史彭第5章刚体运动学

合集下载

理论力学_第五章_刚体定点运动_自由刚体运动

理论力学_第五章_刚体定点运动_自由刚体运动
刚体绕定点运动时,刚体内任一点的速度等于绕瞬轴 转动的角速度与矢径的矢量积;该点的加速度等于绕瞬轴 的向轴加速度与绕角加速度矢的转动加速度的矢量和。
a r v
例 5-1 已知:行星锥齿轮的轴OA以匀角速度 1 ,绕铅直轴OB 转动 设 OA=l,AC=r。 求:齿轮上点M 的速度和加速度。
螺旋率可写成
ds p d
一般情况下,螺旋率为一恒值,上式积分2π p
s表示刚体转过一周沿轴前进的距离--螺距。
(3)平移速度矢与转动角速度矢成任意角的情形
刚体以角速度 绕动轴 O z 转动, 同时又以速度 vO 平移, vO 和 之间的夹角为θ 。 刚体的运动成为以 v 2 的平移,和以 绕瞬轴CC 的转动
解: 齿轮中心点A 的速度为
vA OA sin
点A 绕定点O 在水平面内作圆周运动 vA OA 1 绕瞬轴OC 转动的角速度的大小为 1 =常量 sin 它沿着OC 指向如图所示
点M 的速度为
1 1 vM ME 2r cos 2l sin 2l1 sin sin 指向如图 它的方向垂直于平面 OMC
由于牵连运动为平移, 自由刚体内任一点的加速度合成式为
其中 ae aO
a a ae a r
ar 为刚体绕基点 O 转动的瞬时角加速度
自由刚体内任一点的加速度公式为
ar ar r r r
aM aO a1 a2 , a1 ar r , a2 r r
e与 r 同向的情形如图
vO2 e O1O2 a O2C
齿轮绕瞬轴转动的角速度为
O1O2 a r e a e O2C O2C 方向根据 O2 的方向确定 O1O2 O1C O2 C 当刚体同时绕两平行轴同向转动时,刚体的合成运动 为绕瞬轴的转动,绝对角速度等于牵连角速度与相对角速 度的和;瞬轴的位置内分两轴间的距离,内分比与两个角 速度成反比。 vO2

理论力学05点的运动学和刚体的基本运动

理论力学05点的运动学和刚体的基本运动

例 5.7 如图圆盘 C 以匀角速度ω 绕倾斜轴 OB 转动,盘面与 转轴垂直,圆盘的半径为 r; 设 OB 轴在 平面Oyz内,盘面与 平面Oyz的交线为 CD,点A 为圆盘边缘上一个固连点。 求: CA 与CD 为任意角φ时
A 点的速度和加速度矢量。
解:以矢量思路考虑,有
vA w OA OB方向单位矢 :
引言
5-1 运动学的基本概念
①运动学 是研究物体在空间位置随时间变化的几何性质的科学。 (包括:轨迹,速度,加速度等)不考虑运动的原因。
②运动学研究的对象 ①建立机械运动的描述方法 ②建立运动量之间的关系
③运动学学习目的 为后续课打基础及直接运用于工程实际。
பைடு நூலகம்
④运动是相对的 ( relativity ):参考体(物);参考系;静系;动系。
arctg |a |
an
11
例 5.1 一绳AMC的一端系于固定点A,绳子穿过 滑块M上的小孔。绳的另一端系于滑块C上。滑块 M以已知等速v0运动。绳长为l,AE的距离为a且 垂直于DE。求滑块C的速度与距离AM = x之间的 关系。又当滑块M经过E点时,滑块C的速度为何 值?
vc v0
12
曲率半径与法 向加速度有关 先求速度和法 向加速度
(否则△ t 时间后,该直线将被弯曲或伸缩,这对刚体是不容许的)。
同理AB 线上各点的速度也必须是直线分布, 因为与 矢端的连线不平行于π平面,这条矢端连线一定会与π 平面相交,设交点为 C,其速度必为零,所以 OC 线上所有点 的速度为零(OC 线上所有点的速度也必须直线分布)
一.弧坐标,自然轴系
1.弧坐标的运动方程S=f (t)
补充:极坐标法(对平面曲线运动时可用) 同理可导出柱坐标下的点的运动方程

大学物理第5章刚体

大学物理第5章刚体
由转动定律:
l 3 mg 1 2 2 3g M 3 1 2 2 J 4l 2 ml 3
B
例2 如图,质量均为m的两物体A和B。A放在倾角 20 为a的光滑斜面上,通过绕在定滑轮上的细绳与B相 连,定滑轮是质量为m 半径为R的圆盘。求绳中张 力T1和T2以及A和B的加速度aA 、aB 。
解 受力 N , mg , 只有mg产生力矩
系统对0轴的力矩:
N
0
A
30
mg mg
L L M o M 0 A M 0 B mg mg sin 600 2 2 1 1 2 系统对O轴的J: J J A J B ml 2 ml 2 ml 2 3 3 3
F F F11
第一项的方向垂直于轴,对轴力矩为零:
10
将第二项的数值定义为力对轴的力矩,即
M轴
r F
方向平行于轴
二、刚体定轴转动定律 dL 由质点的角动量定理: M r F dt 刚体是 N 个质点组成的特殊质点系:
第 i个质点有
对 N 个质点求和
4. 线量与角量关系
ai
dvi d dri ai ri dt dt dt d ri ( ri ) dt dv d at ri ri 切向分量 dt dt v2 2 法向分量 an ri ri
注意:1.转动定律是力矩的瞬时作用规律,与牛顿第二 定律地位相当。 2.式中力矩、角加速度、转动惯量都是相对同一 转轴而言。
5.3 转动惯量的计算
一、转动惯量的定义 由 M 轴外 J 可知
13
在M相同的条件下,J 越大, 越小,转动状态越难改变。

刚体力学005

刚体力学005

2
19
方法二:应用动量矩定理
z
研究整体 L O J k r O C ( m v C ) L r C
L r C J C ' x 'i' J C ' y 'j' J C ' z z 'k '
M
x' sin y' cos
o
yc
x
x' mg
LOzM
z'
y'
z'
LOzJ m2L
(JC' xx'sin )
yr o '
c y1
m xC F x
m
yC
Fy
m
zC
Fz
相对质心的动量矩定理:
x
x1
JCx'x' (JCz' JCy')y'z' JCy'y' (JCx' JCz')x'z'
MCx' MCy'
dLrC
dt
MC(Fie)
JCz'z' (JCy' JCx')x'y' MCz'
y ' J y' y' (Jx' Jz')x'z' M y'
J
z
' z
'
(J
y'
J x')x'y'
M z'
0 Jz'z' M z'
J C 'z z ' J C ' z 0

