V-M转速电流双闭环直流调速系统
双闭环可逆直流调速系统讲解
摘要本文以控制系统的传递函数为基础,采用工程设计方法对最常用的转速、电流双闭环调速系统进行设计,并用MATLAB/Simulink软件对系统进行了仿真。
首先对双闭环直流调速系统采用常规PID控制进行设计,电流调节器和转速调节器都采用了PID控制器,并分别对电流环和转速环的动态性能和抗扰动性能进行了仿真分析。
其次,由于转速调节器起主要作用,所以对转速环采用模糊控制,并设计了模糊控制器,对双闭环直流调速系统进行仿真分析,并与常规PID 控制进行了对比,仿真结果表明,模糊控制有良好的动态特性,很强的抗干扰能力。
关键词:直流调速PID控制模糊控制系统仿真目录摘要 (I)1 绪论 (1)1.1课题研究背景 (1)1.2直流调速系统的国内外研究概况 (1)1.4研究双闭环直流调速系统的目的和意义 (2)2 直流电机双闭环调速系统 (3)2.1直流电动机的起动与调速 (3)2.2直流调速系统的性能指标 (8)2.3双闭环直流调速系统的组成 (12)2.4 直流他励电动机的数学模型 (13)2.5可控硅整流装置的数学模型 (15)2.6本章小结 (16)3 常规PID控制双闭环直流调速系统的设计 (17)3.1双闭环调速系统的工程设计方法 (17)3.2双闭环直流调速系统的设计 (20)3.3设计实例 (25)3.4Matlab仿真 (30)3.5仿真结果分析 (33)3.6本章小结 (33)4结论 (34)1 绪论1.1课题研究背景直流调速是现代电力拖动自动控制系统中发展较早的技术。
就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。
然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。
直流V—M双环不可逆调速系统调节器的设计
1 设 计 总体 概 述
对于设计直流 V—M双环不可逆调速系统 , 其实就是 对转速
调节器和 电流调节器 的设计 。 电流调节器 的作用是使 电流随外 环调节器的输出量变 化 , 是
调 速 系 统 的 内环 调 节 器 。
—
图 1 转速、 电流 双 闭 环直 流 调 速 系统
其 中 T ——测 速发电机 ; A G T —— 电流互感 器 ; P —— 电力 uE 电子变 化 器 ; ——转 速 给 定 电 压 ; ——转 速 反 馈 电 压 ;
Q u—a IR i n h
( o eeo uo t n Wu a nv syo eh ooy W h nHue 4 0 7 , hn ) C lg l fA t i , h n U i ri Tcn l , u a bi 3 0 0 C i ma o et f g a
Ab t a t: n t e a tma i o t l s s m , l crc d i e h p e o to y tm s a v r mp r n a to C s e d c nr l s s m 。te s r c I h uo t c nr y t c o e ee t r -t e s e d c n rl s se i ey i o t t p r f D p e o t y t i v a o e h s e d,t e c r n u llo p e o t l y tm a i e r n eo p e h g r cso n y a c p roma c n a y t pe h u r t a—o p DC s e d c nr s e d o s e h sa w d a g f e d, ih p e iin a d d n mi e r n e a d e s s f o c n r l t . a e n wi ey u e n ee ti d v u o t o t ls se o t ,ec -h sb e d l s d i lcrc r e a tma i c nr y t m.I h s p p r h o i c o n t i a e 。te DC VM u lco e — o y a c d a ls d l p d n mi o s u tr fS S se -a d e gn e n e i n o e D t cu e o R y t m r n n ie r g d sg ft C VM u lco e — o p e o t ls s m i n t e e s l r g lt r i h d a l s d l p s e d c nr y t s o v ri e e uao . o o e r b Ke wo d s e d c n r l y tm ;d sg d n i sr cu e p e e lt r u e t e u ao y r s:p e o t s os e e in; y a c t t r ;s e d r g ao ;c r n g lt r m u u r
运动控制_第3章____转速、电流双闭环直流调速系统
U
*
im
,转速外环呈开环状态,
转速的变化对系统不再产生影响。在这种情况下,电流负反
馈环起恒流调节作用,转速线性上升,从而获得极好的下垂
特性,如图 3-5中的AB段虚线所示。
第二十一页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
此时,电流
I
d
U* im ?
?
I dm
,Idm 为最大电流,是由设
差调节。
第二十页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
1) 转速调节器饱和
在电动机刚开始起动时,突加阶跃给定信号 U*n,由于
机械惯性,转速 n很小,转速负反馈信号 Un很小,则转速偏
差电压 ΔUn=U*n-Un>0很大,转速调节器 ASR 很快达到饱和
状态, ASR的输出维持在限幅值
图 3-5 双闭环直流调速系统的静特性
第二十三页,编辑于星期三:九点 二十二分。
第3章 转速、电流双闭环直流调速系统
2) 转速调节器不饱和
当转速n达到给定值且略有超调时 (即n>n0),ΔUn=
U*n-Un<0,则转速调节器 ASR的输入信号极性发生改变,
ASR 退出饱和状态,转速负反馈环节开始起转速调节作用,
用以调节起动电流并使之保持最大值,使得转速线性变化, 迅速上升到给定值; 在电动机稳定运行时,转速调节器退 出饱和状态,开始起主要调节作用,使转速随着转速给定信 号的变化而变化,电流环跟随转速环调节电动机的电枢电流 以平衡负载电流。
第六页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
