邻水县第一中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载

邻水县高中2018-2019学年上学期高二数学12月月考试题含解析

邻水县高中2018-2019学年上学期高二数学12月月考试题含解析

邻水县高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 有以下四个命题:①若=,则x=y . ②若lgx 有意义,则x >0.③若x=y ,则=.④若x >y ,则 x 2<y 2. 则是真命题的序号为( ) A .①②B .①③C .②③D .③④2. 某程序框图如图所示,则输出的S 的值为( )A .11B .19C .26D .573. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <04. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .565. 下列函数中,在区间(0,+∞)上为增函数的是( )A .y=x ﹣1B .y=()xC .y=x+D .y=ln (x+1)6. 函数f (x )=tan (2x+),则( )A .函数最小正周期为π,且在(﹣,)是增函数B .函数最小正周期为,且在(﹣,)是减函数C .函数最小正周期为π,且在(,)是减函数D .函数最小正周期为,且在(,)是增函数7. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D . 8. 已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .9. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤ C .0<a < D .a >10.已知数列{a n }是等比数列前n 项和是S n ,若a 2=2,a 3=﹣4,则S 5等于( ) A .8B .﹣8C .11D .﹣1111.若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )A .a >B .﹣<a <1C .a <﹣1D .a >﹣112.下列函数中,为偶函数的是( )A .y=x+1B .y=C .y=x 4D .y=x 5二、填空题13.S n =++…+= .14.设双曲线﹣=1,F 1,F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,则△F 1MF 2的面积是 .15.数列{a n }是等差数列,a 4=7,S 7= .16.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .17.已知x 是400和1600的等差中项,则x= .18.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.三、解答题19.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.20.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.21.已知函数,且.(Ⅰ)求的解析式;(Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.22.如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。

邻水县外国语学校2018-2019学年上学期高二数学12月月考试题含解析

邻水县外国语学校2018-2019学年上学期高二数学12月月考试题含解析

邻水县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.函数y=a x+2(a>0且a≠1)图象一定过点()A.(0,1)B.(0,3)C.(1,0)D.(3,0)2.定义在(0,+∞)上的函数f(x)满足:<0,且f(2)=4,则不等式f(x)﹣>0的解集为()A.(2,+∞)B.(0,2) C.(0,4) D.(4,+∞)3.已知双曲线(a>0,b>0)的一条渐近线方程为,则双曲线的离心率为()A.B.C.D.4.已知直线mx﹣y+1=0交抛物线y=x2于A、B两点,则△AOB()A.为直角三角形B.为锐角三角形C.为钝角三角形D.前三种形状都有可能5.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A.B.C.D.6.三个数60.5,0.56,log0.56的大小顺序为()A.log0.56<0.56<60.5B.log0.56<60.5<0.56C.0.56<60.5<log0.56 D.0.56<log0.56<60.57.sin570°的值是()A.B.﹣C.D.﹣8. 定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .±2C .或3D .1或29. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( ) A .1B .2C .3D .410.设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( ) A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 11.执行如图的程序框图,则输出S 的值为( )A .2016B .2C .D .﹣112.对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%二、填空题13.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力. 14.经过A (﹣3,1),且平行于y 轴的直线方程为 .15.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .17.函数()x f x xe =在点()()1,1f 处的切线的斜率是 . 18.多面体的三视图如图所示,则该多面体体积为(单位cm ) .三、解答题19.我市某校某数学老师这学期分别用m ,n 两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示. (Ⅰ)依茎叶图判断哪个班的平均分高? (Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P (K 2≥k ) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828(参考公式:K 2=,其中n=a+b+c+d )20.(本小题满分10分) 已知函数()2f x x a x =++-.(1)若4a =-求不等式()6f x ≥的解集; (2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.21.等差数列{a n} 中,a1=1,前n项和S n满足条件,(Ⅰ)求数列{a n} 的通项公式和S n;(Ⅱ)记b n=a n2n﹣1,求数列{b n}的前n项和T n.22.已知定义在区间(0,+∞)上的函数f(x)满足f()=f(x1)﹣f(x2).(1)求f(1)的值;(2)若当x>1时,有f(x)<0.求证:f(x)为单调递减函数;(3)在(2)的条件下,若f(5)=﹣1,求f(x)在[3,25]上的最小值.23.如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,∠A1AD=.若O为AD的中点,且CD⊥A1O(Ⅰ)求证:A1O⊥平面ABCD;(Ⅱ)线段BC 上是否存在一点P ,使得二面角D ﹣A 1A ﹣P 为?若存在,求出BP 的长;不存在,说明理由.24.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.(1)()()44a b -- 的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.邻水县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:由于函数y=a x (a>0且a≠1)图象一定过点(0,1),故函数y=a x+2(a>0且a≠1)图象一定过点(0,3),故选B.【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.2.【答案】B【解析】解:定义在(0,+∞)上的函数f(x)满足:<0.∵f(2)=4,则2f(2)=8,f(x)﹣>0化简得,当x<2时,⇒成立.故得x<2,∵定义在(0,+∞)上.∴不等式f(x)﹣>0的解集为(0,2).故选B.【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.3.【答案】A【解析】解:∵双曲线的中心在原点,焦点在x轴上,∴设双曲线的方程为,(a>0,b>0)由此可得双曲线的渐近线方程为y=±x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c==5t(t>0)∴该双曲线的离心率是e==.故选A.【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.4.【答案】A【解析】解:设A(x1,x12),B(x2,x22),将直线与抛物线方程联立得,消去y得:x2﹣mx﹣1=0,根据韦达定理得:x1x2=﹣1,由=(x1,x12),=(x2,x22),得到=x1x2+(x1x2)2=﹣1+1=0,则⊥,∴△AOB为直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.5.【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.6.【答案】A【解析】解:∵60.5>60=1,0<0.56<0.50=1,log0.56<log0.51=0.∴log0.56<0.56<60.5.故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题.7.【答案】B【解析】解:原式=sin(720°﹣150°)=﹣sin150°=﹣.故选B【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.8.【答案】D【解析】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.当1≤x<2时,2≤2x<4,则f(x)=f(2x)=(1﹣|2x﹣3|),此时当x=时,函数取极大值;当2≤x≤4时,f(x)=1﹣|x﹣3|;此时当x=3时,函数取极大值1;当4<x≤8时,2<≤4,则f(x)=cf()=c(1﹣|﹣3|),此时当x=6时,函数取极大值c.∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴=,解得c=1或2.故选D.【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.9.【答案】B【解析】解:根据题意,M∩N={(x,y)|x2+y2=1,x∈R,y∈R}∩{(x,y)|x2﹣y=0,x∈R,y∈R}═{(x,y)|}将x2﹣y=0代入x2+y2=1,得y2+y﹣1=0,△=5>0,所以方程组有两组解,因此集合M ∩N 中元素的个数为2个,故选B .【点评】本题既是交集运算,又是函数图形求交点个数问题10.【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故11a b a b ab++≤⇒≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B.11.【答案】B【解析】解:模拟执行程序框图,可得 s=2,k=0满足条件k <2016,s=﹣1,k=1 满足条件k <2016,s=,k=2 满足条件k <2016,s=2.k=3 满足条件k <2016,s=﹣1,k=4 满足条件k <2016,s=,k=5 …观察规律可知,s 的取值以3为周期,由2015=3*671+2,有 满足条件k <2016,s=2,k=2016不满足条件k <2016,退出循环,输出s 的值为2. 故选:B .【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s ,k 的值,观察规律得到s 的取值以3为周期是解题的关键,属于基本知识的考查.12.【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.032×10+0.024×10=0.56 故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.二、填空题13.【答案】(1,2)-,(,5)-∞.【解析】将圆的一般方程化为标准方程,22(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞. 14.【答案】 x=﹣3 .【解析】解:经过A (﹣3,1),且平行于y 轴的直线方程为:x=﹣3. 故答案为:x=﹣3.15.【答案】V【解析】【分析】四棱锥B ﹣APQC 的体积,底面面积是侧面ACC ′A ′的一半,B 到侧面的距离是常数,求解即可. 【解答】解:由于四棱锥B ﹣APQC 的底面面积是侧面ACC ′A ′的一半,不妨把P 移到A ′,Q 移到C , 所求四棱锥B ﹣APQC 的体积,转化为三棱锥A ′﹣ABC 体积,就是:故答案为:16.【答案】 ①④ .【解析】解:由所给的正方体知, △PAC 在该正方体上下面上的射影是①, △PAC 在该正方体左右面上的射影是④, △PAC 在该正方体前后面上的射影是④ 故答案为:①④17.【答案】2e 【解析】试题分析:()(),'xxxf x xe f x e xe =∴=+ ,则()'12f e =,故答案为2e .考点:利用导数求曲线上某点切线斜率.18.【答案】cm 3 .【解析】解:如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=×8×4=cm3,故答案为:cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.三、解答题19.【答案】【解析】【专题】综合题;概率与统计.【分析】(Ⅰ)依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2,求出概率,可得ξ的分布列和数学期望;(Ⅲ)根据成绩不低于85分的为优秀,可得2×2列联表,计算K 2,从而与临界值比较,即可得到结论.【解答】解:(Ⅰ)由茎叶图知甲班数学成绩集中于60﹣9之间,而乙班数学成绩集中于80﹣100分之间,所以乙班的平均分高┉┉┉┉┉┉(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2P (ξ=0)==,P (ξ=1)==,P (ξ=2)==┉┉┉┉┉┉则随机变量ξ的分布列为ξ 0 1 2P数学期望E ξ=0×+1×+2×=人﹣┉┉┉┉┉┉┉┉(Ⅲ)2×2列联表为甲班 乙班 合计 优秀 3 10 13 不优秀1710 27 合计20 20 40┉┉┉┉┉K 2=≈5.584>5.024因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.┉┉【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.20.【答案】(1)(][),06,-∞+∞ ;(2)[]1,0-. 【解析】试题分析:(1)当4a =-时,()6f x ≥,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为(][),06,-∞+∞ ;(2)()3f x x ≤-等价于23x a x x ++-≤-,即11x a x --≤≤-在[]0,1上恒成立,即10a -≤≤. 试题解析:(1)当4a =-时,()6f x ≥,即2426x x x ≤⎧⎨-+-≥⎩或24426x x x <<⎧⎨-+-≥⎩或4426x x x ≥⎧⎨-+-≥⎩,解得0x ≤或6x ≥,不等式的解集为(][),06,-∞+∞ ;考点:不等式选讲.21.【答案】【解析】解:(Ⅰ)设等差数列的公差为d,由=4得=4,所以a2=3a1=3且d=a2﹣a1=2,所以a n=a1+(n﹣1)d=2n﹣1,=(Ⅱ)由b n=a n2n﹣1,得b n=(2n﹣1)2n﹣1.所以T n=1+321+522+…+(2n﹣1)2n﹣1①2T n=2+322+523+…+(2n﹣3)2n﹣1+(2n﹣1)2n②①﹣②得:﹣T n=1+22+222+…+22n﹣1﹣(2n﹣1)2n=2(1+2+22+…+2n﹣1)﹣(2n﹣1)2n﹣1=2×﹣(2n﹣1)2n﹣1=2n(3﹣2n)﹣3.∴T n=(2n﹣3)2n+3.【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.此方法是数列求和部分高考考查的重点及热点.22.【答案】【解析】解:(1)令x1=x2>0,代入得f(1)=f(x1)﹣f(x1)=0,故f(1)=0.…(4分)(2)证明:任取x1,x2∈(0,+∞),且x1>x2,则>1,由于当x>1时,f(x)<0,所以f()<0,即f(x1)﹣f(x2)<0,因此f(x1)<f(x2),所以函数f(x)在区间(0,+∞)上是单调递减函数.…(8分)(3)因为f(x)在(0,+∞)上是单调递减函数,所以f(x)在[3,25]上的最小值为f(25).由f()=f(x1)﹣f(x2)得,f(5)=f()=f(25)﹣f(5),而f(5)=﹣1,所以f(25)=﹣2.即f(x)在[3,25]上的最小值为﹣2.…(12分)【点评】本题主要考查抽象函数的应用,利用赋值法以及函数单调性的定义是解决本题的关键.23.【答案】【解析】满分(13分).(Ⅰ)证明:∵∠A1AD=,且AA1=2,AO=1,∴A1O==,…(2分)∴+AD2=AA12,∴A1O⊥AD.…(3分)又A1O⊥CD,且CD∩AD=D,∴A1O⊥平面ABCD.…(5分)(Ⅱ)解:过O作Ox∥AB,以O为原点,建立空间直角坐标系O﹣xyz(如图),则A(0,﹣1,0),A(0,0,),…(6分)1设P(1,m,0)m∈[﹣1,1],平面A1AP的法向量为=(x,y,z),∵=,=(1,m+1,0),且取z=1,得=.…(8分)又A1O⊥平面ABCD,A1O⊂平面A1ADD1∴平面A1ADD1⊥平面ABCD.又CD ⊥AD ,且平面A 1ADD 1∩平面ABCD=AD , ∴CD ⊥平面A 1ADD 1. 不妨设平面A 1ADD 1的法向量为=(1,0,0).…(10分)由题意得==,…(12分)解得m=1或m=﹣3(舍去).∴当BP 的长为2时,二面角D ﹣A 1A ﹣P的值为.…(13分)【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.24.【答案】(1)()()448a b --=;(2)()()()2222,2x y x y --=>>;(3)6. 【解析】试题分析:(1)利用2CD =,得圆心到直线的距离2d =2=,再进行化简,即可求解()()44a b -- 的值;(2)设点P 的坐标为(),x y ,则22a xb y ⎧=⎪⎪⎨⎪=⎪⎩代入①,化简即可求得线段AB 中点P 的轨迹方程;(3)将面积表示为()()()114482446224ADP b S a a b a b a b ∆==+-=+-=-+-+ ,再利用基本不等式,即可求得ADP ∆的面积的最小值.(3)()()()114482446662ADP b S a a b a b a b ∆==+-=+-=-+-+≥= ,∴当4a b ==+, 面积最小, 最小值为6.考点:直线与圆的综合问题.【方法点晴】本题主要考查了直线与圆的综合问题,其中解答中涉及到点到直线的距离公式、轨迹方程的求解,以及基本不等式的应用求最值等知识点的综合考查,着重考查了转化与化归思想和学生分析问题和解答问题的能力,本题的解答中将面积表示为()()446ADP S a b ∆=-+-+,再利用基本不等式是解答的一个难点,属于中档试题.。