大学物理学——刚体的转动PPT课件

大学物理学——刚体的转动PPT课件

mg
2 3
L cos
Mg
1 2
L cos
arccos(1 3v02 ) 64gL
[思考]
上式对v0值有何限制?
例5-12
圆盘质量M,半径R,J=MR2/2,转轴光滑,人的质量m,开始时,两者静止. 求:人在盘上沿边缘走过一周时,盘对地面转过的角度.
解:
在走动过程中,人-盘系统 L=Const.
解:
d d(at bt 3 ct 4 )
dt
dt
a 3bt 2 4ct 3
d d (a 3bt 2 4ct 3 )
dt dt
6bt 12ct 2
Note:
角速度的矢量表示法:
大小:
方向://转轴, 符合右手螺旋
r v Or
线速度:
v
r
验证:
大小:
r 方向:
4
F1
an at
F1
4
法向:
F2
mg
sin man 5mg sin
3mg sin
2
F2
2
F
F12 F22
mg 4
99 sin 2 1 (方向?)
§5.5 转动中的功和能 (Rotational Work and Energy)
1.力矩的功
F
Ft
d
dr r
(垂直于转轴的截面)
O
mv
①这里v是质点速度在垂直于转轴的平面内的分量值.
②L有正负,取决于转动正方向的选取.
2.刚体对固定轴的角动量
ri
mi vi
3.定轴转动的角动量定理
L miviri miri2
J
⑴微分形式:

大学物理2-1第5章

大学物理2-1第5章

若质量离散分布:
(质点,质点系)
J i mi ri2
J r2 dm
若质量连续分布:
dm dl
其中: d m d s
d m dV
例题补充 求质量为m,半径为R 的均匀圆环的对中心 轴的转动惯量。 解: 设线密度为λ; d m d l
J R dm
2
2R
0
R dl
2
o
R
dm
R2 2R mR2
例题5-3 求质量为m、半径为R 的均匀薄圆盘对中心轴 的转动惯量。 解: 设面密度为σ。
取半径为 r 宽为d r 的薄圆环,
R
d m d s 2 r d r
J r d m r 2 2r 2 d r
2

3 3g 2L
2)由v r得: v A L
L 3 3 gL 3 3 gL vB 2 8 2
5.2 定轴转动刚体的功和能
一、刚体的动能 当刚体绕Oz轴作定轴转动时,刚体上各质元某一瞬时 均以相同的角速度绕该轴作圆周运动。
2 2 质元mi的动能 E ki mi v i mi ( i ri )2 mi ri 2
2)取C 点为坐标原点。 在距C 点为x 处取dm 。 说明
A
A
x dm
B
L
C
x
x
xd m B
L2
L2
2 mL x 2 d x 12
JC x 2 d m
L 2 L 2
1) 刚体的转动惯量是由刚体的总质量、质量分布、 转轴的位置三个因素共同决定; 2) 同一刚体对不同转轴的转动惯量不同, 凡提到转动惯量 必须指明它是对哪个轴的。

刚体的运动及描述

刚体的运动及描述

v r
P点线加速度 an r
2
dv at r dt
z
ω ,α v r θ
匀角加速转动的运动学关系:
P
参 考 方 向
0 t ( 0 ) 0 t 1 t 2 2 2 2 0 2 ( 0 )
刚体
r O ×
定轴
第5章 刚体力学基础
5-1 刚体的运动及描述
矢量形式
v r 2 an r at r
或: a t r e
刚体定轴转动(一维转动) 的转动方向可以用角速 度的正、负来表示。 角加速度
第5章 刚体力学基础
5-1 刚体的运动及描述
定点转动:
运动中刚体上只有一点固定不动,整个刚体绕过该固
定点的某一瞬时轴线转动.
如:陀螺的运动
i3
(转轴方向(2),绕轴转角(1))
第5章 刚体力学基础
5-1 刚体的运动及描述
3 平面平行运动 刚体上各点都平行于某一固定平面的运动称为刚体的 平面运动,又称为刚体的平面平行运动。 如:车轮直线滚动 可以分解为: 刚体随质心的平动(i=2) 和绕质心垂直于运动平 面的定轴转动(i=1)
·
Δ
· o
o
第5章 刚体力学基础
5-1 刚体的运动及描述
刚体的一般运动可看作: 随质心的平动 + 绕质心的转动 的合成
第5章 刚体力学基础
5-1 刚体的运动及描述
5.1.3 刚体定轴转动的运动学描述
定轴转动:刚体上任意点都绕同一 轴在各自的转动平面内作圆周运动。
O
z
ω
r P’(t+dt) d P(t)

高校大学物理第五章刚体运动学课件

高校大学物理第五章刚体运动学课件

解 (1)转速3000r/min和1200r/min相应的角速 度分别为
2
2π 3000 60
100π
rad/s
1
2π 1200 60
40π
rad/s
19
当t = 12s时
2 1 100π 40 π 15.7rad s2
t
12
(2)飞轮 12 s 内转过的角位移
0
0t
1 t 2
设 ct
由定义, 得 d ct
dt
d ctdt
16
t
两边积分 d c td t
0
0
由题意 在t 300s时
1 ct 2
2
18000r min1
18000 2π 600πrads-1 60
所以
c
2
t2
2 600π 3002
π rad s3 75
17
任意时刻的角速度
第5章 刚体运动学
1
第5章 刚体运动学
5.1 刚体和自由度的概念 5.2 刚体的平动 5.3 刚体绕定轴转动
2
§5.1 刚体和自由度的概念
一. 特刚殊体的质点系,形状和体积不变化 —— 理想化模型
在力作用下,组成物体的所有质点间的距离始终保持不变
二. 自由度
确定物体的位置所需要的独立坐标数 —— 物体的自由度数
s O
i=1
z
z
(x,y,z)
O
yO
y
x
i=2
i=3
x i = 3+2+1= 6
当刚体受到某些限制 ——自由度减少 3
§ 5.2 刚体的平动
1. 刚体的平动 刚体运动时,在刚体内所作的任一条直线都