器ACR和转速调节器 ASR的输入电压偏差一定为零,因此,
正文V-M双闭环直流可逆调速系统设计
V-M双闭环直流可逆调速系统设计1设计任务及要求1.1设计任务设计任务:设计V-M双闭环直流可逆调速系统(1)技术数据直流电动机:PN=3KW ,UN=220V,IN=17.5A,nN=1500r/min ;Ra=1.25Ω堵转电流Idbl=2IN,截止电流Idcr=1.5IN,GD2=3.53N.m2。
三相全控整流装置:Ks=40 , Rrec=1. 3Ω。
平波电抗器:RL=0. 3Ω。
电枢回路总电阻R=2.85Ω,总电感L=200mH。
电动势系数:(Ce= 0.132V.min/r)。
系统主电路:(Tm=0.16s ,Tl=0.07s)。
滤波时间常数:Toi=0.002s , Ton=0.01s。
其他参数:Unm*=10V , Uim*=10V , Ucm=10V ,σi≤5% , σn≤10。
(2)技术指标稳态指标:无静差(静差率s≤10%, 调速范围D≥20 )。
动态指标:转速超调量δn≤10%,电流超调量δi≤5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)ts≤0.5s。
(3)根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图。
调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等)。
(4)动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。
绘制V-M双闭环直流可逆调速系统的电气原理总图。
1.2设计要求(1)该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥20),系统在工作范围内能稳定工作。
系统静特性良好,无静差(静差率s≤10%)。
动态性能指标:转速超调量δn<10%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)ts≤0.5s。
(3)系统在5%负载以上变化的运行范围内电流连续。
转速、电流双闭环电机直流调速
转速、电流双闭环电机直流调速第⼀章绪论1.1 直流调速概念直流调速[1]是指⼈为地或⾃动地改变直流电动机的转速,以满⾜⼯作机械的要求。
从机械特性上看,就是通过改变电动机的参数或外加⼯电压等⽅法来改变电动机的机械特性,从⽽改变电动机机械特性和⼯作特性机械特性的交点,使电动机的稳定运转速度发⽣变化。
1.2 直流调速系统的发展史直流传动具有良好的调速特性和转矩控制性能,在⼯业⽣产中应⽤较早并沿⽤⾄今。
早期直流传动采⽤有接点控制,通过开关设备切换直流电动机电枢或磁场回路电阻实现有级调速。
1930年以后出现电机放⼤器控制的旋转交流机组供电给直流电动机(由交流电动机M和直流发电机G构成,简称G—M系统),以后⼜出现了磁放⼤器和汞弧整流器供电等,实现了直流传动的⽆接点控制。
其特点是利⽤了直流电动机的转速与输⼊电压有着简单的⽐例关系的原理,通过调节直流发电机的励磁电流或汞弧整流器的触发相位来获得可变的直流电压供给直流电动机,从⽽⽅便地实现调速。
但这种调速⽅法后来被晶闸管可控整流器供电的直流调速系统所取代,⾄今已不再使⽤。
1957年晶闸管问世后,采⽤晶闸管相控装置的可变直流电源⼀直在直流传动中占主导地位。
由于电⼒电⼦技术与器件的进步和晶闸管系统具有的良好动态性能,使直流调速系统的快速性、可靠性和经济性不断提⾼,在20世纪相当长的⼀段时间内成为调速传动的主流。
今天正在逐步推⼴应⽤的微机控制的全数字直流调速系统具有⾼精度、宽范围的调速控制,代表着直流电⽓传动的发展⽅向。
直流传动之所以经历多年发展仍在⼯业⽣产中得到⼴泛应⽤,关键在于它能以简单的⼿段达到较⾼的性能指标。
例如⾼精度稳速系统的稳速精度达数⼗万分之⼀,宽调速系统的调速⽐达1:10000以上,快速响应系统的响应时间已缩短到⼏毫秒以下。
在实际应⽤中,电动机作为把电能转换为机械能的主要设备,⼀是要具有较⾼的机电能量转换效率;⼆是应能根据⽣产机械的⼯艺要求控制和调节电动机的旋转速度。
转速电流双闭环可逆直流PWM调速系统设计
题目:转速、电流双闭环可逆直流PWM调速系统设计学生姓名:学号:班级:专业:指导教师:起始时间: 2016年6月6日--6月17日摘要直流脉宽变换器,或称为直流PWM变换器,是在全控型电力电子器件问世以后出现的能取代相控整流器的直流电源。
根据PWM变换器主电路的形式可分为可逆和不可逆两大类。
电流截至负反馈环节只能限制电动机的动态电流不超过某一数值,而不能控制电流保持为某一所需值。
根据反馈控制原理,以某物理量作为负反馈控制,就能实现对该物理量的无差控制。
用一个调节器难以兼顾对转速的控制和对电流的控制。
如果在系统中另设一个电流调节器,就可以构成电流闭环。
电流调节器串联在转速调节器之后,形成以电流反馈作为内环、转速作为外环的双闭环调速系统。
利用单片机实现对直流电动机的双闭环调速,此系统使直流电机具有优良的调速特性,调速方便,调速范围广,过载能力大,能承受频繁的冲击负载,制动和反转,能满足生产过程自动化系统的各种特殊运行要求。
关键词:双闭环,PWM,直流电动机,单片机目录摘要 0一、设计的目的及意义 (2)二、设计要求 (2)三、双闭环直流调速系统 (3)3.1、双闭环直流调速系统的原理 (3)3.2、双闭环直流调速系统的静特性分析 (5)3.3双闭环直流调速系统的数学模型 (7)四、转速环、电流环的设计 (9)4.1、转速调节器、电流调节器在直流双闭环系统中的作用 (9)4.2、调节器的具体设计 (9)4.3、电流环的设计 (10)4.4、速度环的设计 (11)五、PWM可逆直流调速系统 (13)5.1、PWM变换器 (13)5.2、整流电路 (14)5.3、泵升电路 (15)六、控制电路的设计 (15)6.1、单片机 (15)6.2、测速电路 (16)6.3、键盘电路 (16)七、双闭环可逆直流PWM调速系统的仿真 (17)八、结论 (19)附录 (20)附录A (20)附录B (21)参考文献 (23)一、设计的目的及意义1、训练学生正确的应用运动控制系统,培养解决工业控制、工业检测等领域具体问题的能力。
V-M双闭环不可逆直流调速系统设计
V-M双闭环不可逆直流调速系统设计⼀主电路选型和闭环系统的组成1.1双闭环直流调速系统的组成与原理双闭环直流调速系统的组成和原理如图2.1所⽰其中包括了三相全空整流电路、调节器、(ASR、ACR)和电动机等。
