1.1 整数和整除的意义学习单
01-第一章-数的整除-六年级(上)-知识点汇总-沪教版
第一章数的整除1.1 整数和整除的意义1、在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2、在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3、零和正整数统称为自然数4、正整数、负整数和零统称为整数5、整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a1.2 因数和倍数1、如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数2、倍数和因数是相互依存的3、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4、一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3 能被2, 5整除的数1、个位数字是0,2,4,6,8的数都能被2整除2、整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3、在正整数中(除1外),与奇数相邻的两个数是偶数4、在正整数中,与偶数相邻的两个数是奇数5、个位数字是0,5的数都能被5整除6、0是偶数1.4 素数、合数与分解素因数1、只含有因数1及本身的整数叫做素数或质数2、除了1及本身还有别的因数,这样的数叫做合数3、1既不是素数也不是合数4、奇数和偶数统称为正整数,素数、合数和1统称为正整数5、每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6、把一个合数用素因数相乘的形式表示出来,叫做分解素因数7、分解素因数方法:树枝分解法、短除法1.5 公因数与最大公因数1、几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2、如果两个整数只有公因数1,那么称这两个数互素数3、把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4、如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5、如果两个数是互素数,那么这两个数的最大公因数是11.6 公倍数与最小公倍数1、几个数公有的倍数,叫做这几个数的公倍数2、几个数中最小的公因数,叫做这几个数的最小公倍数3、求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4、如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数如果两个数是互素数,那么这两个数的最小公倍数是两个数的乘积试试你的身手!一:填空题(每空1分,共22分)1.3.6÷2=1.8,(能,不能)说2整除2.8。
1.1整数与整除的意义
1.1整数与整除的意义
基础题
1、 和 统称为自然数.
2、 、 和 统称为整数.
3、3412=÷,我们可以说 能被 整除;也可以说 能整除 .
4、如果一个正整数除以7,商是3,余数是4,那么这个正整数是 .
5、三个连续的自然数之和是54,则这三个数是 .
6、已知23能被正整数a 整除,则a 可能是 .(写出所有的可能)
7、判断:
(1)没有最小的自然数. ( )
(2)有最大的整数. ( )
(3)所有的自然数都是整数. ( )
(4)3=÷n m ,n 一定能整除m . ( )
(5)0不能作除数. ( )
8、从下列数中选择适当的数填入相应的圈内
6,-8,0,0.5,-17,6
5,98,-3.75 正整数 负整数 自然数 整数
9、根据要求把下列算式分别填入框内
25和5,18和1,7和21,4和0.5,3和51,14和6
第一个数能被第二个数整除 第一个数能整除第二个数
提高题
10、根据要求把下列算式分别填入框内: 213÷,714÷,1751÷,522÷,624÷,317÷
整除 除尽。
1.1整数与整除的意义(分层练习)(原卷版)
1.1整数与整除的意义分层练习1.等式23÷4=5.75表示………………………………………………………………………………………()(A)23能被4整除;(B)4能整除23;(C)23能被4除尽;(D)23不能被4除尽.2.下列说法中,正确的个数有()①32能被4整除;①1.5能被0.5整除;①13能整除13;①0能整除5;①25不能被5整除;①0.3不能整除24.A.2个B.3个C.4个D.5个3.下列说法错误的是().(A)负整数和自然数统称为整数.(B)数a能被数b除尽,则数a一定能被数b整除.(C)一个大于1的整数,至少能被两个数整除.(D)在10以内只能被两个数整除的最大数是7.4.已知m能整除73,那么m是………………………………………………………………………………()(A)146;(B)9;(C)1或73;(D)219.5.下列各组数中,第一个数能被第二个数整除的是()(A)2和20(B)3和1.5(C)34和17(D)7和26.下列说法正确的是()(A)整数一定比小数大(B)没有最小的自然数(C)所有自然数都是整数(D)0是最小的正整数7.比3小的自然数是________;8.从4起五个连续的自然数是;9.最小的正整数与最大的负整数的和是;10.已经正整数a能整除23,那么a=.11.既能被2整除,又能被5整除的最小正整数是_________.12.把下列各数填人适当的方框内.,,,---12,700.4,2391,8.75.整数非负整数正整数13.