大学物理第五章刚体力学

大学物理第五章刚体力学

v0
3
4J
4Ml
mv
例3 、如图所示,将单摆和一等长的匀质直杆悬挂在 同一点,杆的质量m与单摆的摆锤相等。开始时直杆
自然下垂,将单摆的摆锤拉到高度h0,令它自静止状
态下垂,于铅垂位置和直杆作弹性碰撞。求碰撞后直杆
下端达到的高度h。
l l
m
ho
h’
a
解:碰撞前单摆摆锤的速度为
c hc
h=3h0/2
b
L
mv
v o m o• L
(A) 2v 3L
(B) 4v 5L
(C) 6v 7L
8v (D) 9L
以顺时针为转动正方向
两小球与细杆组成的系统 对竖直固定轴角动量守恒
L
mv
v o m o• L
由 Lmv+Lmv=2mL2+J
及 J= mL2/3
可知正确答案为 [ C ]
6.如图所示,一均匀 细杆长为 l ,质量为 m,平放在摩擦系数
速度。
用功能定理重解该题
取起始位置为零势能参考点 O
0 mgl sin / 2 1 J2
2
A mg
3g sin
l
?棒端A的速度 vA 3gl sin
例2.已知:均匀直杆m,长为l,初始水平静止,
轴光滑,AO4l 。 求:杆下摆角后,角速度 ?
解:杆+地球系统, ∵只有重力作功,∴ E守恒。
1 (1 ml 2 ) 2 1 mgl(1 cos )
23
2
3
arccos23
例4、一飞轮以角速度0绕轴旋转,飞轮对轴的
转动惯量为J1,另一静止飞轮突然被啮合到同一 个轴上,该飞轮对轴的转动惯量为前者的两倍。 啮合后整个系统的角速度 (1/3)0 .

第五章刚体的基本运动PPT课件

第五章刚体的基本运动PPT课件
第五章 刚体的基本运动
第一节 刚体的平动
第二节 刚体绕定轴转动
第三节 轮系的传动比
本章重点:
1、平动刚体上点的速度、加速度的计算;
2、定轴转动刚体角速度、角加速度的计算;
3、转动刚体上点的速度、加速度的计算。
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
7
三、刚体绕定轴转动运动描述 1. 刚体的转动方程
过轴z作固定平面A、与刚体固连的转动平面B,两平面间的夹角用 表示,称为刚体的转角。当刚体转动时,随时间 t 变化, f(t) ,
该方程称为刚体的转动方程。

转角的符号规定:迎z 轴的正向看, 逆时针转向为正,反之为负;或用右手 法则确定。
8
2. 角速度和角加速度
角速度
单位为rad/s(弧度/秒)。
角加速 单位为rad/s2(弧度/秒2)。
角速度、角加速度都是代数量,符号规定和转角一致。当角速度、角加 速度同号时,刚体作加速转动,否则作减速转动。
用转速n(每分钟内的转数,以r/min为单位)来表示转动的快慢,
角速度与转速之间的关系是:
2πn πn
(2) 0,等于常量,0 t
12
例5-2 杆AB以匀速v运动,通过套筒A带动OC杆绕定轴转动。
开始时 0 ,试求 时,(1)摇杆OC的角速度、角加速度。 4
(2)设杆OC长d,杆端C点的速度和加速度。
解:(1)求角速度、角加速度
由几何关系可得:tan vt
l
等号两边同时对时间 t 求导, sec2d v
tana