2019-2020学年上学期高二数学12月月考试题含解析(981)

2019-2020学年上学期高二数学12月月考试题含解析(981)

邻水县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为( )A .64B .32C .643D .3232. 已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||||PF PA 的值最小时,PAF ∆的 面积为( )A.2B.2C.D. 4【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力. 3. 由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于﹣1,则样本1,x 1,﹣x 2,x 3,﹣x 4,x 5的中位数为( )A .B .C .D .4. 若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞5. 若命题“p ∧q ”为假,且“¬q ”为假,则( ) A .“p ∨q ”为假B .p 假C .p 真D .不能判断q 的真假6. 已知a >b >0,那么下列不等式成立的是( )A.﹣a>﹣b B.a+c<b+c C.(﹣a)2>(﹣b)2D.7.设集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B=()A.{1,2} B.{﹣1,4} C.{﹣1,2} D.{2,4}8.定义在[1,+∞)上的函数f(x)满足:①当2≤x≤4时,f(x)=1﹣|x﹣3|;②f(2x)=cf(x)(c为正常数),若函数的所有极大值点都落在同一直线上,则常数c的值是()A.1 B.±2 C.或3 D.1或29.已知f(x)=,则f(2016)等于()A.﹣1 B.0 C.1 D.210.已知函数f(x)的图象如图,则它的一个可能的解析式为()A.y=2B.y=log3(x+1)C.y=4﹣D.y=11.已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)12.设函数y=sin2x+cos2x的最小正周期为T,最大值为A,则()A.T=π,B.T=π,A=2 C.T=2π,D.T=2π,A=2二、填空题13.在复平面内,复数与对应的点关于虚轴对称,且,则____.14.已知函数f(x)=有3个零点,则实数a的取值范围是.15.曲线在点(3,3)处的切线与轴x的交点的坐标为.16.复数z=(i虚数单位)在复平面上对应的点到原点的距离为.17.数列{a n}是等差数列,a4=7,S7=.18.计算sin43°cos13°﹣cos43°sin13°的值为.三、解答题19.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.(I)求证:平面BCE⊥平面A1ABB1;(II)求证:EF∥平面B1BCC1;(III)求四棱锥B﹣A1ACC1的体积.20.求同时满足下列两个条件的所有复数z:①z+是实数,且1<z+≤6;②z的实部和虚部都是整数.21.设集合A={x|0<x﹣m<3},B={x|x≤0或x≥3},分别求满足下列条件的实数m的取值范围.(1)A∩B=∅;(2)A∪B=B.22.(本题满分15分)如图AB 是圆O 的直径,C 是弧AB 上一点,VC 垂直圆O 所在平面,D ,E 分别为VA ,VC 的中点.(1)求证:DE ⊥平面VBC ;(2)若6VC CA ==,圆O 的半径为5,求BE 与平面BCD 所成角的正弦值.【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.23.等差数列{a n } 中,a 1=1,前n 项和S n 满足条件,(Ⅰ)求数列{a n } 的通项公式和S n ;(Ⅱ)记b n =a n 2n ﹣1,求数列{b n }的前n 项和T n .24.已知等差数列{a n},等比数列{b n}满足:a1=b1=1,a2=b2,2a3﹣b3=1.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记c n=a n b n,求数列{c n}的前n项和S n.邻水县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B 【解析】试题分析:由题意可知三视图复原的几何体是一个放倒的三棱柱,三棱柱的底面是直角边长为的等腰直角三角形,高为的三棱柱, 所以几何体的体积为:1444322⨯⨯⨯=,故选B. 考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考查利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考查学生空间想象能力及抽象思维能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,解题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响. 2. 【答案】B【解析】设2(,)4y P y ,则21||||y PF PA +=.又设214y t +=,则244y t =-,1t …,所以||||2PF PA ==,当且仅当2t =,即2y =±时,等号成立,此时点(1,2)P ±,PAF ∆的面积为11||||22222AF y ⋅=⨯⨯=,故选B.3. 【答案】C【解析】解:因为x 1<x 2<x 3<x 4<x 5<﹣1,题目中数据共有六个,排序后为x 1<x 3<x 5<1<﹣x 4<﹣x 2,故中位数是按从小到大排列后第三,第四两个数的平均数作为中位数,故这组数据的中位数是(x 5+1).故选:C .【点评】注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.4. 【答案】A 【解析】试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8k x =,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:58k ≤或88k≥,所以40k ≤或64k ≥。

四川省邻水实验学校2018_2019学年高二数学上学期第三次月考试题(含答案)

四川省邻水实验学校2018_2019学年高二数学上学期第三次月考试题(含答案)

四川省邻水实验学校2018-2019学年高二数学上学期第三次月考试题时间:120分钟 满分:150分本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷(选择题共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.直线013=++y x 的倾斜角的大小是( )A .030B .060C .0120D .0150 2.读右边的程序,程序运行的结果是( )A .1,1B .1,2C .2,2D .2,1 3.抛物线22x y =的焦点坐标是( ) A .(0,41) B .(0,81) C .(41,0) D .(12,04.与双曲线2214y x -=有共同的渐近线,且过点(2,2)的双曲线方程为 ( )A .221312y x -= B .18222=-x y C .18222=-y x D .221312x y -=5.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ( )A .9.4,0.484B .9.4,0.016C .9.5,0.04D .9.5,0.016 6. 若椭圆22221(0)x y a b a b +=>>22221x y a b-=的离心率是( )A.54C.327.圆心在曲线上,且与直线2x+y+1=0相切的面积最小的圆的方程为( )A .(x ﹣1)2+(y ﹣2)2=5B .(x ﹣2)2+(y ﹣1)2=5C .(x ﹣1)2+(y ﹣2)2=25D .(x ﹣2)2+(y ﹣1)2=258.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰有一个白球;一个白球一个黑球D.至少有一个白球;红、黑球各一个9. 若点P 到A(1,0)的距离与到直线x =-1的距离相等,且点P 到直线l :x -y =0的距离等于582,则满足条件的点P 的个数是 ( ) A .1 B .2 C .3 D .410.设1e 、2e 分别为具有公共焦点1F 与2F 的椭圆与双曲线的离心率,P 是两曲线的一个公共点,且满足12PF PF ⊥,则2212221)(e e e e ⋅+的值是 ( ) A .1 B .2 C .21 D .3211. 已知方程22ax by ab +=和0ax by c ++=,其中,ab ≠0,a ≠b ,c >0,它们所表示的曲线可能是下列图象中的( )A B C D12. 已知△ABC的顶点A(-5,0)、B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是( )A.221916x y-= B.221169x y-= C.221916x y-=(x>3) D.221169x y-= (x>4)第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是_____________。

邻水县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

邻水县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

20.(本题满分 12 分)已知数列{an}的前 n 项和为 Sn ,且 2Sn 3an 3 ,( n N ).
(1)求数列 {an } 的通项公式;
(2)记 bn

4n 1 an
, Tn
是数列 {bn } 的前
n
项和,求 Tn
.
【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前 n 项和.重点突出对运算及化归能
则△PF1F2 的内切圆的圆心的横坐标与 Q 横坐标相同.
由双曲线的定义,PF1﹣PF2=2a.
由圆的切线性质 PF1﹣PF2=FIM﹣F2N=F1Q﹣F2Q=2a,
∵F1Q+F2Q=F1F2=2c,
∴F2Q=c﹣a,OQ=a,Q 横坐标为 a.
故选 A.
【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义. 11.【答案】A
二、填空题
13.【答案】 20 .
【解析】解:(1+x)(x2+ )6 的展开式中,
x3 的系数是由(x2+ )6 的展开式中 x3 与 1 的积加上 x2 与 x 的积组成;
又(x2+ )6 的展开式中,
通项公式为 Tr+1= •x12﹣3r, 令 12﹣3r=3,解得 r=3,满足题意;
令 12﹣3r=2,解得 r= ,不合题意,舍去;
A.﹣13
B.6
C.79
D.37
2. 在正方体 ABCD - A1B1C1D1 中, M 是线段 A1C1 的中点,若四面体 M - ABD 的外接球体积为 36p ,
则正方体棱长为( )
A.2
B.3
C.4
D.5
【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.

邻水县二中2019-2020学年上学期高二数学12月月考试题含解析

邻水县二中2019-2020学年上学期高二数学12月月考试题含解析

邻水县二中2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 抛物线E :y 2=2px (p >0)的焦点为F ,点A (0,2),若线段AF 的中点B 在抛物线上,则|BF|=( ) A.B.C.D.2. 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A .12+ B .12+23π C .12+24π D .12+π3. 已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O是坐标原点,且,那么实数a 的取值范围是( )A.B.C. D.4. 已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( ) A .﹣12 B .﹣10 C .﹣8 D .﹣65. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( ) A .4πα=B .3πα=C .34πα=D .23πα=6. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( ) A .7049 B .7052 C .14098 D .141017. 设等差数列{a n }的前n 项和为S n ,已知S 4=﹣2,S 5=0,则S 6=( )A .0B .1C .2D .38. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )A .4πB .12πC .16πD .48π9. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( ) A .f (x )为奇函数 B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数10.已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为( )A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞)11.已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力. 12.已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能二、填空题13.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .14.多面体的三视图如图所示,则该多面体体积为(单位cm ) .。