该⽅案主要由给定环节、ASR、ACR、触发器和整流装置环节、速度检测环节以及电流检测环节组成。
为了使转速负反馈和电流负反馈分别起作⽤,系统设置了电流调节器ACR和转速调节器ASR。
电流调节器ACR和电流检测反馈回路构成了电流环;转速调节器ASR和转速检测反馈回路构成转速环,称为双闭环调速系统。
因转速换包围电流环,故称电流环为内环,转速环为外环。
在电路中,ASR 和ACR 串联,即把ASR 的输出当做ACR 的输⼊,再由ACR 得输出去控制晶闸管整流器的触发器。
为了获得良好的静、动态性能,转速和电流两个调节器⼀般都采⽤具有输⼊输出限幅功能的PI 调节器,且转速和电流都采⽤负反馈闭环。
该⽅案的原理框图如图所⽰。
1.2设计要求1.直流他励电动机:功率Pe =22KW ,额定电压Ue=220V ,额定电流Ie=116A,磁极对数P=2,Ne=1500r/min,励磁电压220V,电枢绕组电阻Re=0.112Ω,主电路总电阻R =0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数Ce=0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116s ,机电时间常数Tm=0.157s ,滤波时间常数T on =Tci=0.00235s ,β=0.67V/A ,α=0.007Vmin/v ,过载倍数λ=1.5,速度给定最⼤值 10V U n =*电流给定最⼤电压值10V ,速度给定最⼤电压值10V 。
2.稳态⽆静差,电流超调量σi %≤5%;空载起动到额定转速时的转速超调σe %≤10%。
振荡次数N<2次。
并绘制相关原理图及程序框图。
⼆调速系统主电路元部件的确定2.1转速给定电路设计此电路主要由滑动变阻器构成,调节滑动变阻器即可获得相应⼤⼩的给定信号。
直流电机的PWM电流速度双闭环调速系统课程设计
直流电机的PWM电流速度双闭环调速系统课程设计LT一、设计目标与技术参数直流电机的PWM电流速度双闭环调速系统的设计目标如下:额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min;电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s;电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01 V*min/r;允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A;电流超调量:σi ≤5%;转速超调量:σi≤10%;运算放大器:R=4KΩ;晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。
PWM变换器的放大系数:K S=20。
二、设计基本原理(一)调速系统的总体设计在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。
这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。
如图2-1所示。
图2-1 直流调速系统启动过程的电流和转速波形用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。
在启动过程的主要阶段,只有电流负反馈,没有转速负反馈,不让电流负反馈发挥主要作用,既能控制转速,实现转速无静差调节,又能控制电流使系统在充分利用电机过载能力的条件下获得最佳过渡过程,很好的满足了生产需求。
直流双闭环调速系统的结构图如图2-2所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM装置。
其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。
直流调速系统的调速原理
直流调速系统的调速原理直流电动机具有良好的起、制动性能,宜于在广范围内平滑调速,所以由晶闸管—直流电动机(V —M)组成的直流调速系统是目前应用较普遍的一种电力传动自动化控制系统。
它在理论上实践上都比较成熟,而且从闭环控制的角度看,它又是交流调速系统的基础[1,6]。
从生产机械要求控制的物理量来看,电力拖动自动控制系统有调速系统、位置随动系统(伺服系统)、张力控制系统、多电机同步控制系统等多种类型,各种系统往往都是通过控制转速来实现的,因此,调速系统是最基本的电力拖动控制系统。
直流电动机的转速和其它参量的关系和用式(2—1)表示Φ-=e K IRU n (2—1)式中 n ——电动机转速;U ——电枢供电电压; I ——电枢电流;R ——电枢回路总电阻,单位为ΩeK ——由电机机构决定的电势系数。
在上式中,eK 是常数,电流I 是由负载决定的,因此,调节电动机的转速可以有三种方法:(1)调节电枢供电电压U ; (2) 减弱励磁磁通Φ; (3) 改变电枢回路电阻R 。
对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式最好。
改变电阻只能实现有级调速;减弱励磁磁通虽然能够平滑调速,但调速的范围不大,往往只是配合调压方案,在基速(额定转速)以上做小范围的弱磁升速。
因此,自动控制的直流调速系统往往以改变电压调速为主。
双闭环调速的工作过程和原理双闭环调速系统的工作过程和原理: 电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电流恒流加速启动。
电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅值来改变。
在电动机转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。
转速电流双闭环不可逆直流调速系统设计
转速电流双闭环不可逆直流调速系统设计转速电流双闭环不可逆直流调速系统设计摘要电机⾃动控制系统⼴泛应⽤于机械,钢铁,矿⼭,冶⾦,化⼯,⽯油,纺织,军⼯等⾏业。
这些⾏业中绝⼤部分⽣产机械都采⽤电动机作原动机。
有效地控制电机,提⾼其运⾏性能,对国民经济具有⼗分重要的现实意义。
20世纪90年代前的⼤约50年的时间⾥,直流电动机⼏乎是唯⼀的⼀种能实现⾼性能拖动控制的电动机,直流电动机的定⼦磁场和转⼦磁场相互独⽴并且正交,为控制提供了便捷的⽅式,使得电动机具有优良的起动,制动和调速性能。
尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但⾄今直流电动机仍然是⼤多数变速运动控制和闭环位置伺服控制⾸选。