一个三位数,十位上是最小的自然数,百位上是最小的正整数,三个数位数字之和是4,求这个三位数.1.下列说法中正确的是()①能够除尽的算式,被除数一定能被除数整除②最小的素数是2③合数一定是偶数④没有最大的素数(A)①、②(B)②、③(C)②、④(D)③、④2.三个连续自然数的和是45,则这三个数是____________.3.不超过100的正整数中,能被25整除的数有哪些?不超过1000的正整数中,能被125整除的数有哪些?4.剪12块大小相同的纸片,探究拼成几种形状不同的长方形,长和宽各几个单位?5.如果一个三位数36□能同时被2和5整除,那么□应该填的数字是_____.1.一个三位数,被17除余5,被18除余12,那么它可能是___________;一个四位数,被131除余112,被132除余98,那么它可能是___________;2.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整61,43583÷=,所以43÷=,所以22不是31,但2254264和148是否为“合8数”?请说明理由;求大于300且小于400的所有“合8数”.。
六年级校本作业
1.1 整数和整除的意义使用日期:2012年9月设计者:江晓东审核人:施兵班级XX【课堂练习】例1 将下列各数填入相应的圈内:1、38、-7、0、1.2、-17、21整数自然数正整数负整数例2 判断下列各题中,a能否被b整除,如果a能被b整除,在括号内填入“√”,否则填入“⨯”,并说明理由。
(1)a=42,b=7 ()(2)a=7,b=42 ()(3)a=4,b=7 ()(4)a=4.2,b=0.7 ()例3 判断下列各说法是否正确。
(1)零是整数但不是自然数。
()(2)-1是最大的负整数。
()(3)若32÷4=8,则4能被32整除。
()(4)1能被任意一个自然数整除。
()(5)整数没有最大的数,也没有最小的数。
()【课后练习】1、判断题:(正确的在括号里打“√”,错误的在括号里打“⨯”)(1)一个整数不是正整除,就是负整数。
()(2)0是自然数。
()(3)非负整数是自然数。
()(4)3.6÷4=0.9,所以3.6能被0.9整除。
()(5)如果整数a除以整除b恰好除尽,那么a一定能被b整除。
()2、填空题(1)如果一个正整数除以5,商是3,余数是2,那么这个整数是(2)能够被3整除的两位数中,最大的是(3)如果12÷6=2,那么能被整除,或者说能整除(4)如果m是一个正整数,且m能被7整除,同时也能整除7,那么m=3、下列各组数中,如果第一个数能被第二个数整除,请在()打“√”。
80和16();51和17();12和36()39和13();19和9();75和15()4、下列各组数中,如果第一个数能整除第二个数,请在()打“√”。
6和12();9和54();64和8();48和16();32和64();40和10();5、(1)写出最小的自然数及比10小的最大自然数。
(2)最大的负整数是多少?★(3)如果将所有的自然数按从小到大的次序排列,那么哪两个自然数紧挨着大于1的自然数a?6、解答题1、能整除18,有能整除30的整数有几个?最大的是多少?2、一个三位数,十位上是最小的自然数,百位上是最小的正整数,三个数位数字之和是4,求这个三位数。
[生活]数的整除的概念和定义
第一章数的整除第一节整数和整除教学目标:1、理解整除的定义和自然数的意义。
知道整除的要素,掌握整除的两种表述方法。
2、理解因数与倍数的意义,会求一个整数的因数和倍数。
3、概括出能被2,5整除的数的特征。
知识要点:1.1:整数和整除的意义1、零和正整数统称为自然数。
2、正整数、零、负整数,统称为整数。
3、整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a.注意整除的条件:1、除数、被除数都是整数;2、被除数除以除数,商是整数而且余数为零。
1.2:因数和倍数1、整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数(也称约数)。
2、一个整数的因数中最小的因数是1,最大的因数是它本身。
1.3:能被2、5整除的数1、个位上是0,2,4,6,8的整数都能被2整除。
2、能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数。
3、各位上是0或者5的整数都能被5整除。
第二节分解素因数教学目标:1、理解素数、合数的意义。
2、能用求因素的方法或查素数表的方法判断一个正整数是否为素数。
3、熟记20以内的全部素数。
4、理解素因数和分解素因数的意义,掌握分解素因数的方法。
5、掌握最大公因数和最小公倍数的算理和方法。
知识要点:1.4:素数、合数与分解素因数1、一个正整数,如果只有1和它本身两个因素,这样的数叫做素数,也叫做质数;如果除了1和它的本身以外还有别的因素,这样的数叫做合数。
2、1既不是素数,也不是合数。
这样,正整数又可以分为1、素数和合数三类。
34、每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的因数,叫做这个合数的素因数。
把一个合数用素因素相乘的形式表示出来,叫做分解素因数。
5、一般我们用短除法分解素因数,步骤如下:①先用一个能整除这个合数的素数(通常从最小的开始)去除。
②得出的商如果是合数,再按照上面的方法继续除下去,直到得出的商是素数为止。
③然后把各个除数和最后的商按从小到大的顺序写成连乘的形式。
整数与整除
【知识点1】1、整数和整除的意义整除:整数a除以整数b,如果除得的商是整数而余数为零,就说a能被b整除;或者说b能整除a。
