第二章整式的加减单元测试题.2号

合集下载

(完整版)第二章-整式的加减单元测试题(含答案),推荐文档

(完整版)第二章-整式的加减单元测试题(含答案),推荐文档

第二章 整式的加减单元测试一、填空题(每题3分,共36分)1、单项式减去单项式的和,列算式为 ,23x -y x x y x 2222,5,4--化简后的结果是 。

2、当时,代数式-= ,= 。

2-=x 122-+x x 122+-x x 3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。

4、已知:,则代数式的值是 。

11=+x x 511(2010-+++x x x x5、张大伯从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以a b 每份0.2元的价格退回报社,则张大伯卖报收入 元。

6、计算: , = 。

=-+-7533x x )9()35(b a b a -+-7、计算:= 。

)2008642()200953(m m m m m m m m ++++-++++ 8、-的相反数是 , = ,最大的负整数是 。

bc a 2+π-39、若多项式的值为10,则多项式的值为 。

7322++x x 7962-+x x 10、若 ,= 。

≠+-m y x yx m n 则的六次单项式是关于,,)2(232n 11、已知 ; 。

=++=+-=+22224,142,82b ab a ab b ab a 则=-22b a 12、多项式是 次 项式,最高次项是 ,常数项是 。

172332+--x x x 二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、B 、)25(52x x --=-)3(737+=+a a C 、- D 、)(b a b a --=-)52(52--=-x x 14、下面的叙述错误的是( )A 、。

倍的和的平方的与的意义是2)2(2b a b a +B 、的2倍的和222b a b a 与的意义是+C 、的意义是的立方除以2的商 3)2(ba a bD 、的和的平方的2倍b a b a 与的意义是2)(2+15、下列代数式书写正确的是( )A 、B 、C 、D 、48a y x ÷)(y x a +211abc 16、-变形后的结果是( ))(c b a +- A 、- B 、- C 、- D 、-c b a ++c b a -+c b a +-c b a --17、下列说法正确的是( ) A 、0不是单项式 B 、没有系数 C 、是多项式 D 、是单项式x 37x x+5xy -18、下列各式中,去括号或添括号正确的是( )A 、B 、c b a a c b a a +--=+--2)2(22)123(123-+-+=-+-y x a y x a C 、 D 、-1253)]12(5[3+--=---x x x x x x )1()2(12-+--=+--a y x a y x 19、代数式 中单项式的个数是( ),21a a +43,21,2009,,3,42mn bc a a b a xy -+ A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知是同类项,则( )y x x n m n m 2652与- A 、 B 、 C 、 D 、1,2==y x 1,3==y x 1,23==y x 0,3==y x 22、下列计算中正确的是( )A 、B 、C 、D 、156=-a a x x x 1165=-m m m =-233376xx x =+三、化简下列各题(每题3分,共18分)23、 24、312(65++-a a b a b a +--)5(225、-3 26、-2009)214(2)2(++--y x y x []12)1(32--+--n m m27、 28、)(4)()(3222222y z z y y x ---+-1}1]1)1([{2222-------x x x x 四、化简求值(每题5分,共10分)29、 其中:.)]21(3)13(2[22222x x x x x x -------21=x 30、 其中:.)22()(3)2(2222222b a ab b a ab b a ab -+---1,2==b a 五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:是同类项.22,,(1)(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(求代数式:的值。

(完整版)第二章_整式的加减单元测试题(含答案)

(完整版)第二章_整式的加减单元测试题(含答案)

整式的加减单元测试一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 ,化简后的结果是 。

2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。

3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。

4、已知:11=+x x ,则代数式51)1(2010-+++xx x x 的值是 。

5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。

6、计算:=-+-7533x x , )9()35(b a b a -+-= 。

7、计算:)2008642()200953(m m m m m m m m ++++-++++ΛΛ= 。

8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。

9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。

10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。

11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。

12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。

二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。

B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x +是多项式D 、5xy -是单项式18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x .30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a .五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:22,,(1)(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(是同类项.求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷满分100分姓名:___________班级:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.代数式1﹣的意义是()A.1与x的差的倒数B.1与x的倒数的差C.x的倒数与1的差D.1与1除以x的商3.下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列运算正确的是()A.4m﹣m=3B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=06.去括号1﹣(a﹣b)=()A.1﹣a+b B.1+a﹣b C.1﹣a﹣b D.1+a+b7.以下各组多项式按字母a降幂排列的是()A.3a﹣7a2+2﹣a3B.﹣7a2+3a+2﹣a3C.﹣a3+3a+2﹣7a2D.﹣a3﹣7a2+3a+28.李老师用长为6a的铁丝做了一个长方形教具,其中一边长为b﹣a,则另一边的长为()A.7a﹣b B.2a﹣b C.4a﹣b D.8a﹣2b9.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定10.已知a﹣b=3,c+d=2,则(a﹣d)﹣2(b﹣c)+(b+3d)的值为()A.7B.5C.1D.﹣5二.填空题(共6小题,满分24分,每小题4分)11.单项式的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.12.若3x n y3和﹣x2y m是同类项,则n﹣m=.13.去括号7x3﹣[3x2﹣(x+1)]=.14.“直播带货”是今年的热词.某“爱心助农”直播间推出特产甜瓜,定价8元/千克,并规定直播期间一次下单超过5千克时,可享受九折优惠.李叔叔在直播期间购买此种甜瓜m千克(m>5),则他共需支付元.(用含m的代数式表示)15.若x2+3x=2,则代数式2x2+6x﹣4的值为.16.若多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,则m=.三.解答题(共7小题,满分46分)17.(6分)把下列各代数式填在相应的大括号里.(只需填序号)(1)x﹣7,(2),(3)4ab,(4),(5)5﹣,(6)y,(7),(8)x+,(9),(10)x2++1,(11),(12)8a3x,(13)﹣1单项式集合{};多项式集合{};整式集合{}.18.(6分)合并同类项(1)3a+2a﹣7a (2)﹣4x2y+8xy2﹣9x2y﹣21xy2.19.(6分)如果关于x的多项式x4﹣(a﹣1)x3+5x2﹣(b+1)x﹣1不含x3项和x项,求a,b的值.20.(6分)先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.21.(7分)学完了《整式的加减》后,小刚与小强玩起了数字游戏:小刚对小强说:你任意写一个两位数,满足十位数字比个位数字大2;然后交换十位数字与个位数字,得到一个新的两位数;最后用其中较大的两位数减去较小的两位数.我就能知道这个差是多少.你知道这是为什么吗?这个差是多少呢?22.(7分)已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当a=﹣,b=0时,求(1)中式子的值.23.(8分)某国际化学校实行小班制教学,七年级四个班共有学生(6m﹣3n)人,一班有学生m人,二班人数比一班人数的两倍少n人,三班人数比二班人数的一半多12人.(1)求三班的学生人数(用含m,n的式子表示);(2)求四班的学生人数(用含m,n的式子表示);(3)若四个班共有学生120人,求二班比三班多的学生人数?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.解:由代数式的定义得,代数式1﹣表示1与x的倒数的差,故B答案正确.故选:B.3.解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.6.解:1﹣(a﹣b)=1﹣a+b,故选:A.7.解:多项式按字母a降幂排列的是﹣a3﹣7a2+3a+2.故选:D.8.解:另一边长=3a﹣(b﹣a)=3a﹣b+a=4a﹣b.故选:C.9.解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.10.解:原式=a﹣d﹣2b+2c+b+3d=(a﹣b)+2(c+d),当a﹣b=3,c+d=2时,原式=3+4=7,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵单项式的系数是m,∴m=﹣,∵多项式a2b+2ab﹣3的次数是n,∴n=3,则m+n=3﹣=.故答案为:.12.解:根据题意可得:n=2,m=3,∴n﹣m=2﹣3=﹣1.故答案为:﹣1.13.解:7x3﹣[3x2﹣(x+1)]=7x3﹣(3x2﹣x﹣1)=7x3﹣3x2+x+1.故答案为:7x3﹣3x2+x+1.14.解:由题意得:8×0.9m=7.2m,则他共需支付7.2m元.故答案为:7.2m.15.解:2x2+6x﹣4=2(x2+3x)﹣4把x2+3x=2代入上式,得原式=2×2﹣4=0故答案为016.解:3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值=3mx2﹣x2+4x﹣2+4x2﹣4x+5=(3m+3)x2+3,∵多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,∴3m+3=0,∴m=﹣1,故答案为:﹣1.三.解答题(共7小题,满分46分)17.解:单项式有:,4ab,y,8a3x,﹣1;多项式有:x﹣7,x+,,x2++1;整式有:x﹣7,,4ab,y,x+,,x2++1,8a3x,﹣1.故答案为:(2)(3)(6)(12)(13);(1)(8)(9)(10);(1)(2)(3)(6)(8)(9)(10)(12)(13).18.解:(1)原式=(3+2﹣7)a=﹣2a;(2)原式=(﹣4﹣9)x2y+(8﹣21)xy2=﹣13x2y﹣13xy2.19.解:根据题意得﹣(a﹣1)=0,﹣(b+1)=0,解得a=1,b=﹣1.20.解:原式=4xy﹣[x2+5xy﹣y2﹣2x2﹣6xy+y2]=4xy﹣[﹣x2﹣xy]=x2+5xy,当x=﹣1,y=2时,原式=x2+5xy=(﹣1)2+5×(﹣1)×2=﹣9.21.解:设原来的十位数,十位数字为x,则个位数字为:(x﹣2),故两位数是:10x+x﹣2=11x﹣2,交换十位数字与个位数字,得到的十位数是:10(x﹣2)+x=11x﹣20,故11x﹣2﹣(11x﹣20)=18,即较大的两位数减去较小的两位数的差为18.22.解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵a=﹣,b=0,∴6a2+3b2﹣10ab+11=6×+11=12.23.解:(1)一班人数为:m人.二班人数为:(2m﹣n)人.三班人数为:人;(2)四班人数为:==;(3)由题意可得:6m﹣3n=120,则2m﹣n=40,故二班比三班多的学生数为:===20﹣12=8(人)答:二班比三班多8人.。

人教版数学七年级上册:第2章 整式的加减 单元测试卷(含答案)

人教版数学七年级上册:第2章 整式的加减  单元测试卷(含答案)

第二章《整式的加减》单元测试(满分:150分时间:120分钟) 一、选择题(每小题4分,共40分)1.下列各式中不是单项式的是( )A.a3B.-15C.0 D.3a2.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费( )A.(3a+4b)元 B.(4a+3b)元C.4(a+b)元 D.3(a+b)元3.-[a-(b-c)]去括号正确的是( )A.-a-b+c B.-a+b-cC.-a-b-c D.-a+b+c4.多项式xy2+xy+1是( )A.二次二项式 B.二次三项式C.三次二项式 D.三次三项式5.下列运算中,正确的是( )A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b-3ba2=0 D.5a2-4a2=16.若-x3y a与x b y是同类项,则a+b的值为( )A.2 B.3 C.4 D.57.若A=3x2-4y2,B=-y2-2x2+1,则A-B等于( )A.x2-5y2+1 B.x2-3y2+1C.5x2-3y2-1 D.5x2-3y2+18.已知x-3y=-3,则5-x+3y的值为( )A.0 B.2 C.5 D.89.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.此空格的地方被钢笔水弄污了,那么空格中的一项是( )A.-xy B.xy C.-7xy D.7xy10.如图,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形,(不重复无缝隙),则长方形的长为( )A .2 cmB .2a cmC .4a cmD .(2a -2)cm二、填空题(每小题3分,共30分) 11.计算:2x +x =____________.12.单项式-2xy25的系数是____________,次数是____________.13.任写一个与-12a 2b 是同类项的单项式:____________.14.将多项式1-ab 2+a 3b -13a 2按字母a 降幂排列是________________.15.一个长方形的长为2a +3b ,宽为a +b ,则此长方形的周长为____________. 16.若式子mx 2+y 2-5x 2+5的值与字母x 的取值无关,则m 的值为____________. 17.某种商品原价是m 元,第一次降价打八折,第二次降价每件又减15元,第二次降价后每件的售价是____________元.18.一个多项式与2x 2-xy +3y 2的和是-2xy +x 2-y 2,则这个多项式是________________. 19.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________________.20.观察图形,则第n 个图形中三角形的个数为____________(用含n 的式子表示).三、(本大题12分) 21.(1)计算:①(3a 2+1)-(4a 3-3a 2); ②6a 2-[(5ab +a 2)+2ab];(2)先化简,再求值:2(x +x 2y)-23(6x 2y +3x)-y ,其中x =1,y =3.四、(本大题12分)22.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12还多1岁,求这三名同学的年龄的和.五、(本大题14分)23.小明在计算一种多项式减去2a 2+a -5的差时,因忘了对两个多项式用括号括起来,因此减式后面的两项没有变号,结果得到的差是a 2+3a -1.据此你能求出这个多项A 式吗?这两个多项式的差应该是多少?六、(本大题14分)24.如图所示,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).(1)用a ,b 表示阴影部分的面积;(2)计算当a =3,b =5时,阴影部分的面积.七、(本大题12分)25.阅读材料:我们知道,4x+2x-x=(4+2-1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a +b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)看成一个整体,合并3(a-b)2-7(a-b)2+2(a-b)2的结果是____________;A.-6(a-b)2 B.6(a-b)2C.-2(a-b)2 D.2(a-b)2(2)已知x2+2y=5,求3x2+6y-21的值;拓广探索:(3)已知a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.八、(本大题16分)26.某校团委组织了有奖征文活动,并设立了一、二、三等奖,根据设奖情况买了50件奖品,其二等奖奖品的件数比一等奖奖品的件数的2倍少10,各种奖品的单价如下表所示:如果计划一等奖奖品买x件,买50件奖品的费用是y元.(1)先填表,再用含x的式子表示y,并化简;(2)若一等奖奖品买10件,则共花费多少?参考答案:11.3x 12. 52-3 13. a 2b(答案不唯一) 14.1ab -a 31-b a 223+ 15.6a+8b 16.517. (0.8m-15) 18. -x 2-xy-4y 219.-b+c+a 20.4n21.①原式=3a 2+1-4a 3+3a 2=-4a+6a 2+1.②原式=6a 2-5ab-2ab=5a 2-7ab (2)原式=2x+2x 2y-4x 2y-2x-y=-2x 2y-y当x=1,y=3时,原式=-2×12×3-3=922. 因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为(2m-4)岁, 又因为小华的年龄比小红的年龄的21还多1岁, 所以小华的年龄为[21(2m-4)+1]岁, 则这三名同学的年龄的和为:m+(2m-4)+[21(2m-4)+1]=m+2m-4+(m-2+1)=4m-5(岁), 答:这三名同学的年龄的和是(4m-5)岁23.根据题意,得A=a 2+3a-1+2a 2-a+5=3a 2+2a+4.这两个多项式的差应该是(3a 2+2a+4)-(2a 2+a-5)=3a 2+2a+4-2a 2-a+5=a 2+a+9.24.(1)阴影部分的面积为21b 2+21a(a+b). (2)当a=3,b=5时,21b 2+21a(a+b)=21×25+21×3×(3+5)=249,即阴影部分的面积为249.25.(1)C(2)因为x2+2y=5,所以原式=3(x2+2y)-21=15-21=-6(3)因为a-2b=3,2b-c=-5,c-d=10,所以原式=a-c+2b-d-2b+c=a-d=a-2b+2b-c+c-d=(a-2b)+(2b-c)+(c-d)=3-5+10=826.(1)2x-10 60-3x依题意,得y=12x+10(2x-10)+5(60-3x)=12x+20x-100+300-15x=17x+200(2)当x=10时,17x+200=17×10+200=370.答:若一等奖奖品买10件,共花费370元。