因为它具有良好的线性特性,优异的控制性能,⾼效率等优点。
直流调速仍然是⽬前最可靠,精度最⾼的调速⽅法。
本次设计的主要任务就是应⽤⾃动控制理论和⼯程设计的⽅法对直流调速系统进⾏设计和控制,设计出能够达到性能指标要求的电⼒拖动系统的调节器,通过在DJDK-1型电⼒电⼦技术及电机控制试验装置上的调试,并应⽤MATLAB软件对设计的系统进⾏仿真和校正以达到满⾜控制指标的⽬的。
I⽬录摘要 .................................................................................................................... I ⽬录................................................................................................................... II 第⼀章、双闭环调速系统的⼯作原理及数学模型 (1)1.1、数学模型的参数给定 (1)1.1.1、电枢回路的电磁时间常数T L (1)1.1.2、电⼒拖动系统机电时间常数Tm (1)1.1.3、触发和整流装置的放⼤倍数K S (2)1.2、双闭环调速系统的⼯作原理 (2)1.2.1、转速控制的要求和调速指标 (2)1.2.2、调速系统的两个基本⽭盾 (3)1.2.3、调速系统的双闭环调节原理 (5)1.2.4、双闭环调速系统的起动过程分析 (5)1.2.5、转速和电流两个调节器的作⽤ (6)1.3、双闭环调速系统主电路的数学模型 (7)1.3.1、主电路 (7)1.3.2、额定励磁下的直流电动机的数学描述 (7)1.3.3、晶闸管触发和整流装置传函 (9)1.4、调速系统主电路的设计 (10)1.4.1、整流变压器的计算 (10)1.4.2、晶闸管组件的计算与选择 (11)2.4.3、主电路的过电压和过电流保护 (11)1.4.4、平波电抗器的参数计算 (12)1.5、双闭环调速系统的电⽓原理及控制单元 (13)1.5.1、过流保护器(GL)、电流变送器(LB) (13)1.5.2、电流调节器(ACR) (13)1.5.3、零速封锁器(LSF) (13)1.5.4、给定器(GD) (13)1.5.5、转速变送器(SB) (13)II1.5.6、转速调节器(ASR) (13)1.5.7、锯齿波触发器(CF) (14)1.6、双闭环调速系统的动态结构图 (14)1.6.1、电流调节器和电流变送器的传函 (14)1.6.2、转速调节器和转速变送器的传函 (14)1.6.3、双闭环调速系统的动态结构图 (15)第⼆章、按⼯程设计⽅法设计双闭环调速系统的电流调节器和转速调节器16 2.1、设计要求 (16)2.1.1、基本数据(其中包括铭牌数据和测试数据) (16)2.1.2、设计指标 (17)2.2、⼯程设计⽅法的基本思路 (17)2.3、电流调节器的设计 (17)2.3.1、电流环动态结构图的简化 (17)2.3.2、确定电流环的时间常数 (18)2.3.3、电流调节器结构的选择 (19)2.3.4、电流调节器参数的计算 (20)2.3.5、校验近似条件 (20)2.3.6、电流环的动态性能指标 (21)2.4、转速调节器的设计 (22)2.4.1、电流环的等效闭环传递函数 (22)2.4.2、转速环的动态结构图及其近似处理 (22)2.4.3、转速调节器结构的选择 (23)2.4.4、转速调解器参数的计算 (24)2.4.5、转速环的性能指标 (26)2.5、系统的静态综合及静态性能指标 (28)2.5.1、近似的PI调节器 (28)2.5.2、系统的静态结构图 (29)第三章、调速系统性能指标的数字仿真 (30)3.1、基于⼯程设计法的数字仿真 (30)3.1.1、双闭环调速系统的动态结构图 (30)3.1.2、时域分析 (30)课程设计体会 (31)参考⽂献 (32)III第⼀章、双闭环调速系统的⼯作原理及数学模型1.1、数学模型的参数给定1.1.1、电枢回路的电磁时间常数T LT L=0.176ms1.1.1.1、电枢回路总电阻RR=0.22Ω1.1.1.2、电枢回路的总电感LL∑=39.22mH1.1.2、电⼒拖动系统机电时间常数TmT m=0.127s121.1.2.1、电动机的C eC e =0.138 Vmin /r1.1.3、触发和整流装置的放⼤倍数K SK s =221.2、双闭环调速系统的⼯作原理1.2.1、转速控制的要求和调速指标⽣产⼯艺对控制系统性能的要求经量化和折算后可以表达为稳态和动态性能指标。
电力拖动自动控制系统复习题
电力拖动自动控制系统复习题一、填空题1. 直流调速系统用的可控直流电源有:旋转变流机组(G-M系统)、静止可控整流器(V-M统)、直流斩波器和脉宽调制变换器(PWM)。
2. 转速、电流双闭环调速系统的起动过程特点是饱和非线性控制、准时间最优控制和转速超调。
3. 交流异步电动机变频调速系统的控制方式有恒磁通控制、恒功率控制和恒电流控制三种。
4. 变频器从结构上看,可分为交交变频、交直交变频两类,从变频电源性质看,可分为电流型、电压型两类。
5. 相异步电动机的数学模型包括:电压方程、磁链方程、转矩方程和运动方程。
6. 异步电动机动态数学模型是一个高阶、非线性、强耦合的多变量系统。
7. 常见的调速系统中,在基速以下按恒转矩调速方式,在基速以上按恒功率调速方式。
8. 调速系统的稳态性能指标包括调速范围和静差率。
9. 反馈控制系统的作用是:抵抗扰动,服从给定。
10. VVVF控制是指逆变器输出电压和频率可变的控制11、转速、电流双闭环调速系统当中,两个调节器采用串级联接,其中转速反馈极性为负反馈、电流反馈极性为负反馈。
12、直流斩波器的几种常用的控制方法:①T不变,变ton——脉冲宽度调制(PWM);②ton不变,变T——脉冲频率调制(PFM);③ton和T都可调,改变占空比——混合型。
13、转速、电流双闭环系统,采用PI调节器,稳态运行时,转速n取决于给定电压、ASR的输出量取决于负载电流。
14. 各种电力拖动自动控制系统都是通过控制电动机转速来工作的。
15. V-M系统中,采用三相整流电路,为抑制电流脉动,可采用的主要措施是设置平波电抗器。
16、在单闭环调速系统中,为了限制全压启动和堵转电流过大,通常采用电流截止负反馈。
17、在α=β配合控制的直流可逆调速系统中,存在的是直流平均环流,可用串接环流电抗器抑制。
18、采用PI调节器的转速、电流双闭环系统启动时,转速调节器经历不饱和、饱和、退饱和三种状态。
V-M双闭环直流调速系统