注意整除的条件:(1)除数、被除数都是整数;(2)被除数除以除数,商是整数而且余数为零。
2、自然数和整数零和正整数统称为自然数.正整数.零和负整数统称为整数.3.除尽没有余数4.整除与除尽相同点:都没有余数;除尽中包含整除不同点:整除中,被除数、除数和商都是整数,余数为0;除尽中,被除数、除数和商不一定是整数,余数为0.【典型例题1】试证明“三个连续的正整数之和能被3整除”。
【基本习题限时训练1】1、下列算式中表示整除的算式是()(A)9÷18=0.5 (B)6÷2=3 (C)15÷4=3……3 (D)0.9÷0.3=32、下列各组数中,均为自然数的是()(A)1.1,1.2,1.3 (B)-1,-2,-3 (C)23,34,45(D)2,4,63、下列说法正确的是……………………………………………()(A)最小的整数是0 (B)最小的正整数是1(C)没有最大的负整数(D)最小的自然数是14、判断:(1)零是整数,但不是自然数;(2)-1是最大的负整数;(3)3248÷=,则4能被32整除;(4)整数中没有最大的数,也没有最小的数。
5、13、24、57、88四个数中能被2整除的数有哪几个?6、正整数36能被正整数a整除,写出所有符合条件的正整数a。
【拓展题1】1、三个连续自然数的和是306,求这三个自然数。
2、试证明:能被3整除的三位数各数位上数的和能被3整除。
一、填空题1.统称为自然数。
2.统称为整数。
3.用“能”或者“不能”填空,注意主动句与被动句的不同,并熟读语句。
(1)2 整除4 (2)2 整除5(3)5 被2整除(4)6 被2整4.把下列各数填在指定的圈内:2,125,-7,0.4,101,0,-1.6,-97,43,-1自然数 负整数 整数二、选择题 1. 6÷5=1.2,表示( )A.6能被5整除B.6能被5除尽C.6不能被5除尽D.5能整除62.和11相邻的整数是( )A.9、10B.10、12C.12、13D.都是3.下列四句话中,正确的是( )A.最小的整数是1B.整数一定比小数大C.4能被0.8整除D.负整数、0、正整数都是整数4.把下列各算式填入相应的方框里。
沪教版6年级数学1.1:整数和整除的意义(教案)
(1)整数:整数及其分类(正整数、负整数、自然数等);(2)整除的概念:整除及其判断方法;首先我们来复习回顾一下小学学过的有关整数的相关知识。
如下图所示,是某超市货架上摆放的商品,你能数出玉米和苹果的个数各是多少吗?从图中,我们不难看出,玉米的个数为7个,苹果的个数是4个。
在这里我们得到的数字7和4都属于整数,严格来讲它们应该叫作正整数。
那么什么是正整数呢?正整数:我们用来表示物体个数的1,2,3,4,5…叫做正整数。
生活中,我们都会用到正整数。
比如日历表中的日期都是用正整数表示的(如下图所示);月份、星期等也都是用正整数表示的。
有正整数就有负整数,那么什么是负整数呢?负整数:如果我们在正整数1,2,3,4,5…的前面添加符号“-”,得到的数-1,-2,-3,-4,-5…叫做负整数。
其中符号“-”叫做负号。
对比正整数和负整数,我们会发现它们是相互对应的,不同的只是符号。
负整数是在对应的正整数前面添加“-”得到的。
仔细观察,我们发现,正整数和负整数中都不包含零。
这说明,零既不是正整数,也不是负整数,它是一个特殊的整数。
零通常用来表示没有物体,比如我们说“教室有0个同学”,意思就是“教室每人”;零还可以表示描述事物中某种量的基准数,例如我们在计算温度时,都是将0摄氏度作为温度的基准点,其他温度都是相对于这个温度来说的。
零的意义:(1)表示没有物体;(2)表示计量过程中某种量的基准数;这样我们就把整数分成了三类数,分别是:正整数、负整数和零。
因此,我们把正整数、零、负整数统称为整数。
整数:正整数、零、负整数,统称为整数。
用图可以表示为:⎪⎩⎪⎨⎧负整数正整数整数0另外,数学中把零和正整数合在一起,统称为自然数。
自然数:零和正整数统称为自然数(为什么将它们称为自然数呢?是因为这些数是我们在数数时自然产生的,因此才叫做自然数)。
所以整数又可以用下图来表示:⎪⎩⎪⎨⎧⎭⎬⎫负整数自然数正整数整数0*注意:正整数和负整数是相互对应的,负整数是在正整数的前面加上“-”得到的。
1.1整数和整除的意义
一、引例:
小明家装修新房,客厅的地面是长6米、宽4.8米的 长方形,准备用整块的正方形地砖铺满客厅的地面,市 场上地砖有30×30、40×40、60×60、80×80(单位: 厘米×厘米)四种尺寸,小明家想选尺寸较大的地砖, 该选哪一种尺寸呢?
二、新授:
(一)整数:
整数和整除的意义:
三整一零
练习 2. 下列哪一个算式的被除数能被除数整除? √ 10÷3; 48÷8; 6÷4. 24÷6.√ 51÷17. √ 2.6÷1.3.
3. 下列说法对吗?为什么 (2)51能整除17 × (1)3能被6整除 × (3)2.5能被5整除 × (4)51能整除17 × (5)10能被100整除 × (6)10能整除20 √
零既不是正整数,又 不是负整数
自然数也叫做非负整数
2.自然数:
正整数 自然数 零
3.注意整除的条件:“三整一零”.
4.在下列各组数中,如果第一个数能被第二个数整除, 请在下面的( )内打“√”,不能整除的打“×”. 72和36(√ ); 20和5( √ ); 18和3( √ );
×
17和34( );
× ×
0.5和5(
0.2和4(
).
17和3(
×
19和38(
×
); ).
).
三、小结: 1.整数分类:
正整数 整数 零 负整数
自然数有时也叫 做非负整数!
练习:
1.从下列数中选择适当的数填入相应的圈内.
12,-7,0,0.4,-23,
12,91
3 4
,91,-8.75.