第二章 整式的加减单元水平测试(2)(含答案)

第二章 整式的加减单元水平测试(2)(含答案)

第二章 整式的加减单元水平测试(2)一、认真选一选:(共30分,每题3分) 1. 在代数式:n2,3-m ,22-,32m -,22b π中,单项式的个数为_________。

A. 1个B. 2个C. 3个D. 4个2、下列语句正确的是( )A. 2b -的系数是1,项数是2B. 21n是二次单项式C.2231b a 是二次单项式 D. 32ab -的系数是32-,次数23、下列各组中的两项,属于同类项的是( )A. y x 22-与2xyB. y x 2与z x 2C. 3m n 与4nmD. -05.ab 与a b c4、下列各多项式中,是二次三项式的是( ) A. 3432--x xB. 1232--a aC. 234-xD. y y x --25、多项式-++-x x x 321按x 的升幂排列正确的是( )A. x x x 231-++B. 123-++x x xC. 123--+x x xD. x x x 321-+-6、下列合并同类项正确的是( )A. 325a b ab +=B. 770m m -=C. 33622ab ab a b +=D. -+=a b a b ab 2227、电影院第一排有m 个座位,后面每排比前一排多2个座位,则第n 排的座位数( )A. m n +2B. m n +2C.)1(2-+n mD. 2++n m8、多项式83322-+--xy y kxy x 化简后不含xy 项,则k 为:( )A. 0B. 31-C.31D. 39. 当x 分别等于1和-1时,代数式x x 4225++的值( ) A. 异号B. 相等C. 互为相反数D. 互为倒数10、 若a b ab -=3,则bab a b ab a -+--222等于( ) A.41 B.21 C.43D. 1二、认真填一填(共30分,每题3分) 1. 254ab π-的系数是_____________,次数是_____________。

人教版数学七年级上册第二章整式的加减《单元综合检测卷》附答案

人教版数学七年级上册第二章整式的加减《单元综合检测卷》附答案

人教版数学七年级上学期第二章整式的加减测试一.选择题1.下列计算正确的是( )A. 4a﹣2a=2B. 2x2+2x2=4x4C. ﹣2x2y﹣3yx2=﹣5x2yD. 2a2b﹣3a2b=a2b2.下列说法中,正确的个数有( )①有理数包括整数和分数;②一个代数式不单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数;④倒数等于本身的数有﹣1.A. 1个B. 2个C. 3个D. 4个3.下面关于单项式-13a3bc2的系数与次数叙述正确的是A. 系数是13,次数是6 B. 系数是-13,次数是5C. 系数是13,次数是5 D. 系数是-13,次数是64.下列各组单项式中,是同类项的是( )A.25x y与﹣x2y B. 2a2b与2ab2C. a与1D. 2xy与2xyz5.如果A是3m2﹣m+1,B是2m2﹣m﹣7,且A﹣B+C=0,那么C是( )A. ﹣m2﹣8B. ﹣m2﹣2m﹣6C. m2+8D. 5m2﹣2m﹣66.下列说法中正确的是( )A. a和0都是单项式B. 单项式﹣23a b的系数是﹣13次数是4C. 式子x2+1x是整式D. 多项式﹣3a 2b+7a 2b 2+1的次数是77.若﹣2a m b 4与5a 2b 2+n 是同类项,则m n 的值是( )A. 2B. 0C. 4D. 18.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a b >),则-a b 的值为( )A. 6B. 8C. 12D. 9 9.若多项式5x 2y |m|14-(m+1)y 2﹣3是三次三项式,则m 等于( ) A. ﹣1 B. 0 C. 1 D. 210.使(ax 2﹣3xy+4y 2)﹣(﹣x 2+bxy+5y 2)=6x 2﹣7xy+cy 2成立的a,b,c 的值依次是( )A. 7,﹣4,﹣1B. 5,4,﹣1C. 7,﹣4,1D. 5,4,1二.填空题11.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)12.如果单项式﹣3x a+2y 3 与 2y b x 6 是同类项,那么 a 、b 的值分别是_________13.某同学在做计算2A+B 时,误将“2A+B”看成了“2A ﹣B”,求得的结果是9x 2﹣2x+7,已知B=x 2+3x+2,则2A+B 的正确答案为_____.14.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是_____. 15.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.16.已知ab <0,且|a|<|b|,化简|a+b|+|a ﹣b|+|b ﹣a|=_____.三.解答题(共7小题)17.计算:2x 2+(3y 2﹣xy )﹣(x 2﹣3xy ).18.一堂公开课,老师在黑板上写了两个代数式34a +与237a -,让大家相互之间用这两个代数式出题考对方. (1)小明给小红出的题为:若代数式34a +与237a -的值多1,求3a 2﹣2(2a 2+a)+2(a 2﹣3a )的值; (2)小红想为难一下小明,她给小明出题为:已知a 为负数,比较代数式34a +与237a -的大小,请你帮小明作出解答.19.一般情况下2323a b a b ++=+不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得2323a b a b ++=+成立的一对数a,b 为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b 值;(2)写出一个“相伴数对”(a,b),其中a ≠0,且a ≠1;(3)若(m,n)是“相伴数对”,求代数式m ﹣223n ﹣[4m ﹣2(3n ﹣1)]的值. 20.已知a 是绝对值等于4的负数,b 是最小的正整数,c 的倒数的相反数是﹣2,(1)求a,b,c 的值;(2)求:4a 2b 3﹣[2abc+(5a 2b 3﹣7abc)﹣a 2b 3].21.已知A=2x 2+3ax ﹣2x ﹣1,B=﹣x 2+ax ﹣1,且3A+6B 的值与x 的取值无关,求5a ﹣1的值22.A 、B 、C 、D 四个车站的位置如图所示,求:(1)A 、D 两站的距离;(2)A 、C 两站的距离.23.如果单项式2ax m y 与单项式5bx 2m ﹣3y 都是关于x 、y 单项式,并且它们是同类项.(1)求m 的值;(2)若2ax m y+5bx 2m ﹣3y=0,且xy≠0,求(2a+5b)2017+m 值.答案与解析一.选择题1.下列计算正确的是( )A. 4a﹣2a=2B. 2x2+2x2=4x4C. ﹣2x2y﹣3yx2=﹣5x2yD. 2a2b﹣3a2b=a2b【答案】C【解析】【分析】合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】A、4a﹣2a=2a,此选项错误;B、2x2+2x2=4x2,此选项错误;C、﹣2x2y﹣3yx2=﹣5x2y,此选项正确;D、2a2b﹣3a2b=﹣a2b,此选项错误;故选C.【点睛】本题考查了合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项.2.下列说法中,正确的个数有( )①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数;④倒数等于本身的数有﹣1.A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据有理数的分类,代数式的意义,有理数的乘法法则,倒数的意义逐个说法分析,利用排除法即可得出答案. 【详解】①有理数包括整数和分数,正确;②一个代数式不是单项式就是多项式,单项式和多项式属于整式,分式也属于代数式,故此说法错误;③几个有理数相乘,若负因数的个数是偶数个,则积为正数,错误,因数中不能有零;④倒数等于本身的数有﹣1,还有1,故此选项错误.故选A.【点睛】本题考查了有理数的分类,代数式的意义,有理数的乘法法则,倒数的意义,熟练掌握各知识点是解答本题的关键.3.下面关于单项式-13a3bc2的系数与次数叙述正确的是A. 系数是13,次数是6 B. 系数是-13,次数是5C. 系数是13,次数是5 D. 系数是-13,次数是6【答案】D【解析】分析:根据单项式的系数和次数的定义即可得出答案.单项式前面的常数叫做单项式的系数,各个字母的指数之和叫做单项式的次数.详解:单项式的系数为:13;次数为:3+1+2=6.故选D.点睛:本题主要考查的是单项式的系数和次数,属于基础题型.在解答这种问题时需要注意的是π是系数,次数是指所有字母的指数之和.4.下列各组单项式中,是同类项的是( )A.25x y与﹣x2y B. 2a2b与2ab2C. a与1D. 2xy与2xyz 【答案】A【解析】【分析】直接利用同类项的定义分析得出答案.【详解】A、25x y与-x2y,是同类项,符合题意;B 、2a 2b 与2ab 2,不是同类项,不合题意;C 、a 与1,不是同类项,不合题意;D 、2xy 与2xyz ,不是同类项,不合题意;故选A .【点睛】此题主要考查了同类项,正确把握相关定义是解题关键.5.如果A3m 2﹣m+1,B 是2m 2﹣m ﹣7,且A ﹣B+C=0,那么C 是( )A. ﹣m 2﹣8B. ﹣m 2﹣2m ﹣6C. m 2+8D. 5m 2﹣2m ﹣6 【答案】A【解析】【分析】根据题意得出等式,化简即可得出答案.【详解】解:A-B+C=3m 2﹣m +1-(2m 2﹣m ﹣7)+C =0,解得C=﹣m 2﹣8,故选:A.【点睛】本题考查了根据题意列等式,仔细审题是解答本题的关键.6.下列说法中正确的是( )A. a 和0都是单项式B. 单项式﹣23a b π的系数是﹣13次数是4 C. 式子x 2+1x是整式 D. 多项式﹣3a 2b+7a 2b 2+1的次数是7【答案】A【解析】试题解析:A. 单独的一个数或字母也是单项式.故本选项正确;B. 单项式23a b π-系数是3π-,次数是3, 故本选项错误;C. 式子21x x+不是整式, 故本选项错误;D. 多项式222371a b a b -++的次数是4, 故本选项错误.故选A.7.若﹣2a m b 4与5a 2b 2+n 是同类项,则m n 的值是( )A. 2B. 0C. 4D. 1【答案】C【解析】【分析】依据同类项的定义可得到关于m 、n 的方程组,然后可求得m 、n 的值,最后再求得m n 的值即可.【详解】∵﹣2a m b 4与5a 2b 2+n 是同类项,∴m =2, 2+n=4,解得: m =2, n =2,∴22 4.n m ==故选C.【点睛】考查同类项的概念以及有理数的乘方,根据同类项的概念求出m 、n 的值是解题的关键. 8.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a b >),则-a b 的值为( )A. 6B. 8C. 12D. 9【答案】C【解析】【分析】 设重叠部分面积为c ,-a b 可理解为:()()a c b c +-+即两个长方形面积的差.【详解】解:设重叠部分面积为c ,∴()()352312a b a c b c -=+-+=-=;故选择:C【点睛】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.9.若多项式5x2y|m|14-(m+1)y2﹣3是三次三项式,则m等于( )A. ﹣1B. 0C. 1D. 2 【答案】C【解析】试题解析:根据三次三项式的定义,可得2+|m|=3,-14(m+1)≠0,联立方程组,得2310mm⎧+⎨+≠⎩=解得m=1.故选C.10.使(ax2﹣3xy+4y2)﹣(﹣x2+bxy+5y2)=6x2﹣7xy+cy2成立的a,b,c的值依次是( )A. 7,﹣4,﹣1B. 5,4,﹣1C. 7,﹣4,1D. 5,4,1【答案】B【解析】【分析】先把左边去括号合并同类项,然后和右边比较,即可列出关于a,b,c的方程,从而求出a,b,c的值.【详解】(ax2﹣3xy+4y2)﹣(﹣x2+bxy+5y2)=a x2﹣3xy+4y2+x2﹣bxy﹣5y2=(a+1)x2+(﹣3﹣b)xy﹣y2=6x2﹣7xy+cy2,可得a+1=6,﹣3﹣b=﹣7,c=﹣1,解得:a=5,b=4,c=﹣1,故选B.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.整式加减的结果要最简:①不能有同类项;②含字母项的系数不能出现带分数,带分数要化成假分数.二.填空题11.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)【答案】x 2y 2【解析】【分析】根据单项式的定义即可求出答案.【详解】由题意可知:x 2y 2,故答案为x 2y 2【点睛】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型. 12.如果单项式﹣3x a+2y 3 与 2y b x 6 是同类项,那么 a 、b 的值分别是_________【答案】4,3.【解析】【分析】根据相同字母的指数相等列式求解即可.【详解】∵单项式﹣3x a+2y 3与2y b x 6是同类项,∴a +2=6,b =3,则a =4,故答案为4,3.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.13.某同学在做计算2A+B 时,误将“2A+B”看成了“2A ﹣B”,求得的结果是9x 2﹣2x+7,已知B=x 2+3x+2,则2A+B 的正确答案为_____.【答案】211411x x ++【解析】【分析】根据题意得:22292732A x x x x =-++++()(),求出2A 的值,代入后求出即可. 【详解】解:∵22292732A x x x x =-++++()()22222222927321092109321093211411x x x x x x A B x x x x x x x x x x =-++++=++∴+=+++++=+++++=++,().故答案为211411x x ++.【点睛】本题考查了整式的加减的应用,关键是求出2A 的值. 14.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是_____. 【答案】5【解析】【分析】根据多项式是关于x 的四次三项式可得m-1=4,即可得出结论. 【详解】多项式12x m-1-3x+7是关于x 的四次三项式, 则m-1=4,m=5.故答案为5.【点睛】本题考查了多项式,解题的关键是熟练的掌握多项式的定义. 15.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.【答案】3x 2﹣6x ﹣1【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】根据题意得:(3x 2-2x-1)+(-4x)=3x 2-2x-1-4x=3x 2-6x-1,故答案是:3x 2-6x-1【点睛】考查了整式的加减,熟练掌握运算法则是解本题的关键.16.已知ab <0,且|a|<|b|,化简|a+b|+|a ﹣b|+|b ﹣a|=_____.【答案】2a ﹣3b 或3b ﹣a【解析】【分析】先根据ab <0,且|a |<|b |,判断出a ,b 的取值范围,然后分两种情况根据绝对值的意义化简即可.【详解】∵ab <0,且|a |<|b |,∴a >0,b <0或a <0,b >0,当a >0,b <0时,a +b <0,a ﹣b >0,b ﹣a <0,原式=﹣a ﹣b +a ﹣b +a ﹣b =2a ﹣3b ;当a <0,b >0时, a +b >0,a ﹣b <0,b ﹣a >0,原式=a +b +b ﹣a +b ﹣a =3b ﹣a ,则原式=2a ﹣3b 或3b ﹣a .故答案为2a ﹣3b 或3b ﹣a【点睛】本题考查了绝对值的化简及分类讨论的数学思想,根据ab <0,且|a |<|b |,判断出a ,b 的取值范围是解答本题的关键.三.解答题(共7小题)17.计算:2x 2+(3y 2﹣xy )﹣(x 2﹣3xy ).【答案】2232x y xy ++【解析】试题分析:先去掉括号,再合并同类项即可.试题解析: 原式=222233x y xy x xy +--+ =2232x y xy ++18.一堂公开课,老师在黑板上写了两个代数式34a +与237a -,让大家相互之间用这两个代数式出题考对方. (1)小明给小红出的题为:若代数式34a +与237a -的值多1,求3a 2﹣2(2a 2+a)+2(a 2﹣3a )的值;(2)小红想为难一下小明,她给小明出的题为:已知a 为负数,比较代数式34a +与237a -的大小,请你帮小明作出解答.【答案】(1)-15;(2)详见解析.【解析】【分析】(1)先根据代数式34a +与237a -的值多1,列方程求出a 的值,再把3a 2﹣2(2a 2+a)+2(a 2﹣3a )化简,然后把求得的a 的值代入计算即可;(2)用作差法比较大小即可.【详解】解:(1)由题意可知:323147a a +-=+, 解得:a=5,原式=3a 2﹣4a 2﹣2a+2a 2﹣6a=a 2﹣8a=25﹣40=﹣15; (2)32347a a +-- =3328a -+ ∵a 0< ∴3328a -+>0 ∴a 32a 347+-> 【点睛】本题考查了一元一次方程的解法,整式的加减及分类讨论的数学思想,熟练掌握整式的加减法法则是解答本题的关键.19.一般情况下2323a b a b ++=+不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得2323a b a b ++=+成立的一对数a,b 为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b 的值;(2)写出一个“相伴数对”(a,b),其中a ≠0,且a ≠1;(3)若(m,n)是“相伴数对”,求代数式m ﹣223n ﹣[4m ﹣2(3n ﹣1)]的值. 【答案】(1)94b =-; (2) 9(2,)2-(答案不唯一);(3)-2. 【解析】试题分析: (1)把(1,b )代入2323a b a b ++=+中,可解出b ; (2)在2323a b a b ++=+中,把看作常数,可解得94b a =-,给取定一个值,就可得到对应的的值; (3)把(m,n )代入2323a b a b ++=+中,化简可得:940m n +=,把式子 ()2242313m n m n ⎡⎤----⎣⎦ 化成用“94m n +”表达的形式就可求出其值了. 试题解析:(1)∵(1,b )是“相伴数对”, ∴11+2323b b +=+,即151066b b +=+,解得94b =-; (2)∵2323a b a b ++=+, ∴151066a b a b +=+, ∴94b a =-, ∴给任取一个值,可得对应的的值,从而得到一对“相伴数对”,如当2a =时,92b ,这样可得“相伴数对”:(922-,). (3)∵(m,n )是“相伴数对”, ∴2323m n m n ++=+,化简可得:940m n +=, 又∵22[42(31)]3m n m n ---- =224623m n m n --+-=94233m n --- =(94)23m n -+-. ∴原式=0-2=-2.20.已知a 是绝对值等于4的负数,b 是最小的正整数,c 的倒数的相反数是﹣2,(1)求a,b,c 的值;(2)求:4a 2b 3﹣[2abc+(5a 2b 3﹣7abc)﹣a 2b 3].【答案】(1)a=﹣4,b=1,c=12;(2)-10. 【解析】【分析】(1)根据a 是绝对值等于4的负数可知a =-4,根据b 是最小的正整数可知b =1,根据c 的倒数的相反数是﹣2可知c =12; (2)先把所给代数式去括号合并同类项,然后把(1)中求得的a ,b ,c 的值代入计算即可.【详解】解:(1)由题意可知:a=﹣4,b=1,c=12(2)当a=﹣4,b=1,c=12时, 原式=4a 2b 3﹣(2abc+5a 2b 3﹣7abc ﹣a 2b 3)=4a 2b 3﹣(4a 2b 3﹣5abc)=4a 2b 3﹣4a 2b 3+5abc=5abc,=5×(﹣4)×1×12=﹣10.【点睛】本题考查了绝对值、相反数、倒数的意义、整式的化简求值,熟练掌握整式的加减法法则是解答本题的关键.21.已知A=2x 2+3ax ﹣2x ﹣1,B=﹣x 2+ax ﹣1,且3A+6B 的值与x 的取值无关,求5a ﹣1的值【答案】1.【解析】【分析】先把A=2x2+3ax﹣2x﹣1,B=﹣x2+ax﹣1代入3A+6B,化简后根据3A+6B的值与x的取值无关,求出a的值,然后把求得的a的值代入5a﹣1计算即可.【详解】解:3A+6B=3(2x2+3ax﹣2x﹣1)+6(﹣x2+ax﹣1)=6x2+9ax﹣6x﹣3﹣6x2+6ax﹣6=(15a﹣6)x﹣9,∵3A+6B的值与x的取值无关,∴15a﹣6=0,解得a=,则5a﹣1=5×﹣1=1.【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中与字母x的取值无关的意思,与哪一项无关,就是合并同类项后令其系数等于0.22.A、B、C、D四个车站的位置如图所示,求:(1)A、D两站的距离;(2)A、C两站的距离.【答案】(1)AD= 4a+3b;(2)AC=3a.【解析】【分析】(1)由图可知A、D两站的距离=AB+BD,把AB=a+b,BD=3a+2b代入计算即可;(2)由图可知A、C两站的距离=AB+BC=AB+BD-CD,把AB=a+b,BD=3a+2b,CD=a+3b代入计算即可.【详解】解:(1)根据题意得:AD=AB+BD=a+b+3a+2b=4a+3b;(2)根据题意得:AC=AB+BC=a+b+(3a+2b)﹣(a+3b)=a+b+3a+2b﹣a﹣3b=3a.【点睛】本题考查了整式加减运算的应用,根据图示正确列出算式是解答本题的关键.23.如果单项式2ax m y与单项式5bx2m﹣3y都是关于x、y的单项式,并且它们是同类项.(1)求m的值;(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求(2a+5b)2017+m的值.【答案】(1)m=3;(2)0.【解析】【分析】(1)利用同类项的概念得出m=2m-3,进而求出即可;(2)利用单项式的和为0,得出其系数是互为相反数,进而得出答案.【详解】(1)∵单项式2ax m y与单项式5bx2m﹣3y是关于x,y的单项式,并且它们是同类项,∴m=2m﹣3,解得:m=3;(2)∵单项式2ax m y+5bx2m﹣3y=0,且xy≠0,∴2a+5b=0,m=3∴(2a+5b)2017+2m=02023=0.【点睛】本题考查了同类项与单项式,解题的关键是熟练的掌握同类项的概念与单项式的性质.。