V-M双闭环直流调速系统前⾔直流调速系统,特别是双闭环直流调速系统是⼯业⽣产过程中应⽤最⼴的电⽓传动装置之⼀。
⼴泛地应⽤于轧钢机、冶⾦、印刷、⾦属切削机床等许多领域的⾃动控制系统中。
它通常采⽤三相全控桥式整流电路对电动机进⾏供电,从⽽控制电动机的转速,传统的控制系统采⽤模拟元件,如晶体管、各种线性运算电路等,在⼀定程度上满⾜了⽣产要求。
V-M双闭环直流调速系统是晶闸管-电动机调速系统(简称V-M系统),系统通过调节器触发装置GT的控制电压Uc来移动出发脉冲的相位,即控制晶闸管可控整流器的输出改变平均整流电压Ud,从⽽实现平滑调速。
本次课设⽤实际电动机和整流装置数据对V-M双闭环直流调速系统进⾏设计,建模与仿真。
V-M双闭环直流调速系统建模与仿真1设计任务初始条件及要求1.1初始条件(1)技术数据:直流电动机:P N=27KW, U N=220V , I N=136A , n N=1500r/min ,最⼤允许电流I dbl=1.5I N ,三相全控整流装置:K s=40电枢回路总电阻R=0. 5Ω,电动势系数:C e= 0.132V.min/r系统主电路:T m=0.18s ,T l=0.03s滤波时间常数:T oi=0.002s , T on=0.01s,其他参数:U nm*=10V , U im*=10V , U cm=10V(2)技术指标稳态指标:⽆静差动态指标:电流超调量:δi≤5%,起动到额定转速时的超调量:δn≤10%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)t s≤1s1.2要求完成的任务1.技术要求:(1) 该调速系统能进⾏平滑的速度调节,负载电机不可逆运⾏,具有较宽的调速范围(D≥10),系统在⼯作范围内能稳定⼯作(2) 系统在5%负载以上变化的运⾏范围内电流连续2.设计内容:(1) 根据题⽬的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图(2) 根据双闭环直流调速系统原理图, 分析转速调节器和电流调节器的作⽤,(3) 通过对调节器参数设计, 得到转速和电流的仿真波形,并由仿真波形通过MATLAB来进⾏调节器的参数调节。
V-M逻辑无环流双闭环可逆直流调速系统设计
V-M逻辑⽆环流双闭环可逆直流调速系统设计⽬录第1章设计任务及要求 (3)1.1设计要求 (3)1.2参数 (3)第2章控制系统整体⽅案设计 (4)第3章主回路设计 (6)3.1主回路参数计算及元器件选择 (6)3.1.1变压器参数的计算 (6)3.1.2晶闸管参数的计算 (7)3.1.3平波电抗器的计算 (7)3.2保护电路的设计 (7)3.2.1过电压保护 (7)3.2.2过电流保护 (10)3.3触发回路的设计 (10)3.4隔离电路 (11)3.5励磁回路 (12)第4章控制回路设计 (13)4.1电流环设计(ACR) (13)4.1.1电流环结构框图的化简 (13)4.1.2电流调节器结构的选择 (15)4.1.3电流调节器的参数 (16)4.1.4检验近似条件 (17)4.1.5计算调节器电阻和电容 (17)4.2转速环设计(ASR) (18)4.2.1转速调节器的设计 (18)4.2.2转速调节器结构的选择 (19)4.2.3计算转速调节器参数 (21)4.2.4检验近似条件 (22)4.2.5计算调节器电阻和电容 (22)4.2.6校核转速超调量 (23)4.2.7转速超调的抑制——转速微分负反馈 (24)4.3反馈回路设计 (26)第5章逻辑⽆环流控制器的设计 (28)5.1⽆环流逻辑装置的组成 (28)5.2⽆环流逻辑装置DLC的设计 (29)5.2.1转矩极性鉴别(DPT) (29)5.2.2零电平检测(DPZ) (30)5.2.3逻辑控制(DLC) (31)第6章辅助回路的设计 (32)6.1限幅电路 (32)6.2反相器 (34)6.3给定电路 (35)6.4操作回路 (35)6.5直流稳压电源 (36)第7章总结 (37)第8章参考⽂摘 (38)第1章设计任务及要求1.1设计要求动态性能指标:(1)调速范围D=20,静差率S≤5%,在整个调速范围内要求转速⽆级、平滑可调;σ≤,空载启动到额定转速时转速超调量(2)电流环超调量5%iσ。
V-M双闭环不可逆直流调速系统设计
V-M双闭环不可逆直流调速系统设计1主电路结构设计变压器调速是直流调速系统用的主要方法,调节电枢供电电压所需的可控制电源通常有3种:旋转电流机组,静止可控整流器,直流斩波器和脉宽调制变换器。
旋转变流机组简称G-M系统,适用于调速要求不高,要求可逆运行的系统,但其设备多、体积大、费用高、效率低、维护不便。
静止可控整流器又称V-M系统,通过调节触发装置GT的控制电压来移动触发脉冲的相位,即可改变U d,从而实现平滑调速,且控制作用快速性能好,提高系统动态性能。
直流斩波器和脉宽调制交换器采用PWM受器件限制,适用于中、小功率的系统。
根据本设计的技术要求和特点选V-M系统。
在V-M系统中,调节器给定电压,即可移动触发装置GT输出脉冲的相位,从而方便的改变整流器的输出瞬时电压U d。
由于要求直流电压脉动较小,故采用三相全控桥式整流电路。
考虑使电路简单、经济且满足性能要求,选择晶闸管三相全控桥整流器供电方案。
因三相桥式全控整流电压的脉动频率比三相半波高,因而所需的平波电抗器的电感量可相应减少约一半,这是三相整流电路的一大优点。
并且晶闸管可控整流装置无噪声、无磨损、响应快、体积小、重量轻、投资省。
而且工作可靠,能耗小,效率高。
同时,由于电机的容量较大,又要求电流的脉动小。
综上所述,选晶闸管三相全控桥整流电路供电方案。
三相桥式全控整流电路的原理如图1-1所示,习惯将其中阴极连接在一起到3个晶闸管(VT1、VT3、VT5)称为共阴极;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极,另外通常习惯晶闸管从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a,b,c三相电源相接的3个晶体管分别是VT1、VT3、VT5,共阳极组中与a,b,c三相电源相接的3个晶闸管分别是VT4、VT6、VT2。
其工作特点如下:1)每个时刻均需两个晶闸管同时导通,形成向负载供电的回路,其中一个晶闸管是共阴极组的,一个是共阳极组的,且不能为同一相的晶闸管。
转速、电流双闭环控制直流调速系统带仿真结果
摘要转速、电流双闭环控制直流调速系统是性能很好,应用最广的直流调速系统,是目前直流调速系统中的主流设备。
具有调速范围宽、平稳性好、稳速精度高等优点。
在理论和实践方面都是比较成熟的系统,在电力拖动领域中发挥着及其重要的作用。