-7,-23
正整数
12,-7,0,-23,91
数的整除知识梳理
第一章数的整除一、知识整理1.1整数和整除整除的条件:1.除数、被除数都是整数。
2.被除数除以除数,商是整数,而且余数为零。
除尽的条件:1.除数、被除数不一定是整数。
2.被除数除以除数,商是整数或有限小数,而且余数为零。
☆整除是除尽的一种特殊情况。
1.2整数和整除的意义整数a能整除整数b,b叫做a的倍数。
a叫做b的因数。
☆倍数和因数是相互依存的。
1.3能被2、5整除的数1.4素数、合数与分解素因数正整数素数(2是唯一的偶素数)合数既不是素数也不是合数。
素数:除1与本身外没有其他因数的数。
合数:除1与本身外有其他因数的数。
分解素因数用短除法。
(用等式些写结论,分解的书写在最前。
)1.5公因数与最大公因数求两数的最大公因数:1.定义法2.分解素因数3.短除法a 和b 的最大公因数是c 的表示方法:(a ,b )=c☆若两数互素,那么它们的最大公因数就是1。
☆若两数是倍数关系,那么它们的最大公因数就是较小数。
1.6公倍数与最小公倍数求两数的最小公倍数:1.定义法2.分解素因数3.短除法a 和b 的最小公倍数是c 的表示方法:[a ,b]=c☆若两数互素,那么它们的最小公倍数就是两数的乘积。
☆若两数是倍数关系,那么它们的最大公因数就是较大数。
总结:一个整数正整数 零 负整数☆任何一个合数都可以分解质因数。
1.整除 “三整一零” 整除是除尽的一种特殊情况。
2.倍数,因数整数间的关系 3.互素(两两互素)4.公因数(最大) 最小公倍数5.公倍数(最小) =最大公因数×各自独有的因数奇数(2n 加1,n 为正整数) 偶数(2n ,n 为正整数)素数:只有1和它本身这两个因数 合数:除了1和它本身还有其它因数二、习题练习1.求下列各数的最大公因数和最小公倍数。
(1)56,108,72 (2)36,28,15三、拓展知识对于“每/每隔/每过”不同情况的区分:。
整数和整除的意义练习卷一和参考答案
第一章 数的整除1.1 整数和整除的意义(1)一、填空题 . 和 统称为整数.3.最小的自然数是 ,小于3的自然数是 .4.最小的正整数是 ,小于4的正整数是 .5.能被2整除的最大的负整数是 . 6.能被5整除的最小的正整数是 .7.20以内能被3整除的自然数有 .8.与27相邻的两个自然数是 .9、在下列各组数中,如果第一个数能被第二个数整除,请在( )内打“√”,不能整除的打“×”.72和36 17和34 20和5 0.5和5( ) ( ) ( ) ( )18和3 19和38 0.2和4 17和316.不超过100的正整数中,能被25整除的数有 ;不超过1000的正整数中,能被125整除的数有 .二、选择题17、下列说法中正确的是( )A 整数包括正整数和负整数B 非负整数是自然数C 若整数m 除以整数n 恰好能除尽,则m 一定能被n 整除D 若m ÷n 余数为0,则n 一定能整除m18.下列算式中表示整除的算式是………………………( )A 0.8÷0.4=2;B 16÷3=5……1;C 2÷1=2;D 8÷16=0.5.19、下列各题中,第一个数能被第二个数整除的有( )个①34、17 ②3、6 ③5、2 ④1.5、0.5 ⑤18、1A 1B 2C 3D 4三、简答题20.从下列数中选择适当的数填入相应的圈内.-200、17、-6、0、1.23、76、2006、-19.6、9、83 负整数 自然数 整数21、若两个整数a、b都能被不等于0的整数c整除,商分别是m、n(1)写出上面的两个整除算式(2)它们的和与差也能被c整除吗?说明理由,并举例说明。
参考答案:1.零,正整数2.负整数,零,正整数3.0,0、1、24.1,1、2、35.-26. 57.0、3、6、9、12、15、188.26、289.√、×、√、×、√、×、×、×10.12,4,4,1211.例:52÷13、2÷1312.1、2913.a-1、a+1,17、18、1914.1、2、3、4、6、8、12、2415.3,10,016.25、50、75、100,125、250、375、500、625、750、875、100017.B18.C19.B20.负整数:-200、-6,自然数:17、0、2006、9,整数:-200、-6、17、0、2006、921.(1) a÷c=m,b÷c=n(2) 能,因为:(a+b)÷c=m+n,(a-b)÷c=m-n例:20÷2=10,8÷2=4,(20+8)÷2=10+4=14,(20-8)÷2=10-4=6。
第一讲数的整除(1—3)
第一讲 数的整除知识清单:1.1整数与整除的意义1、整数整数:正整数、零、负正整统称为整数。
零和正整数统称为自然数。
最大的负整数是–1,没有最小的负整数,最小的正整数是1,没有最大的正整数,没有最大的整数。
2、整除的意义整除:整数a 除以整数b (b ≠0),如果除得的商是整数而余数为零,我们就说数a 能被数b 整除或b 能整除a 。
确定整除的条件:(三整余零)1、除数、被除数都是整数;2、被除数除以除数,商是整数而且余数为零。
除尽:在整数或小数除法中,如果商是整数或有限小数,则叫做能够除尽。
除不尽:数a 除以数b (b ≠0),当所得的商是一个无限循环小数时,我们就说数b 除不尽数a ,或者说数a 不能被数b 除尽。
1.2 因数与倍数1、如果整数a 能被整数b 整除,a 就叫做b 的倍数,b 就叫做a 的因数(或a 的约数)。
倍数和因数是相互依存的。
2、因数和倍数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身;一个数的倍数是无限的,其中最小的倍数时它本身,没有最大的倍数;一个数既是它本身的因数,也是它本身的倍数。
1.3 能被2、5整除的数1、偶数:能被2 整除的整数是偶数;奇数:不能被2 整除的整数是奇数.2、通常奇数可以表示为2k+1(或2k-1)的形式,其中k 为整数,偶数可以表示为2k 的形式,其中k 是整数.3、正整数按照能否被2整除分为奇数和偶数2、能被2、5 、3、9整除的数的特征(1)一个数的个位数字如果是0,2,4,6,8 中的一个,那么这个数就能被2 整除。
(2)一个数的个位数字如果是0 或5,那么这个数就能被5 整除。
(3)一个数各个数位上的数字之和如果能被3 整除,那么这个数就能被3 整除。
(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。
(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。
致易教育 沪教版六年级数学上 一课一练(含答案)
第四章 圆和扇形
第十五周 第十六周 一月一考
4.1 圆的周长-4.3 圆的面积(1)………………………………………………… 73 4.3 圆的面积(2)-4.4 扇形的面积……………………………………………… 77 第四章 圆和扇形…………………………………………………………………… 81
期中测试…………………………………………………………………………………………… 85 期末测试…………………………………………………………………………………………… 89
第二章 分数
第四周 第五周 第六周 第七周
2.1 分数与除法(1)-2.2 分数的基本性质(2)…………………………………… 17 2.2 分数的基本性质(3)-2.3 分数的大小比较………………………………………21 2.4 分数的加减法(1)-(3)………………………………………………………… 25 2.4 分数的加减法(4)-(5)………………………………………………………… 29
(A)甲数;
(B)乙数; (C)1;
(D)没有.