大学物理教程第五章刚体的转动

大学物理教程第五章刚体的转动

⼤学物理教程第五章刚体的转动第五章刚体的转动§5-1 刚体的平动、转动和定轴转动⼀、刚体在外⼒作⽤下形状和⼤⼩都不变化的物体称为刚体.和这定义等价的另⼀定义是:如果物体在外⼒作⽤下它的任意两点之间的距离保持不变,则这物体称为刚体.刚体是⼀种理想模型,在⾃然界中是找不到的.实际上任何物体在外⼒作⽤下,它的形状和⼤⼩都或多或少要发⽣变化.但有许多物体,如果外⼒不甚⼤的话,它的形状和⼤⼩的改变不显著,这样的物体和刚体很接近,刚体⼒学中的结论对于这样的物体⼤致与经验符合.因此在实际问题中这样的物体可以当刚体来处理.⼆、平动和转动刚体的最简单的运动是平动和转动.在§1-3中关于参考系的平动的定义对刚体也适⽤.即如果刚体运动时,它⾥⾯任⼀直线的⽅位始终保持不变,则其运动称为平动.平动的特点是,任⼀时刻刚体中各点的速度和加速度都相等,任⼀点的运动都可以代表整个刚体的运动.刚体运动时,如果刚体中所有质点都绕着⼀条直线作圆周运动(如图5-1),则这刚体的运动称为转动,这条直线称为转轴.座钟的指针、CD 光碟、涡轮发电机的叶⽚和车辆的轮⼦的运动都是转动.转动刚体的转轴可以是固定的(例如涡轮叶⽚的转轴),也可以是运动的(例如车轮的转轴).转轴固定的转动称为定轴转动.可以证明,刚体的⼀般运动可以当作是由⼀平动和⼀绕瞬时轴的转动组合⽽成.例如车轮在地⾯上滚动(图5-2a),可以看成是由车轮随轮轴的平动以及车轮绕轮轴的转动组合⽽成.车轮上任⼀点P 的瞬时速度v ,等于轮轴的瞬时速度v 0与由于该点随车轮绕轮轴转动所具有的速度v r 的⽮量和,如图5-2(b)所⽰.三、定轴转动如图5-1,P 为刚体中⼀质点,当刚体绕定轴转动时,P 作圆周运动,圆⼼O 为转轴与圆平⾯的交点.由于刚体中任意两点之间的距离是固定不变的,刚体中各质点在同⼀时间Δt 内具有相同的⾓位移Δθ,因此在任⼀时刻各质点具有相同的⾓速度ω和⾓加速度α.所以我们可以⽤Δθ、ω和α作为描写刚体绕定轴转动的物理量,称为刚体的⾓位移、⾓速度和⾓加速度.我们在§1-4中讲过的⾓位移、⾓速度和⾓加速度等概念都适⽤于刚体的定轴转动.如果将⾓位移Δθ图5-1图5-2改为θ,则§1-4中公式θ = ωt ,ω = ω0 + αt 及θ = ω0t +21αt 2对刚体的定轴转动亦适⽤.⾄于刚体内各质点的速度和加速度则由于各质点到转轴的距离不同⽽各不相同,但这些线量与⾓量之间的关系仍然由(1-49)式、(1-51)式及(1-52)式表⽰.例题5-1 ⼀转速为1.80×103 r/min 的飞轮,因受制动⽽均匀地减速,经20.0s 停⽌转动.(1) 求⾓加速度和从制动开始到停⽌转动飞轮转过的转数;(2) 求制动开始后t = 10.0s 时飞轮的⾓速度;(3) 设飞轮半径为0.500m ,求在t = 10.0s 时飞轮边缘上⼀点的线速度和切向与法向加速度.解 (1) 设ω0为初⾓速度,由题意得rad/s π60rad/s 60101.80π2π230=??==n ω s 0.20 ,0==t ω因飞轮均匀减速,其转动为匀变速转动,由§1-4公式,⾓加速度为220rad/s π3rad/s 20.0π60-=-=-=t ωωα从开始制动到停⽌转动飞轮的⾓位移θ及转过的转数N 依次为rad π600rad 20.03π2120.0π6021220=??-=+=t t αωθ 300 2ππ600π2===θN (2) t = 10.0s 时飞轮的⾓速度为()rad/s π30rad/s 10.03ππ600=?-=+=t αωω(3) t = 10.0s 时,飞轮边缘上⼀点的线速度为m/s 1.47m/s 30π.5000=?==ωr v相应的切向加速度及法向加速度为22t m/s 71.4m/s 3π.5000-=?-==αr a()23222n m/s 1044.4m/s 30π.5000?=?==ωr a §5-2 ⼒矩转动定律转动惯量⼀、⼒对转轴的⼒矩根据经验,⼒可以使物体转动.但使物体转动的作⽤,不仅与⼒的⼤⼩有关,⽽且与⼒的⽅向以及⼒的作⽤线和转轴的距离有关.例如当我们⽤⼿关门时,⼒的作⽤线和门的转轴的距离越⼤,越容易把门关上.如果⼒的作⽤线通过门的转轴,或⼒的⽅向与转轴平⾏,则不论⽤多⼤的⼒也不能把门关上.⾸先讨论⼒在垂直于转轴的平⾯内的情形.图5-3为与转轴垂直的刚体的截⾯图,⼒F 在此平⾯内,⼒的作⽤线与转轴的距离为d ,d 称为⼒臂,⼒的⼤⼩F 与⼒臂d 的乘积称为⼒F 对转轴的⼒矩,⽤M 表⽰,则M = Fd (5-1)设r 为从转轴到⼒的作⽤点P 的径⽮,φ为r 与F 之间的夹⾓,由图5-3看出,d = r sin φ,故(5-1)式可写为r F Fr M ⊥==?sin (5—2)其中⊥F 为⼒F 在垂直于r ⽅向的分量.上式表⽰,只有⼒F 在垂直于r ⽅向的分量才对⼒矩有贡献.当φ = 0或φ =180°时M = 0,此时⼒的作⽤线通过转轴,0=⊥F ,d = 0.如果⼒F 不在垂直于转轴的平⾯内,则将F 分解为⼆分⼒F l 、F 2.F l 在垂直于转轴的平⾯内,F 2与转轴平⾏(图5-4).由于平⾏分⼒F 2对物体转动不起作⽤,可以不考虑,因此在⼒矩定义式(5-1)或式(5-2)中,F 应理解为外⼒在垂直于转轴的平⾯内的分⼒.⼒对定轴的⼒矩不但有⼤⼩,⽽且有转向.⼀般规定,如果⼒矩使刚体沿反时针⽅向转动,⼒矩为正;如果⼒矩使刚体沿顺时针⽅向转动,⼒矩为负.如果同时有⼏个⼒作⽤于刚体,则刚体所受的合⼒矩等于各个⼒对转轴的⼒矩的代数和.⼒对转轴的⼒矩与⼒对⼀点的⼒矩之间的关系如上所述,如果⼒F 与转轴不垂直,可将它分解为垂直于转轴的分⼒F l 和平⾏于转轴的分⼒F 2.设O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.r 为从O 点到P 点的径⽮(图5-4).则由(4-37)式得⼒F 对O 点的⼒矩为M = r × F = r × (F l + F 2) = r × F l + r × F 2将上式两边投影在转轴上.现在来看左右两边投影的意义.左边为⼒F 对O 点的⼒矩在转轴上的投影,右边r × F 2与转轴垂直,它在转轴上的投影为零.r × F l 与转轴平⾏,它在转轴上的投影等于F l r sin φ(图5-4).⽽后者等于⼒F 对转轴的⼒矩.故得结论:⼒F 对转轴的⼒矩等于⼒F 对O 点的⼒矩M 在转轴上的投影,其中O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.应当注意,⼒对⼀点的⼒矩是⽮量,⼒对转轴的⼒矩是标量.这是因为后者是前者的投影之故.⼆、转动定律刚体可看成是由⽆数质点组成,当刚体绕定轴转动时,各个质点都绕定轴作圆周运动,取质点P i 来考虑,设其质量为Δm i ,与转轴的距离为r i ,图5-5为经过P i ⽽垂直于转轴的刚体的截⾯图,作⽤于P i 的⼒有外⼒F i 及内⼒F ’i ,令F i t 及F ’i t 分别表⽰F i 及F ’i 沿切线⽅向的分量,则由切向运动⽅程得F i t + F ’i t = Δm i · r i α两边乘以r i :F i t r i + F ’i t r i = (Δm i r i 2)α将此式对刚体中⼀切质点求和得图5-3 图5-4∑∑∑='+ii i i ii i i i r m r F r F α)Δ(2t t (5-3) ∑'i ii r F t 为所有内⼒对转轴的⼒矩的代数和,即合内⼒矩.下⾯证明此合内⼒矩等于零.