七年级数学上册《第二章-整式的加减》单元测试卷附答案-人教版

七年级数学上册《第二章-整式的加减》单元测试卷附答案-人教版

七年级数学上册《第二章整式的加减》单元测试卷附答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1. 多项式x2−2xy3−12y−1是( )A. 三次四项式B. 三次三项式C. 四次四项式D. 四次三项式2. 代数式x2+2,1a +4,3ab27,abc,5,1π,−x中,整式的个数是( )A. 7B. 6C. 5D. 43. 若13桶油漆可以刷2m2的墙,则a桶油漆可以刷m2的墙.( )A. 13a B. 2a C. 23a D. 6a4. 下列说法正确的是( )A. 3πx4的系数是34B. x3y+x2−1是三次三项式C. x2−2x−1的常数项是1D. 1−x2是多项式5. 若3a2b n−1与−12a m+1b2的是同类项,则m n的值为.( )A. 3B. 2C. 1D. 06. 若关于x,y的单项式3x a y4和x3y b可以合并成一项,则a−b的值为( )A. 1B. −1C. 2D. −27. 探索规律:观察下面的一列单项式:x、−2x2、4x3、−8x4、16x5、…根据其中的规律得出的第8个单项式是( )A. −64x8B. 64x8C. 128x8D. −128x88. 某校举办的知识竞赛,共10道题,规定答对一道题加x分,答错一道题(不答按错)扣(x−2)分,小明答错了2道题,他得到的分数是( )A. 6x+4B. 6x−4C. 8x+4D. 8x−49. 鸿星尔克某件商品的成本价为a元,按成本价提高10%后标价,又以八折销售,这件商品的售价( )A. 比成本价低了0.12a元B. 比成本价低了0.08a元C. 比成本价高了0.1a元D. 与成本价相同10. 把如图1的两张大小相同的长方形卡片放置在图2与图3中的两个相同大长方形中,已知这两个大长方形的长比宽长20cm ,若记图2中阴影部分的周长为C 1,图3中阴影部分的周长为C 2,那么C 1−C 2=( )A. 10cmB. 20cmC. 30cmD. 40cm二、填空题11. 单项式3x 2y 5的次数是______ .12. 若m 2−n 2=24,且m −n =3,则m +n = ______ .13. 如图是一组有规律的图案,第1个图案中有6个涂有阴影的小矩形,第2个图案中有10个涂有阴影的小矩形,第3个图案中有14个涂有阴影的小矩形……按此规律,第n 个图案中涂有阴影的小矩形的个数为______ .(用含n 的代数式表示)14. 按照如图所示的流程图,若输出的M =−1,则输入的m = ______ .15. 已知方程组{x +y =73x −5y =−3,则4(x +y)−2(3x −5y)的值是______ .16. 化学中直链烷烃的名称用“碳原子数+烷”来表示,当碳原子数为1~10时,依次用天干——甲、乙、丙、丁、戊、己、庚、辛、千、癸——表示,其中甲烷、乙烷、丙烷的分子结构式如图所示,则庚烷分子结构式中“H ”的个数是______ .17. 国家规定初中每班的标准人数为a人,某中学七年级共有六个班,各班人数情况如下表:班级七(1)班七(2)班七(3)班七(4)班七(5)班七(6)班与每班标准人数的差值/人+5+3−5+40−2用含a的式子表示该中学七年级学生总人数为________人.18. 如图为某三岔路口交通环岛的简化模型.在某高峰时段,单位时间进出路口A,B,C的机动车辆数如图所示,图中x1,x2,x3分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则x1,x2,x3的大小关系是.(用“>”、“<”或“=”连接)19. 若a、b、c、d是正整数,且a+b=22,a+c=26,a+d=28则a+b+c+d的最小值为______ .20. 如图,有两个矩形的纸片面积分别为26和9,其中有一部分重叠,剩余空白部分的面积分别为m和n(m>n),则m−n=.三、解答题21. 有一个整数x,它同时满足以下的条件:①小于π;②大于−434;③在数轴上,与表示−1的点的距离不大于3.(1)将满足的整数x代入代数式−2(x+1)2+7,求出相应的值;(2)观察上题的计算结果,你有什么发现?将你的发现写出来.22. 已知:A=2a2+3ab−2a−1,B=−a2+ab−1(1)求A+2B的值;(2)若A+2B的值与a的取值无关,求b的值.23. 规定:对于确定位置的三个数:a,b,c计算a−b,a−c2,b−c3将这三个数的最小值称为a,b,c的“白马数”,例如,对于1,−2,3因为1−(−2)=3,1−32=−1,−2−33=−53所以1,−2,3的“白马数”为−53.(1)−2,−4,1的“白马数”为______ ;(2)调整“−2,−4,1”这三个数的位置,得到不同的“白马数”,那么这些不同“白马数”中的最大值是______ ;(3)调整−1,6,x这三个数的位置,得到不同的“白马数”,若其中的一个“白马数”为2,求x的值.24. 已知有理数a、b、c在数轴上的位置如图所示(1)用“>”或“<”填空:c______0,|a|______|c|;(2)若m=|a+b|−|b−1|−|a−c|,试化简等式的右边;(3)在(2)的条件下,求|b|b +|a|a+|c|c−2017⋅(m+c)2017的值.25. 对于代数式,不同的表达形式能表现出它不同的性质.若代数式A=x2+4x+3,代数式B=(x−1)2+4(x−1)+3.改变x的值,代数式A,B有不同的取值,如下表:x−101234 A=x2+4x+3038152435B=(x−1)2+4(x−1)+3−10381524观察表格发现:当x=m时A=x2+4x+3=n,当x=m+1时B=(x−1)2+4(x−1)+3=n.我们把这种现象称为代数式B参照代数式A取值延后,相应的延后值为1.(1)若代数式D参照代数式A取值延后,相应的延后值为2.求代数式D;(2)若代数式x2−2x参照代数式A的取值延后,求相应的延后值;(3)若代数式4x2−3x+b参照代数式ax2−6x+c取值延后,求b−c的值.参考答案1、C2、C3、D4、D5、C6、B7、D8、A9、A10、D 11、312、813、4n+214、−5或215、3416、1617、(6a+5)18、x3>x1>x219、3420、1721、(1)由题意得,满足的整数x为:−4,−3,−2,−1,0,1,2当x=−4时,原式=−11.当x=−3时,原式=−1.当x=−2时,原式=5.当x=−1时,原式=7.当x=0时,原式=5.当x=1时,原式=−1.当x=2时,原式=−11.(2)发现:当x=−1时,代数式有最大值,x距离−1越远,代数式的值越小.22、解:(1)原式=A+2B=2a2+3ab−2a−1+2(−a2+ab−1)=2a2+3ab−2a−1−2a2+2ab−2=5ab−2a−3 (2)若A+2B的值与a的取值无关则5b−2=0解得:b=0.4.23、−532 324、解:(1)>>(2)∵从数轴可知:b<a<−1<0<c<1∴a+b<0,b−1<0,a−c<0∴m=|a+b|−|b−1|−|a−c|=−(a+b)+(b−1)+(a−c)=−a−b+b−1+a−c=−c−1(3)∵从数轴可知:b<a<−1<0<c<1∴|b|b +|a|a+|c|c−2017⋅(m+c)2017=−bb+−aa+cc−2017×(−c−1+c)2017=−1+(−1)+1+2017=2016.25、(1)解:根据题意,D=(x−2)2+4(x−2)+3=x2−1(2)解:设相应的延后值为k,得:(x−k)2+ 4(x−k)+3=x2−2x化简得:x2−2kx+k2+4x−4k+3=x2−2x∴x2−(2k−4)x+k2−4k+3=x2−2x∴2k−4=2,解得k=3当k=3时,k2−4k+3=0∴原式成立∴相应的延后值是3.(3)解:设相应的延后值为m,得:a(x−m)2−6(x−m)+c=4x2−3x+b化简得:ax2−(2am+ 6)x+am2+6m+c=4x2−3x+b∴a=4则上式为:−(8m+6)x+4m2+6m+c=−3x+b∴{8m+6=34m2+6m+c=b∴m=−38∴b−c=4×(−38)2+6×(−38)=−2716.。