14.下列说法中正确的是…………………………………( )
(A)5 和 6 的最小公倍数是 1;
9
致易教育数学教研组
(B)21 和 9 的最小公倍数是 21×9;
中小学课外辅导专家
(C)7 和 11 没有最小公倍数;
(D)甲数=2×2×3,乙数=2×3×3,甲数和乙数的最小公倍数是 2×2×3×3.
2.
和
统称为自然数.
3.12 和 3,其中
是
的因数,
.
是
12
的倍数.
致易教育数学教研组
4.写出 2 个能被 5 整除的两位数:
预初-1整数和整除的意义、因数和倍数(教师版)
初中数学备课组教师班级预初学生日期上课时间学生状况:主课题: 1.1 整数和整除的意义 &1.2 因数和倍数教课目的:1.掌握自然数、整数、整除、因数、倍数等观点2.掌握整除的条件,会划分整除和除尽3.在整除中,能够说明谁是谁的倍数,谁是谁的因数4.掌握求一个整数的所有因数的方法,掌握整数的最小和最大的因数5.掌握求一个整数在必定范围内的倍数,掌握整数的最小的倍数教课要点:1.自然数、整数、整除、因数、倍数;整除、整除的条件2.掌握求一个整数的所有因数的方法,掌握整数的最小和最大的因数3.掌握求一个整数在必定范围内的倍数,掌握整数的最小的倍数教课难点:1.掌握整数最小和最大的因数2.掌握整数最小的倍数考点及考试要求:1.自然数、整数、正整数、负整数的分类2.给出算式判断能否为整除3.会在必定范围内求一个正整数的因数、倍数知识精要知识点1:整数的意义和分类自然数:零和正整数统称为自然数( natural number);整数:正整数、零、负整数,统称为整数( integer )。
正整数整数零自然数负整数知识点 2:整除(1)整数a除以整数b,假如除得的商是整数而余数为零,我们就说 a 能被 b 整除;或许说 b 能整除 a.( 2)整除的条件(两个一定同时知足):①除数、被除数都是整数;②被除数除以除数,商是整数并且余数为零。
知识点 3:除尽与整除的异同点同样点:除尽与整除,都没有余数,即余数都为0;除尽中包含整除不一样点:整除中被除数、除数和商都为整数,余数为零;除尽中被除数、除数和商不必定为整数,余数为零。
知识点 4:因数和倍数整数 a 能被整数b整除, a 就叫做 b 的倍数, b 就叫做 a 的因数(也称为约数)。
注:( 1)在整除的条件下才有因数和倍数的观点;( 2)说法:比如, 6 3=2 ,只好说 6 是 3 的倍数, 3 是 6 的因数,不可以独自说 6 是倍数, 3 是因数( 3)假如 a 是 b 的倍数,那么 b 必定是 a 的因数;反之,假如 b 是 a 的因数,那么 a 必定是 b 的倍数知识点 5:求一个数的因数的方法(1)列乘法算式:依据因数的意义,有序地写出某数的所有两个数乘积的乘法算式,乘法算式中的因数就是该数的因数例: 6=1× 6, 6=2× 3,因此 1、 2、 3、6 都是 6 的因数(2)列除法算式:用此数除以随意整数,所得商是整数而无余数,这些除数和商都是该数的因数例: 8 1=8, 8 2=4,因此 1, 2, 4,8 都是 8 的因数规律总结:一个数的因数个数是有限的。
1.1整数和整除的意义
回顾与思考
正整数、自然数、小数、分数、负整数
用来表示物体个数的数称为正整数
特点: ① 有无数个 ②正整数中有最小值,为1,没有最大值 ③ 相邻两个正整数之间相差 1,即:a、a+1
阿拉伯数字?