取刚体中两质点P i 及P j 来考虑.根据⽜顿第三定律,这两质点相互作⽤的⼒⼤⼩相等⽅向相反,且在同⼀直线上(图5-6),此⼆⼒有相同的⼒臂d ,但因⼆⼒⽅向相反,故其对转轴的合⼒矩为零.⼜因内⼒总是成对的,每⼀对内⼒的合⼒矩既然等于零,所以所有内⼒的合⼒矩亦必等于零,即0t ='∑iii r F 因此,(5-3)式化为∑∑=ii i i i i r m r F α)Δ(2t (5-4)∑iii r F t 为所有外⼒对转轴的⼒矩的代数和,即合外⼒矩,⽤M 表⽰,则上式化为∑=ii i r m M α)Δ(2 (5-5)对于⼀定刚体及⼀定转轴来说,上式中∑ii i r m 2Δ为⼀恒量,称为刚体对该转轴的转动惯量,⽤J 表⽰,即∑=ii i r m J 2Δ (5-6)这样(5-5)式便化为αJ M = (5-7)此式表⽰,刚体的⾓加速度与它所受的合外⼒矩成正⽐,与刚体的转动惯量成反⽐,这⼀关系称为转动定律.这是刚体绕定轴转动的基本定律.刚体绕定轴转动的其他定律都可以由这条定律导出.值得注意,这条定律是从⽜顿第⼆、第三定律推出的.三、转动惯量把转动定律αJ M =与⽜顿第⼆定律F = ma ⽐较,可以看出,这两个式⼦⼗分相似,M 对应于F ,α对应于a ,J 对应于m .我们知道,物体的质量m 是物体的平动惯性⼤⼩的量度,与此类似,物体的转动惯量J 是物体的转动惯性⼤⼩的量度.这可以从转动定律αJ M =看出.转动惯量不同的两个刚体,在相同的图5-5 图5-6外⼒矩作⽤下,转动惯量⼤的刚体⾓加速度⼩,就是它的⾓速度难于改变,也就是转动惯性⼤;反之,转动惯量⼩的刚体,它的转动惯性⼩.根据转动惯量定义:∑=ii i r m J 2Δ如果刚体是由若⼲个质量为m 1,m 2,m 3,…的质点组成,在(5-6)式中Δm i 应代以m i ,得+++=233222211r m r m r m J (5-8)如果刚体的质量连续分布在⼀体积内,(5-6)式中总和式应代以积分式,Δm 应代以d m (刚体中的质量元),得==VV V r m r J d d 22ρ(5-9)其中d V 为刚体的体积元,ρ为体积元d V 处的质量体密度,此积分遍及于刚体的整个体积V .(5-9)式可推求如下:将刚体划分为许许多多⼩部分,每⼀部分的线度极⼩,使它可以看成⼀质点.设各⼩部分的质量为Δm 1,Δm 2,…,Δm i ,…,与转轴的距离依次为r 1,r 2,…,r i ,…,按照(5-6)式,刚体的转动惯量J 近似地等于∑i i m r Δ2,即∑≈ii i m r J Δ2设λ为各⼩部分的线度的最⼤值,λ越⼩,每⼀⼩部分越接近于⼀质点,因此和数∑i i m r Δ2越接近于J ,所以当0→λ时,和数∑i i m r Δ2的极限值便完全等于J 了,即∑→=ii i m r J Δlim 20λ按照⾼等数学,上式中右式就是定积分?Vm r d 2,于是得 ??==VV V r m r J d d 22ρ这就是(5-9)式如果刚体的质量连续分布在⼀⾯上或⼀细线上,则需引⽤质量⾯密度或线密度概念,计算转动惯量公式与上式相同,只需将体密度换为⾯密度或线密度,将体积元换为⾯积元或线元即可.参看例题5-2及5-3.在国际单位制中转动惯量单位为千克平⽅⽶,符号为kg·m 2,转动惯量的量纲为ML 2.⼏何形状简单的刚体,其转动惯量可⽤积分法算出,见表5-1.表5-1 质量分布均匀的⼏种刚体的转动惯量a) 细棒(转轴通过中⼼与棒垂直) b) 细棒(转轴过棒的⼀端与棒垂直) 2121ml J = 231ml J =c) 圆柱体(转轴沿⼏何轴) d) 球体(转轴沿球的任⼀直径)221mR J = 252mR J =e) 薄圆筒(转轴沿⼏何轴) f ) 圆筒(转轴沿⼏何轴)2mR J = )(212221R R m J +=例题5-2 求质量为m 、板长为l 的均匀细棒对于通过棒的中点⽽与棒垂直的轴的转动惯量.解在棒上取与轴OO ’距离为x 、长为d x 的⼀⼩段来考虑(图5-7),这⼀⼩段的质量为d m = λd x .其中λ为棒的质量线密度.根据转动惯量定义,棒对轴OO ’的转动惯量为32222121d d l x x m x J l l -λλ===?? 棒的质量线密度lm =λ,代⼊上式得 2121ml J = 例题5-3 求质量为m 、半径为r 的匀质圆盘对于通过圆⼼⽽垂直于圆平⾯的轴的转动惯量.解在圆盘上取⼀半径为x ,宽为d x 的圆环来考虑(图5-8),这圆环的⾯积为2πx d x ,质量为d m = 2πσx d x ,其中σ为圆盘的质量⾯密度.根据转动惯量定义,圆盘对通过圆⼼O ⽽垂直圆平⾯的轴的转动惯量为4032π21d π2d r x x m x J r σσ===?? 圆盘的质量⾯密度2πrm =σ,代⼊上式得 221mr J = 上式对匀质圆柱体对于它的⼏何轴的转动惯量亦适⽤.决定刚体的转动惯量J 的⼤⼩因素有三:①刚体的质量;②刚体质量分布情况;③刚体的转轴的位置.例如质量均匀、⼤⼩相同的铅球和铜球,由于铅球质量较⼤,所以对于位置相同的轴来说,铅球的J 较⼤.⼜如有两个圆柱体,外径相等,质量也相等,但其中⼀个为实⼼,另⼀个为空⼼(质量分布不同),则对于它们的⼏何轴来说空⼼的圆柱体的J 较⼤.⼜如同⼀根棒对于通过棒的中⼼与棒垂直的轴与对于通过棒的⼀端与棒垂直的轴的J 不相同.例题 5-4 在半径分别为R 1、R 2的阶梯形滑轮上反向绕有两根轻绳,各悬挂质量为m 1、m 2的物体,如图5-9所⽰.若滑轮与轴间的摩擦忽略不计,滑轮的转动惯量为J ,求滑轮的⾓加速度α及各绳中张⼒F T1、F T2.解分析各物体的受⼒情况,如图5-9右图,对于滑轮,重⼒和轴的⽀承⼒通过轴⼼,其⼒矩为零.由于是轻绳,应有F T1 = F’T1,F T2 = F ’T2.先假设物体运动⽅向为:m 1的加速度a 1向下,m 2的加速度a 2向上,滑轮沿顺时针⽅向转动.选取物体运动⽅向为坐标轴正向,根据⽜顿第⼆定律和转动定律可得111T 1a m F g m =- 2222T a m g m F =- αJ R F R F =-22T 11T 滑轮边缘的切向加速度等于物体的加速度:αα2211 ,R a R a == 解以上各式得 g R m R m J R m R m 2222112211++-=α g m R m R m J R R m R m J R g m F 1222211212222111T )(???? ?++++=-=α图5-7 图5-8图5-9gm R m R m J R R m R m J R g m F 2222211211211222T )(???? ?++++=+=α讨论:1) 当m 1gR 1 > m 2gR 2 时,物体运动⽅向与原假定⽅向相同.2) 当m 1gR 1 = m 2gR 2 时,α = 0,滑轮作匀速转动或静⽌,运动状态或⽅向由初时刻条件决定.3) 当m 1gR 1 < m 2gR 2时,物体运动⽅向与原假定⽅向相反,即m 1向上,m 2向下,滑轮沿反时针⽅向转动.§5-3 转动动能⼒矩的功⼀、转动动能如图5-10,设刚体绕通过O 点⽽垂直于图平⾯的定轴转动,⾓速度为ω.当刚体转动时,刚体中各质点都绕定轴作圆周运动,因⽽都有动能.刚体的转动动能等于刚体中所有质点的动能之和.设各质点的质量为Δm 1,Δm 2,Δm 3,…,与转轴的距离为r 1,r 2,r 3,…,线速度为v 1 = r 1ω,v 2 = r 2ω,v 3 = r 3ω,…,则刚体的转动动能为22223322222211k Δ21 Δ21Δ21Δ21ωωωω??