临城县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

临城县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

临城县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1B .2C .3D .42. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}x B x x R =≤∈,则集合U A C B 为( )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.3. 复数i i -+3)1(2的值是( )A .i 4341+-B .i 4341-C .i 5351+-D .i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题. 4. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )A .B . C. D .1111]5. 已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定6. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .7. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断. 【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.8.如图,已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上一点,直线PF 2交y 轴于点A ,△AF 1P 的内切圆切边PF 1于点Q ,若|PQ|=1,则双曲线的渐近线方程为( )A .y=±x B .y=±3x C .y=±x D .y=±x9. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .10.若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )A .1-B .C .3-D .311.()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a > B.0a <<C .02a <<D .以上都不对12.过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x = B .22y x = C .24y x = D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.二、填空题13.设S n 是数列{a n }的前n 项和,且a 1=﹣1, =S n .则数列{a n }的通项公式a n = .14.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .15.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是 _______元.16.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 .17.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .18.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.三、解答题19.(本小题满分12分)已知函数21()x f x x +=,数列{}n a 满足:12a =,11n n a f a +⎛⎫= ⎪⎝⎭(N n *∈).(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.20.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.21.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,求直线l的方程.22.(本小题满分10分)如图⊙O 经过△ABC 的点B ,C 与AB 交于E ,与AC 交于F ,且AE =AF . (1)求证EF ∥BC ;(2)过E 作⊙O 的切线交AC 于D ,若∠B =60°,EB =EF =2,求ED 的长.23.已知F 1,F 2分别是椭圆=1(9>m >0)的左右焦点,P 是该椭圆上一定点,若点P 在第一象限,且|PF 1|=4,PF 1⊥PF 2. (Ⅰ)求m 的值; (Ⅱ)求点P 的坐标.24.【泰州中学2018届高三10月月考】已知函数()(),,xf x eg x x m m R ==-∈.(1)若曲线()y f x =与直线()y g x =相切,求实数m 的值; (2)记()()()h x f x g x =⋅,求()h x 在[]0,1上的最大值; (3)当0m =时,试比较()2f x e -与()g x 的大小.临城县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案) 一、选择题1. 【答案】B【解析】解:∵M ∩{1,2,4}={1,4}, ∴1,4是M 中的元素,2不是M 中的元素. ∵M ⊆{1,2,3,4}, ∴M={1,4}或M={1,3,4}. 故选:B .2. 【答案】C.【解析】由题意得,[11]A =-,,(,0]B =-∞,∴(0,1]U AC B =,故选C.3. 【答案】C【解析】i i i i i i i i i i 53511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+.4. 【答案】A 【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.5. 【答案】C【解析】解:由点P (x 0,y 0)在圆C :x 2+y 2=4外,可得x 02+y 02>4,求得圆心C (0,0)到直线l :x 0x+y 0y=4的距离d=<=2,故直线和圆C 相交, 故选:C .【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.6.【答案】D【解析】解:∵正△ABC的边长为a,∴正△ABC的高为,画到平面直观图△A′B′C′后,“高”变成原来的一半,且与底面夹角45度,∴△A′B′C′的高为=,∴△A′B′C′的面积S==.故选D.【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.7.【答案】B【解析】解:根据y=sinx图象知该函数在(0,+∞)不具有单调性;y=lg2x=xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B正确;根据y=lnx的图象,该函数非奇非偶;根据单调性定义知y=﹣x3在(0,+∞)上单调递减.故选B.【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.8.【答案】D【解析】解:设内切圆与AP切于点M,与AF1切于点N,|PF1|=m,|QF1|=n,由双曲线的定义可得|PF1|﹣|PF2|=2a,即有m﹣(n﹣1)=2a,①由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,|MF2|=|NF1|=n,即有m﹣1=n,②由①②解得a=1,由|F1F2|=4,则c=2,b==,由双曲线﹣=1的渐近线方程为y=±x,即有渐近线方程为y=x.故选D.【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键.9.【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。

邻水县二中2018-2019学年上学期高二数学12月月考试题含解析

邻水县二中2018-2019学年上学期高二数学12月月考试题含解析

邻水县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 抛物线E :y 2=2px (p >0)的焦点为F ,点A (0,2),若线段AF 的中点B 在抛物线上,则|BF|=( ) A.B.C.D.2. 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A .12+ B .12+23π C .12+24π D .12+π3. 已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O是坐标原点,且,那么实数a 的取值范围是( ) A.B.C .D.4. 已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( ) A .﹣12 B .﹣10 C .﹣8 D .﹣65. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=6. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( )A .7049B .7052C .14098D .141017. 设等差数列{a n }的前n 项和为S n ,已知S 4=﹣2,S 5=0,则S 6=( )A .0B .1C .2D .38. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )A .4πB .12πC .16πD .48π9. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( ) A .f (x )为奇函数 B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数10.已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为( )A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞)11.已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力. 12.已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能二、填空题13.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .14.多面体的三视图如图所示,则该多面体体积为(单位cm ) .15.不等式的解为 .16.设集合 {}{}22|27150,|0A x x x B x x ax b =+-<=++≤,满足AB =∅,{}|52A B x x =-<≤,求实数a =__________.17.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .18.已知f (x )=,x ≥0,若f 1(x )=f (x ),f n+1(x )=f (f n (x )),n ∈N +,则f 2015(x )的表达式为 .三、解答题19.已知复数z 的共轭复数是,且复数z 满足:|z ﹣1|=1,z ≠0,且z 在复平面上对应的点在直线y=x 上.求z 及z 的值.20.双曲线C :x 2﹣y 2=2右支上的弦AB 过右焦点F . (1)求弦AB 的中点M 的轨迹方程(2)是否存在以AB 为直径的圆过原点O ?若存在,求出直线AB 的斜率K 的值.若不存在,则说明理由.21.斜率为2的直线l经过抛物线的y2=8x的焦点,且与抛物线相交于A,B两点,求线段AB的长.22.如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线.23.(本小题满分12分)设p :实数满足不等式39a ≤,:函数()()32331932a f x x x x -=++无极值点. (1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛⎫-+++> ⎪ ⎪⎝⎭⎝⎭,若是t ⌝的必要不充分条件,求正整数m 的值.24.已知数列a 1,a 2,…a 30,其中a 1,a 2,…a 10,是首项为1,公差为1的等差数列;列a 10,a 11,…a 20,是公差为d 的等差数列;a 20,a 21,…a 30,是公差为d 2的等差数列(d ≠0).(1)若a 20=40,求d ;(2)试写出a 30关于d 的关系式,并求a 30的取值范围;(3)续写已知数列,使得a 30,a 31,…a 40,是公差为d 3的等差数列,…,依此类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?邻水县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:依题意可知F坐标为(,0)∴B的坐标为(,1)代入抛物线方程得=1,解得p=,∴抛物线准线方程为x=﹣,所以点B到抛物线准线的距离为=,则B到该抛物线焦点的距离为.故选D.2.【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]=12+24π.故选:C.【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.3.【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|≥|AC|,因为|OC|=,|AC|2=1﹣|OC|2,所以2()2≥1,所以a≤﹣1或a≥1,因为<1,所以﹣<a<,所以实数a 的取值范围是,故选:A .【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.4. 【答案】C【解析】解:由已知得f ′(x )=4x 3cosx ﹣x 4sinx+2mx+1, 令g (x )=4x 3cosx ﹣x 4sinx+2mx 是奇函数,由f ′(x )的最大值为10知:g (x )的最大值为9,最小值为﹣9, 从而f ′(x )的最小值为﹣9+1=﹣8. 故选C .【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.5. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .6. 【答案】B【解析】解:∵a n+1a n +2=2a n+1+2a n (n ∈N +),∴(a n+1﹣2)(a n ﹣2)=2,当n ≥2时,(a n ﹣2)(a n ﹣1﹣2)=2,∴,可得a n+1=a n ﹣1,因此数列{a n }是周期为2的周期数列. a 1=3,∴3a 2+2=2a 2+2×3,解得a 2=4, ∴S 2015=1007(3+4)+3=7052.【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.7. 【答案】D 【解析】解:设等差数列{a n }的公差为d ,则S 4=4a 1+d=﹣2,S 5=5a 1+d=0,联立解得,∴S 6=6a 1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题.8.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B.【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.9.【答案】C【解析】解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=﹣1∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],∴f(x)+1为奇函数.故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.10.【答案】D【解析】解:当x>0时,由xf′(x)<0,得f′(x)<0,即此时函数单调递减,∵函数f(x)是偶函数,∴不等式等价为f(||)<,即||>,即>或<﹣,解得0<x<或x>2,故x的取值范围是(0,)∪(2,+∞)故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.11.【答案】D【解析】由已知得{}=01A x x<?,故A B1[,1]2,故选D.12.【答案】A【解析】解:设A(x1,x12),B(x2,x22),将直线与抛物线方程联立得,消去y得:x2﹣mx﹣1=0,根据韦达定理得:x1x2=﹣1,由=(x1,x12),=(x2,x22),得到=x1x2+(x1x2)2=﹣1+1=0,则⊥,∴△AOB为直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.二、填空题13.【答案】[1,)∪(9,25].【解析】解:∵集合,得(ax﹣5)(x2﹣a)<0,当a=0时,显然不成立,当a>0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9<a≤25,当a<0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.14.【答案】cm3.【解析】解:如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=×8×4=cm3,故答案为:cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.15.【答案】{x|x>1或x<0}.【解析】解:即即x(x﹣1)>0解得x>1或x<0故答案为{x|x>1或x<0}【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解以解集形式写出16.【答案】7,32a b=-=【解析】考点:一元二次不等式的解法;集合的运算.【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键. 17.【答案】5.【解析】解:P(1,4)为抛物线C:y2=mx上一点,即有42=m,即m=16,抛物线的方程为y2=16x,焦点为(4,0),即有|PF|==5.故答案为:5.【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.18.【答案】.【解析】解:由题意f1(x)=f(x)=.f2(x)=f(f1(x))=,f3(x)=f(f2(x))==,…f n+1(x)=f(f n(x))=,故f2015(x)=故答案为:.三、解答题19.【答案】【解析】解:∵z在复平面上对应的点在直线y=x上且z≠0,∴设z=a+ai,(a≠0),∵|z﹣1|=1,∴|a﹣1+ai|=1,即=1,则2a2﹣2a+1=1,即a2﹣a=0,解得a=0(舍)或a=1,即z=1+i,=1﹣i,则z=(1+i)(1﹣i)=2.【点评】本题主要考查复数的基本运算,利用复数的几何意义利用待定系数法是解决本题的关键.20.【答案】【解析】解:(1)设M(x,y),A(x1,y1)、B(x2,y2),则x12﹣y12=2,x22﹣y22=2,两式相减可得(x1+x2)(x1﹣x2)﹣(y1+y2)(y1﹣y2)=0,∴2x(x1﹣x2)﹣2y(y1﹣y2)=0,∴=,∵双曲线C:x2﹣y2=2右支上的弦AB过右焦点F(2,0),∴,化简可得x2﹣2x﹣y2=0,(x≥2)﹣﹣﹣﹣﹣﹣﹣(2)假设存在,设A(x1,y1),B(x2,y2),l AB:y=k(x﹣2)由已知OA⊥OB得:x1x2+y1y2=0,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣①,所以(k2≠1)﹣﹣﹣﹣﹣﹣﹣﹣②联立①②得:k2+1=0无解所以这样的圆不存在.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.【答案】【解析】解:设直线l的倾斜解为α,则l与y轴的夹角θ=90°﹣α,cotθ=tanα=2,∴sinθ=,|AB|==40.线段AB的长为40.【点评】本题考查抛物线的焦点弦的求法,解题时要注意公式|AB|=的灵活运用.22.【答案】【解析】证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.可得△BFC∽△DGC,△FEC∽△GAC.∴,得.∵G是AD的中点,即DG=AG.∴BF=EF.(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°.由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB.又∵OA=OB,∴∠ABO=∠BAO.∵BE是圆O的切线,∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.【点评】本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题.23.【答案】(1){}m=.或;(2)1<<≤125a a a【解析】(1)∵“p q ∧”为假命题,“p q ∨”为真命题,∴p 与只有一个命题是真命题. 若p 为真命题,为假命题,则2115a a a a ≤⎧⇒<⎨<>⎩或.………………………………5分若为真命题,p 为假命题,则22515a a a >⎧⇒<≤⎨≤≤⎩.……………………………………6分 于是,实数的取值范围为{}125a a a <<≤或.……………………………………7分考点:1、不等式;2、函数的极值点;3、命题的真假;4、充要条件. 24.【答案】【解析】解:(1)a10=1+9=10.a20=10+10d=40,∴d=3.(2)a30=a20+10d2=10(1+d+d2)(d≠0),a30=10,当d∈(﹣∞,0)∪(0,+∞)时,a30∈[7.5,+∞)(3)所给数列可推广为无穷数列{a n],其中a1,a2,…,a10是首项为1,公差为1的等差数列,当n≥1时,数列a10n,a10n+1,…,a10(n+1)是公差为d n的等差数列.研究的问题可以是:试写出a10(n+1)关于d的关系式,并求a10(n+1)的取值范围.研究的结论可以是:由a40=a30+10d3=10(1+d+d2+d3),依此类推可得a10(n+1)=10(1+d+…+d n)=.当d>0时,a10(n+1)的取值范围为(10,+∞)等.【点评】此题考查学生灵活运用等差数列的性质解决实际问题,会根据特例总结归纳出一般性的规律,是一道中档题.。