公元3世纪,古印度的一位科学家巴格达发明了阿拉伯数字。 大约公元700年前后,阿拉伯人征服了印度地区,发现印度 数字和印度计数法既简单又方便,其优点远远超过了其他的方法, 所以阿拉伯的学者们和商人们学习了这些先进知识。 后来,阿拉伯人把这种数字传入西班牙。公元10世纪,又由 教皇热尔贝·奥里亚克传到欧洲然数(natural number)
特点: ① 有无数个
② 自然数中有最小值,为 0,没有最大值
③ 相邻两个自然数之间相差 1,即:a、a+1
负号的来源
• 1489年德国数学家魏德曼在他的著作中首先 使用了“ +”、“—”符号,但正式为大家 公认是从1514年荷兰数学家荷伊克开始。
(√ )
(×)
18和3 (√ )
19和38 0.2和4
(×)
(×)
17和3 (×)
区别“整除”与“除尽”的概念
被除数 除数
商
整除 都是整数,除数不为0
除尽 不一定是整数,除数不为0
余数
余数 为0 没有 余数
整除是除尽的一种特殊形式。
课堂练习
一、判断: 1、_2_.5_能被5整除。× 2、0既不是正整数,也不是负整数。√ 3、a÷b = 11,则b一定能整除a。× a、b范围不明确 4、最小的整数是1。× 正整数
a÷b=c、a=b×c,(a、b、c为正整数) 我们就说a能被b整除;或者说b能整除a。
回家作业
校本作业A册1.1
整数和整除的意义
1.1 整数和整除的意义教学目标1、在“分类——归纳”的过程中,理解自然数与整数的意义.2、在“实验——猜想——归纳“的过程中,理解和掌握整除的概念.3、通过各种方式,激发学生的交流、对话的意识,积极探索的精神,培养学生抽象概括与观察物的能力.并从而树立学好数学的自信心。
重点、难点理解和掌握整除的概念。
一、 建立整数和自然数的概念:在数物体的时候,用来表示物体个数的数1、2、3、4……,叫做正整数。
在正整数1、2、3、4……的前面添上“—”号,得到的数-1、-2、-3、-4……,叫做负整数。
零和正整数统称为自然数。
正整数、零和负整数,统称为整数。
2、把下列各数填在适当的圈内:12、-6、0、1.23、76、2005、-19.6、9 正整数 自然数 整数归纳:整数a 除以整数b ,如果除得的商正好是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。
2、判断下列哪一个算式的被除数能被除数整除10÷3 48÷8 6÷43、一展身手:(1) 有15位同学参加学校组织的夏令营活动,老师准备把她们平均分成若干小组,有几种分法能?有可能把他们平均分成4个小组吗?为什么?(2)一班同学分成四个小组糊纸盒,每组糊的个数同样多,小马虎统计时说:全班共糊纸盒342个,小马虎统计错了?为什么?1.2 因数和倍数教学设计因数和倍数是在整除基础上的进一步研究,因此在学生原有知识的基础上建立因数和倍数的概念,关键是使学生理解因数和倍数之间的相互依存关系,同时也是对整除概念的进一步巩固。
在教学设计中通过一些辨析题是学生更透彻的理解概念。
在求一个数的因数和倍数的过程中培养学生的观察和归纳问题的能力,在学生学和解决问题的同时培养良好的学习习惯。
教学目标1、理解和掌握因数和倍数的意义,了解因数和倍数相互依存的关系。
会根据因数和倍数的意义描述两个数之间的关系。
2、知道一个数的因数和倍数的求法.3.知道一个数的因数是有限个,一个数的倍数是无限个.4、渗透初步的辩证唯物主义思想教育。
2019-2020年六年级上册1.1《整数和整除的意义》word教案
2019-2020年六年级上册1.1《整数和整除的意义》word教案教学目标1. 知识目标:在“分类——归纳”的过程中,理解自然数与整数的意义。
2. 能力目标:在“实验——猜想——归纳“的过程中,理解和掌握整除的概念。
3. 情感目标:通过各种方式,激发学生的交流、对话的意识,积极探索的精神,培养学生抽象概括与观察物的能力。
并从而树立学好数学的自信心。
重点、难点理解和掌握整除的概念。
教学设计整数和整除的意义是六年级的第一节课,为此在教学设计中比较注重学生学习兴趣的培养和数学学习方法的体验。
对于整数和整除这两个比较抽象的概念从学生的实际生活和年龄特点出发,体现数学知识的形成是从具体到抽象的过程。
在理解概念的基础上,通过一些辨析题起到巩固知识的目的。
教学流程提出问题分类讨论组间交流总结归纳教学过程一、建立整数和自然数的概念:1. 请你在卡片上写上一个数字,然后把它贴在黑板上。
你能根据一定的依据把这些数来分一分类吗?并说明理由。
(小组讨论)(小组讨论、归纳、交流)归纳:在数物体的时候,用来表示物体个数的数1、2、3、4……,叫做正整数。
在正整数1、2、3、4……的前面添上“—”号,得到的数-1、-2、-3、-4……,叫做负整数。
零和正整数统称为自然数。
正整数、零和负整数,统称为整数。
2. 把下列各数填在适当的圈内:12、-6、0、1.23、76、2005、-19.6、9正整数 自然数 整数二、建立整除的概念:1. 你能在你的卡片上很快写出一个除法算式并贴上黑板吗?(学生写完后任意贴。
)2. 你能根据一定的依据把这些除法算式来分一分类吗?并说明理由。
(小组讨论)我们小组的分类:(根据需要填写)1. ____________________________________________________________2. ____________________________________________________________3. ____________________________________________________________ 分类的理由:1. ____________________________________________________________2. ____________________________________________________________3. ____________________________________________________________3. 请同学们仔细观察黑板上除法算式里的被除数、除数和商或结果,它们有什么不同的地方,每一组算式有什么特点?归纳:整数a 除以整数b ,如果除得的商正好是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。