本人此次设计的步骤主要是:查阅相关的资料、书籍,确定整个设计的方案和框图。
然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。
接着驱动电路的设计包括触发电路和脉冲变压器的设计。
转速和电流调节器的计算和设计给予详细介绍。
每一步设计都会给出相应的原理图,并进行分析。
最后用学过的MATLAB/SIMULINK进行仿真,给出模块搭建及仿真图形的结果。
目录第1章系统总体设计 (1)1.1设计任务 (1)1.2设计要求 (1)1.3设计的基本思路 (1)第2章整体电路分析 (4)2.1电流调节器的设计 (4)2.2转速调节器的设计 (7)第3章硬件电路图及保护电路的设计 (10)3.1系统主电路图绘制 (10)3.2晶闸管的保护与选择 (10)3.3 整流变压器的选择 (13)3.4触发电路的设计 (14)3.5.电动机的励磁回路 (15)第4章MATLAB仿真 (16)结论 (19)参考资料 (20)第1章 系统总体设计1.1 设计任务设计一个V-M 转速、电流双闭环直流调速系统,相关数据:电动机参数:N P =40kw 、N U =300v 、N I =148A 、N n =910rpm 、f U =220v 、dm I =296A 、 2GD =1.00kg ⋅2m 、a R =0.08Ω、a L =2.05mH ;其它参数:整流侧内阻n R =0.092Ω、整流变压器漏感T L =7.5mH ,电抗器直流电阻H R =0.15Ω、电抗器电感H L =4.0mH 、负载2GD 折算值=9 kg ⋅2m ;电流、转速滤波时间常数参考教材例题数据。
转速﹑电流双闭环直流调速系统
—转速反馈系数;—电流反馈系数
实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。
1.转速调节器不饱和
这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此
由第一个关系式可得
(2-1)
从而得到图2-5所示静特性的CA段。与此同时,由于ASR不饱和, ,从上述第二个关系式可知 。这就是说,CA段特性从理想空载状态的 一直延续到 ,而 一般都是大于额定电流 的。这就是静特性的运行段,它是一条水平的特性。
由图2—1可见,对一个调速系统来说,如果能满足最低转速运行的静差率s,那么,其它转速的静差率也必然都能满足。
图2—1
事实上,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。一个调速系统的调速范围,是指在最低速时还能满足所提静差率要求的转速可调范围。脱离了对静差率的要求。任何调速系统都可以得到极高的调速范围;反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。
1)上升时间
在典型的阶跃响应跟随过程中,输出量从零起第一次上升到稳态值 所经过的时间称为上升时间,它表示动态响应的快速性,见图2—2。
图2—2
2)超调量
在典型的阶跃响应跟随系统中,输出量超出稳态值的最大偏离量与稳态值之比,用百分数表示,叫做超调量:
(2—4)
超调量反映系统的相对稳定性。超调量越小,则相对稳定性越好,即动态响应比较平稳。
对于不同的负载电阻L R,测速发电机输出特性的斜率也不同,它将随负载电阻的增大而增大,如图3-4中实线所示。
双闭环调速系统的静特性在负载电流小于 时表现为转速无静差,这时,转速负反馈起主要调节作用。当负载电流达到 时,对应于转速调节器的饱和输出 ,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI调节器分别形成内﹑外两个闭环的效果。这样的静特性显然比带电流截止负反馈的单闭环系统静特性好。然而,实际上运算放大器的开环放大系数并不是无穷大。静特性的两段实际上都略有很小的静差,见图2-5中的虚线。总之,双闭环系统在突加给定信号的过渡过程中表现为恒值电流调节系统,在稳定和接近稳定运行中表现为无静差调速系统,发挥了转速和电流两个调节器的作用,获得了良好的静、动态品质。
闭环-转速电流双闭环直流调速系统
§2.2 转速、电流双闭环直流调速系统
一、双闭环调速系统的控制规律
转速单闭环系统被调节的是n,检测的误差是n, 要消除的也是扰动对n的影响。故不能控制电流(转 矩)的动态过程。
电流截止负反馈环节只能限制电流的冲击,不 能控制电流保持为某一所需值。
经常正、反转运行的调速系统,希望尽量缩短 启动、制动和反转过渡过程的时间,即要求系统动 态性能好,单闭环就不能满足要求了。
整个系统的本质由外环速度调节器来决定。即: 当ASR不饱和时,电流负反馈使静特性可能产生的 速降完全被ASR的积分作用所抵消了;一旦ASR饱 和,当负载电流过大,系统实现保护作用使n下降 过大时,转速环即失去作用,只剩下电流环起作用, 这时系统表现为恒流调节系统,静特性便会呈现出 很陡的下垂特性。
各变量的稳态工作点和稳态参数计算:
C
IdN
Idm
Id
BC段:描述ASR饱和后(ACR不饱和)的电流单闭环
系统的静特性,转速外环呈开环状态,表现为电流
无静差。
Id
U
* im
Idm
(n < n0 )
ASR的限幅值Uim由设计者选定——限定了最大电 流值Idm。
2、稳态参数:
转速调节器输出:
U
* i
Ui
Id
I dL
电流调节器输出:Uc
加快动态过程。 (4)电机过载/堵转时,限制Idlmax,起快速自动保护作用。
调节器的输出限幅作用
转速调节器ASR的输出限幅电压U*im决定
电流给定电压的最大值Idm;
电流调节器ACR的输出限幅电压Ucm限制 了电力电子变换器的最大输出电压Udm。
当ASR饱和时,相当于电流单闭环系统,实现 “只有电流负反馈,没有转速负反馈”
3.1转速、电流双闭环直流调速系统及其静特性new
关于所设计的直流调速系统进展情况①调速方法:降低电枢电压调速;②可控电源: V-M系统或PWM-M系统;③稳态指标:比例控制闭环调速系统;④稳定性:动态校正为PI调节器;⑤电流问题:添加电流截止负反馈。
目前系统:牺牲了快速性,获得稳定性与静态无差。
转速、电流双闭环直流调速系统及其静特性主讲人:张敬南副教授主要内容01 理想起动过程的控制要求02 双闭环直流调速系统的组成03 双闭环直流调速系统的稳态结构图和静特性04 双闭环直流调速系统的稳态计算(1)如何减少起动时间?2375e L GD dnT T dt-=2375d L T GD dnI I C dt-=显然,要对电流进行控制,并实现最大电流起动来提升跟随性能。