【人教版】数学七年级上册第二章整式的加减《单元测试题》含答案

【人教版】数学七年级上册第二章整式的加减《单元测试题》含答案

第二章整式的加减综合测试一、选择题(本大题共10小题,每小题3分,共30分)1.用式子表示a 与5的差的2倍,下列正确的是( ) A. a-(-5)×2 B. a+(-5)×2 C. 2(a-5)D. 2(a+5)2.计算a +(-a )的结果是 ( ) A. 2aB. 0C. -a 2D. -2a3.下面说法正确的是( ) A.213x π的系数是13B.212xy 的系数是12x C. ﹣5x 2的系数是5D. 3x 2的系数是34.下列运算中,正确的是( ). A. 325a b ab +=B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=5.下列各组中,不是同类项的是( ) A. 5225与B. ab ba -与C. 2210.25a b a b -与 D. 2332a b a b -与6.在式子0,-3x ,n-m ,3x ,-1,t 2,a2中,单项式的个数是p ,多项式的个数是q ,则p+q 的值为( ) A. 6B. 5C. 4D. 37.若m=-1,则整式m 2-2m-1的值是( ) A 4B. 2C. -1D. -48.按某种标准把多项式进行分类时,3x 3﹣4和a 2b +ab 2+1属于同一类,则下列哪一个多项式也属于此类( ) A. abc ﹣1B. x 2﹣2C. 3x 2+2xy 4D. m 2+2mn +n 29.某种商品进价为a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的优惠价开展促销活动,这时该商品的售价为( ) A. a 元B. 0.8a 元C. 0.92a 元D. 1.04a 元10.已知a ,b ,c 在数轴上的位置如图所示,化简|a+c|-|a+b|-|c-b|的结果是( )A -2c B. 2a+2b C. -2a-2c D. 2a-b二、填空题(本大题共6小题,每小题3分,共18分)11.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式. 12.若单项式3a 5b m+1与-2a n b 2是同类项,则m-n=__________. 13.若2x ﹣3y ﹣1=0,则5﹣4x+6y 的值为 .14.若多项式3x 2+kx-2x+1(k 为常数)中不含有x 的一次项,则k=__________.15.小明在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个一次二项式,如图所示,所捂的一次二项式为___________.16.在图所示的运算流程中,若输出的数y=3,则输入的数x=______.三、解答题(本大题共6小题,共52分)17.先简化,再求值:(4a 2﹣3a)﹣(2a+a ﹣1)+(2﹣a 2﹣4a),其中a =﹣2. 18.计算: (1)-4a -(12a -2); (2)3(2x 2-y 2)-2(3y 2-2x 2). 19.2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同()1求m ,n 的值()2求多项式的常数项以及各项的系数和.20.小黄做一道题:“已知两个多项式A ,B ,计算A -B ”.小黄误将A -B 看作A +B ,求得结果是2927x x -+.若B =232+-x x ,请你帮助小黄求出A -B 的正确答案.21.如图所示,某长方形广场四角都有一块半径相同的14圆形的草地,已知圆形的半径为r 米,长方形的长为a 米,宽为b 米.(1)请列式表示广场空地面积;(2)若长方形的长为300米,宽为200米,圆形的半径为10米,计算广场空地的面积(计算结果保留π).22.已知图所示的计算程序.根据计算程序回答下列问题:(1)填写表内空格:输入x 3 2 -2 13…输出答案0 …(2)你发现的规律是.(3)用简要过程说明你发现的规律的正确性.附加题(共20分,不计入总分)23.如果x-2y=3,m+2n=2,则(x+m)-2(y-n)的值是_________.24.一般情况下a2323b a b++=+不成立,但有些数可以使得它成立,例如a=b=0.我们称使得a2323b a b++=+成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值.(2)若(m,n)是“相伴数对”,求整式26m+4n-2(4m-2n)+5的值.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.用式子表示a 与5的差的2倍,下列正确的是( ) A. a-(-5)×2 B. a+(-5)×2 C. 2(a-5) D. 2(a+5)【答案】C 【解析】 【分析】根据题目中语句可以用代数式表示出来,本题得以解决. 【详解】a 与5的差的2倍可以表示为:2(a−5), 故选C.【点睛】本题考查的是列代数式,熟练掌握这一点是解题的关键. 2.计算a +(-a )的结果是 ( ) A. 2a B. 0C. -a 2D. -2a【答案】B 【解析】 【分析】根据加一个负数等于减去这个数进行计算即可. 【详解】a +(-a )=a -a =0 故选B.【点睛】本题考查的是整式计算方法,熟练掌握这一点是解题的关键. 3.下面说法正确的是( ) A.213x π的系数是13B.212xy 的系数是12x C. ﹣5x 2的系数是5 D. 3x 2的系数是3【答案】D 【解析】 【详解】A .13π2x 的系数是13π,错误 B .122xy 系数为12错误C .-52x 的系数是-5,错误D .32x 的系数是3,正确,故选D. 4.下列运算中,正确的是( ). A. 325a b ab += B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=【答案】C 【解析】试题分析:3a 和2b 不是同类项,不能合并,A 错误;32a 和23a 不是同类项,不能合并,B 错误;22330a b ba -=,C 正确;22254a a a -=,D 错误,故选C .考点:合并同类项.【此处有视频,请去附件查看】5.下列各组中,不是同类项的是( ) A. 5225与 B. ab ba -与C. 2210.25a b a b -与 D. 2332a b a b -与【答案】D 【解析】:根据同类项的定义(所含字母相同,相同字母的指数相同),即可作出判断. 试题解析:A .B .C .是同类项;D .所含字母相同,但相同字母的质数不同,不是同类项. 故选D . 考点:同类项.【此处有视频,请去附件查看】6.在式子0,-3x ,n-m ,3x ,-1,t 2,a2中,单项式的个数是p ,多项式的个数是q ,则p+q 的值为( ) A. 6 B. 5C. 4D. 3【答案】A 【解析】试题分析:在这些代数式中,单项式有0,﹣3x ,﹣1,2t ,2a共五个,所以p=5,多项式有n ﹣m 共一个,所以q=1,所以p+q=5+1=6,故选A.考点:1.多项式;2.单项式.7.若m=-1,则整式m2-2m-1的值是()A. 4B. 2C. -1D. -4【答案】B【解析】【分析】把m=-1代入代数式m2-2m-1,即可得到结论.【详解】m2-2m-1=(-1)2-2(-1)-1=2;故选B.【点睛】本题考查的是代数式的求值,熟练掌握方法是解题的关键.8.按某种标准把多项式进行分类时,3x3﹣4和a2b+ab2+1属于同一类,则下列哪一个多项式也属于此类()A. abc﹣1B. x2﹣2C. 3x2+2xy4D. m2+2mn+n2【答案】A【解析】从多项式的次数考虑求解.解:3x3﹣4和a2b+ab2+1属于同一类,都是3次多项式,A、abc﹣1是3次多项式,故本选项正确;B、x2﹣2是2次多项式,故本选项错误;C、3x2+2xy4是5次多项式,故本选项错误;D、m2+2mn+n2是2次多项式,故本选项错误.故选A.9.某种商品进价为a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的优惠价开展促销活动,这时该商品的售价为()A. a元B. 0.8a元C. 0.92a元D. 1.04a元【答案】D【解析】【分析】先算出提价后的售价,再算打折后的售价.【详解】价格提升30%后,售价为1.3a,后又打八折销售,故售价变为0.8 1.3a=1.04a,所以选D选项. 【点睛】正确理解题意是解题的关键.10.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a+b|-|c-b|的结果是()A. -2cB. 2a+2bC. -2a-2cD. 2a-b【答案】B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a+b<0,c-b>0,∴原式=a+c+a+b-c+b=2a+2b.故选B.【点睛】本题考查的是数轴和绝对值的综合运用,熟练掌握这两点是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.多项式2x3-x2y2-3xy+x-1是__________次_________项式.【答案】(1). 四(2). 五【解析】【分析】根据多项式的次数和项数的定义直接进行解答即可.【详解】多项式2x3﹣x2y2﹣3xy+x﹣1是四次五项式.故答案为四,五.12.若单项式3a5b m+1与-2a n b2是同类项,则m-n=__________.【答案】-4【解析】【分析】根据同类项的定义:所含字母相同,相同字母的指数相同即可得出答案.【详解】∵单项式3a5b m+1与-2a n b2是同类项;∴n=5,m+1=2,∴n=5,m=1;∴m-n=-4.【点睛】本题考查的是同类项定义,熟练掌握这一点是解题的关键.13.若2x﹣3y﹣1=0,则5﹣4x+6y的值为.【答案】3.【解析】试题分析:由2x﹣3y﹣1=0可得2x﹣3y=1,所以5﹣4x+6y=5﹣2(2x﹣3y)=5﹣2×1=3.考点:代数式求值.14.若多项式3x2+kx-2x+1(k为常数)中不含有x的一次项,则k=__________.【答案】2【解析】【分析】不含x这一项,利用x的系数为0求解.【详解】∵多项式3x2+kx−2x+1中不含有x的一次项,∴k−2=0,即k=2.故答案为2.【点睛】本题考查的是多项式,熟练掌握多项式是解题的关键.15.小明在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个一次二项式,如图所示,所捂的一次二项式为___________.【答案】-m+2【解析】【分析】根据整式减法的运算方法,用m2-2m减去m2-m-2,求出所捂的一次二项式即可.【详解】所捂的一次二项式与m2−m−2的和是m2−2m,(m2−2m)−(m2−m−2)=m2−2m−m2+m+2=2−m∴所捂的一次二项式为2−m.故答案为2−m.【点睛】本题考查的是整式的加减,熟练掌握这一点是解题的关键. 16.在图所示的运算流程中,若输出的数y=3,则输入的数x=______.【答案】5或6 【解析】试题解析:根据所给的图可知,若x 为偶数,则x=2y ,若x 不是偶数,则x=2y-1, 故:当x 是偶数时,有x=2×3=6, 当x 是奇数时,有x=2×3-1=5. 三、解答题(本大题共6小题,共52分)17.先简化,再求值:(4a 2﹣3a)﹣(2a+a ﹣1)+(2﹣a 2﹣4a),其中a =﹣2. 【答案】3a 2﹣10a+3;35. 【解析】 【分析】先去括号,然后合并同类项,最后把数值代入进行计算即可. 【详解】原式=4a 2﹣3a ﹣2a ﹣a+1+2﹣a 2﹣4a , =3a 2﹣10a+3,当a =﹣2时,原式=3×(﹣2)2﹣10×(﹣2)+3 =3×4+20+3, =35.【点睛】本题考查了整式的加减——化简求值,熟练掌握去括号法则及合并同类项法则是解题的关键. 18.计算:(1)-4a -(12a -2); (2)3(2x 2-y 2)-2(3y 2-2x 2). 【答案】(1)-92a +2;(2)10x 2-9y 2.【解析】【分析】(1)先去括号,进行加减运算; (2)先去括号,再合并同类项. 【详解】(1)原式=-4a -12a +2= -92a +2; (2)原式=6x 2-3y 2-6y 2+4x 2=10x 2-9y 2【点睛】本题考查的是整式的加减,熟练掌握方法是解题的关键. 19.2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同()1求m ,n 的值()2求多项式的常数项以及各项的系数和.【答案】(1)3m =,2n =;(2)系数和为:513613-+--=- 【解析】 【分析】根据多项式的概念即可求出n 与m 的值,然后根据多项式即可判断常数项与各项系数. 【详解】解:()1由题意可知:该多项式时六次多项式, ∴216m ++=, ∴3m =, ∵253nmx y-的次数也是六次,∴256n m +-=, ∴2n =∴3m =,()22n =该多项式为:2423536x y xy x -+--常数项6-,各项系数为:5-,1,3-,6-, 故系数和为:513613-+--=-【点睛】本题考查了多项式与单项式,解题的关键是熟练的掌握多项式与单项式的定义.20.小黄做一道题:“已知两个多项式A ,B ,计算A -B ”.小黄误将A -B 看作A +B ,求得结果是2927x x -+.若B =232+-x x ,请你帮助小黄求出A -B 的正确答案.【答案】A -B =7x 2-8x +11.【解析】【分析】先根据题意求出A,再计算A-B 即可.【详解】解:由题意,得:A =(A +B )-B=(2927x x -+)-(x 2+3x-2)=9x 2-2x +7-x 2-3x +2=8x 2-5x +9∴A -B =(8x 2-5x +9)-(232x x +-)=8x 2-5x +9-x 2-3x +2=7x 2-8x +11【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.21.如图所示,某长方形广场的四角都有一块半径相同的14圆形的草地,已知圆形的半径为r 米,长方形的长为a 米,宽为b 米.(1)请列式表示广场空地的面积;(2)若长方形的长为300米,宽为200米,圆形的半径为10米,计算广场空地的面积(计算结果保留π).【答案】(1)ab -πr 2;(2)60 000-100π.【解析】【分析】(1)草地面积=144⨯圆形面积;空地的面积=长方形面积-草地面积; (2)把a =300米,b =200米,圆形的半径=10米代入(1)中式子即可.【详解】(1)广场空地的面积(单位:平方米)为:ab -πr 2;(2)当a=300,b=200,r=10时,ab -πr 2=300×200-π×102=60 000-100π.所以广场空地的面积(单位:平方米)为:60 000-100π.【点睛】本题考查的是列代数式和代数式求值,熟练掌握这两点是解题的关键.22.已知图所示计算程序.根据计算程序回答下列问题:(1)填写表内空格:输入x 3 2 -2 13…输出答案0 …(2)你发现的规律是.(3)用简要过程说明你发现的规律的正确性.【答案】(1)从左到右依次填0,0,0;(2)输入任何数的结果都为0;(3)详见解析.【解析】【分析】(1)根据题目提供的运算程序,把已知数据代入进行运算,进而将所得的结果填入表格即可;(2)接下来观察表格中数据特征总结出规律;(3)根据程序可写出关于x的方程式,此方程式的值为0,所以无论x取任何值,结果都为0. 【详解】(1)从左到右依次填0,0,0.(2)输入任何数的结果都为0(3)2x2x-12x2-12x=12x2+12x-12x2-12x=0.所以无论x取任何值,结果都为0,即结果与字母x的取值无关.【点睛】本题考查的是整式的混合运算和规律的总结,熟练掌握这两点是解题的关键. 附加题(共20分,不计入总分)23.如果x-2y=3,m+2n=2,则(x+m)-2(y-n)的值是_________.【答案】5【解析】【分析】原式去括号变形后,将已知等式代入计算即可求出值.【详解】∵x-2y=3,m+2n=2,∴(x+m)-2(y-n)=x+m-2y+n=x-2y+ m+2n=5.【点睛】本题考查的整式的加减,熟练掌握这一点是解题的关键.24.一般情况下a2323b a b++=+不成立,但有些数可以使得它成立,例如a=b=0.我们称使得a2323b a b++=+成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值.(2)若(m,n)是“相伴数对”,求整式26m+4n-2(4m-2n)+5的值.【答案】(1)b=-94;(2)5.【解析】【分析】(1)结合题中所给的定义将(1,b)代入式子求解即可;(2)将(m,n)代入a2323b a b++=+,然后对代数式进行化简求解即可.【详解】(1)将a=1,代入a2323b a b++=+中,得112323b b++=+,化简求得b=-94.(2)将a=m,b=n,代入a2323b a b++=+中,得9m+4n=0.26m+4n-2(4m-2n)+5=26m+4n-8m+4n+5=18m+8n+5=2(9m+4n)+5=0+5=5. 【点睛】本题考查的是整式的加减,熟练掌握这一点是解题的关键.。