邻水县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

邻水县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

邻水县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.命题“∃x∈R,使得x2<1”的否定是()A.∀x∈R,都有x2<1 B.∃x∈R,使得x2>1C.∃x∈R,使得x2≥1 D.∀x∈R,都有x≤﹣1或x≥12.函数f(x)=3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2.3)D.(3,4)3.若复数z=(其中a∈R,i是虚数单位)的实部与虚部相等,则a=()A.3 B.6 C.9 D.124.设x∈R,则x>2的一个必要不充分条件是()A.x>1 B.x<1 C.x>3 D.x<35.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于()A.12+ B.12+23πC.12+24πD.12+π6.复数i﹣1(i是虚数单位)的虚部是()A.1 B.﹣1 C.i D.﹣i7.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填()A .11?B .12?C .13?D .14?8. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .09. P 是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c10.若直线:1l y kx =-与曲线C :1()1e xf x x =-+没有公共点,则实数k 的最大值为( )A .-1B .12C .1D 【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.11.设集合( )A .B .C .D .12.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=,则﹣S( ) A .2 B .4C .1D .﹣1二、填空题13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.14. 设函数()x f x e =,()ln g x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.15.下列四个命题申是真命题的是 (填所有真命题的序号) ①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆. 16.函数的定义域为 .17.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .18.已知偶函数f (x )的图象关于直线x=3对称,且f (5)=1,则f (﹣1)= .三、解答题19.设集合{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,判断集合A 与B 的关系; (2)若A B B =,求实数组成的集合C .20.已知x 2﹣y 2+2xyi=2i ,求实数x 、y 的值.21.已知a >b >0,求证:.22.已知函数f (x )=lg (2016+x ),g (x )=lg (2016﹣x ) (1)判断函数f (x )﹣g (x )的奇偶性,并予以证明. (2)求使f (x )﹣g (x )<0成立x 的集合.23.已知集合A={x|a ﹣1<x <2a+1},B={x|0<x <1} (1)若a=,求A ∩B .(2)若A ∩B=∅,求实数a 的取值范围.24.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角 的正弦值; (2)证明:B 1F ∥平面A 1BE .A 1B 1C 1DD 1 C BA E F邻水县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.2.【答案】A【解析】解:∵f(0)=﹣2<0,f(1)=1>0,∴由零点存在性定理可知函数f(x)=3x+x﹣3的零点所在的区间是(0,1).故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.3.【答案】A【解析】解:复数z===.由条件复数z=(其中a∈R,i是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,解得a=3.故选:A.【点评】本题考查复数的代数形式的混合运算,考查计算能力.4.【答案】A【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是,x<1是x>2的既不充分也不必要条件,x>3是x>2的充分条件,x<3是x>2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.5.【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]=12+24π.故选:C.【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.6.【答案】A【解析】解:由复数虚部的定义知,i﹣1的虚部是1,故选A.【点评】该题考查复数的基本概念,属基础题.7.【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k≥13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.8.【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P ,底面四边形的个顶点为A 、B 、C 、D .分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA 、DC ;PB 、AD ;PC 、AB ;PD 、BC )或(PA 、BC ;PD 、AB ;PC 、AD ;PB 、DC )那么安全存放的不同方法种数为2A 44=48.故选B .【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖. 9. 【答案】A【解析】解:如图设切点分别为M ,N ,Q , 则△PF 1F 2的内切圆的圆心的横坐标与Q 横坐标相同.由双曲线的定义,PF 1﹣PF 2=2a . 由圆的切线性质PF 1﹣PF 2=F I M ﹣F 2N=F 1Q ﹣F 2Q=2a ,∵F 1Q+F 2Q=F 1F 2=2c ,∴F 2Q=c ﹣a ,OQ=a ,Q 横坐标为a . 故选A .【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.10.【答案】C【解析】令()()()()111ex g x f x kx k x =--=-+,则直线l :1y kx =-与曲线C :()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.假设1k >,此时()010g =>,1111101e k g k -⎛⎫=-+< ⎪-⎝⎭.又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.又1k =时,()10ex g x =>,知方程()0g x =在R 上没有实数解,所以k 的最大值为1,故选C.11.【答案】B【解析】解:集合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,集合B中的解集为x>,则A∩B=(,+∞).故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.12.【答案】A【解析】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P(x,y),记F1(﹣3,0),F2(3,0),∵=,∴=,整理得:=5,化简得:5x=12y﹣15,又∵,∴5﹣4y2=20,解得:y=或y=(舍),∴P(3,),∴直线PF1方程为:5x﹣12y+15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.二、填空题13.【答案】【解析】约束条件表示的区域如图,当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.答案:114.【答案】①②④【解析】15.【答案】①③④【解析】解:①“p∧q为真”,则p,q同时为真命题,则“p∨q为真”,当p真q假时,满足p∨q为真,但p∧q为假,则“p∧q为真”是“p∨q为真”的充分不必要条件正确,故①正确;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,③设正三棱锥为P﹣ABC,顶点P在底面的射影为O,则O为△ABC的中心,∠PCO为侧棱与底面所成角∵正三棱锥的底面边长为3,∴CO=∵侧棱长为2,∴在直角△POC中,tan∠PCO=∴侧棱与底面所成角的正切值为,即侧棱与底面所成角为30°,故③正确,④如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(﹣2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|.∴点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P的轨迹为一个椭圆,故④正确,故答案为:①③④16.【答案】[﹣2,1)∪(1,2].【解析】解:要使函数有意义,需满足,解得:﹣2≤x≤2且x≠1,所以函数的定义域为:[﹣2,1)∪(1,2].故答案为:[﹣2,1)∪(1,2].17.【答案】.【解析】解:由题意,函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数满足条件.∵第一次朝上一面的点数为a,第二次朝上一面的点数为b,∴a取1时,b可取2,3,4,5,6;a取2时,b可取4,5,6;a取3时,b可取6,共9种∵(a,b)的取值共36种情况∴所求概率为=.故答案为:.18.【答案】1.【解析】解:f (x )的图象关于直线x=3对称,且f (5)=1,则f (1)=f (5)=1, f (x )是偶函数,所以f (﹣1)=f (1)=1. 故答案为:1.三、解答题19.【答案】(1)A B ⊆;(2){}5,3,0=C . 【解析】考点:1、集合的表示;2、子集的性质. 20.【答案】【解析】解:由复数相等的条件,得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)解得或﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)【点评】本题考查复数相等的条件,以及方程思想,属于基础题.21.【答案】【解析】解:∵又==∵a>b>0,∴,所以上式大于1,故成立,同理可证22.【答案】【解析】解:(1)设h(x)=f(x)﹣g(x)=lg(2016+x)﹣lg(2016﹣x),h(x)的定义域为(﹣2016,2016);h(﹣x)=lg(2016﹣x)﹣lg(2016+x)=﹣h(x);∴f(x)﹣g(x)为奇函数;(2)由f(x)﹣g(x)<0得,f(x)<g(x);即lg(2016+x)<lg(2016﹣x);∴;解得﹣2016<x<0;∴使f(x)﹣g(x)<0成立x的集合为(﹣2016,0).【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性.23.【答案】【解析】解:(1)当a=时,A={x|},B={x|0<x<1}∴A∩B={x|0<x<1}(2)若A∩B=∅当A=∅时,有a﹣1≥2a+1∴a≤﹣2当A ≠∅时,有∴﹣2<a ≤或a ≥2综上可得,或a ≥2【点评】本题主要考查了集合交集的求解,解题时要注意由A ∩B=∅时,要考虑集合A=∅的情况,体现了分类讨论思想的应用.24.【答案】解:(1)设G 是AA 1的中点,连接GE ,BG .∵E 为DD 1的中点,ABCD —A 1B 1C 1D 1为正方体,∴GE ∥AD ,又∵AD ⊥平面ABB 1A 1,∴GE ⊥平面ABB 1A 1,且斜线BE 在平面ABB 1A 1内的射影为BG ,∴Rt △BEG 中的∠EBG 是直线BE 和平面ABB 1A 1所成角,即∠EBG =θ.设正方体的棱长为a ,∴a GE =,a BG 25=,a GE BG BE 2322=+=, ∴直线BE 和平面ABB 1A 1所成角θ的正弦值为:=θsin 32=BE GE ;……6分 (2)证明:连接EF 、AB 1、C 1D ,记AB 1与A 1B 的交点为H ,连接EH . ∵H 为AB 1的中点,且B 1H =21C 1D ,B 1H ∥C 1D ,而EF =21C 1D ,EF ∥C 1D , ∴B 1H ∥EF 且B 1H =EF ,四边形B 1FEH 为平行四边形,即B 1F ∥EH , 又∵B 1F ⊄平面A 1BE 且EH ⊆平面A 1BE ,∴B 1F ∥平面A 1BE . ……12分。

【精品】2018学年四川省广安市邻水中学高二上学期期中数学试卷和解析(理科)

【精品】2018学年四川省广安市邻水中学高二上学期期中数学试卷和解析(理科)

2018-2019学年四川省广安市邻水中学高二(上)期中数学试卷(理科)一、选择题(在每小题给出四个选项中,只有一项符合题止要求,共60分)1.(5分)已知直线l过不同的两点A(5,﹣3),B(5,y),则l的斜率为()A.0B.5C.不存在D.与y的取值有关2.(5分)抛物线x2=﹣4y的焦点坐标为()A.(1,0)B.(0,1)C.(﹣1,0)D.(0,﹣1)3.(5分)已知圆(x﹣1)2+(y+1)2=4关于直线mx+y﹣2m=0对称,则m的值为()A.1B.﹣1C.D.﹣4.(5分)命题P:∀x∈N,x∈z的否定为()A.∃x0∈N,x0∈Z B.∃x0∈N,x0∉Z C.∃x0∉N,x0∈Z D.∀x0∉N,x0∉Z5.(5分)“x≠y”是“sinx≠siny”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分又不必要6.(5分)已知点M(,0),椭圆+y2=1与直线y=k(x+)交于点A、B,则△ABM的周长为()A.4B.8C.12D.167.(5分)双曲线﹣=1的焦点到渐近线的距离为()A.2B.C.3D.28.(5分)不论m如何变化,直线(m+2)x﹣(2m﹣1)y﹣(3m﹣4)=0恒过定点()A.(1,2)B.(﹣1,﹣2)C.(2,1)D.(﹣2,﹣1)9.(5分)已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点,则|PA|+|PM|的最小值是()A.5B.C.4D.10.(5分)已知点P是椭圆+=1(x≠0,y≠0)上的动点,F1,F2是椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且•=0,则||的取值范围是()A.[0,3)B.(0,2)C.[2,3)D.[0,4]11.(5分)如图,圆F:(x﹣1)2+y2=1和抛物线,过F的直线与抛物线和圆依次交于A、B、C、D四点,求|AB|•|CD|的值是()A.1B.2C.3D.无法确定12.(5分)已知A(1,0),将线段OA,AB各n等分,设OA上从左至右的第k个分点为A k,AB上从下至上的第k个分点B k(1<k<n),过点A k且垂直于x轴的直线为l K,OB K交l K 于P K,则点P K在同一()A.圆上B.椭圆上C.双曲线上D.抛物线上二、填空题(每小题4分,共16分)13.(4分)双曲线y2﹣4x2=4的实轴长为.14.(4分)m=﹣1是直线mx+(2m﹣1)y+2=0与直线3x+my+3=0垂直的条件.(填充分不必要条件,必要不充分条件,充要条件,既不充分条件,也不必要条件其中之一)15.(4分)设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点.若AB的中点为(2,2),则直线l的方程为.16.(4分)已知P是椭圆上的一点,F1、F2是椭圆的左、右两焦点,若△PF1F2的内切圆的半径为,则=.三、解答题(本大题共6个,74分解答应写出文字说明,以及相应的步骤)17.(12分)如图,在平行四边形OABC中,点C(1,3),A(3,0),过点C作CD⊥AB于D.(1)求CD所在直线方程.(2)求线段CD的长度.。

邻水县实验中学2018-2019学年上学期高二数学12月月考试题含解析

邻水县实验中学2018-2019学年上学期高二数学12月月考试题含解析

{
)
11.【答案】D 【解析】
考 点:多面体的表面上最短距离问题.
第 9 页,共 16 页
精选高中模拟试卷
【方法点晴】 本题主要考查了多面体和旋转体的表面上的最短距离问题, 其中解答中涉及到多面体与旋转体的 侧面展开图的应用、 直角三角形的勾股定理的应用等知识点的综合考查, 着重考查了学生分析问题和解答问题 的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题. 12.【答案】C 【解析】解:根据几何体的三视图,得; 该几何体是一半圆台中间被挖掉一半圆柱, 其表面积为 S=[ ×(2+8)×4﹣2×4]+[ ×π•(42﹣12)+ ×(4π× =12+24π. 故选:C. 【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题 目. ﹣π× )+ ×8π]
20.已知等差数列{an}中,a1=1,且 a2+2,a3,a4﹣2 成等比数列. (1)求数列{an}的通项公式; (2)若 bn= ,求数列{bn}的前 n 项和 Sn.
21.【泰州中学 2018 届高三 10 月月考】已知函数 f x e , g x x m, m R .
【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系 等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键. 4. 【答案】D 【解析】解:∵f(x)=ax3﹣3x2+1, ∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;
精选高中模拟试卷
邻水县实验中学 2018-2019 学年上学期高二数学 12 月月考试题含解析 班级__________ 一、选择题

