断出∠PCD=∠DAE,进而判断出∠PCD=∠CAE,即可得出结论;(3)先求出OE═3,进而用勾股定理建立方程,r2-(3-r)2=1,即可得出结论.【详解】
(1)解:如图,过点H作HM⊥y轴,垂足为M.
∵四边形OBCD是平行四边形,
∴∠B=∠ODC
∵四边形OHCD是圆内接四边形
∴∠OHB=∠ODC
∴∠OHB=∠B
∴OH=OB=2
∴在Rt△OMH中,
∵∠BOH=30°,
∴MH=1
2
OH=1,33
∴点H的坐标为(13
(2)连接AC.
∵OA=AD,
∴∠DOF=∠ADO
∴∠DAE=2∠DOF
∵∠PCD=2∠DOF,
∴∠PCD=∠DAE
∵OB与⊙O相切于点A
∴OB⊥OF
∵OB∥CD
∴CD⊥AF
∴∠DAE=∠CAE
∴∠PCD=∠CAE
∴∠PCA=∠PCD+∠ACE=∠CAE+∠ACE=90°∴直线PC是⊙A的切线;
(3)解:⊙O的半径为r.
初三数学圆的专项培优练习题(含答案)
初三数学圆的专项培优练习题(含答案)
1.如图1,已知AB是⊙O的直径,AD切⊙O于点A,点C是EB的中点,则下列结论不成
立的是()
A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE
图一图二图三2.如图2,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()
A.4 B.C.6 D.
3.四个命题:
①三角形的一条中线能将三角形分成面积相等的两部分;
②有两边和其中一边的对角对应相等的两个三角形全等;
③点P(1,2)关于原点的对称点坐标为(-1,-2);
④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<7
其中正确的是()
A. ①②
B.①③
C.②③
D.③④
4.如图三,△ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()
A.相交 B.相切 C.相离 D.无法确定
5.如图四,AB为⊙O的直径,C为⊙O外一点,过点C作⊙O的切线,切点为B,连结AC 交⊙O于D,∠C=38°。点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是()
A.19° B.38° C.52° D.76°
图四图五
6.如图五,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE =1:3,则AB= .
7.已知AB是⊙O的直径,AD⊥l于点D.
(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;
初三数学圆的综合的专项培优 易错 难题练习题(含答案)含答案解析
初三数学圆的综合的专项培优 易错 难题练习题(含答案)含答案解析
一、圆的综合
1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:
(1)求证:CD 是⊙O 的切线;
(2)若BC=4,CD=6,求平行四边形OABC 的面积.
【答案】(1)证明见解析(2)24
【解析】
试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;
(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解.
试题解析:(1)证明:连接OD ,
∵OD=OA ,
∴∠ODA=∠A ,
∵四边形OABC 是平行四边形,
∴OC ∥AB ,
∴∠EOC=∠A ,∠COD=∠ODA ,
∴∠EOC=∠DOC ,
在△EOC 和△DOC 中,
OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩
∴△EOC ≌△DOC (SAS ),
∴∠ODC=∠OEC=90°,
即OD ⊥DC ,
∴CD 是⊙O 的切线;
(2)由(1)知CD 是圆O 的切线,
∴△CDO 为直角三角形,
∵S △CDO =
12
CD•OD , 又∵OA=BC=OD=4,
∴S△CDO=1
2
×6×4=12,
∴平行四边形OABC的面积S=2S△CDO=24.
2.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.
九年级数学圆的综合的专项培优 易错 难题练习题(含答案)附详细答案
九年级数学圆的综合的专项培优易错难题练习题(含答案)附详细答案
一、圆的综合
1.图 1 和图 2 中,优弧»AB纸片所在⊙O 的半径为 2,AB=23,点P为优弧»AB上一点(点P 不与A,B 重合),将图形沿BP 折叠,得到点A 的对称点A′.
发现:
(1)点O 到弦AB 的距离是,当BP 经过点O 时,∠ABA′=;
(2)当BA′与⊙O 相切时,如图 2,求折痕的长.
拓展:把上图中的优弧纸片沿直径MN 剪裁,得到半圆形纸片,点P(不与点M, N 重合)为半圆上一点,将圆形沿NP 折叠,分别得到点M,O 的对称点A′, O′,设∠MNP=α.
(1)当α=15°时,过点A′作A′C∥MN,如图 3,判断A′C 与半圆O 的位置关系,并说明理由;
(2)如图 4,当α= °时,NA′与半圆O 相切,当α= °时,点O′落在»NP上.
(3)当线段NO′与半圆O 只有一个公共点N 时,直接写出β的取值范围.
【答案】发现:(1)1,60°;(2)3;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.
【解析】
【分析】
发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.
(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.
拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性
九年级数学圆的综合的专项培优练习题(含答案)附详细答案
九年级数学圆的综合的专项培优练习题(含答案)附详细答案
一、圆的综合
1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.
(1)若∠B=60°,求证:AP是⊙O的切线;
(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.
【答案】(1)证明见解析;(2)8.
【解析】
(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;
(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.
试题解析:连接AD,OA,
∵∠ADC=∠B,∠B=60°,
∴∠ADC=60°,
∵CD是直径,
∴∠DAC=90°,
∴∠ACO=180°-90°-60°=30°,
∵AP=AC,OA=OC,
∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,
∴∠OAP=180°-30°-30°-30°=90°,
即OA⊥AP,
∵OA为半径,
∴AP是⊙O切线.