第二章整式的加减(人教版)单元测试题(含答案)

第二章整式的加减(人教版)单元测试题(含答案)

第二章整式的加减(人教版)单元测试题(含答案)第二章整式的加减单元测试一、填空题(每题3分,共27分)1、单项式-3x减去单项式-4x2y+2x2y-5x2的和,列算式为,-5x2-4x2y-3x。

化简后的结果是-5x2-4x2y-3x。

2、当x=-2时,代数式-x+2x-1=1,x-2x+1=-x+1.3、写出一个关于x的二次三项式,使得它的二次项系数为-5,则这个二次三项式为-5x^2+2x+1.5、XXX从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则XXX卖报收入为0.5b-0.4a元。

6、计算:3x-3+5x-7=8x-10,(5a-3b)+(9a-b)=14a-4b。

7、计算:(m+3m+5m+…+2009m)-(2m+4m+6m+…+2008m)=1005m。

8、-a+2bc的相反数是a-2bc,3-π≈-0.1416,最大的负整数是-1.9、若多项式2x+3x^2+7的值为10,则多项式6x+9x^2-7的值为26.10、若(m+2)2x^3yn^-2是关于x,y的六次单项式,则m≠0,n=2.11、已知a^2+2ab=-8,b^2+2ab=14,则a^2+4ab+b^2=6.12、多项式3x^3-2x^2-7x+1是三次多项式,最高次项是3x^3,常数项是1.二、选择题(每题3分,共18分)13、下列等式中正确的是(D)。

A、2x-5=-(5-2x)B、7a+3=7(a+3)C、-a-b=-(a-b)D、2x-5=-(2x-5)14、下面的叙述错误的是(A)。

A、(a+2b)的意义是a与b的2倍的和的平方。

B、a+2b的意义是a与b的2倍的和。

C、(a^2/2b)的意义是a的立方除以2b的商。

D、2(a+b)^2的意义是a与b的和的平方的2倍。

15、下列代数式书写正确的是(C)。

A、a48B、x÷yC、a(x+y)D、116、-(a-b+c)变形后的结果是(B)。

人教版七年级数学上册第2章《整式的加减》单元测试题(含解析)

人教版七年级数学上册第2章《整式的加减》单元测试题(含解析)

人教版七年级数学上册第2章《整式的加减》单元测试题一.选择题1.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个2.若5y﹣2x=3,则代数式4﹣10y+4x的值是()A.﹣3 B.﹣2 C.0 D.73.多项式3xy2﹣2y+1的次数及一次项的系数分别是()A.3,2 B.3,﹣2 C.2,﹣2 D.4,﹣24.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列说法正确的是()A.单项式3ab的次数是1B.3a﹣2a2b+2ab是三次三项式C.单项式的系数是2D.﹣4a2b,3ab,5是多项式﹣4a2b+3ab﹣5的项6.裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,则下列各式中,能正确表示这个商店第一季度的总利润的是()A.50(1+m)万元B.50(1+m)2万元C.[50+50(1+m)]万元D.[50+50(1+m)+50(1+m)2]万元7.下列计算正确的是()A.3a+4b=7ab B.3a﹣2a=1C.3a2b﹣2ab2=a2b D.2a2+3a2=5a28.若与的和是单项式,则a+b=()A.﹣3 B.0 C.3 D.69.已知A=x2+3y2﹣5xy与B=2xy+2x2﹣y2,则3A﹣B为()A.3x2+y2﹣3xy B.﹣x2+4y2﹣7xyC.x2+10y2﹣17xy D.5x2+8y2﹣13xy10.一个代数式加上﹣5+3x﹣6x2得到4x2﹣5x,则这个代数式是()A.10x2﹣8x+5 B.8x2﹣8x﹣5 C.2x2﹣8x+5 D.10x2﹣8x﹣5 11.下列去括号运算正确的是()A.﹣(x﹣y+z)=﹣x﹣y﹣zB.x﹣(y﹣z)=x﹣y﹣zC.x﹣2(x+y)=x﹣2x+2yD.﹣(a﹣b)﹣(﹣c﹣d)=﹣a+b+c+d12.一个多项式加上12y+7x+z2等于5y+3x﹣15z2,则这个多项式是()A.﹣7y﹣4x﹣16z2B.7y+4x+16z2C.17y+10x﹣14z2D.7y+4x﹣16z2二.填空题13.若a﹣2b=3,则4b﹣2a=.14.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费元.15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.16.a的3倍与b的倒数的差,用代数式表示为.17.若代数式x2+x+3的值的值为7,则代数式的值为.18.已知关于x,y的多项式﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7不含二次项,则m+n=.19.已知三角形的周长为3m﹣n,其中两边的和为2m,则此三角形第三边的长为.20.甲、乙、丙三人有相同数量的小球.如果甲给乙2颗,丙给甲5颗,然后乙再给丙一些球,所给的数量与丙还有的球数量相同,那么乙最后剩下颗球.三.解答题21.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b是数轴上最小的正整数,单项式的次数为c.(1)a=,b=,c=.(2)请你画出数轴,并把点A,B,C表示在数轴上;(3)请你通过计算说明线段AB与AC之间的数量关系.22.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).23.已知A=3a2b﹣2ab2+abc,小明错将“C=2A﹣B”看成“C=2A+B”,算得结果C=4a2b﹣3ab2+4abc.(1)求正确的结果的表达式;(2)小芳说(1)中结果的大小与c的取值无关,对吗?若a=2,b=,求(1)中代数式的值.24.先化简,再求值:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中x=1,y=﹣2.25.先化简,再求值:2x2﹣[3(﹣x2+xy)﹣(xy﹣3x2)]+2xy,其中x是﹣2的倒数,y 是最大的负整数.参考答案1.解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.2.解:∵5y﹣2x=3,∴原式=4﹣2×(5y﹣2x)=4﹣2×3=﹣2,故选:B.3.解:多项式3xy2﹣2y+1的次数是:3,一次项的系数是:﹣2.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:A、单项式3ab的次数是2,故此选项错误;B、3a﹣2a2b+2ab是三次三项式,故此选项正确;C、单项式的系数是,故此选项错误;D、﹣4a2b,3ab,﹣5是多项式﹣4a2b+3ab﹣5的项,故此选项错误;故选:B.6.解:∵裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,∴二月份的利润为50(1+m)万元,三月份的利润为50(1+m)2,∴这个商店第一季度的总利润是[50+50(1+m)+50(1+m)2]万元.故选:D.7.解:A、3a和4b不能合并,故本选项不符合题意;B、3a﹣2a=a,故本选项不符合题意;C、3a2b和﹣2ab2不能合并,故本选项不符合题意;D、2a2+3a2=5a2,故本选项符合题意;故选:D.8.解:根据题意可得:,解得:,所以a+b=3+0=3,故选:C.9.解:∵A=x2+3y2﹣5xy与B=2xy+2x2﹣y2,∴3A﹣B=3(x2+3y2﹣5xy)﹣(2xy+2x2﹣y2)=3x2+9y2﹣15xy﹣2xy﹣2x2+y2=x2+10y2﹣17xy.故选:C.10.解:由题意得:这个代数式=(4x2﹣5x)﹣(﹣5+3x﹣6x2)=4x2﹣5x+5﹣3x+6x2=10x2﹣8x+5.故选:A.11.解:A、原式=﹣x+y﹣z,不符合题意;B、原式=x﹣y+z,不符合题意;C、原式=x﹣2x﹣2y=﹣x﹣2y,不符合题意;D、原式=﹣a+b+c+d,符合题意,故选:D.12.解:根据题意得:(5y+3x﹣15z2)﹣(12y+7x+z2)=5y+3x﹣15z2﹣12y﹣7x﹣z2=﹣7y ﹣4x﹣16z2,故选:A.13.解:∵a﹣2b=3.4b﹣2a=2(2b﹣a)=2×(﹣3)=﹣6.故答案为:﹣6.14.解:根据单价×数量=总价得,共需花费(30m+15n)元,故答案为:(30m+15n).15.解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.16.解:由题意可得:3a﹣.故答案为:3a﹣.17.解:∵x2+x+3=7,∴x2+x=4,∴原式=(x2+x)﹣5=×4﹣5=1﹣5=﹣4,故答案为:﹣418.解:﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7=﹣5x2y﹣(2n+3)xy+5my2+4x﹣7,∵多项式不含二次项,∴5m=0,2n+3=0,解得m=0,n=﹣1.5,∴m+n=﹣1.5,故答案为:﹣1.5.19.解:由题意可知:3m﹣n﹣2m=m﹣n.故答案为:m﹣n.20.解:设甲、乙、丙原来有a颗小球,乙最后剩下的小球有:a+2﹣(a﹣5)=a+2﹣a+5=7,故答案为:7.21.解:(1)多项式﹣2x2﹣4x+1的一次项系数是﹣4,则a=﹣4,数轴上最小的正整数是1,则b=1,单项式的次数为6,则c=6,故答案为:﹣4,1,6;(2)如图所示,,点A,B,C即为所求.;(3)AB=b﹣a=1﹣(﹣4)=5,AC=c﹣a=6﹣(﹣4)=10.∵10÷5=2,∴AC=2AB.22.解:(1)花坛的周长l=2a+2πr,(2)花坛的面积S=2ra+πr2,(3)l=2a+2πr=16+10π=47.4(米),S=2ra+πr2=2×5×8+3.14×25=158.5(平方米).23.解:(1)∵2A+B=C,∴B=C﹣2A=4a2b﹣3ab2+4abc﹣2(3a2b﹣2ab2+abc)=4a2b﹣3ab2+4abc﹣6a2b+4ab2﹣2abc=﹣2a2b+ab2+2abc;∴2A﹣B=2(3a2b﹣2ab2+abc)﹣(﹣2a2b+ab2+2abc)=6a2b﹣4ab2+2abc+2a2b﹣ab2﹣2abc=8a2b﹣5ab2;(2)小芳说的对,与c无关,将a=2,b=代入,得:8a2b﹣5ab2==6.24.解:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy当x=1,y=﹣2时,原式=﹣6×1×(﹣2)=12.25.解:原式=2x2+5x2﹣2xy+xy﹣3x2+2xy=4x2+xy,∵x是﹣2的倒数,y是最大的负整数,∴x=﹣,y=﹣1,则原式=1.。

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷一.选择题(每题3分,共30分)1.下列代数式中,符合书写规则的是( )A .xB .x ÷yC .m ×2D .32.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .B .C .D .3关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+14.若x+y=1,则代数式3(4x-1)-2(3-6y )的值为( )A .-8B .8C .-3D .35.下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=1A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣17.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 等于( )A .x 2-5y 2+1B .x 2-3y 2+1C .5x 2-3y 2-1D .5x 2-3y 2+18.两船从同一港口同时反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h ,水流的速度为a km/h ,3h 后,甲船比乙船多航行的路程是( )A .1.5a kmB .3a kmC .6a kmD .(150+3a )km 9.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面.(﹣x 2+3xy 12-y 2)﹣(12-x 2+4xy 12-y 2)12=-x 2●,黑点处即为被墨迹弄污的部分,那么被墨汁遮住的一项应是( )A .﹣xyB .+xyC .﹣7xyD .+7xy10.如图,阴影部分的面积为A.B.C.D.二、填空题(共24分)11.减去3m后,等于3m2+m﹣1的多项式是.12.已知3a n b n﹣1与﹣5a2b2m(m是正整数)是同类项,那么(2m﹣1)2=.13.计算:(m+3m+5m+…+2019m)﹣(2m+4m+6m+…+2020m)=.14.小华在计算多项式P加上x2﹣3x+6时,因误认为加上x2+3x+6,得到的答案是2x2﹣4x,则P应是.15.如图,把五个长为b、宽为a的小长方形,按图1和图2两种方式放在一个宽为m的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为C1,图2中阴影部分的周长为C2,若大长方形的长比宽大(6﹣a),则C2﹣C1的值为.16.如图,将图①中的四边形剪开得到图②,图中共有4个四边形;将图②中的一个四边形剪开得到图③,图中共有7个四边形;如此剪下去,第5个图中共有________个四边形,第n(n为正整数)个图中共有________个四边形.。

第二章整式的加减(人教版)单元测试题(含标准答案)

第二章整式的加减(人教版)单元测试题(含标准答案)

第二章整式的加减单元测试一、填空题(每题3分,共36分)1、单项式3x2减去单项式4x2y, 5x2,2x2y的和,列算式______________ ?化简后的结果是2、当x 2 时,代数式一x2 2x 1 = ____________ , x2 2x 1 = ___________ 。

3、写出一个关于x的二次三项式,使得它的二次项系数为-5 ,则这个二次三项式为 ________________________________ 。

4、已知:x 11,则代数式(x $2010 x - 5的值是_________________ 。

x x x5、张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 ______ 元。

6 计算:3x 3 5x7 ______________ ,(5a 3b) (9a b) = ___________ 。

7 、计算:(m 3m 5m 2009 m) (2m 4m 6m 2008m) = _________________________ 。

8、一a 2bc的相反数是 __________ ,3 = _________ ,最大的负整数9、若多项式2x2 3x 7的值为10,则多项式6x2 9x 7的值为。

10、若(m 2)2 x3y n 2是关于x, y的六次单项式,则m ________ ,n= _______ 。

11、已知a2 2ab 8, b2 2ab 14,则a2 4ab b2 _______________a2b212、多项式3x2 2x 7x3 1是___________ 次 ______ 项式,最高次项是______常数项是。