四川省邻水中学高二上学期第一次月考数学理试题

四川省邻水中学高二上学期第一次月考数学理试题

邻水中学高2017届(高二上)第一次月考数 学 试 题(理科)注意事项:1.答题前,考生务必将自己的姓名.考号在答题卡相应栏内用签字笔或钢笔填写清楚,并将考号..栏下对应的数字框涂黑,科目栏将 综合和历史 擦掉,再将 数学 涂黑。

2.选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试题卷上。

(数学题号:51—62)3.考试时间:120分钟,满分150分。

一、选择题(每小题5分,共60分)51. 直线03=+-a y x (a 为常数)的倾斜角为( )A. 30B. 60C. 150D. 12052. 空间直角坐标系中,点)0,4,3(-A 与点)6,1,2(-B 的距离是( )A. 432B. 212C. 9D. 8653. 圆4)2(22=++y x 与圆9)1()2(22=-+-y x 的位置关系为( )A. 内切B. 相交C. 外切D. 相离54. 若直线01=+-y x 与圆2)(22=+-y a x 有公共点,则实数a 的取值范围是( )A. []1,3--B. []3,1-C. []1,3-D. (][)+∞-∞-,13,55. 已知点),(b a M 在圆122=+y x 外,则直线1=+by ax 与圆的位置关系是( )A. 相切B. 相交C. 相离D. 不确定56. 已知点)3,1(A ,)1,3(B ,)0,1(-C ,则ABC ∆的面积为( )A. 5B. 10C. 26D. 757. 若圆03222=+-+by ax y x 的圆心位于第三象限,那么直线0=++b ay x 一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限58. 已知直线l 过点)4,3(P ,且与)2,2(-A ,)2,4(-B 等距离,则直线l 的方程为( )A .01832=-+y xB .022=--y xC .01823=+-y x 或022=++y xD .01832=-+y x 或022=--y x59.若直线022=-+by ax (0>a ,0>b )始终平分圆082422=---+y x y x 的周长,则ba 11+的最小值为( ) A .2 B .3 C .4 D .560.平面上到定点A (1,2)的距离为1,且到定点B (5,5)距离为d 的直线共有4条,则d 的取值范围是( )A .(0,4)B .(2,4)C .(2,6)D .(4,6)61.台风中心从A 地以每小时20km 的速度向东北方向移动,离台风中心30km 内的地方为危险区域,城市B 在A 的正东40km 处,B 城市处于危险区域内的时间为( )A .0.5hB .1hC .1.5hD .2h62. 在平面直角坐标系中,A 、B 分别是x 轴、y 轴上的动点,若以AB 为直径的圆C 与直线052=-+y x 相切,则圆C 面积的最小值为( )A .4πB .2π C .π D .2π二、填空题(每小题4分,共16分) 13.已知直线l 经过)3,2(-A ,),4(y B ,)9,1(-C 三点,则y= .14.直线043=+-k y x 在两坐标轴上的截距之和为2,则实数k = .15.直线063:=--y x l 被圆042:22=--+y x y x C 截得弦AB 的长为 .16.方程4)3(92+-=-x k x 有两个不同的解时,实数k 的取值范围是 .三、解答题(17—21题每题12分,22题14分)17.求与直线0643:=+-y x l 平行且到l 的距离为2的直线方程.18.已知实数x 、y 满足方程01422=+-+x y x .(1)求xy 的最大值和最小值? (2)求22y x +的最大值和最小值?19.已知圆N 的标准方程为222)6()5(a y x =-+-(0>a ).(1)若点M (6,9)在圆上,求a 的值.(2)已知点P (3,3)和点Q (5,3),线段PQ (不含端点)与圆N 有且只有一个公共点,求a 的取值范围.20.设直线l 的方程为02)1(=-+++a y x a (R a ∈).(1)若l 在两坐标轴上的截距相等,求l 的方程.(2)若l 不经过第二象限,求实数a 的取值范围.21.已知圆0622=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且OP ⊥OQ ,求实数m 的值.22.已知H 是xOy 直角坐标平面上一动点,)0,5(A ,)2,0(B ,)1,0(-C 是平面上的定点.(1)2||||=HA HB 时,求H 的轨迹方程. (2)当H 在线段BC 上移动时,求||||HA HB 的最大值及H 的坐标.邻水中学高2017届(高二上)第一次月考 数 学 试 题(理科) 4分,共16分) 13. . 14. . 15. . 16. . 17—21题每题12分,22题14分) 17.求与直线0643:=+-y x l 平行且到l 的距离为2的直线方程. 18.已知实数x 、y 满足方程01422=+-+x y x . (1)求x y 的最大值和最小值?(2)求22y x +的最大值和最小值?19.已知圆N 的标准方程为222)6()5(a y x =-+-(0>a ).(1)若点M (6,9)在圆上,求a 的值.(2)已知点P (3,3)和点Q (5,3),线段PQ (不含端点)与圆N 有且只有一个公共点,求a 的取值范围.20.设直线l 的方程为02)1(=-+++a y x a (R a ∈).(1)若l 在两坐标轴上的截距相等,求l 的方程.(2)若l 不经过第二象限,求实数a 的取值范围.21.已知圆0622=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且OP ⊥OQ ,求实数m 的值.22.已知H 是xOy 直角坐标平面上一动点,)0,5(A ,)2,0(B ,)1,0(-C 是平面上 的定点.(1)2||||=HA HB 时,求H 的轨迹方程.(2)当H 在线段BC 上移动时,求||||HA HB 的最大值及H 的坐标.。

邻水县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

邻水县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

邻水县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 下列哪组中的两个函数是相等函数( )A .()()4f x x =g B .()()24=,22x f x g x x x -=-+C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 2. 若直线L :047)1()12(=--+++m y m x m 圆C :25)2()1(22=-+-y x 交于B A ,两点,则弦长||AB 的最小值为( )A .58B .54C .52D .5 3. 已知函数,,若,则( )A1 B2 C3 D-14. 函数 y=x 2﹣4x+1,x ∈[2,5]的值域是( )A .[1,6]B .[﹣3,1]C .[﹣3,6]D .[﹣3,+∞)5. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④D .①③6. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm7. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.8. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( ) A .p ∧q B .¬p ∧qC .p ∧¬qD .¬p ∧¬q9. 已知函数()sin f x a x x =关于直线6x π=-对称 , 且12()()4f x f x ⋅=-,则12x x +的最小值为A 、6π B 、3πC 、56π D 、23π 10.设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)11.某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力.12.函数y=sin (2x+)图象的一条对称轴方程为( )A .x=﹣B .x=﹣C .x=D .x=二、填空题13.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .14.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .15.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .16.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈,则2λμ-的取值范围是___________.17.在(1+x )(x 2+)6的展开式中,x 3的系数是 .18.已知f (x )=,则f[f (0)]= .三、解答题19.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.20.(本小题满分10分)已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y θθ=⎧⎨=⎩,(α为参数),经过伸缩变换32x xy y '=⎧⎨'=⎩后得到曲线2C .(1)求曲线2C 的参数方程;(2)若点M 的在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.21.已知全集U为R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1}求:(I)A∩B;(II)(C U A)∩(C U B);(III)C U(A∪B).22..已知定义域为R的函数f(x)=是奇函数.(1)求a的值;(2)判断f(x)在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);(3)若对于任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.23.已知数列{a n}共有2k(k≥2,k∈Z)项,a1=1,前n项和为S n,前n项乘积为T n,且a n+1=(a﹣1)S n+2(n=1,2,…,2k﹣1),其中a=2,数列{b n}满足b n=log2,(Ⅰ)求数列{b n}的通项公式;(Ⅱ)若|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|≤,求k的值.24.设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣对称,且f′(1)=0(Ⅰ)求实数a,b的值(Ⅱ)求函数f(x)的极值.邻水县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】D111] 【解析】考点:相等函数的概念. 2. 【答案】B 【解析】试题分析:直线:L ()()0472=-++-+y x y x m ,直线过定点⎩⎨⎧=-+=-+04072y x y x ,解得定点()1,3,当点(3,1)是弦中点时,此时弦长AB 最小,圆心与定点的距离()()5123122=-+-=d ,弦长545252=-=AB ,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离.1111]3. 【答案】A【解析】g (1)=a ﹣1, 若f[g (1)]=1, 则f (a ﹣1)=1, 即5|a ﹣1|=1,则|a ﹣1|=0, 解得a=14.【答案】C【解析】解:y=x2﹣4x+1=(x﹣2)2﹣3∴当x=2时,函数取最小值﹣3当x=5时,函数取最大值6∴函数y=x2﹣4x+1,x∈[2,5]的值域是[﹣3,6]故选C【点评】本题考查了二次函数最值的求法,即配方法,解题时要分清函数开口方向,辨别对称轴与区间的位置关系,仔细作答5.【答案】B【解析】解:由m、n是两条不同的直线,α,β,γ是三个不同的平面:在①中:若m⊥α,n∥α,则由直线与平面垂直得m⊥n,故①正确;在②中:若α∥β,β∥γ,则α∥γ,∵m⊥α,∴由直线垂直于平面的性质定理得m⊥γ,故②正确;在③中:若m⊥α,n⊥α,则由直线与平面垂直的性质定理得m∥n,故③正确;在④中:若α⊥β,m⊥β,则m∥α或m⊂α,故④错误.故选:B.6.【答案】D【解析】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm,∴由余弦定理,得cos120°=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D.【点评】本题给出实际应用问题,求海洋上灯塔A 与灯塔B 的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.7. 【答案】D【解析】由绝对值的定义及||2x ≤,得22x -≤≤,则{}|22A x x =-≤≤,所以{}1,2A B =,故选D.8. 【答案】B【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p :∀x ∈R ,2x <3x为假命题,则¬p 为真命题.令f (x )=x 3+x 2﹣1,因为f (0)=﹣1<0,f (1)=1>0.所以函数f (x )=x 3+x 2﹣1在(0,1)上存在零点, 即命题q :∃x ∈R ,x 3=1﹣x 2为真命题.则¬p ∧q 为真命题. 故选B .9. 【答案】D【解析】:()sin )(tan )f x a x x x aϕϕ==-=12(),()()463f x x k f x f x ππϕπ=-∴=+⋅=-对称轴为112212min522,2,663x k x k x x πππππ∴=-+=+∴+=10.【答案】【解析】选C.f (x )的定义域为x ∈R ,由f (x )=(e -x -e x )(12x +1-12)得f (-x )=(e x -e -x )(12-x +1-12)=(ex-e -x )(-12x +1+12) =(e -x -e x )(12x +1-12)=f (x ),∴f (x )在R 上为偶函数,∴不等式f (x )<f (1+x )等价于|x |<|1+x |,即x 2<1+2x +x 2,∴x >-12,即不等式f (x )<f (1+x )的解集为{x |x >-12},故选C.11.【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有12121223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.12.【答案】A【解析】解:对于函数y=sin (2x+),令2x+=k π+,k ∈z ,求得x=π,可得它的图象的对称轴方程为x=π,k ∈z , 故选:A .【点评】本题主要考查正弦函数的图象的对称性,属于基础题.二、填空题13.【答案】.【解析】设A (1,1),B (﹣1,﹣1),则直线AB 过原点,且阴影面积等于直线AB 与圆弧所围成的弓形面积S 1,由图知,,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.14.【答案】 .【解析】解:ρ==,tan θ==﹣1,且0<θ<π,∴θ=.∴点P 的极坐标为.故答案为:.15.【答案】 8 .【解析】解:∵抛物线y2=8x=2px,∴p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=x+=x+2=10,∴x=8,故答案为:8.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.-16.【答案】[]1,1【解析】考点:向量运算.【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.17.【答案】20.【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为 T r+1=•x 12﹣3r ,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x 3的系数是=20.故答案为:20.18.【答案】 1 .【解析】解:f (0)=0﹣1=﹣1, f[f (0)]=f (﹣1)=2﹣1=1,故答案为:1.【点评】本题考查了分段函数的简单应用.三、解答题19.【答案】【解析】解:∵向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),∴=0,+8=0,∴=,化为,代入=0,化为: +16﹣cos 2θ,∴,∴θ=或.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.20.【答案】(1)3cos 2sin x y θθ=⎧⎨=⎩(为参数);(2【解析】试题解析: (1)将曲线1cos :sin x C y αα=⎧⎨=⎩(α为参数),化为221x y +=,由伸缩变换32x x y y '=⎧⎨'=⎩化为1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩, 代入圆的方程211132x y ⎛⎫⎛⎫''+= ⎪ ⎪⎝⎭⎝⎭,得到()()222:194x y C ''+=, 可得参数方程为3cos 2sin x y αα=⎧⎨=⎩;考点:坐标系与参数方程. 21.【答案】【解析】解:如图:(I )A ∩B={x|1<x ≤2};(II)C U A={x|x≤0或x>2},C U B={x|﹣3≤x≤1}(C U A)∩(C U B)={x|﹣3≤x≤0};(III)A∪B={x|x<﹣3或x>0},C U(A∪B)={x|﹣3≤x≤0}.【点评】本题考查集合的运算问题,考查数形集合思想解题.属基本运算的考查.22.【答案】【解析】解:(1)因为f(x)为R上的奇函数所以f(0)=0即=0,∴a=1 …(2)f(x)==﹣1+,在(﹣∞,+∞)上单调递减…(3)f(t2﹣2t)+f(2t2﹣k)<0⇔f(t2﹣2t)<﹣f(2t2﹣k)=f(﹣2t2+k),又f(x)=在(﹣∞,+∞)上单调递减,∴t2﹣2t>﹣2t2+k,即3t2﹣2t﹣k>0恒成立,∴△=4+12k<0,∴k<﹣.…(利用分离参数也可).23.【答案】【解析】(本小题满分13分)解:(1)当n=1时,a2=2a,则;当2≤n≤2k﹣1时,a n+1=(a﹣1)S n+2,a n=(a﹣1)S n﹣1+2,所以a n+1﹣a n=(a﹣1)a n,故=a,即数列{a n}是等比数列,,∴T n=a1×a2×…×a n=2n a1+2+…+(n﹣1)=,b n==.…(2)令,则n≤k+,又n∈N*,故当n≤k时,,当n≥k+1时,.…|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|=+()+…+()…=(k+1+…+b 2k )﹣(b 1+…+b k )=[+k]﹣[]=,由,得2k 2﹣6k+3≤0,解得,…又k ≥2,且k ∈N *,所以k=2.…【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用.24.【答案】【解析】解:(Ⅰ)因f (x )=2x 3+ax 2+bx+1,故f ′(x )=6x 2+2ax+b从而f ′(x )=6y=f ′(x )关于直线x=﹣对称,从而由条件可知﹣=﹣,解得a=3又由于f ′(x )=0,即6+2a+b=0,解得b=﹣12(Ⅱ)由(Ⅰ)知f (x )=2x 3+3x 2﹣12x+1f ′(x )=6x 2+6x ﹣12=6(x ﹣1)(x+2) 令f ′(x )=0,得x=1或x=﹣2当x ∈(﹣∞,﹣2)时,f ′(x )>0,f (x )在(﹣∞,﹣2)上是增函数; 当x ∈(﹣2,1)时,f ′(x )<0,f (x )在(﹣2,1)上是减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上是增函数.从而f (x )在x=﹣2处取到极大值f (﹣2)=21,在x=1处取到极小值f (1)=﹣6.。