=+++=∑i i i r m r m r m r m E 但J r m ii i =∑2Δ为刚体的转动惯量,故E k ⼜可写为2k 21ωJ E =(5-10)即刚体的转动动能等于刚体的转动惯量与⾓速度的平⽅的乘积的⼀半,(5-10)式与平动动能公式2k 21v m E =形式相似,⽽且量纲也相同.⼆、⼒矩的功如图5-11,设绕定轴转动的刚体在外⼒F 作⽤下有⼀⾓位移d θ,⼒F 在垂直于转轴的平⾯上,从转轴到⼒的作⽤点的径⽮为r ,则⼒的作⽤点的位移d r 的⼤⼩为d s = r d θ.根据定义,⼒F 在位移d r 中的功为d W = F · d r = F cos α d s因α与φ互为余⾓,cos α = sin φ,故上式可写为d W = Fr sin φd θ⼜由(5-2)式Fr sin φ = M 为⼒F 对转轴的⼒矩,故⼜可写为图5-10 图5-11d W = M d θ(5-11)这就是⼒矩M 在微⼩⾓位移d θ中的功的公式.当刚体在⼒矩M 作⽤下产⽣⼀有限⾓位移θ时,⼒矩的功等于(5-11)式的积分:=θθ0d M W (5-12)如果⼒矩M 为常量,则θθθθθM M M W ===??00d d (5-13)如果刚体同时受到⼏个⼒作⽤,则(5-11)及(5-12)式中M 应理解为这⼏个⼒的合⼒矩.当外⼒矩对刚体作功时,刚体的转动动能就要变化,下⾯我们来求⼒矩的功与刚体转动动能的变化之间的关系.由转动定律tJ J M d d ωα== 其中M 为作⽤于刚体的合外⼒矩,在d t 时间内刚体的⾓位移为d θ = ωd t ,合外⼒矩的功为ωωωωθd d d d d d J t t J M W =??== 当刚体的⾓速度由ω1变为ω2时,合外⼒矩对刚体所作的功等于上式的积分,即21222121d 21ωωωωωωJ J J W -==? (5-14)上式指出,合外⼒矩对刚体所作的功等于刚体的转动动能的增量.例题5-5 ⼀长为l 质量为m 的均匀细长杆OA ,绕通过其⼀端点O 的⽔平轴在铅垂⾯内⾃由摆动.已知另⼀端点A 过最低点时的速率为v 0,杆对通过端点O ⽽垂直于杆长的轴的转动惯量231ml J =,若空⽓阻⼒及轴上的摩擦⼒都可以忽略不计,求杆摆动时A 点升⾼的最⼤⾼度h .解作⽤于杆的⼒有重⼒m g 及轴对杆的⽀承⼒F N ,⽀承⼒F N 通过O 点,其⼒矩为零.重⼒m g 作⽤于杆的质⼼C ,⼒矩为θsin 2l mg ,当杆沿升⾼⽅向有⾓位移d θ时,由于重⼒矩与⾓位移转向相反.其元功为θθd sin 2d l mg W -= 设θm 为杆的最⼤⾓位移,当杆从平衡位置转到最⼤⾓位移θm 位置时,重⼒矩所作的总功为)cos 1(2d sin 2d m 0m θθθθ--=-==??l mg l mg W W 由图5-12看出,h = l (1-cos θm ),代⼊上式得图5-12mgh W 21-= 杆在平衡位置时的⾓速度l00v =ω,在⾓位移最⼤时的⾓速度0m =ω.由于合外⼒矩的功等于转动动能的增量,故得 20220220613121 21021v v m l m l J m gh W -=??-=-=-=ω由此得 gh 320v = §5-4 绕定轴转动的刚体的⾓动量和⾓动量守恒定律当刚体以⾓速度ω绕定轴转动时,刚体中各质点都绕定轴作圆周运动.设质点P i 的质量为Δm i ,与轴的距离为r i ,线速度的⼤⼩为v i ,则质点P i 的动量的⼤⼩为Δm i v i (图5-13),P i 对转轴的⾓动量为Δm i v i r i .刚体中所有质点的⾓动量之和称为刚体对转轴的⾓动量,⽤L 表⽰,则ωωωJ r m r m r m L i i i i i i i i i i =??===∑∑∑22ΔΔΔv这样,刚体的转动定律可写为tL t J t JM d d d )d(d d ===ωω即 tJ t L M d )d(d d ω== (5-15)可以证明:(5-15)式不但适⽤于绕定轴转动的刚体,⽽且适⽤于绕定轴转动的任意物体或物体系.所不同的是,对于绕定轴转动的刚体来说,转动惯量J 是不变的,但对于绕定轴转动的任意物体或物体系来说,J 是可以变化的.在特殊情形下,如果作⽤于转动物体的合外⼒矩M = 0,则由(5-15)式,我们有L = J ω = 常量(5-16)即当物体所受的合外⼒矩等于零时,物体的⾓动量J ω保持不变,这⼀结论称为⾓动量守恒定律.⾓动量守恒有两种情形:① J 不变的情形,由(5-16)式得知ω亦不变,地球的⾃转差不多是这种情形;② J 是变化的情形,由(5-16)式得知,当J 减⼩时,ω增⼤;当J 增⼤时,ω减⼩.例如⼀⼈坐在可以绕铅直轴⾃由转动的凳⼦上,⼿中握着两个很重的哑铃.当他两臂伸开时,使凳⼦和⼈⼀起转动起来,假设轴承处的摩擦很⼩可以忽略不计,则凳⼦和⼈没有受到外⼒矩作⽤,其⾓动量J ω保持不变(图5-14a).当⼈把两臂收缩时,转动惯量J 减⼩,⾓速度ω就增⼤,即是说⽐两臂伸开时要转得快些(图5-14b).⼜如跳⽔运动员在空中翻筋⽃图5-13时,先把两臂伸直,当他从跳板跳起时使他⾃⼰以某⼀⾓速度绕通过腰部的⼀⽔平轴线转动,在空中时使臂和腿尽量蜷缩起来,以减⼩转动惯量,因⽽⾓速度增⼤,在空中迅速翻转,当他快要接近⽔⾯时,再伸直两臂和腿以增⼤转动惯量,减⼩⾓速度,以便竖直地进⼊⽔中.⾓动量守恒定律,与前⾯介绍过的动量守恒定律和能量守恒定律⼀样,是⾃然界中的普遍规律之⼀,不但适⽤于宏观物体的机械运动,也适⽤于原⼦、原⼦核和基本粒⼦等微观粒⼦的运动.例题5-6 ⼀⽔平放置的圆盘形转台.质量为m ’,半径为R ,可绕通过中⼼的竖直轴转动,摩擦阻⼒可以忽略不计.有⼀质量为m 的⼈站在台上距转轴为2R 处.起初⼈和转台⼀起以⾓速度ω1转动,当这⼈⾛到台边后,求⼈和转台⼀起转动的⾓速度ω2.解以⼈和转台为⼀系统,该系统没有受到外⼒矩作⽤,因此⾓动量守恒:J 1ω1 = J 2ω2 =常量即 22212221421ωω??? ??+'=???? ?+'mR R m R m R m 由此得 12422ωωmm m m +'+'= 思考题5-1 对于定轴转动刚体上的不同点来说,下⾯的物理量中哪些具有相同的值,哪些具有不同的值?线速度、法向加速度、切向加速度、⾓位移、⾓速度、⾓加速度.5-2 飞轮转动时,在任意选取的⾓位移间隔Δθ内,⾓速度的增量Δω相等,此飞轮是在作匀加速转动吗?5-3 作⽤在刚体上的合外⼒为F ,合外⼒矩为M ,举例说明在什么情况下(1) F ≠ 0⽽M = 0;(2) F = 0⽽M ≠ 0;(3) F = 0且M = 0.5-4 当刚体受到若⼲外⼒作⽤时,能否⽤平⾏四边形法先求它们的合⼒,再求合⼒的⼒矩?其结果是否等于各外⼒的⼒矩之和?5-5 在磁带录⾳机中,驱动装置将磁带匀速拉过读写磁头,于是磁带被拉出的⼀端卷带轴上剩余的磁带半径逐渐减⼩,作⽤在该卷带轴上的⼒矩随时间如何变化?该卷带轴的⾓速度随时间如何变化?5-6 如果要设计⼀个存储能量的飞盘,在质量和半径相同的情况下,应该选取质量均匀分布的圆盘形的还是质量集中在边缘的圆环形的呢?当⾓速度相同时,⼆者的转动动能之⽐为多少?图5-145-7 ⼏何形状完全相同的铁圆盘与铝圆盘,哪⼀个绕中⼼对称轴的转动惯量⼤?要使它们由静⽌开始绕轴转动并获得相同的⾓速度,对哪⼀个圆盘外⼒矩要作更多的功?5-8 恒星起源于缓慢旋转的⽓团,在重⼒作⽤下,这些⽓团的体积逐渐减⼩,在恒星尺度收缩的过程中,它的⾓速度如何变化?