二、选择题(每题3分,共30分)13、下列等式中正确的是()A 、2x 5 (5 2x) 、7a 3 7(a 3) C 、一 a b (a b) 、2x 5(2x 5)14、 F 面的叙述错误的是( (a 2b )2的意义是a 与b 的2倍的和的平方 B 、 a 2b 2的意义是a 与b 2的2倍的和C、 (詡3的意义是a 的立方除以2b 的商 2(a b )2的意义是a 与b 的和的平方的2倍 15、下列代数式书写正确的是( A 、a48 、a(x y)1、1- abc216、一 (a b c )变形后的结果是A 、一 a 17、下列说法正确的是( b cB 、一 a) A 、0不是单项式B 、x 没有系数是多项式xy 5是单项式列各式中,去括号或添括号正确的是( 1& 、a 2(2a b c) a 2 2a b c B 、a 3x 2y 1 a ( 3x 2y 1) 、3x [5x (2x 1)] 3< 5x 2x 1 D 、一 2x 1 (2x y) (a 1)19、代数式a 1 , a b ,4x y ,_^ ; 、4 2aB 20、若A 和B 都是4次多项式,则 A 、8次多项式 BC 、次数不高于4次的整式 1 2 ,a,2009_a bG 2 C A+B —定是(3mn 中单项式的个数是( 4 、5 D )、4次多项式D 、次数不低于4次的整式21、已知 2m 6 n 与5x m 2x n y 是同类项,贝9(3A 、x2, y1B 、x3, y1C 、x , y 1D 、x 3, y 0222、下列计算中正确的是( )A > 6a 5a 1B 、5x 6x 11xC 、m 2 m mD 、x 3 6x 3 7x 3 三、化简下列各题(每题3分,共18分)四、化简求值(每题5分,共10分) 1 29、2x 2 [x 22(x 2 3x 1) 3(x 2 1 2x )]其中:x .223、5 6(2a24、2a (5b a) b25、- 3(2x y) 2(4x 1 y) 2009226、一2m 3(m n 1) 2 127、3(x 2 y 2) (y 2 z 2) 4(z 2 y 2)28 x 2 {x 2 [x 2 (x 2 1) 1] 1} 130、 2(ab 2 2 a 2 b) 3(ab 2 a 2b) (2ab 2 2a 2b) 其中:a 2,b 1.五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:m,x,y满足:(1)— (x 5)25 m 0; (2) 2a2b y 1与7b3a2是同类项. 3求代数式:2x2 6y2 m(xy 9y2) (3x2 3xy 7y2)的值。

人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)

人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)

第二章《整式的加减》单元测试题一、选择题(每小题只有一个正确答案)1.已知一个多项式减去-2m结果等于m2+3m+2,这个多项式是()A.m2+5m+2B.m2-m-2C.m2-5m-2D.m2+m+22.下列各组单项式中,不是同类项的是()A. 3x2y与-2yx2B. 2ab2与-ba2C.xy3与5xy D. 23a与32a3.已知3xa-2是关于x的二次单项式,那么a的值为()A. 4B. 5C. 6D. 74.若-2am+4b4与5a2bn+1可以合并成一项,则mn的值是()A.-6B. 8C.-8D. 95.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A.a2-3a+4B.a2-3a+2C.a2-7a+2D.a2-7a+46.多项式a3-2a2b2+5b2的次数是()A. 2 B. 3 C. 4 D. 97.下列结论正确的是()A. 3x2-x+1的一次项系数是1B.xyz的系数是0C.a2b3c是五次单项式D.x5+3x2y4-2x3y是六次三项式8.有一组单项式:a2,-a32,a43,-a54…,请观察它们的构成规律,用你发现的规律写出第10个单项式为()A.a1010B.-a1010C.a1110D.-a11109.计算-3(x-2y)+4(x-2y)的结果是()A.x-2y B.x+2y C.-x-2y D.-x+2y10.有理数a,b,c在数轴上的位置如图所示,则|a+b|-2|c-b|+3|b+a|等于()A.-2b B. 0 C.-4a-b-3c D.-4a-2b-2c二、填空题11.去括号:3x-(a-b+c)=___________.12.a、b在数轴上的位置如图所示,化简|a+b|-2|a-b|=___________.13.有规律地排列着这样一些单项式:-xy,x2y,-x3y,x4y,-x5y,…,则第n个单项式(n≥1正整数)可表示为___________.14.10a-5减去(-5a+7)的差是___________.三、解答题15.化简:①4a2+3b2+2ab-3a2-4b2;①(2a-4b)-(3a+4b);①2(4a2b-10b3)+(-3a2b-20b3);①(-x2+3xy-4y3)-3(2xy-3y2).16.先化简,再求值:5(a2b+2ab2)-2(3a2b+5ab2-1),其中a=-2,b=2.17.已知多项式y4-x4+3x3y-1xy2-5x2y3.2(1)按字母x的降幂排列;(2)按字母y的升幂排列.18.观察下面有规律的三行单项式:x,2x2,4x3,8x4,16x5,32x6,…①-2x,4x2,-8x3,16x4,-32x5,64x6,…①2x2,-3x3,5x4,-9x5,17x6,-33x7,…①(1)根据你发现的规律,第一行第8个单项式为___________;(2)第二行第n个单项式为___________;(3)第三行第8个单项式为___________;第n个单项式为___________.答案解析1.【答案】D【解析】设这个多项式为M ,则M =(m 2+3m +2)+(-2m )=m 2+3m +2-2m =m 2+m +2 2.【答案】B【解析】A 、字母相同且相同字母的指数也相同,故A 正确; B 、相同字母的指数不同不是同类项,故B 错误; C 、字母相同且相同字母的指数也相同,故C 正确; D 、字母相同且相同字母的指数也相同,故D 正确. 3.【答案】A【解析】因为3xa -2是关于x 的二次单项式, 所以a -2=2, 解得a =4 4.【答案】C【解析】根据题意可得m +4=2,n +1=4, 解得m =-2,n =3, 所以mn =-8. 5.【答案】D【解析】(6a 2-5a +3)-(5a 2+2a -1) =6a 2-5a +3-5a 2-2a +1 =a 2-7a +4. 6.【答案】C【解析】a 3-2a 2b 2+5b 2的次数是4. 7.【答案】D【解析】A 、3x 2-x +1的一次项系数是-1,故错误; B 、xyz 的系数是1,故错误; C 、a 2b 3c 是六次单项式,故错误; D 、正确. 8.【答案】D【解析】注意观察各单项式系数和次数的变化, 系数依次是1(可以看成是11),-12,13,-14…据此推测,第十项的系数为-110;次数依次是2,3,4,5…据此推出,第十项的次数为11.所以第十个单项式为-a11.10 9.【答案】A【解析】-3(x-2y)+4(x-2y)=-3x+6y+4x-8y=x-2y.10.【答案】D【解析】因为由图可知,a<b<0<c,|a|>|b|>c,所以a+b<0,c-b>0,b+a<0,所以原式=-(a+b)-2(c-b)-3(b+a)=-a-b-2c+2b-3b-3a=-4a-2b-2c.11.【答案】3x-a+b-c【解析】3x-(a-b+c)=3x-a+b-c.12.【答案】-3a+b【解析】由数轴可得b+a<0,a-b>0,则|a+b|-2|a-b|=-a-b-2(a-b)=-3a+b13.【答案】(-x)n y【解析】第n个单项可表示为(-x)n y14.【答案】15a-12【解析】(10a-5)-(-5a+7)=10a-5+5a-7=15a-12.15.【答案】解:①原式=(4-3)a2+(3-4)b2+2ab=a2+2ab-b2;①原式=2a-4b-3a-4b=-a-8b;①原式=8a2b-20b3-3a2b-20b3=5a2b-40b3;①原式=-x2+3xy-4y3-6xy+9y2=x2-4y3-3xy+9y2.【解析】①直接合并同类项即可;①①①先去括号,再合并同类项即可.16.【答案】解:原式=5a2b+10ab2-6a2b-10ab2+2=-a2b+2,当a=-2,b=2时,原式=-8+2=-6.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.17.【答案】解:(1)按字母x的降幂排列:−x4+3x3y−5x2y3−1xy2+y4;2(2)按字母y的升幂排列:−x4+3x3y−5x2y3−1xy2+y4.2【解析】(1)根据x的指数的从大到小顺序排列即可;(2)根据y的指数的从小到大顺序排列即可.18.【答案】(1)128x8(2)(-2)nxn(3)-129x9(-1)n+1(1+2n-1)xn+1【解析】通过观察很容易得到三组数据数字因数、字母次数之间的关系,根据规律写出相应的式子即可.解:因为第一行的每个单项式,数字因数后面都是前面的2倍,字母次数与这个单项式是第几个有关,根据这个规律可得第一行第8个单项式为 128x8;因为第二行的每个单项式,数字因数后面都是前面的(-2)倍,字母次数与这个单项式是第几个有关,根据这个规律可得第n个单项式为(-2)nxn;通过观察第三行的这组单项式,这组单项式符合(-1)n+1(1+2n-1)xn+1,第8个单项式是-129x9;第n个单项式为(-1)n+1(1+2n-1)xn+1.。

人教版七年级上第二章《整式的加减》单元测试题(含参考答案)

人教版七年级上第二章《整式的加减》单元测试题(含参考答案)

第二章《整式的加减》单元测试题一、选择题(每小题只有一个正确答案)1.下列运算正确的()A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5D.a+a2=a32.单项式的系数是( )A.B.πC.2D.3.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+14.组成多项式2x2-x-3的单项式是下列几组中的()A.2x2,x,3B.2x2,-x,-3C.2x2,x,-3D.2x2,-x,35.下列各式按字母x的降幂排列的是()A.-5x2-x2+2x2B.ax3-2bx+cx2C.-x2y-2xy2+y2D.x2y-3xy2+x3-2y26.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A.7个B.6个C.5个D.4个7.多项式x|m|-(m-4)x+7是关于x的四次三项式,则m的值是( )A.4B.-2C.-4D.4或-48.已知有理数a,b,c在数轴上所对应点的位置如图所示,则代数式|a|+|a+b|+|c -a|-|b-c|=( )A.-3a B.2c-a C.2a-2b D.b9.如果|x-4|与(y+3)2互为相反数,则2x-(-2y+x)的值是( )A.-2B.10C.7D.610.已知M=4x2-x+1,N=5x2-x+3,则M与N的大小关系为( )A.M >N B.M<N C.M=N D.无法确定11.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:(2a2+3ab-b2)-(-3a2+ab +5b2)=5a2-6b2,一部分被墨水弄脏了.请问空格中的一项是( )A.+2ab B.+3ab C.+4ab D.-ab12.下列是由一些火柴搭成的图案,图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n○个图案用多少根火柴( )A.4n+3B.5n-1C.4n+1D.5n-4二、填空题13.单项式的系数是__,次数是__.14.请写出一个系数是-2,次数是3的单项式:________________.15.三个连续奇数,中间的一个是n,则这三个数的和是________.16.在代数式3xy2,m,6a2-a+3,,2,4x2yz-xy2,,中,单项式有________个,多项式有________个,整式有________个.17.已知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为_____.三、解答题18.化简:(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)19.化简(1)5x2+x+3+4x﹣8x2﹣2(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)(3)3(x2﹣5x+1)﹣2(3x﹣6+x2)20.已知:关于x的多项式2ax3-9+x3-bx2+4x3中,不含x3与x2的项.求代数式3(a2-2b2-2)-2(a2-2b2-3)的值.21..设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,(1)求B-2A(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.22.观察下列三行数:0,3, 8,15,24, …2,5,10,17,26, …②0,6,16,30,48, …③(1)第①行数按什么规律排列的,请写出来?(2)第②、③行数与第①行数分别对比有什么关系?)(3)取每行的第个数,求这三个数的和23.有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=,y=-1.”甲同学把“x=”错抄成“x=-”,但他计算的结果也是正确的,试说明理由,并求出正确结果.参考答案1.C【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.详解:A、(b2)3=b6,故此选项错误;B、x3÷x3=1,故此选项错误;C、5y3•3y2=15y5,正确;D、a+a2,无法计算,故此选项错误.故选:C.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.2.D【解析】试题分析:单项式的系数是:.故选D.考点:单项式.3.B【解析】多项式0.3x2y﹣2x3y2﹣7xy3+1,有四项分别为:0.3x2y,﹣2x3y2,﹣7xy3,+1,最高次为5次,是五次四项式,故A正确;四次项的系数是-7,故B错误;常数项是1,故C正确;按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+1,故D正确,故符合题意的是B选项,故选B.4.B【解析】多项式是由多个单项式组成的,在多项式2x2﹣x﹣3中,单项式分别是2x2,﹣x,﹣3,故选:B.5.C【解析】【分析】根据题意将各式按字母x的降幂排列,就是要求x的指数从高到低排列.【详解】A. -5x2-x2+2x2,指数相同,不符合条件;B. ax3-2bx+cx2,没有按x降幂排列;C. -x2y-2xy2+y2,有按x降幂排列;D. x2y-3xy2+x3-2y2,没有按x降幂排列.故选:C【点睛】本题考核知识点:字母的降幂排列. 解题关键点:理解幂的意义.6.B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式.【详解】在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选:B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.7.C【解析】分析:根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.详解:∵多项式x|m|−(m−4)x+7是关于x的四次三项式,∴|m|=4,-(m-4)≠0,∴m=-4.故选:C.点睛:本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.8.A【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据数轴上点的位置得:b<a<0<c,∴a+b<0,c﹣a>0,b-c<0,则原式=﹣a﹣a﹣b+c﹣a+b﹣c=﹣3a.故选A.【点睛】本题考查了整式的加减,熟练掌握运算法则是解答本题的关键.9.A【解析】【分析】利用互为相反数两数之和为0列出关系式,根据非负数的性质求出x与y的值,原式去括号合并后代入计算即可求出值.【详解】∵|x﹣4|与(y+3)2互为相反数,即|x﹣4|+(y+3)2=0,∴x=4,y=﹣3,则原式=2x+2y﹣x=x+2y=4﹣6=﹣2.故选A.【点睛】本题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解答本题的关键.10.B【解析】分析:用N-M,去括号合并同类项后,根据差的符号情况可判断M与N的大小关系.详解:M=4x2-x+1,N=5x2-x+3,∴N-M=(5x2-x+3)-(4x2-x+1)=5x2-x+3-4x2+x-1=x2+2≥0,∴M<N.故选B.点睛:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.11.A【解析】【分析】将等式右边的已知项移到左边,再去括号,合并同类项即可.【详解】依题意,空格中的一项是:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)﹣(5a2﹣6b2)=2a2+3ab﹣b2+3a2﹣ab﹣5b2﹣5a2+6b2=2ab.故选A.【点睛】本题考查了整式的加减运算.解决此类题目的关键是运用移项的知识,同时熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.12.C【解析】分析:注意认真观察图形,根据图形很容易发现规律:第n个图形是4n+1,可得答案..详解:第一个图需要5根.第二个图需要9根.比第一个图多4根.依此类推,第n个图中需要5+4(n-1)=4n+1.故选:C.点睛:此题考查了图形的变化类,关键是从图中特殊的例子推理得出一般的规律,本题的规律是每个图案都比上一个图案多一个五边形,但只增加4根火柴.13.4【解析】【分析】单项式就是数与字母的乘积,数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,据此即可求解.【详解】单项式的系数是:,次数是:1+3=4.故答案为:;4.【点睛】本题主要考查了单项式的系数与次数的定义,在写系数时,注意不要忘记前边的符号是解答此题的关键.14.-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】系数是-2,次数是3的单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.3n【解析】【分析】中间数为n,分别表示出其它两个数,求和即可.【详解】由题意得,其它两个数为:n-2,n+2,则三个数的和=n-2+n+n+2=3n.故答案为:3n.【点睛】本题考查了整式的加减,关键是表示出这三个连续奇数,属于基础题.16.336【解析】分析:根据单项式、多项式、整式的概念解答即可.详解:3xy2,m,2是单项式;6a2-a+3,4x2yz-xy2,是多项式;3xy2,m,6a2-a+3,2,4x2yz-xy2,是整式;,的分母中含有字母,不是整式(是分式).故答案为:3,3,6.点睛:本题考查了整式、单项式、多项式的识别,只含有加、减、乘、乘方的代数式叫做整式;其中不含有加减运算的整式叫做单项式,单独的一个数或衣蛾字母也是单项式;含有加减运算的整式叫做多项式.17.1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为:118.x2﹣3xy+2y2.【解析】【分析】根据括号前是正号,去掉括号及正号,各项都不变,括号前是负号,去掉括号及负号,各项都变号,可去括号,再根据系数相加字母部分不变,合并同类项.【详解】原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=3x2﹣2x2﹣xy﹣2xy﹣2y2+4y2= x2﹣3xy+2y2.【点睛】本题考查了去括号与添括号,根据法则去括号添括号是解题的关键.19.(1)﹣3x2+5x+1;(2)3x3﹣7x2﹣3;(3)x2﹣21x+15.【解析】试题分析:(1)根据整式的加减法,合并同类项即可;(2)根据整式的加减法,先去括号,再合并同类项即可;(3)根据整式的加减法,先根据乘法分配律去括号,再合并同类项即可.试题解析:(1)5x2+x+3+4x﹣8x2﹣2=(5-8)x2+(1+4)x+(3-2)=-3x2+5x+1(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)= 2x3﹣3x2﹣3+x3-4x2=3 x3﹣7x2-3(3)3 (x2﹣5x+1)﹣2 (3x﹣6+x2)=3x2﹣15x+3-6x+12-2x2=x2-21x+1520.【解析】【分析】根据已知条件得出2a+1+4=0,﹣b=0,求出a、b的值,再去括号,合并同类项,最后代入求值即可.【详解】∵关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项,∴2a+1+4=0,﹣b=0,∴a=﹣2.5,b=0,∴3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)=3a2﹣6b2﹣6﹣2a2+4b2+6=a2﹣2b2=(﹣2.5)2﹣2×02=.【点睛】本题考查了整式的加减和求值,解答此题的关键是能根据整式的加减法则进行化简,难度不21.(1)﹣7x﹣5y;(2)-1.【解析】分析:(1)、根据多项式的减法计算法则得出答案;(2)、根据非负数的性质得出x 和y的值,然后根据B-2A=a进行代入得出a的值.详解:解:(1)、B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+2x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣4x﹣4y=﹣7x﹣5y(2)、∵|x﹣2a|+(y﹣3)2=0 ∴x=2a,y=3又B﹣2A=a,∴﹣7×2a﹣5×3=a,∴a=﹣1.点睛:本题主要考查的是多项式的减法计算法则,属于基础题型.在解答这个问题的时候我们一定要注意去括号的法则.22.(1)规律是:,,,,…;(2)第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍;(3)【解析】【分析】通过观察归纳可得:第①行数规律是序数平方减1,即,, ,,….通过观察归纳可得: 第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍.【详解】(1)规律是:,,,,….(2)第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍,(3)=【点睛】本题主要考查数字规律,解决本题的关键是要熟练掌握分析数字规律的方法.23.2【解析】【分析】原式去括号合并得到结果,即可作出判断.解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3.因为化简后的结果中不含x,所以原式的值与x的取值无关.当x=,y=-1时,原式=-2×(-1)3=2.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.。