沪教版数学六年级上册1.1《整数和整除的意义》教学设计
沪教版数学六年级上册1.1《整数和整除的意义》教学设计一. 教材分析《整数和整除的意义》是沪教版数学六年级上册的第一课时内容,这部分内容是在学生已经掌握了整数的基本知识的基础上进行讲解的,主要让学生了解整除的概念,以及整除与除尽的区别。
教材通过具体的例子,让学生理解整除的意义,并能够运用整除的概念解决实际问题。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于整数的概念已经有了初步的了解。
但是在学习整除的概念时,可能会对整除与除尽的区别产生混淆。
因此,在教学过程中,需要教师引导学生通过观察、思考、交流等方式,深刻理解整除的意义。
三. 教学目标1.让学生理解整除的概念,能够识别整除的算式。
2.让学生掌握整除与除尽的区别。
3.培养学生运用整除的概念解决实际问题的能力。
四. 教学重难点1.整除的概念。
2.整除与除尽的区别。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生通过观察、思考、交流等方式,理解整除的概念,掌握整除与除尽的区别。
六. 教学准备1.教材、教案。
2.课件、教学辅助材料。
3.计时器、黑板、粉笔。
七. 教学过程1.导入(5分钟)教师通过一个具体的问题,如“36除以6等于多少?”引发学生对整除的思考,进而引入整除的概念。
2.呈现(10分钟)教师通过PPT展示整除的定义,让学生理解整除的意义。
同时,通过对比除尽和整除,让学生掌握两者的区别。
3.操练(10分钟)教师给出一些整除的算式,让学生判断哪些是整除,哪些不是整除。
同时,让学生尝试运用整除的概念解决实际问题。
4.巩固(10分钟)教师通过一些练习题,让学生进一步巩固整除的概念,以及整除与除尽的区别。
5.拓展(10分钟)教师引导学生思考:除了整除,还有哪些除法运算?让学生了解除法运算的多样性。
6.小结(5分钟)教师引导学生总结本节课所学的内容,让学生明确整除的概念,以及整除与除尽的区别。
7.家庭作业(5分钟)教师布置一些有关整除的家庭作业,让学生进一步巩固所学知识。
沪教版(上海)六年级数学第一教学设计:1
-例如:让学生分组讨论一个数的因数和倍数的特征,总结找一个数的因数和倍数的方法。
3.突破重难点,注重方法指导:
-对于整数与整除的概念,通过数轴、实物等直观教具,帮助学生形象地理解。
-对于因数和倍数的运用,引导学生通过实际操作、举例等方法,发现规律,总结方法。
学生在这个阶段好奇心强,求知欲旺盛,喜欢探索和发现。因此,我们需要利用这一特点,通过设置有趣的实际问题,激发学生的学习兴趣,引导他们主动投入到整数与整除的学习中。同时,学生已经具备了一定的自主学习能力和合作交流能力,我们可以充分利用这一点,鼓励他们在课堂上积极思考、互动交流,提高课堂效果。
此外,学生在解决整数与整除问题时,可能会遇到一些困难和误区。作为教师,我们要及时发现并引导学生克服这些困难,帮助他们建立正确的数学观念,培养良好的数学思维习惯。
-教师在游戏结束后,引导学生思考:在这个游戏中,我们是如何确定下一个数的?这和我们今天要学习的整数与整除有什么关系?
2.情境创设:结合生活实际,提出问题“如果你有12个苹果,要平均分给4个朋友,每个人能得到几个苹果?”,引导学生思考整数与整除的实际意义。
(二)讲授新知
1.整数的概念:通过数轴、实物等直观教具,让学生理解整数包括正整数、0和负整数,并明确整数在生活中的应用。
-问题2:如何找一个数的因数和倍数?
-问题3:你能举例说明整数与整除在实际问题中的应用吗?
2.教师指导:在学生讨论过程中,教师巡回指导,及时解答学生的疑问,引导学生发现规律,总结方法。
(四)课堂练习
1.教学活动设计:针对本节课所学内容,设计不同难度的练习题,让学生当堂完成,巩固所学知识。
1.1整数和整除的意义 课堂学习单
1.1整数和整除的意义 课堂学习单学习目标:1、 在整数概念的梳理中体会分类思想、集合思想;2、 通过对具体问题的思考、观察中概括、理解整除的定义和自然数的意义,知道整除的要素,掌握整除的两种表达方法;3、 经历从现实世界中抽象出概念的过程,感受数学与生活的联系;活动一 整数的分类问题:同学们如何数数?【要点归纳1】整数或者:用图形表示为问题:1、有没有最小的自然数?____________ 2、有没有最大的整数?__________ 【课堂练习1】1 12, -7, 0.4, -23, 100 , 91, -8.5 , 0负整数 整数2、零既不是 ,也不是 。
3、口答:(1)是否有最小的自然数?(2)是否有最小的正整数?(3)是否有最大的负整数?(4)是否有最大的整数?最小的整数?4、下列说法正确的是( )(A )最小的整数是0 (B)负整数中有最小的数(C)自然数的个数是无限的 (D)33,34,35,36,38是连续的自然数活动二 整除的含义思考:(1)15名学生参加夏令营,他们想分成人数相等的几个小组进行活动,可以怎样分组呢?请列式说明。
整数正整数(2)为什么不能平均分成2组或者4组呢?请列式说明。
问:(1)在一个除法算式里,哪个是被除数、哪个是除数、哪个是商?哪个是余数?a÷b=c……e(2)思考(1)和(2)的两个除法算式,他们的运算结果有什么不同?继续观察:下面两组算式卡片中的被除数和除数都是整数,他们的运算结果有什么不同?(1)24÷2=12 (2)6÷5=1.221÷3=7 17÷10=1.784÷21=4 35÷6=5 (5)【要点归纳2】整除:整数..a除以整数..b,如果除得的商是_______且余数为______,我们就说“a能被.b整除”;或者说“b能整除a”。