(2)连接AD,BD,
∵CD 是直径,
∴∠DBC=90°,
∵CD=4,B 为弧CD 中点,
∴BD=BC=,
∴∠BDC=∠BCD=45°,
∴∠DAB=∠DCB=45°,
即∠BDE=∠DAB ,
∵∠DBE=∠DBA ,
∴△DBE ∽△ABD , ∴,
∴BE•AB=BD•BD=
. 考点:1.切线的判定;2.相似三角形的判定与性质.
2.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重合),且四边形BDCE 为菱形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学圆的专项培优练习题(含答案)
»EB
1.如图1,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成
立的是()
A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE
图一图二图三
2.如图2,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆
的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()
A.4 B.C.6 D.
3.四个命题:
①三角形的一条中线能将三角形分成面积相等的两部分;
②有两边和其中一边的对角对应相等的两个三角形全等;
③点P(1,2)关于原点的对称点坐标为(-1,-2);
④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1 其中正确的是() A. ①② B.①③ C.②③ D.③④ 4.如图三,△ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径 的圆与BC的位置关系是() A.相交 B.相切 C.相离 D.无法确定 5.如图四,AB为⊙O的直径,C为⊙O外一点,过点C作⊙O的切线,切点为B,连结AC 交⊙O于D,∠C=38°。点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小 是() A.19° B.38° C.52° D.76° 图四图五 6 6.如图五,AB为⊙O的直径,弦CD⊥AB于点E,若CD=,且AE:BE =1:3,则AB= . 7.已知AB是⊙O的直径,AD⊥l于点D. (1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小; (2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小. 8.如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。 9.如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA 的平行线与AF相交于点F,CD=,BE=2. 求证:(1)四边形FADC 是菱形;(2)FC 是⊙O 的切线. 1.D 2.B 3.B 4A 5B 6.【解析】 试题分析:如图,连接OD ,设AB=4x , ∵AE :BE =1:3,∴AE= x ,BE=3x ,。 ∵AB 为⊙O 的直径,∴OE= x ,OD=2x 。 又∵弦CD ⊥AB 于点E , CD=,∴DE=3。 6 在Rt△ODE 中,,即,解得。 222OD OE DE =+()2 222x x 3=+ x = ∴ AB=4x =7. 解:(1)如图①,连接OC , ∵直线l 与⊙O 相切于点C ,∴OC⊥l。 ∵AD⊥l,∴OC∥AD。 ∴∠OCA=∠DAC。 ∵OA=OC,∴∠BAC=∠OCA。 ∴∠BAC=∠DAC=30°。 (2)如图②,连接BF , ∵AB是⊙O的直径,∴∠AFB=90°。 ∴∠BAF=90°-∠B。 ∴∠AEF=∠ADE+∠DAE=90°+18°=108°。 在⊙O中,四边形ABFE是圆的内接四边形, ∴∠AEF+∠B=180°。∴∠B=180°-108°=72°。 ∴∠BAF=90°-∠B=180°-72°=18°。 【解析】 试题分析:(1)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°。 (2)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得 ∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案。 8.解:(1)CD是⊙O的切线,。理由如下: 连接OC, ∵OC=OB,∴∠B=∠BCO。 又∵DC=DQ,∴∠Q=∠DCQ。 ∵PQ⊥AB,∴∠QPB=90°。 ∴∠B+∠Q=90°。∴∠BCO+∠DCQ =90°。 ∴∠DCO=∠QCB-(∠BCO+∠DCQ)=180°-90°=90°。 ∴OC⊥DC。 ∵OC是⊙O的半径,∴CD是⊙O的切线。 9.证明:(1)连接OC, ∵AF 是⊙O 切线,∴AF⊥AB。 ∵CD⊥AB,∴AF∥CD。 ∵CF∥AD,∴四边形FADC 是平行四边形。 ∵AB 是⊙O 的直径,CD⊥AB, ∴ 。11CE DE CD 22 ===⨯=设OC=x , ∵BE=2,∴OE=x﹣2。 在Rt△OCE 中,OC 2=OE 2+CE 2, ∴,解得:x=4。( )(2 22x x 2=-+∴OA=OC=4,OE=2。∴AE=6。 在Rt△AED 中, ,∴AD=CD。 AD ==∴平行四边形FADC 是菱形。 (2)连接OF , ∵四边形FADC 是菱形,∴FA=FC。 在△AFO 和△CFO 中,∵,∴△AFO≌△CFO(SSS )。 FA FC OF OF OA OC =⎧⎪=⎨⎪=⎩ ∴∠FCO=∠FAO=90°,即OC⊥FC。 ∵点C 在⊙O 上,∴FC 是⊙O 的切线。 【解析】 试题分析:(1)连接OC ,由垂径定理,可求得CE 的长,又由勾股定理,可求得半径OC 的长,然后由勾股定理求得AD 的长,即可得AD=CD ,易证得四边形FADC 是平行四边形,继而证得四边形FADC 是菱形; (2)连接OF ,易证得△AFO≌△CFO,继而可证得FC 是⊙O 的切线。