人教版第二章《整式的加减》单元测试题

人教版第二章《整式的加减》单元测试题

第二章《整式的加减》检测题一、选择题(每小题3分,共36分) 1、下列式子中,是单项式的是( ) A 、2321-yz x B 、-y x C 、22-n m D 、yx +1 2、下列各组单项式中,不是同类项的是( )A 、23与32 B 、4-2.1m 与473m C 、bc a 383与c 3-3ba D 、b a 232与25.0ab3、若23b -4z x y 与nm y x z 472是同类项,则n m b ,,的值分别是( )A 、4、3、2B 、3、4、2C 、4、2、3D 、2、4、3 4、单项式2-y -4xy,3xy,的和是( )A 、2-y 7xyB 、xy 2C 、3-xy D 、2-xy-y 5、下列各式中,运算错误的是( )A 、3x -2x 5=xB 、0-5nm 5=mnC 、1-5xy 422=y x D 、2222-x 3x x =6、、c)-(a-b +-y )(x +去括号的结果是( ) A 、b -a +x -c +-y B 、-a-b -y x c ++ C 、y x c b -a ++++ D 、y -c-x ++b a7、三个连续奇数,设中间一个为12+n ,则这三个数的和是( ) A 、n 6 B 、16+n C 、26+n D 、36+n8、52,3a a -1,5++a 三个数的平均数比a -3,64+a ,-7a 三个数的平均数大( ) A 、23+a B 、12+a C 、43-2a D 、310+a 9、比-3a-722a 少2-2a 3的多项式是( )A 、-3a-4B 、103-4a 2++aC 、-3a-1042a D 、-3a-10 10、下列计算正确的是( )A 、63333x x x =+ B 、0-6ba 7=abC 、2225451-xy x y xy = D 、2222734b a b a =+11、设A 是一个三次多项式,B 是一个四次多项式,则A+B 的次数是( )A 、4B 、1C 、7D 、不确定12、设-22524x x P +=,-6-x 224x Q =,当1=x 时,它们的值分别是n Q m P ==,,那么当-1=x 时,它们的值为( )A 、n Q m P ==,B 、-n Q -m,==PC 、-n ,==Q m PD 、n Q -m,==P 二、填空题(每小题3分,共30分)13、单项式2ab -2c的系数是__________,次数是_________14、多项式4-2y -3x 2222+y x 是______次_______项式。

人教版七年级上册数学第二单元 整式的加减 单元测试卷2(Word版,含答案)

人教版七年级上册数学第二单元 整式的加减 单元测试卷2(Word版,含答案)

人教版七年级上册数学第二单元 整式的加减 单元测试卷2一.选择题(每题4分,共40分)1. 在多项式-3x 3-5x 2y 2+xy 中,次数最高的项的系数为( )A.3B.5C.-5D.1 2.若m-n=-1,则(m-n)2-2m+2n 的值为( )A.-1B.1C.2D.33.下列计算正确的是( ).(A )x x 1248=+ (B )y y =-44 (C )y y y =-34 (D )33=-x x4.有一捆粗细均匀的电线,现要确定它的长度.从中先取出1m 长的电线,称出它的质量为a ,再称出其余电线的总质量为b ,则这捆电线的总长度是( )A .(ab+1)mB .(b a -1)mC .(b a +1)mD .(b a a++1)m 5.下列说法中,正确的是( )A .-234x 的系数是34B .232a 的系数是32C .3a 2b 的系数是3aD .25x 2y 的系数是25 6.若多项式12 x |m|-(m -4)x +7是关于x 的四次三项式,则m 的值是( )A.4B .-2 C.-4 D .4或-47.某药店在市场上抗病毒药品紧缺的情况下,将某药品提价100%,物价部门查处后,限定其提价幅度只能是原价的10%,则该药品现在降价的幅度是( )A.45% B .50% C .90% D .95%8.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长为2b 的小正方形后,再将剩下的三块拼成一块长方形,则这块长方形较长的边长为( )A.3a +2bB.3a +4bC.6a +2bD.6a +4b9.当1<a<2时,式子|a-2|+|1-a|的值是()A.-1B.C.3D.-310.设M=x2+8x+12,N=-x2+8x-3,那么M与N的大小关系是()A.M>NB.M=NC.M<ND.无法确定二.填空题(每题4分,共20分)7a b的次数是.11.单项式3212.已知m2﹣2m﹣1=0,则2m2﹣4m+3= .13.若a-b=3,ab=2,则a2b-ab2= .14.代数式a2+a+3的值为8,则代数式2a2+2a﹣3的值为.15.甲、乙二人一起加工零件.甲平均每小时加工a个零件,加工2小时;乙平均每小时加工b个零件,加工3小时.甲、乙二人共加工零件个.三.解答题(每题10分,共50分)16.化简:(1)(8x-7y)-2(4x-5y);(2)-(3a2-4ab)+[a2-2(2a2+2ab)].。

整式的加减单元测试(二)(通用版)(含答案)

整式的加减单元测试(二)(通用版)(含答案)

整式的加减单元测试(二)(通用版)试卷简介:进一步理解字母表示数的意义,掌握整式的一些基本概念,能进行整式的加减运算,形成用符号表示数或数量关系并获得、解释一般性结论的意识。

一、单选题(共14道,每道6分)1.用字母表示有理数的减法法则是( )A. B.C. D.答案:B解题思路:有理数的减法法则:减去一个数等于加上这个数的相反数.因此.故选B.试题难度:三颗星知识点:有理数的减法法则2.对于式子:,下列结论正确的是( )A.有4个单项式,2个多项式B.有5个单项式,3个多项式C.有7个整式D.有3个单项式,2个多项式答案:A解题思路:数与字母的乘积叫做单项式.单独的一个数或一个字母也叫单项式.因此是单项式的有.几个单项式的和叫做多项式,因此是多项式.所以这些式子中4个单项式,2个多项式.故选A.试题难度:三颗星知识点:多项式的定义3.若多项式是关于的二次三项式,则与的差的相反数为( )A.8B.-4C.4D.-8答案:B解题思路:由题意得,即.所以与的差,与的差的相反数为-4.故选B.试题难度:三颗星知识点:多项式的次数与项数4.下列说法正确的是( )A.单项式的系数是B.单项式的系数是-2,次数是4C.多项式是二次三项式D.多项式的项是和3答案:C解题思路:A选项:单项式的系数是,故A选项错误;B选项:是常数,不是字母,所以单项式的系数是,次数是3,故B选项错误;D选项:几个单项式的和叫做多项式,所以多项式的项是和-3,故D选项错误.故选C.试题难度:三颗星知识点:多项式的定义5.若和都是六次多项式,则一定是( )A.十二次多项式B.六次多项式C.次数不高于六的多项式或单项式D.次数低于六的多项式答案:C解题思路:和都是六次多项式,通过合并同类项求和时,结果可能是单项式,也可能是多项式,且次数一定小于或等于六.例如:若,则,是次数为六的多项式;若,则,是一个次数小于六的单项式.故选C.试题难度:三颗星知识点:单项式的次数6.若与是同类项,则的值为( )A.8B.-8C.6D.-6答案:B解题思路:所含字母相同,并且相同字母的指数也相同的项,叫做同类项.则,.故选B.试题难度:三颗星知识点:同类项7.先定义一种新的运算“☆”,规定☆(为整式).当时,则☆的值为( )A. B.C. D.答案:C解题思路:根据题目中的定义:☆.故选C.试题难度:三颗星知识点:定义新运算8.若代数式的值为8,则代数式的值为( )A.1B.2C.3D.4答案:C解题思路:由题意得,即,所以.故选C.试题难度:三颗星知识点:整体代入9.给定一列按规律排列的数:,则这列数的第50个数是( )A. B.C. D.答案:C解题思路:分析:标序号,列结构:①,分子1,分母2=12+1②,分子2,分母5=22+1③,分子3,分母10=32+1验证:④,分子4,分母17=42+1,;,处理符号:第个:,分子,分母.验证:取,,与题干中第一项一致,故第个式子合理.当时,.故选C.试题难度:三颗星知识点:探索规律10.有一数值转换器,原理如图所示,若开始输入的值是5,可发现第一次输出的结果是8,第二次输出的结果是4,,请你探索第2013次输出的结果是( )A.1B.2C.4D.8答案:B解题思路:若开始输入的值为5,则第1次输出:8;第2次输出:4;第3次输出:2;第4次输出:1;第5次输出:4;第6次输出:2;第7次输出:1;,可以看出,从第2次开始,输出的结果是一个循环规律,循环周期是3,那么2013-1=2012,2012=3×670+2,因此输出的结果为2.故选B.试题难度:三颗星知识点:循环规律11.若一个多项式减去等于,则这个多项式是( )A. B.C. D.答案:A解题思路:若一个多项式减去等于,则这个多项式为.故选A.试题难度:三颗星知识点:整式的加减12.化简的结果为( )A. B.C. D.0答案:C解题思路:故选C.试题难度:三颗星知识点:整式的加减13.化简的结果为( )A. B.C. D.解题思路:故选B.试题难度:三颗星知识点:整式的加减14.观察下列图形,第30个图形中三角形的个数是( )个A.116B.120C.124D.128答案:B解题思路:分析:根据图形观察每增加一个正方形,就增加4个三角形.标序号,列结构:①三角形个数:4×1②三角形个数:4×2③三角形个数:4×3…,第个:三角形个数:.验证:取,与题干中第一项一致,故第个式子合理.当.故选B.试题难度:三颗星知识点:探索规律二、填空题(共1道,每道7分)15.有甲、乙、丙三种商品,如果购买甲3件、乙2件、丙1件共需315元,购买甲1件、乙2件、丙3件共需285元,那么购买甲、乙、丙三种商品各一件需____元.解题思路:(1)本题主要考查字母表示数及整体代入.(2)解题过程:设购买一件甲商品元,一件乙商品元,一件丙商品元,根据题意得,两式相加得,所以.(3)易错点:①不会根据题意用字母表示题目中的数量关系;②对表达出的式子不能通过观察进行整体代入.试题难度:三颗星知识点:字母表示数。