【典型例题】例判断:下列哪一个算式的被除数能被除数整除?10÷3 48÷8 6÷4问题:2.6÷1.3=2,能不能说2.6能被1.3整除?为什么?【要点归纳3】注意整除的条件:1、被除数、除数都是_______;2、被除数除以除数,商是_______且余数为______。
第一讲,整数和整除
第一讲整数和整除主课题:1.1整数和整除的意义&1.2因数和倍数&1.3能被2、3、5整除的数教学目标:1. 掌握自然数、整数、整除、因数、倍数等概念2. 掌握求一个整数的所有因数的方法,掌握整数的最小和最大的因数3. 掌握求一个整数在一定范围内的倍数,掌握整数的最小的倍数4、掌握能被2、3、5整除的数的特征,掌握能同时被2、5整除的数的特征5、掌握偶数、奇数的特征,以及它们的运算性质教学重点:1、自然数、整数、整除、因数、倍数;整除、整除的条件2. 掌握求一个整数的所有因数的方法,掌握整数的最小和最大的因数3. 掌握求一个整数在一定范围内的倍数,掌握整数的最小的倍数4、掌握奇数偶数的运算性质,会求能同时被2、3、5其中的两个或者三个数整除的数教学难点:1.掌握整数最小和最大的因数,整数最小的倍数2.奇数偶数运算性质的应用3.求能同时被2、3、5其中的两个或者三个数整除的数考点及考试要求:1.自然数、整数、正整数、负整数的分类2.给出算式判断是否为整除3.会在一定范围内求一个正整数的因数、倍数4.会运用奇数偶数的运算性质5.会求能被2、3、5整除的数以及能同时被其中的两个或者三个数整除的数★知识精要知识点1:整数的意义和分类自然数:零和正整数统称为自然数(n a tur a l num b er);整数:正整数、零、负整数,统称为整数(integer)。
整数知识点2:整除(1)整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a. (2)整除的条件(两个必须同时满足):①除数、被除数都是整数;②被除数除以除数,商是整数而且余数为零。
知识点3:除尽与整除的异同点相同点:除尽与整除,都没有余数,即余数都为0;除尽中包含整除不同点:整除中被除数、除数和商都为整数,余数为零;除尽中被除数、除数和商不一定为整数,余数为零。
知识点4:因数和倍数整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数(也称为约数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 整数和整除的意义的学习单
姓名:________________ 班级:________________
【学习重点、难点】
重点:理解自然数的意义;掌握整除的两种读法和整除的两个条件.
难点:掌握整除的两种读法和整除的两个条件
【新课学习】
自然数、整数
【练习1】试一试:将下列各数填入相应的圈里
18 25 0 -12 -2005 1 -2 0.5
正整数负整数自然数整数
【练习2】把下列各数填在适当的圈内: 12、-6、0、1.23、1998、-19.6、9
正整数自然数整数
【练习3】1. 最小的自然数( )
2. 最小的正整数( ),最大的负整数( ),最小的整数( ),最大的整数( )
3. 0既不是( ),也不是( )
4. 整数由( ),( ),( )组成,( )和( )统称为自然数。
整除
【练习4】是整除吗?是的话,按(1)说明
(1)18÷9=2,我们说______能被_______整除,或者说______能整除________。
(2) 21÷7=3 (3) 85÷17=5
(4) 121÷11=11 (5) 6.9÷2.3=3
(6) 2.6÷1.3=2 (7) 10÷1=10
【练习5】请在下列符合条件的括号内打“√”
第一个数能被第二个数整除
24和26 13和39 105和21 81和9 2.8和7 124和4
( ) ( ) ( ) ( ) ( ) ( )
第一个数能整除第二个数
5和15 20和4 68和17 21和7 3和39
( ) ( ) ( ) ( ) ( )
【练习6】将各除式的编号填入适当的圈内
(A) 19÷4 (B) 40÷3 (C) 6.4÷1.6 (D) 52÷13
(E) 30÷7 (F) 68÷17 (G) 3÷51 (H) 91÷7
整除除尽
【课堂小结】
1. ___________、__________、__________ 统称为整数。
___________和___________ 统称为自然数。
2.整除的条件:①___________________________________________________________;
②___________________________________________________________。
3.整除的两种说法
【课内检测】
(1) ______、________和________统称为整数。
(2) 最小的正整数是______,最大的负整数是_______。
(3) 20除以5列成除式__________,从这个式子我们可以看出_____能被______整除,或者说______能整除__________;20除5列成算式是_______。
(4) 在整数除法里,如果甲数除以乙数,商是____,余数是_____,我们就称甲数能被乙数整除,或称____能整除______。
(5) 18÷9=2,我们就说____ 能被_____整除或____能整除_____。
(6) 21能被_____个数整除,其中最大的是______,最小的是_____。
(7) 能整除14的数有___________________。
(8) 在6、21、12、9中能被2整除的数是________________。
(9) 把下列各数填入适当的圈内:
-3 18 -143 0 5 100 4.2
正整数负整数自然数整数
(10)把下列各数填入适当的圈内:
16 -3.2 -30 0 31 4.2 105
负整数正数正整数。