邻水县高中2018-2019学年高二上学期第二次月考试卷数学

邻水县高中2018-2019学年高二上学期第二次月考试卷数学

邻水县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或 C .{}|33x x x <->或 D . {}|303x x x <-<<或2. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④3. 某程序框图如图所示,则该程序运行后输出的S 的值为( )A .1B .C .D .4. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2 C .3 D .45. 棱长都是1的三棱锥的表面积为( )A .B .C .D .6. 已知函数f (x+1)=3x+2,则f (x )的解析式是( )A .3x ﹣1B .3x+1C .3x+2D .3x+47. 已知椭圆(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为8,则b 的值是( )A .B .C .D .8. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( )A .12B .10C .8D .69. 已知i z 311-=,i z +=32,其中i 是虚数单位,则21z z 的虚部为( ) A .1- B .54 C .i - D .i 54 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.10.满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1 B .2 C .3D .411.观察下列各式:a+b=1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .19912.已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2-二、填空题13.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:).14.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .15.长方体1111ABCD A BC D -中,对角线1AC 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sin sin sin αβγ++= .16.【泰州中学2018届高三10月月考】设函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是17.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .18.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.三、解答题19.某实验室一天的温度(单位:)随时间(单位;h )的变化近似满足函数关系;(1) 求实验室这一天的最大温差; (2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?20.(本小题满分12分)如图所示,已知⊥AB 平面ACD ,⊥DE 平面ACD ,ACD ∆为等边 三角形,AB DE AD 2==,F 为CD 的中点. (1)求证://AF 平面BCE ; (2)平面⊥BCE 平面CDE .21.在直角坐标系xOy中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;111](2)过点(1,0)作互相垂直的两条直线,,与曲线C交于A,B两点与曲线C交于E,F两点,线段AB,EF的中点分别为M,N,求证:直线MN过定点P,并求出定点P的坐标.22.己知函数f(x)=lnx﹣ax+1(a>0).(1)试探究函数f(x)的零点个数;(2)若f(x)的图象与x轴交于A(x1,0)B(x2,0)(x1<x2)两点,AB中点为C(x0,0),设函数f (x)的导函数为f′(x),求证:f′(x0)<0.23.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合,直线l 的参数方程为(t 为参数),圆C 的极坐标方程为p 2+2psin (θ+)+1=r 2(r >0).(Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程; (Ⅱ)若圆C 上的点到直线l 的最大距离为3,求r 值.24.(本题满分13分)已知圆1C 的圆心在坐标原点O ,且与直线1l :062=+-y x 相切,设点A 为圆上 一动点,⊥AM x 轴于点M ,且动点N 满足OM OA ON )2133(21-+=,设动点N 的轨迹为曲线C . (1)求曲线C 的方程;(2)若动直线2l :m kx y +=与曲线C 有且仅有一个公共点,过)0,1(1-F ,)0,1(2F 两点分别作21l P F ⊥,21l Q F ⊥,垂足分别为P ,Q ,且记1d 为点1F 到直线2l 的距离,2d 为点2F 到直线2l 的距离,3d 为点P到点Q 的距离,试探索321)(d d d ⋅+是否存在最值?若存在,请求出最值.邻水县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B 【解析】试题分析:因为()f x 为奇函数且()30f -=,所以()30f =,又因为()f x 在区间()0,+∞上为增函数且()30f =,所以当()0,3x ∈时,()0f x <,当()3,x ∈+∞时,()0f x >,再根据奇函数图象关于原点对称可知:当()3,0x ∈-时,()0f x >,当(),3x ∈-∞-时,()0f x <,所以满足()0x f x ⋅<的x 的取值范围是:()3,0x ∈-或()0,3x ∈。

邻水实验学校2018-2019学年高二数学上学期第一次月考试题

邻水实验学校2018-2019学年高二数学上学期第一次月考试题

四川省邻水实验学校2018—2019学年高二数学上学期第一次月考试题时间:120分钟满分:150分本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.用辗转相除法求35和134的最大公约数,第一步是()A.134-35=99 B.134=35×3+29 C.先除以2,得到18和67 D.35=25×1+102.圆x2+y2=4与圆x2+y2-6x+8y-24=0的位置关系是()A.相交B.相离C.内切D.外切3.点P(1,-2,5)到坐标平面xOz的距离为()A.2 B.1 C.5 D.34.下列说法:①错误!=k表示过定点P(x0,y0)且斜率为k的直线方程;②直线y=kx+b和y轴交于点B,O为原点,那么b=|OB|;③一条直线在x轴上的截距为a,在y轴上的截距为b,那么该直线的方程是错误!+错误!=1;④方程(x1-x2)(y-y1)+(y2-y1)(x-x1)=0表示过点P1(x1,y1),P2(x2,y2)的直线.其中错误的有() A.4个B.1个C.2个D.3个5.已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是( )A.1或3 B.1或5 C.3或5 D.1或26.如图所示的程序运行后,输出的值为( )错误! A 45 B 44 C 43 D 427.若直线mx+ny+3=0在y轴上的截距为-3,且它的倾斜角是直线错误!x-y=3错误!的倾斜角的2倍,则()A.m=-错误!,n=1 B.m=-错误!,n=-3C.m=错误!,n=-3 D.m =错误!,n=18.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,半径为错误!的圆的方程为()A.x2+y2-2x+4y=0 B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0 D.x2+y2-2x-4y=09.若直线y=x+2k+1与直线y=-错误!x+2的交点在第一象限,则实数k的取值范围( )A.(-错误!,错误!)B.(-错误!,错误!)C.[-错误!,-错误!]D.[-错误!,错误!]10.已知圆C:x2+y2-4x-2y+1=0,直线l:3x-4y+m=0,圆上存在两点到直线l的距离为1,则m的取值范围是()A.(-17,-7)B.(3,13) C.(-17,-7)∪(3,13)D.[-17,-7]∪[3,13],那么判11。

2018-2019学年上学期高二数学12月月考试题含解析(527)

2018-2019学年上学期高二数学12月月考试题含解析(527)