《第2章整式的加减》单元测试卷含答案解析

《第2章整式的加减》单元测试卷含答案解析

《第2章整式的加减》单元测试卷含答案解析一、选择题(共10小题,每小题3分,满分30分)1.单项式﹣3πxy2z3的系数是( )A.﹣πB.﹣1 C.﹣3π D.﹣32.下面运算正确的是( )A.3x2﹣x2=3 B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=03.下列运算中,正确的是( )A.3a+5b=8ab B.3y2﹣y2=3C.6a3+4a3=10a6D.5m2n﹣3nm2=2m2n4.下列去括号正确的是( )A.﹣(2x+5)=﹣2x+5 B.C.D.5.若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是( ) A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=36.单项式﹣3πxy2z3的系数和次数分别是( )A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,77.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( )A.20 B.18 C.16 D.158.已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是( )A.20 B.﹣20 C.28 D.﹣289.已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是( ) A.ab B.a+b C.10a+b D.100a+b10.原产量n吨,增产30%之后的产量应为( )A.(1﹣30%)n吨B.(1+30%)n吨 C.n+30%吨D.30%n吨二、填空题(每小题3分,共18分)11.单项式的系数是__________,次数是__________.12.多项式2x2y﹣+1的次数是__________.13.任写一个与﹣a2b是同类项的单项式__________.14.多项式3x+2y与多项式4x﹣2y的差是__________.15.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买两支铅笔和三块橡皮,则一共需付款__________元.16.按如图程序输入一个数x,若输入的数x=﹣1,则输出结果为__________.三、运算:(每小题20分,共20分)17.(1)a+2b+3a﹣2b.(2)(3a﹣2)﹣3(a﹣5)(3)3x2﹣3x2﹣y2+5y+x2﹣5y+y2.(4)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)四、先化简下式,再求值.(每小题6分,共12分)18.化简求值:3a2b﹣[2ab2﹣2(﹣a2b+4ab2)]﹣5ab2,其中a=﹣2,b=.19.先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x)+3(x2y2+y),其中x=﹣1,y=2.五、解答题:(每小题分,共20分)20.已知A=2x2﹣1,B=3﹣2x2,求B﹣2A的值.21.运算某个整式减去多项式ab﹣2bc+3a+bc+8ac时,一个同学误认为是加上此多项式,结果得到的答案是﹣2ab+bc+8ac.请你求出原题的正确答案.新人教版七年级上册《第2章整式的加减》2020年单元测试卷一、选择题(共10小题,每小题3分,满分30分)1.单项式﹣3πxy2z3的系数是( )A.﹣πB.﹣1 C.﹣3π D.﹣3【考点】单项式.【分析】依据单项式的系数的定义解答即可.【解答】解:单项式﹣3πxy2z3的系数是﹣3π.故选:C.【点评】本题要紧考查的是单项式系数,明确π是一个数轴不是一个字母是解题的关键.2.下面运算正确的是( )A.3x2﹣x2=3 B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=0【考点】整式的加减.【分析】先判定是否为同类项,若是同类项则按合并同类项的法则合并.【解答】解:A、3x2﹣x2≠=2x2=3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与x不可相加,故C错误;D、﹣0.25ab+ba=0,故D正确.故选:D.【点评】此题考查了合并同类项法则:系数相加减,字母与字母的指数不变.3.下列运算中,正确的是( )A.3a+5b=8ab B.3y2﹣y2=3C.6a3+4a3=10a6D.5m2n﹣3nm2=2m2n【考点】合并同类项.【分析】依照合并同类项的法则结合选项进行求解,然后选出正确选项.【解答】解:A、3a和5b不是同类项,不能合并,故本选项错误;B、3y2﹣y2=2y2,运算错误,故本选项错误;C、6a3+4a3=10a3,运算错误,故本选项错误;D、5m2n﹣3nm2=2m2n,运算正确,故本选项正确.故选D.【点评】本题考查了合并同类项的知识,解答本题的关键是把握合并同类项的法则.4.下列去括号正确的是( )A.﹣(2x+5)=﹣2x+5 B.C.D.【考点】去括号与添括号.【专题】常规题型.【分析】去括号时,若括号前面是负号则括号里面的各项需变号,若括号前面是正号,则能够直截了当去括号.【解答】解:A、﹣(2x+5)=﹣2x﹣5,故本选项错误;B、﹣(4x﹣2)=﹣2x+1,故本选项错误;C、(2m﹣3n)=m﹣n,故本选项错误;D、﹣(m﹣2x)=﹣m+2x,故本选项正确.故选D.【点评】本题考查去括号的知识,难度不大,注意把握去括号的法则是关键.5.若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是( )A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=3【考点】合并同类项.【分析】依照同类项的概念,列出方程求解.【解答】解:由题意得,,解得:.故选C.【点评】本题考查了合并同类项,解答本题的关键是把握同类项定义中的相同字母的指数相同.6.单项式﹣3πxy2z3的系数和次数分别是( )A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,7【考点】单项式.【分析】依照单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做那个单项式的次数.【解答】解:依照单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π是数字,应作为系数.7.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( )A.20 B.18 C.16 D.15【考点】代数式求值.【专题】运算题.【分析】依照题意2a2+3a+1的值是6,从而求出2a2+3a=5,再把该式左右两边乘以3即可得到6a2+9a的值,再把该值代入代数式6a2+9a+5即可.【解答】解:∵2a2+3a+1=6,∴2a2+3a=5,∴6a2+9a=15,∴6a2+9a+5=15+5=20.故选A.【点评】本题考查了代数式求值,解题的关键是利用已知代数式求出6a2+9a的值,再代入即可.8.已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是( )A.20 B.﹣20 C.28 D.﹣28【考点】同类项.【专题】运算题.【分析】依照同类项相同字母的指数相同可得出m的值,继而可得出答案.【解答】解:由题意得:3m=3,解得m=1,∴4m﹣24=﹣20.故选B.【点评】本题考查同类项的知识,比较简单,注意把握同类项的定义.9.已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是( )A.ab B.a+b C.10a+b D.100a+b【考点】列代数式.【分析】a放在左边,则a在百位上,据此即可表示出那个三位数.【解答】解:a放在左边,则a在百位上,因而所得的数是:100a+b.故选D.【点评】本题考查了利用代数式表示一个数,关键是正确确定a是百位上的数字.10.原产量n吨,增产30%之后的产量应为( )A.(1﹣30%)n吨B.(1+30%)n吨 C.n+30%吨D.30%n吨【考点】列代数式.【专题】应用题.【分析】原产量n吨,增产30%之后的产量为n+n×30%,再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨.故选B.【点评】本题考查了依照实际问题列代数式,列代数式要分清语言叙述中关键词语的意义,理清它们之间的数量关系.二、填空题(每小题3分,共18分)11.单项式的系数是﹣,次数是3.【考点】单项式.【分析】依照单项式系数与次数的定义解答.单项式中数字因数叫做单项式的系数.单项式的次数确实是所有字母指数的和.【解答】解:单项式的系数是﹣,次数是1+2=3.故答案为﹣,【点评】本题考查了单项式的系数与次数的定义,需注意:单项式中的数字因数叫做那个单项式的系数;单项式中,所有字母的指数和叫做那个单项式的次数.12.多项式2x2y﹣+1的次数是3.【考点】多项式.【分析】多项式的次数是多项式中最高次项的次数,依照定义即可求解.【解答】解:多项式2x2y﹣+1的次数是3.故答案为:3.【点评】本题考查了多项式的次数,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.13.任写一个与﹣a2b是同类项的单项式a2b.【考点】同类项.【专题】开放型.【分析】依照同类项的定义(所含字母相同,相同字母的指数相同),即可解答.【解答】解:与﹣a2b是同类项的单项式是a2b(答案不唯独).故答案是:a2b.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.14.多项式3x+2y与多项式4x﹣2y的差是﹣x+4y.【考点】整式的加减.【专题】运算题.【分析】由题意可得被减数为3x+2y,减数为4x﹣2y,依照差=被减数﹣减数可得出.【解答】解:由题意得:差=3x+2y﹣(4x﹣2y),=﹣x+4y.故填:﹣x+4y.【点评】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.15.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买两支铅笔和三块橡皮,则一共需付款60m+90n元.【考点】列代数式.【分析】依照题意列出代数式.【解答】解:由题意得:付款=60m+90n【点评】本题考查代数式的知识,关键要读清题意.16.按如图程序输入一个数x,若输入的数x=﹣1,则输出结果为4.【考点】代数式求值.【专题】图表型.【分析】依照图示的运算过程进行运算,代入x的值一步一步运算可得出最终结果.【解答】解:当x=﹣1时,﹣2x﹣4=﹣2×(﹣1)﹣4=2﹣4=﹣2<0,现在输入的数为﹣2,﹣2x﹣4=﹣2×(﹣2)﹣4=4﹣4=0,现在输入的数为0,﹣2x﹣4=0﹣4=﹣4<0,现在输入的数为﹣4,﹣2x﹣4=﹣2×(﹣4)﹣4=8﹣4=4>0,因此输出的结果为4.故答案为:4.【点评】此题考查了代数式求值的知识,属于基础题,解答本题关键是明白得图标的运算过程,难度一样,注意细心运算.三、运算:(每小题20分,共20分)17.(1)a+2b+3a﹣2b.(2)(3a﹣2)﹣3(a﹣5)(3)3x2﹣3x2﹣y2+5y+x2﹣5y+y2.(4)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)【考点】整式的加减.【分析】(1)(3)直截了当合并同类项即可;(2)(4)先去括号,再合并同类项即可.【解答】解:(1)原式=4a;(2)原式=3a﹣2﹣3a+15=13;(3)原式=(3﹣3+1)x2﹣(1﹣1)y2+(5﹣5)y=x2;(4)原式=4a2b﹣5ab2﹣3a2b+4ab2=a2b﹣ab2.【点评】本题考查的是整式的加减,熟知整式的加减实质上确实是合并同类项是解答此题的关键.四、先化简下式,再求值.(每小题6分,共12分)18.化简求值:3a2b﹣[2ab2﹣2(﹣a2b+4ab2)]﹣5ab2,其中a=﹣2,b=.【考点】整式的加减—化简求值.【专题】运算题.【分析】原式去括号合并得到最简结果,把a与b的值代入运算即可求出值.【解答】解:原式=3a2b﹣2ab2﹣2a2b+8ab2﹣5ab2=a2b+ab2,当a=﹣2,b=时,原式=2﹣=.【点评】此题考查了整式的加减﹣化简求值,熟练把握运算法则是解本题的关键.19.先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x)+3(x2y2+y),其中x=﹣1,y=2.【考点】整式的加减—化简求值.【专题】运算题.【分析】原式去括号合并得到最简结果,把x与y的值代入运算即可求出值.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x+3x2y2+3y=2x2﹣2y2﹣3x+3y,当x=﹣1,y=2时,原式=2﹣8+3+6=3.【点评】此题考查了整式的加减﹣化简求值,熟练把握运算法则是解本题的关键.五、解答题:(每小题分,共20分)20.已知A=2x2﹣1,B=3﹣2x2,求B﹣2A的值.【考点】整式的加减.【专题】运算题.【分析】将A和B的式子代入可得B﹣2A=3﹣2x2﹣2(2x2﹣1),去括号合并可得出答案.【解答】解:由题意得:B﹣2A=3﹣2x2﹣2(2x2﹣1),=3﹣2x2﹣4x2+2=﹣6x2+5.【点评】本题考查整式的加减运算,比较简单,注意在运算时要细心.21.运算某个整式减去多项式ab﹣2bc+3a+bc+8ac时,一个同学误认为是加上此多项式,结果得到的答案是﹣2ab+bc+8ac.请你求出原题的正确答案.【考点】整式的加减.【分析】设该整式为A,求出A的表达式,进而可得出结论.【解答】解:∵A+(ab﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac,∴A=(﹣2ab+bc+8ac)﹣(ab﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac﹣ab+2bc﹣3a﹣bc﹣8ac=﹣3ab+2bc﹣3a,∴A﹣(ab﹣2bc+3a+bc+8ac)=(﹣3ab+2bc﹣3a)﹣(ab﹣2bc+3a+bc+8ac)=﹣3ab+2bc﹣3a﹣ab+2bc﹣3a﹣bc﹣8ac=﹣4ab+3bc﹣6a﹣8ac.【点评】本题考查的是整式的加减,熟知整式的加减实质上确实是合并同类项是解答此题的关键.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

池州市博文教育七年级数学《整式的加减》测试题(四)
姓名: 分数:
一、选择题(每小题3分,共30分)
1.在代数式2
2
251
5,1,32,,,1
x x x x x x π+--+++中,整式有( )
A. 3个
B. 4个
C. 5个
D. 6个 2.下面计算正确的是( )
A .2233x x -= B. 235325a a a += C .33x x += D. -3.多项式21
12
x x ---的各项分别是 ( ) A. 21,,12
x x - B. 21,,12
x x --- C. 21
,
,12x x D. 2,x 4. 买一个足球需要m 元,买一个篮球需要n 元,则买4个足球和7 A. 4m+7n B. 28mn C. 7m+4n D. 11mn 5. 下列各组中的两个单项式能合并的是( ) A .4和4x B .3
2323x y y x -和
C .c ab ab 2
21002和 6. 单项式23
3xy
z
π-的系数和次数分别是 ( )
A. -π,5
B. -1,6
C. -3π,6
D. -37. 一个多项式与2
x -2x +1的和是3x -2,则这个多项式为( )
A. 2
x -5x +3 B. -2
x +x -1 C. -2
x +5x -3 D. 8. 已知2
y 32x
和32m
x
y -是同类项,则式子4m-24的值是
( ) A. 20 B. -20 C. 28 D. -28 9. 已知,2,3=+=-d
c b a 则)()(
d a c b --+的值是( )
A. 1-
B. 1
C. -5
D. 15 10. 原产量n 吨,增产30%之后的产量应为( )
A. (1-30%)n 吨
B. (1+30%)n 吨
C. n+30%吨
D. 30%n 吨
二、填空(每题3分,共24分)
11.单项式5
22
xy -的系数是____________,次数是_______________。

12. 多项式5253323+-+-y x y x xy 的次数是_____.最高次项系数是_______,常数项是______。

13.多项式y x 23+与多项式y x 24-的差是______________________. 14. 若整式2x 2
+5x+3的值为8,那么整式6x 2
+15x-10的值是 15. 列式表示:x 的3倍比x 的二分之一大多少
a ,则这个两位数可表示为
222325-=+=;2243437-=+=; 22
54549-=+= ……
表示自然数,请把你观察到的规律用含n 的式子表示出来: 。

角形,……如此继续下去,结果如下表:则a n =________________(用含n 的代数式表示).
(2)()()2
2
2
2
4354ab b a ab b a ---
20. 先化简下式,再求值。

(每小题5分,共10分)
(1))4(2)3(22x x x x +++-,其中2-=x
(2))(3)(3)22(22222222y y x x y x y x +++--,其中1-=x ,2=y
21. (6分)已知122
-=x A ,2
23x B -=,求A B 2-的值。

22. (6分)已知某船顺水航行3小时,逆水航行2小时,已知轮船在静水中前进的速度是m 千米 /时,水流的速度是a 千米/时,则轮船共航行多少千米?轮船在静水中前进的速度是80千米/ 时,水流的速度是3千米/时,则轮船共航行多少千米?
23. (8分)已知多项式32
x +m y -8与多项式-n 2
x +2y +7的差中,不含有x 、y 项,
求m n +m n 的值.
24. (8分)小明在一次测验中计算一个多项式A 减去xz yz xy 235+-时,不小心看成加上xz yz xy 235+-,计算出错误结果为xz yz xy 462-+,试求出原题目的多项式A 。

相关文档
最新文档