习题5-1 ⼀个螺丝每厘⽶长度上有20条螺纹,⽤电动螺丝起⼦驱动,在12.8s 内推进了1.37cm ,求螺丝的平均⾓速度.5-2 转盘半径为10.0cm ,以⾓加速度10.0 rad/s 2由静⽌开始转动,当t = 5.00s 时,求(1) 转盘的⾓速度;(2) 转盘边缘的切向加速度和法向加速度.5-3 ⼀个匀质圆盘由静⽌开始以恒定⾓加速度绕过中⼼⽽垂直于盘⾯的定轴转动.在某⼀时刻,转速为10.0 r/s ,再转60转后,转速变为15.0 r/s ,试计算:(1)⾓加速度;(2)由静⽌达到10.0 r/s 所需时间;(3)由静⽌到10.0 r/s 时圆盘所转的圈数.5-4 如图所⽰,半径r 1 = 30.0 cm 的A 轮通过⽪带被半径为r 2 = 75.0 cm 的B 轮带动,B 轮以π rad/s 的匀⾓加速度由静⽌起动,轮与⽪带间⽆滑动发⽣,试求A 轮⾓速度达到3.00×103 r/min 所需要的时间.5-5 在边长为b 的正⽅形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中⼀质点A ,平⾏于对⾓线BD 的转轴,如图所⽰.(2)通过A 垂直于质点所在平⾯的转轴.5-6 求半径为R ,质量为m 的均匀半圆环相对于图中所⽰轴线的转动惯量.5-7 代换汽车引擎盖密封垫时要求对螺栓的扭矩达到90.0N·m(扭矩过⼤会使密封垫失效),如果使⽤长度为45.0 cm 的扳⼿,如图所⽰,在垂直于扳⼿⼿柄⽅向⽤多⼤的作⽤⼒可以完成这⼀⼯作?5-8 ⽔井上提⽔的辘轳为圆柱形,半径为0.200m ,质量为5.00kg ,辘轳缠绕的轻绳上悬挂的⽔桶质量为3.00kg ,如图所⽰.辘轳失去控制使⽔桶⽆初速地下落,在2.00s 后达到井下⽔⾯,忽略辘轳轴上的摩擦阻⼒,求(1) ⽔桶下落的加速度;(2) 井⼝到⽔⾯的深度;(3) 辘轳的⾓加速度.题5-4图题5-5图题5-6图题5-7图5-9 圆盘形飞轮直径为1.25m ,质量为80.0kg ,飞轮上附着的滑轮半径为0.230m ,质量可以忽略,电动机通过环绕滑轮的⽪带驱动飞轮顺时针旋转,如图所⽰.当飞轮的⾓加速度为1.67rad/s 2时,上段⽪带中的张⼒为135N ,忽略轴上的摩擦阻⼒,求下段⽪带中的张⼒.5-10 制陶旋盘半径为0.500m ,转动惯量为12.0kg·m 2,以转速50.0r/min 旋转.陶⼯⽤湿抹布沿径向施加70.0N 的⼒按住旋盘的边缘,使之在6.00s 内制动,求旋盘的边缘和湿抹布之间的有效滑动摩擦系数.5-11 ⼀轻绳跨过滑轮悬有质量不等的⼆物体A 、B ,如图所⽰,滑轮半径为20.0 cm ,转动惯量等于50.0 kg·m 2,滑轮与轴间的摩擦⼒矩为98.1N·m ,绳与滑轮间⽆相对滑动,若滑轮的⾓加速度为2.36 rad/s 2,求滑轮两边绳中张⼒之差.5-12 如图所⽰的系统中,m 1 = 50.0 kg ,m 2 = 40.0 kg ,圆盘形滑轮质量m = 16.0 kg ,半径R = 0.100 m ,若斜⾯是光滑的,倾⾓为30°,绳与滑轮间⽆相对滑动,不计滑轮轴上的摩擦,(1)求绳中张⼒;(2)运动开始时,m 1距地⾯⾼度为1.00 m ,需多少时间m 1到达地⾯?5-13 飞轮质量为60.0 kg ,半径为0.250 m ,当转速为1.00×103 r/min 时,要在5.00 s 内令其制动,求制动⼒F ,设闸⽡与飞轮间摩擦系数µ = 0.400,飞轮的转动惯量可按匀质圆题5-8图题5-9图题5-11图题5-12图题5-13图题5-15图盘计算,闸杆尺⼨如图所⽰.5-14 ⼀个风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,⽌动前它转过了75转,在此过程中制动⼒作的功为44.4 J ,求风扇的转动惯量和摩擦⼒矩.5-15 如图所⽰,质量为24.0 kg 的⿎形轮,可绕⽔平轴转动,⼀绳缠绕于轮上,另⼀端通过质量为5.00 kg 的圆盘形滑轮悬有10.0 kg 的物体,当重物由静⽌开始下降了0.500 m 时,求:(1)物体的速度;(2)绳中张⼒.设绳与滑轮间⽆相对滑动.5-16 蒸汽机的圆盘形飞轮质量为200 kg ,半径为1.00 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5.00 min 内停下来,求在此期间飞轮轴上的平均摩擦⼒矩及此⼒矩所作的功.5-17 长为85.0 cm 的均匀细杆,放在倾⾓为45°的光滑斜⾯上,可以绕过上端点的轴在斜⾯上转动,如图所⽰,要使此杆实现绕轴转动⼀周,⾄少应给予它的下端多⼤的初速度? 5-18 如图所⽰,滑轮转动惯量为0.0100 kg·m 2,半径为7.00 cm ,物体质量为5.00 kg ,由⼀绳与劲度系数k = 200 N/m 的弹簧相连,若绳与滑轮间⽆相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧⽆伸长时,使物体由静⽌⽽下落的最⼤距离;(2)物体速度达最⼤值的位置及最⼤速率. 5-19 圆盘形飞轮A 质量为m ,半径为r ,最初以⾓速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静⽌,如图所⽰,两飞轮啮合后,以同⼀⾓速度ω转动,求ω及啮合过程中机械能的损失. 5-20 ⼀⼈站在⼀匀质圆板状⽔平转台的边缘,转台的轴承处的摩擦可忽略不计,⼈的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静⽌的,这⼈把⼀质量为m 的⽯⼦⽔平地沿转台的边缘的切线⽅向投出,⽯⼦的速率为v (相对于地⾯).求⽯⼦投出后转台的⾓速度与⼈的线速度.5-21 ⼀⼈站⽴在转台上,两臂平举,两⼿各握⼀个m = 4.00 kg 的哑铃,哑铃距转台轴r 0 = 0.800 m ,起初,转台以ω0 = 2π rad/s 的⾓速度转动,然后此⼈放下两臂,使哑铃与轴相距r = 0.200 m ,设⼈与转台的转动惯量不变,且J = 5.00 kg·m 2,转台与轴间摩擦忽略不计,求转台⾓速度变为多⼤?整个系统的动能改变了多少?5-22 证明刚体中任意两质点相互作⽤⼒所作之功的和为零.如果绕定轴转动的刚体除受到轴的⽀承⼒外仅受重⼒作⽤,试证明它的机械能守恒.5-23 ⼀块长L = 0.500 m ,质量为m =3.00 kg 的均匀薄⽊板竖直悬挂,可绕通过其上端的⽔平轴⽆摩擦地⾃由转动,质量m = 0.100 kg 的球以⽔平速度v 0 = 50.0 m/s 击中⽊板中题5-17图题5-18图题5-19图⼼后⼜以速度v = 10.0 m/s 反弹回去,求⽊板摆动可达到的最⼤⾓度.⽊板对于通过其上端轴的转动惯量为231L m J '= . 5-24 半径为R 质量为m '的匀质圆盘⽔平放置,可绕通过圆盘中⼼的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具⼩车分别沿⼆轨道反向运⾏,相对于圆盘的线速度值同为v .若圆盘最初静⽌,求⼆⼩车开始转动后圆盘的⾓速度.5-25 花样滑冰运动员起初伸展⼿臂以转速1.50r/s 旋转,然后他收拢⼿臂紧靠⾝体,使他的转动惯量减少到原来的3/4,求该运动员此时的转速.5-26 旋转⽊马转盘半径为2.00m ,质量为25.0kg ,假设可视为圆盘形刚体,转速为0.200r/ s ,⼀个质量为80.0kg 的⼈站在转盘边缘.当此⼈⾛到距转轴1.00m 处时,求转盘的⾓速度和⼈和转盘组成的系统转动动能的改变量.。