(2)理想的起动过程I d =I dLn=n*tI d O I d =I dm 控制要求:(1)第1段,最大电流起动,电流控制;(2)第2段,保证转速调节,速度控制。
转速、电流双闭环直流调速系统。
内环外 环 nASR ACR U *n + - U n U i U *i + - U cTA V+ - U d I dUPEL- M TG+(1)转速、电流双闭环调速系统的组成①ASR :电流给定、限幅为最大电流; ②ACR :控制电压、限幅为最大控制电 压,对应最大直流电压。
输出达到限幅值,可称为调节器饱和。
(2)两个调节器输出与限幅设置nASRACR U *n + - U n U i U *i + - U c TA V+ - U d I d UPE L- MTG+内环外 环(3)ASR饱和状态对应了两个状态根据ASR是否饱和来实现:①ASR饱和后, ASR不起调节作用,但输出限幅值决定了最大电流,只要转速 ASR不退饱和,只有 ACR 起调节作用,为最大电流控制系统。
②ASR退饱和后,ASR起调节作用,为转速控制系统。
显然,满足了理想起动过程的控制要求。
(3)ASR 饱和状态对应了两个状态nASR ACRU *n + - U n U i U *i + - U c TA V+ - U d I dUPEL- M TG+内环外 环 注意:结合ASR 的限幅和电流环,能够实 现限制电流的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要本次设计利用晶闸管等器件设计了一个V-M转速、电流双闭环直流调速系统。
通过分析直流双闭环调速系统的组成,设计出系统的电路原理图。
该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。
采用工程设计的方法对直流双闭环调速系统的电流和转速两个调节器进行设计,先设计电流调节器,然后将整个电流环看作是转速调节系统的一个环节,再来设计转速调节器。
遵从确定时间常数、选择调节器结构、计算调节器参数、校验近似条件的步骤一步一步的实现对调节器的具体设计。
之后,再对系统的起动过程进行分析,以了解系统的动态性能。
关键词:双闭环,晶闸管,转速调节器,电流调节器1 系统的总体设计方案1.1双闭环直流调速系统的概述双闭环直流调速系统是一种当前应用广泛、经济、实用的电力拖动系统。
它具有动态响应快、抗干扰能力强等优点。
我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。
采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。
但如果对系统的动态性能要求较高,例如要求起制动、突加负载动态速降小等等,单闭环系统就难以满足要求。
这主要是因为在单闭环系统中不能完全按照需要来控制动态过程的电流或转矩。
在单闭环系统中,只有电流截止负反馈环节是专门用来控制电流的。
但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。
带电流截止负反馈的单闭环调速系统起动时的电流和转速波形如1-1(a)所示。
当电流从最大值降低下来以后,电机转矩也随之减小,因而加速过程必然拖长。
(a)带电流截止负反馈的单闭环调速系统起动过程(b)理想的快速起动过程图1-1 直流调速系统起动过程的电流和转速波形在实际工作中,我们希望在电机最大电流(转矩)受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流(转矩)为允许最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。
这样的理想起动过程波形如图1-1(b)所示,这时,启动电流成方波形,而转速是线性增长的。
这是在最大电流(转矩)受限的条件下调速系统所能得到的最快的起动过程。
实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么采用电流负反馈就能得到近似的恒流过程。
问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不再靠电流负反馈发挥主作用,因此我们采用双闭环调速系统。
这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。
1.2电机的技术参数直流电动机(ZD2-152-1B)的技术参数:额定容量:KW P N 400=额定电压:V U N 440=额定电流:A I N 975= 额定转速:min 500n n N =额定效率:93.0=N η励磁电压:V U f 110=励磁电流:A I f 7.40=电枢绕组电阻:Ω=0117.0S R换向绕组电阻:Ω=0025.0H R过载倍速: 92.1=λ磁极对数:3=p转动惯量:22275m kg GD ⋅=测速发电机(ICF-22E )的技术参数:额定容量:W P N 300=额定电压:V U N 115=额定电流:A I N 76.0= 额定转速:min 750n n N =系统参数:电枢总电阻:Ω=∑076.0R系统总转动惯量:2224696m kg GD ⋅=1.3双闭环直流调速系统的组成及其静特性1.3.1双闭环直流调速系统的组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流。
二者之间实行串级联接,如图1-2所示。
把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就形成了转速、电流双闭环调速系统。
图1-2 转速、电流双闭环直流调速系统ASR——转速调节器 ACR——电流调节器 TG——测速发电机TA——电流互感器 UPE——电力电子变换器为了获得良好的静、动态性能,转速和电流两个调节器一般都采用PI调节器,这样构成的双闭环直流调速系统的电路原理图如图1-3所示。
图1-3 双闭环直流调速系统电路原理图图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压Uc为正电压的情况标出的,并考虑到运算放大器的倒相作用。
图中还表示了两个调节器的输出都是带限幅作用的,转速调节器ASR 的输出限幅电压决定了电流给定电压的最大值,电流调节器ACR 的输出限幅电压Ucm 限制了电力电子变换器的最大输出电压Udm 。
1.3.2稳态结构图和静特性为了分析双闭环调速系统的静特性,必须先绘出它的稳态结构图,如图1-4所示。
它可以很方便地根据原理图画出来,只要注意用带限幅的输出特性表示PI 调节器就可以了。