正安县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 函数y=a x +2(a >0且a ≠1)图象一定过点( )A .(0,1)B .(0,3)C .(1,0)D .(3,0)2. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M的变化而变化3. 若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为,则这个圆的方程是( )A .()()22210x y -++=B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++= 4. 在空间中,下列命题正确的是( ) A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥nB .如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥αD .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β5. 将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( )A .B .﹣C .﹣D .6. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A.B.C.D.7.若双曲线C:x2﹣=1(b>0)的顶点到渐近线的距离为,则双曲线的离心率e=()A.2 B.C.3 D.8.命题“∃x∈R,使得x2<1”的否定是()A.∀x∈R,都有x2<1 B.∃x∈R,使得x2>1C.∃x∈R,使得x2≥1 D.∀x∈R,都有x≤﹣1或x≥19.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示.若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()A. B. C. D.10.设实数,则a、b、c的大小关系为()A.a<c<b B.c<b<a C.b<a<c D.a<b<c11.若命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,<x,则下列说法正确的是()A.命题p∨q是假命题B.命题p∧(¬q)是真命题C.命题p∧q是真命题 D.命题p∨(¬q)是假命题12.若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i二、填空题13.已知(1+x+x 2)(x )n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n= .14.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年的线性回归方程为 附:回归直线的斜率和截距的最小二乘估计公式分别为:=, =﹣.15.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .17.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .18.曲线y=x+e x 在点A (0,1)处的切线方程是 .三、解答题19.(本题12分)正项数列{}n a 满足2(21)20n n a n a n ---=.(1)求数列{}n a 的通项公式n a ; (2)令1(1)n nb n a =+,求数列{}n b 的前项和为n T .20.已知S n 为数列{a n }的前n 项和,且满足S n =2a n ﹣n 2+3n+2(n ∈N *) (Ⅰ)求证:数列{a n +2n}是等比数列;(Ⅱ)设b n =a n sinπ,求数列{b n }的前n 项和;(Ⅲ)设C n =﹣,数列{C n }的前n 项和为P n ,求证:P n <.21.(本小题满分12分)如图,在四棱锥ABCD S -中,底面ABCD 为菱形,Q P E 、、分别是棱AB SC AD 、、的中点,且⊥SE 平面ABCD .(1)求证://PQ 平面SAD ; (2)求证:平面⊥SAC 平面SEQ .22.已知函数f (x )=x 3+x .(1)判断函数f (x )的奇偶性,并证明你的结论; (2)求证:f (x )是R 上的增函数;(3)若f (m+1)+f (2m ﹣3)<0,求m 的取值范围.(参考公式:a 3﹣b 3=(a ﹣b )(a 2+ab+b 2))23.已知函数f (x )=2cosx (sinx+cosx )﹣1(Ⅰ)求f (x )在区间[0,]上的最大值;(Ⅱ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且f (B )=1,a+c=2,求b 的取值范围.24.(本题满分15分)正项数列}{n a 满足121223+++=+n n n n a a a a ,11=a . (1)证明:对任意的*N n ∈,12+≤n n a a ;(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*N n ∈,32121<≤--n n S .【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.正安县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:由于函数y=a x (a>0且a≠1)图象一定过点(0,1),故函数y=a x+2(a>0且a≠1)图象一定过点(0,3),故选B.【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.2.【答案】B【解析】考点:棱柱、棱锥、棱台的体积.3.【答案】B【解析】考点:圆的方程.1111]4.【答案】C【解析】解:对于A,直线m∥平面α,直线n⊂α内,则m与n可能平行,可能异面,故不正确;对于B,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面α⊥平面β,任取直线m⊂α,那么可能m⊥β,也可能m和β斜交,;故选:C.【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.5.【答案】D【解析】解:将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+φ﹣)的图象,∴φ﹣=kπ+,即φ=kπ+,k∈Z,则φ的一个可能值为,故选:D.6.【答案】D【解析】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D7.【答案】B【解析】解:双曲线C:x2﹣=1(b>0)的顶点为(±1,0),渐近线方程为y=±bx,由题意可得=,解得b=1,c==,即有离心率e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题.8.【答案】D【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.9.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C10.【答案】A【解析】解:∵,b=20.1>20=1,0<<0.90=1.∴a<c<b.故选:A.11.【答案】B【解析】解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,<x无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;故选:B.【点评】考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.12.【答案】A【解析】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.二、填空题13.【答案】5.【解析】二项式定理.【专题】计算题.【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利用(x)n(n∈N+)的通项公式讨论即可.【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;综上所述,n=5时,满足题意.故答案为:5.【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.14.【答案】y=﹣1.7t+68.7【解析】解:=,==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y关于t的线性回归方程为y=﹣1.7t+68.7.故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.15.【答案】(﹣4,).【解析】解:∵抛物线方程为y2=﹣8x,可得2p=8,=2.∴抛物线的焦点为F(﹣2,0),准线为x=2.设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n2=8m=32,可得n=±4,因此,点P的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.16.【答案】12.【解析】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15﹣x)人,只喜爱乒乓球的有(10﹣x)人,由此可得(15﹣x)+(10﹣x)+x+8=30,解得x=3,所以15﹣x=12,即所求人数为12人,故答案为:12.17.【答案】0.6.【解析】解:随机变量ξ服从正态分布N(2,σ2),∴曲线关于x=2对称,∴P(ξ>0)=P(ξ<4)=1﹣P(ξ>4)=0.6,故答案为:0.6.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.18.【答案】2x﹣y+1=0.【解析】解:由题意得,y′=(x+e x)′=1+e x,∴点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y﹣1=2x,即2x﹣y+1=0,故答案为:2x﹣y+1=0.【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.三、解答题19.【答案】(1)n a n 2=;(2)=n T )1(2+n n .考点:1.一元二次方程;2.裂项相消法求和.20.【答案】【解析】(I )证明:由S n =2a n ﹣n 2+3n+2(n ∈N *),∴当n ≥2时,,a n =S n ﹣S n ﹣1=2a n ﹣2a n ﹣1﹣2n+4,变形为a n +2n=2[a n ﹣1+2(n ﹣1)],当n=1时,a 1=S 1=2a 1﹣1+3+2,解得a 1=﹣4,∴a 1+2=﹣2,∴数列{a n +2n}是等比数列,首项为﹣2,公比为2;(II )解:由(I )可得a n =﹣2×2n ﹣1﹣2n=﹣2n ﹣2n .∴b n =a n sinπ=﹣(2n +2n ),∵ ==(﹣1)n , ∴b n =(﹣1)n+1(2n +2n ). 设数列{b n }的前n 项和为T n .当n=2k (k ∈N *)时,T 2k =(2﹣22+23﹣24+…+22k ﹣1﹣22k )+2(1﹣2+3﹣4+…+2k ﹣1﹣2k )=﹣2k=﹣n .当n=2k ﹣1时,T 2k ﹣1=﹣2k ﹣(﹣22k ﹣4k )=+n+1+2n+1=+n+1.(III )证明:C n =﹣=,当n ≥2时,c n .∴数列{C n }的前n 项和为P n <==,当n=1时,c 1=成立.综上可得:∀n ∈N *,.【点评】本题考查了等差数列与等比数列的通项公式及其前n 项和公式、“放缩法”、三角函数的诱导公式、递推式的应用,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.21.【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据线面平行的判定定理,可先证明PQ 与平面内的直线平行,则线面平行,所以取SD 中点F ,连结PF AF ,,可证明AF PQ //,那就满足了线面平行的判定定理了;(2)要证明面面垂直,可先证明线面垂直,根据所给的条件证明⊥AC 平面SEQ ,即平面⊥SAC 平面SEQ .试题解析:证明:(1)取SD 中点F ,连结PF AF ,.∵F P 、分别是棱SD SC 、的中点,∴CD FP //,且CD FP 21=. ∵在菱形ABCD 中,Q 是AB 的中点, ∴CD AQ //,且CD AQ 21=,即AQ FP //且AQ FP =. ∴AQPF 为平行四边形,则AF PQ //. ∵⊄PQ 平面SAD ,⊂AF 平面SAD ,∴//PQ 平面SAD .考点:1.线线,线面平行关系;2.线线,线面,面面垂直关系.【易错点睛】本题考查了立体几何中的线与面的关系,属于基础题型,重点说说垂直关系,当证明线线垂直时,一般要转化为线面垂直,证明线与面垂直时,即证明线与平面内的两条相交直线垂直,证明面面垂直时,转化为证明线面垂直,所以线与线的证明是基础,这里经常会搞错两个问题,一是,线与平面内的两条相交直线垂直,线与平面垂直,很多同学会记成一条,二是,面面垂直时,平面内的线与交线垂直,才与平面垂直,很多同学会理解为两个平面垂直,平面内的线都与另一个平面垂直,需熟练掌握判定定理以及性质定理.22.【答案】【解析】解:(1)f(x)是R上的奇函数证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),∴f(x)是R上的奇函数(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)2+x22+1]<0恒成立,因此得到函数f(x)是R上的增函数.(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),∴不等式进一步可化为f(m+1)<f(3﹣2m),∵函数f(x)是R上的增函数,∴m+1<3﹣2m,∴23.【答案】【解析】(本题满分为12分)解:(Ⅰ)f(x)=2cosx(sinx+cosx)﹣1=2sinxcosx+2cos2x﹣1=sin2x+2×﹣1=sin2x+cos2x=sin(2x+),∵x∈[0,],∴2x+∈[,],∴当2x+=,即x=时,f(x)min=…6分(Ⅱ)由(Ⅰ)可知f(B)=sin(+)=1,∴sin(+)=,∴+=,∴B=,由正弦定理可得:b==∈[1,2)…12分【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.24.【答案】(1)详见解析;(2)详见解析.。

邻水县三中2018-2019学年上学期高二数学12月月考试题含解析

邻水县三中2018-2019学年上学期高二数学12月月考试题含解析

邻水县三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .42. 已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣23. 如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )A .54B .162C .54+18D .162+184. 已知命题:()(0xp f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >. 则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 5. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24C .2,7,12,17,22,27D .6,10,14,18,22,266. 已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是( )A .2B .C .D .7. 在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.8. 已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则s i n :s i n C A =( ) A .2︰3 B .4︰3 C .3︰1 D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力. 9. 某程序框图如图所示,则输出的S 的值为( )A .11B .19C .26D .5710.已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A .2)B .2C .1:D (1+ 11.()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a >B .0a <<C .02a <<D .以上都不对12.在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8C .6D .4二、填空题13.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号)14.运行如图所示的程序框图后,输出的结果是15.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)16.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量的坐标是 .17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____. 18.已知||=1,||=2,与的夹角为,那么|+||﹣|= .三、解答题19.已知二次函数f (x )=x 2+bx+c ,其中常数b ,c ∈R .(Ⅰ)若任意的x ∈[﹣1,1],f (x )≥0,f (2+x )≤0,试求实数c 的取值范围;(Ⅱ)若对任意的x 1,x 2∈[﹣1,1],有|f (x 1)﹣f (x 2)|≤4,试求实数b 的取值范围.20.【南京市2018届高三数学上学期期初学情调研】已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R . (Ⅰ)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(Ⅱ)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (Ⅲ)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ), 记h (a )=M (a )-m (a ),求h (a )的最小值.21.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围; ②若函数()g x 满足()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.22.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b+=>>的两个焦点,(1,2P 是椭圆上1122|,||PF F F PF 成等差数列.(1)求椭圆C 的标准方程;、(2)已知动直线l 过点F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.23.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=.(Ⅰ)求;(Ⅱ)若三角形△ABC的面积为,求角C.24.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.(1)证明:EF∥平面PAC;(2)证明:AF⊥EF.邻水县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:分两类讨论,过程如下:①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,∴f(x)=a x﹣1+log a x在[1,2]上递增,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,舍去;②当0<a<1时,函数y=a x﹣1和y=log a x在[1,2]上都是减函数,∴f(x)=a x﹣1+log a x在[1,2]上递减,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,符合题意;故选A.2.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣.故选:B.3.【答案】D【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体,其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,故表面积S=3×6×6+3××6×6+×=162+18,故选:D4.【答案】D【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.5.【答案】C【解析】解:从30件产品中随机抽取6件进行检验,采用系统抽样的间隔为30÷6=5,只有选项C中编号间隔为5,故选:C.6.【答案】B【解析】解:由约束条件作出可行域如图,联立,得A(a,a),联立,得B(1,1),化目标函数z=2x+y为y=﹣2x+z,由图可知z max=2×1+1=3,z min=2a+a=3a,由6a=3,得a=.故选:B.【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题.7.【答案】B8. 【答案】C【解析】由已知等式,得3cos 3cos c b C c B =+,由正弦定理,得sin 3(sin cos sin cos )C B C C B =+,则sin 3sin()3sin C B C A =+=,所以sin :sin 3:1C A =,故选C .9. 【答案】C【解析】解:模拟执行程序框图,可得 S=1,k=1 k=2,S=4不满足条件k >3,k=3,S=11 不满足条件k >3,k=4,S=26满足条件k >3,退出循环,输出S 的值为26. 故选:C .【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的k ,S 的值是解题的关键,属于基本知识的考查.10.【答案】D 【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M 到焦点的距离转化为到准线的距离后进行解答的. 11.【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数()()22f x a x a =-+在区间[]0,1上恒正,则(0)0(1)0f f >⎧⎨>⎩,即2020a a a >⎧⎨-+>⎩,解得02a <<,故选C. 考点:函数的单调性的应用. 12.【答案】B【解析】解:展开式通项公式为T r+1=•(﹣1)r •x 3n ﹣4r ,则∵二项式(x 3﹣)n(n ∈N *)的展开式中,常数项为28,∴,∴n=8,r=6. 故选:B .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.二、填空题13.【答案】(4)【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题.命题q:菱形的对角线相等为假命题;则p∨q是真命题,故(1)错误,(2)命题“若x2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x2﹣4x+3<0得1<x<3,则“1<x<3”是“x2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.14.【答案】0【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+…+sin的值,由于sin周期为8,所以S=sin+sin+…+sin=0.故答案为:0.【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查.15.【答案】①③⑤【解析】解:建立直角坐标系如图:则P1(0,1),P2(0,0),P3(1,0),P4(1,1).∵集合M={x|x=且i,j∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i,j)有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;当i=2,j=4,或i=4,j=2时,x=0,∴M中的元素之和为0,故⑤正确.综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.16.【答案】(﹣2,﹣6).【解析】解:向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6),故答案为:(﹣2,﹣6).【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.17.【答案】11 [133e e⎧⎫+⋃+⎨⎬⎩⎭,)【解析】当x<0时,由f(x)﹣1=0得x2+2x+1=1,得x=﹣2或x=0,当x ≥0时,由f (x )﹣1=0得110x xe+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:y=1x xe +≥1(x ≥0), y ′=1xx e-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,x=1时,函数取得最大值:11e+,当1<a ﹣211e <+时,即a ∈(3,3+1e )时,y=f (f (x )﹣a )﹣1有4个零点,当a ﹣2=1+1e 时,即a=3+1e 时则y=f (f (x )﹣a )﹣1有三个零点,当a >3+1e 时,y=f (f (x )﹣a )﹣1有1个零点当a=1+1e 时,则y=f (f (x )﹣a )﹣1有三个零点,当11{ 21a e a >+-≤时,即a ∈(1+1e,3)时,y=f (f (x )﹣a )﹣1有三个零点.综上a ∈11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,),函数有3个零点. 故答案为:11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,). 点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.18.【答案】.【解析】解:∵||=1,||=2,与的夹角为,∴==1×=1.∴|+||﹣|====.故答案为:.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】解:(Ⅰ)因为x∈[﹣1,1],则2+x∈[1,3],由已知,有对任意的x∈[﹣1,1],f(x)≥0恒成立,任意的x∈[1,3],f(x)≤0恒成立,故f(1)=0,即1为函数函数f(x)的一个零点.由韦达定理,可得函数f(x)的另一个零点,又由任意的x∈[1,3],f(x)≤0恒成立,∴[1,3]⊆[1,c],即c≥3(Ⅱ)函数f(x)=x2+bx+c对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4恒成立,即f(x)max﹣f(x)min≤4,记f(x)max﹣f(x)min=M,则M≤4.当||>1,即|b|>2时,M=|f(1)﹣f(﹣1)|=|2b|>4,与M≤4矛盾;当||≤1,即|b|≤2时,M=max{f(1),f(﹣1)}﹣f()=﹣f()=(1+)2≤4,解得:|b|≤2,即﹣2≤b≤2,综上,b的取值范围为﹣2≤b≤2.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.20.【答案】(1)a =12(2)(-∞,-1-1e ].(3)827【解析】(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立, 所以-(a +1)≥22ln xx . 令g (x )=22ln x x,x >0,则g '(x )=()3212ln x x -.令g '(x )=0,解得x .当x ∈(0g '(x )>0,所以g (x )在(0当x ∞)时,g '(x )<0,所以g (x ∞)上单调递减.所以g (x )max =g 1e, 所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值范围为(-∞,-1-1e].(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4. 令f ′(x )=0,则x =1或a . f (1)=3a -1,f (2)=4.②当53<a<2时,当x∈(1,a)时,f '(x)<0,所以f(x)在(1,a)上单调递减;当x∈(a,2)时,f '(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)>f(2),所以M(a)=f(1)=3a-1,m(a)=f(a)=-a3+3a2,所以h(a)=M(a)-m(a)=3a-1-(-a3+3a2)=a3-3a2+3a-1.因为h'(a)=3a2-6a+3=3(a-1)2≥0.所以h(a)在(53,2)上单调递增,所以当a∈(53,2)时,h(a)>h(53)=827.③当a≥2时,当x∈(1,2)时,f '(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a-1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a-1-4=3a-5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围. 21.【答案】(1)1x =-(2)①()1,-+∞,②6【解析】试题解析:(1)由题意,131331x x x +-+=+,化简得()2332310x x ⋅+⋅-= 解得()13133x x =-=舍或,所以1x =-(2)因为()f x 是奇函数,所以()()0f x f x -+=,所以1133033x x x x a ab b-++-+-++=++ 化简并变形得:()()333260x x a b ab --++-=要使上式对任意的x 成立,则30260a b ab -=-=且 解得:11{{ 33a a b b ==-==-或,因为()f x 的定义域是R ,所以1{ 3a b =-=-舍去 所以1,3a b ==,所以()13133x x f x +-+=+①()131********x x x f x +-+⎛⎫==-+ ⎪++⎝⎭对任意1212,,x x R x x ∈<有:()()()()211212121222333313133131x x x x xx f x f x ⎛⎫-⎛⎫⎪-=-=⎪ ⎪++++⎝⎭⎝⎭因为12x x <,所以21330x x->,所以()()12f x f x >, 因此()f x 在R 上递减.因为()()2222f t t f t k -<-,所以2222t t t k ->-,即220t t k +-<在时有解所以440t ∆=+>,解得:1t >-, 所以的取值范围为()1,-+∞②因为()()()12333x x f x g x -⎡⎤⋅+=-⎣⎦,所以()()3323x xg x f x --=-即()33xxg x -=+所以()()222233332x x x xg x --=+=+-不等式()()211g x m g x ≥⋅-恒成立, 即()()23323311x xx x m --+-≥⋅+-,即:93333x x x xm --≤+++恒成立令33,2x xt t -=+≥,则9m t t≤+在2t ≥时恒成立令()9h t t t =+,()29'1h t t=-,()2,3t ∈时,()'0h t <,所以()h t 在()2,3上单调递减()3,t ∈+∞时,()'0h t >,所以()h t 在()3,+∞上单调递增所以()()min 36h t h ==,所以6m ≤ 所以,实数m 的最大值为6考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