分析静特性的关键是掌握这样的 PI 调节器的稳态特征,一般存在两种状况:饱和——输出达到限幅值,不饱和——输出未达到限幅值。
当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和;换句话说,饱和的调节器暂时隔断了输入和输出间的联系,相当于使该调节环开环。
当调节器不饱和时,PI 的作用使输入偏差电压∆U 在稳态时总为零。
图1-4 双闭环直流调速系统的稳态结构框图α——转速反馈系数 β——电流反馈系数实际上,在正常运行时,电流调节器是不会达到饱和状态的。
因此,对于静特性来说,只有转速调节器饱和和不饱和两种情况。
1. 转速调节器不饱和这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此0n n U U n n αα===*d i i I U U β==*由第一个关系式可得0n U n n==*α从而得到图1-5所示静特性的CA 段。
与此同时,由于ASR 不饱和,**<im i U U ,从上述第二个关系式可知dm d I I <。
这就是说,CA 段特性从理想空载状态的Id=0一直延续到Id=Idm ,而Idm 一般都是大于额定电流dN I 的。
这就是静特性的运行段,它是一条水平的特性。
2. 转速调节器饱和这时,ASR 输出达到限幅值*im U ,转速外环呈开环状态,转速的变化对系统不再产生影响。
双闭环系统变成一个电流无静差的单电流闭环调节系统。
稳态时dm imd I U I ==β*其中,最大电流Idm 是由设计者选定的,取决于电动机的容许过载能力和拖动系统允许的最大加速度。
其所描述的静特性对应于图1-5中的AB 段,它是一条垂直的特性。
这样的下垂特性只适合于0n n <,则*n n U U >,ASR 将退出饱和状态。
图1-5 双闭环直流调速系统的静特性双闭环调速系统的静特性在负载电流小于I dm 时表现为转速无静差,这时,转速负反馈起主要调节作用。
当负载电流达到I dm 后,转速调节器饱和,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。
这就是采用了两个PI 调节器分别形成内、外两个闭环的效果。
这样的静特性显然比带电流截止负反馈的单闭环系统的静特性好。
1.3.3各变量的稳态工作点和稳态参数计算由图1-4可以看出,双闭环调速系统在稳态工作中,当两个调节器都不饱和时,各变量之间有下列关系0n n U U n n αα===*dL d i i I I U U ββ===*sdL n e s d e s d c K R I U C K R I n C K U U +=+==α*0 上述关系表明,在稳态工作点上,转速n 是由给定电压*n U 决定的;ASR 的输出量*i U 是由负载电流dL I 决定的;而控制电压Uc 的大小则同时取决于n 和Id ,或者说,同时取决于*nU 和dL I 。
这些关系反映了PI 调节器不同于P 调节器的特点。
比例环节的输出量总是正比于其输入量,而PI 调节器则不然,其输出量的稳态值与输入无关,而是由它后面环节的需要决定的。
后面需要PI 调节器提供多么大的输出值,它就能提供多少,直到饱和为止 所以,转速反馈系数 max *n U nm =α电流反馈系数dmim I U *=β2 主电路的确定及参数计算2.1主电路的选择在直流调速系统中,我们采用的是晶闸管-电动机调速系统(简称V-M系统)的原理图如图2-1所示。
它通过调节触发装置GT的控制电压Uc来移动触发脉冲的相位,即可改变平均整流电压Ud,从而实现平滑调速。
与旋转变流机组及离子拖动变流装置相比,晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且再技术性能上也呈现出较大的优越性。
图2-1 晶闸管-电动机直流调速系统对于要求在一定范围内无级平滑调速的系统来说,自动控制的直流调速系统往往以调压调速为主,根据晶闸管的特性,可以通过调节控制角 大小来调节电压。
当整流负载容量较大或直流电压脉动较小时应采用三相整流电路,其交流侧由三相电源供电。
三相整流电路中又分三相半波和全控桥式整流电路,因为三相半波整流电路在其变压器的二次侧含有直流分量,故本设计采用了三相全控桥式整流电路来供电,该电路是目前应用极广泛的整流电路,输出电压波动小,适合直流电动机的负载,并且该电路组成的调速装置调节范围广,能实现电动机连续、平滑地转速调节、电动机不可逆运行等技术要求。
图2-2 主电路原理图三相全控桥式整流电路由晶闸管VT1、VT3、VT5接成共阴极组,晶闸管VT4、VT6、VT2接成共阳极组,在电路控制下,只有接在电路共阴极组中电位为最高又同时输入触发脉冲的晶闸管,以及接在电路共阳极组中电位最低而同时输入触发脉冲的晶闸管,同时导通时,才构成完整的整流电路。
为了使元件免受在突发情况下超过其所承受的电压电流的侵害,电路中加入了过电压、过电流保护装置。
2.2整流变压器参数的计算2.2.12U 的计算为了减小电网与整流装置的相互干扰,使整流主电路与电网隔离,为此需要配置整流装置。
但由于电网电压波动、管子本身的压降以及整流变压器等效内阻造成的压降等。
所以设计时φ2U 应按下式计算: )(cos 22min 2n dl Tdn I I CU AB U n U U -∆+=αφ式中:dn U 为负载的额定电压,取220VT U ∆为整流元件的正向导通压降,取1Vn 为电流回路所经过的整流元件的个数,桥式电路取2A 为理想情况下 0=α时20U U d ,取2.34B 为实际电压与理想空载电压比,取0.93min α为最小移相角,取 10C 为线路接线方式系数,取0.5dl U 为变压器阻抗电压比,取0.05N I I 2为二次侧允许出现的最大电流与额定电流之比,取0.816 所以将数据代入V U 3.106)816.005.05.098.0(93.034.2122202=⨯⨯-⨯⨯⨯+=φ2.2.2变压器和晶闸管的容量1.变压器容量理想条件下变压器二次容量为KVA I U S 88.73.30816.03.10633222=⨯⨯⨯==2.晶闸管容量晶闸管额定电压应选等于元件实际承受最大峰值电压TM U 的(2~3)倍VU U U TM Tn 6.30022)3~2(2=⨯⨯==φ考虑3倍的过压容量,取V 98.901晶闸管额定电流:有效值A I I NVT 49.173== 平均值A KI I I N VT AT VT 111.11)57.1()(=≥== 考虑(1.5~2))(AT VT I 的过流裕量,取A 128.182.3平波电抗器的电感量为了使负载电流得到平滑的直流,通常在整流输出端串入带有气隙铁心的电抗器。