邻水县第一中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种2. 自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.3. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )A .B .C .D .4. 已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C .tan35°D .tan35°5. 抛物线y=﹣8x 2的准线方程是( )A .y=B .y=2C .x=D .y=﹣26. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力. 7. 记,那么ABCD8. 已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( )A .14 B .12C .D .9. 在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( )A .B . C.D 10.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A . =1.23x+4B . =1.23x ﹣0.08C . =1.23x+0.8D . =1.23x+0.08 11.若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .B .C .D .12.△ABC 的内角A ,B ,C 所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4π B .4π或34π C .3π或23π D .3π二、填空题13.经过A (﹣3,1),且平行于y 轴的直线方程为 . 14.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 . 15.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力. 16.下列四个命题:①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面其中正确命题的序号是 .17.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .18.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为.三、解答题19.在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.,直线l的参数方程为:(t为参数).(1)求圆C和直线l的极坐标方程;(2)点P的极坐标为(1,),直线l与圆C相交于A,B,求|PA|+|PB|的值.20.现有5名男生和3名女生.(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?21.对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.若集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω.如当n=2时,E 2={1,2},P 2=.∀x 1,x 2∈P 2,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,所以P 2具有性质Ω.(Ⅰ)写出集合P 3,P 5中的元素个数,并判断P 3是否具有性质Ω. (Ⅱ)证明:不存在A ,B 具有性质Ω,且A ∩B=∅,使E 15=A ∪B . (Ⅲ)若存在A ,B 具有性质Ω,且A ∩B=∅,使P n =A ∪B ,求n 的最大值.22.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,()a R ∈.(Ⅰ)若当04x ≤≤时,()2f x ≤恒成立,求实数a 的取值; (Ⅱ)当03a ≤≤时,求证:()()()()f x a f x a f ax af x ++-≥-.23.如图,在平面直角坐标系xOy 中,已知曲线C 由圆弧C 1和圆弧C 2相接而成,两相接点M ,N 均在直线x=5上,圆弧C 1的圆心是坐标原点O ,半径为13;圆弧C 2过点A (29,0).(1)求圆弧C 2的方程;(2)曲线C 上是否存在点P ,满足?若存在,指出有几个这样的点;若不存在,请说明理由.24.已知等差数列{a n}的首项和公差都为2,且a1、a8分别为等比数列{b n}的第一、第四项.(1)求数列{a n}、{b n}的通项公式;(2)设c n=,求{c n}的前n项和S n.邻水县第一中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法; ②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法; 故选:C .2. 【答案】D【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC =-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,3. 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个, 所以共有4×6=24个,而在8个点中选3个点的有C 83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.4. 【答案】B【解析】解:∵向量=(1,),=(,x )共线,∴x====,故选:B .【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.5. 【答案】A【解析】解:整理抛物线方程得x 2=﹣y ,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A .【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.6. 【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B ={1,1}-,故选C .7. 【答案】B 【解析】【解析1】,所以【解析2】,8. 【答案】A 【解析】试题分析:由题意知函数定义域为),0(+∞,2'222()x x a f x x++=,因为函数2()2ln 2f x a x x x=+-(a R ∈)在定义域上为单调递增函数0)('≥x f 在定义域上恒成立,转化为2()222h x x x a =++在),0(+∞恒成立,10,4a ∴∆≤∴≥,故选A. 1考点:导数与函数的单调性. 9. 【答案】B 【解析】考点:正弦定理的应用. 10.【答案】D【解析】解:设回归直线方程为=1.23x+a∵样本点的中心为(4,5),∴5=1.23×4+a∴a=0.08∴回归直线方程为=1.23x+0.08故选D.【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.11.【答案】C【解析】解;∵f′(x)=f′(x)>k>1,∴>k>1,即>k>1,当x=时,f()+1>×k=,即f()﹣1=故f()>,所以f()<,一定出错,故选:C.12.【答案】B 【解析】试题分析:由正弦定理可得()sin0,,4sin6B B Bππ=∴=∈∴=或34π,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数.二、填空题13.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.14.【答案】 m >1 .【解析】解:若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则命题“∀x ∈R ,x 2﹣2x+m >0”是真命题,即判别式△=4﹣4m <0, 解得m >1, 故答案为:m >115.【答案】34-【解析】由题意知3sin 05α-=,且4cos 05α-≠,所以4cos 5α=-,则3tan 4α=-. 16.【答案】 ③ .【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误; ②经过空间不共线三点有且只有一个平面,故错误; ③过两平行直线有且只有一个平面,正确;④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误, 故正确命题的序号是③, 故答案为:③17.【答案】 3+.【解析】解:本小题考查归纳推理和等差数列求和公式. 前n ﹣1行共有正整数1+2+…+(n ﹣1)个,即个,因此第n 行第3个数是全体正整数中第3+个,即为3+.故答案为:3+.18.【答案】12 【解析】考点:分层抽样三、解答题19.【答案】【解析】解:(1)圆C的直角坐标方程为(x﹣2)2+y2=2,代入圆C得:(ρcosθ﹣2)2+ρ2sin2θ=2化简得圆C的极坐标方程:ρ2﹣4ρcosθ+2=0…由得x+y=1,∴l的极坐标方程为ρcosθ+ρsinθ=1…(2)由得点P的直角坐标为P(0,1),∴直线l的参数的标准方程可写成…代入圆C得:化简得:,∴,∴t1<0,t2<0…∴…20.【答案】【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有A33A66=4320种.(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排.21.【答案】【解析】解:(Ⅰ)∵对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.∴集合P3,P5中的元素个数分别为9,23,∵集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω,∴P3不具有性质Ω.…..证明:(Ⅱ)假设存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.其中E15={1,2,3,…,15}.因为1∈E15,所以1∈A∪B,不妨设1∈A.因为1+3=22,所以3∉A,3∈B.同理6∈A,10∈B,15∈A.因为1+15=42,这与A具有性质Ω矛盾.所以假设不成立,即不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.…..解:(Ⅲ)因为当n≥15时,E15⊆P n,由(Ⅱ)知,不存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B.若n=14,当b=1时,,取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1,B1具有性质Ω,且A1∩B1=∅,使E14=A1∪B1.当b=4时,集合中除整数外,其余的数组成集合为,令,,则A2,B2具有性质Ω,且A2∩B2=∅,使.当b=9时,集中除整数外,其余的数组成集合,令,.则A3,B3具有性质Ω,且A3∩B3=∅,使.集合中的数均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A∩B=∅,且P14=A∪B.综上,所求n的最大值为14.…..【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用.22.【答案】【解析】【解析】(Ⅰ)()2x a f x -=≤得,22a x a -≤≤+ 由题意得2042a a -≤⎧⎨≤+⎩,故22a ≤≤,所以2a = …… 5分(Ⅱ)03a ≤≤,∴112a -≤-≤,∴12a -≤,()()2f ax af x ax a a x a ax a ax a -=---=---()()2212ax a ax a a a a a a ≤---=-=-≤ ()()()2222f x a f x a x a x x a x a a -++=-+≥--==,∴()()()()f x a f x a f ax af x -++≥-.…… 10分23.【答案】【解析】解:(1)圆弧 C 1所在圆的方程为 x 2+y 2=169,令x=5,解得M (5,12),N (5,﹣12)…2分则直线AM 的中垂线方程为 y ﹣6=2(x ﹣17), 令y=0,得圆弧 C 2所在圆的圆心为 (14,0), 又圆弧C 2 所在圆的半径为29﹣14=15,所以圆弧C 2 的方程为(x ﹣14)2+y 2=225(5≤x ≤29)…5分(2)假设存在这样的点P (x ,y ),则由PA=PO ,得x 2+y 2+2x ﹣29=0 …8分由,解得x=﹣70 (舍去) 9分由,解得 x=0(舍去),综上知,这样的点P 不存在…10分【点评】本题以圆为载体,考查圆的方程,考查曲线的交点,同时考查距离公式的运用,综合性强.24.【答案】【解析】解:(1)由等差数列通项公式可知:a n =2+(n ﹣1)2=2n , 当n=1时,2b 1=a 1=2,b 4=a 8=16,...3 设等比数列{b n }的公比为q ,则, (4)∴q=2,…5 ∴…6(2)由(1)可知:log2b n+1=n (7)∴ (9)∴,∴{c n}的前n项和S n,S n=. (12)【点评】本题考查等比数列及等差数列通项公式,等比数列性质,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.。

相关文档
最新文档