第5章 刚体力学基础

第5章 刚体力学基础

0
R 2λ d l
o
R
dm
质点作圆周运动、 质点作圆周运动、圆筒
例5-4(2)求质量为 、半径为 的均匀薄圆盘对中心轴的转 ( )求质量为m、半径为R 的均匀薄圆盘对中心轴的转 动惯量。 动惯量。 设面密度为σ 解:设面密度为 。 R r 宽为d 的薄圆环, 取半径为 r 宽为 r 的薄圆环
o
dr
5.2.2 转动惯量的计算: 转动惯量的计算:
描述刚体转动惯性大小的物理量。 描述刚体转动惯性大小的物理量。
1、定义:刚体对转轴的转动惯量: 、定义:刚体对转轴的转动惯量: 转轴的转动惯量
J = ∑ ∆m i ri
i =1
n
2
J = ∫ r2 dm
2、转动惯量的计算: 、转动惯量的计算: 若质量离散分布: 若质量离散分布:
舍去t t = 0 . 55 s ( 舍去 = 0 和 t = -0.55 ) 此时砂轮的角度: 此时砂轮的角度:
θ = ( 2 + 4 t 3 ) = 2 + 4 × 0.55 3 = 2.67 (rad)
一飞轮从静止开始加速, 补充例题 一飞轮从静止开始加速,在6s内其角速度均匀地 内其角速度均匀地 增加到200 rad/min,然后以这个速度匀速旋转一段时间,再予 增加到 ,然后以这个速度匀速旋转一段时间, 以制动,其角速度均匀减小。又过了5s后 飞轮停止了转动。 以制动,其角速度均匀减小。又过了 后,飞轮停止了转动。 若飞轮总共转了100转,求共运转了多少时间? 若飞轮总共转了 转 求共运转了多少时间? 解:整个过程分为三个阶段 ①加速阶段 ω 1 = β 1 t1 ②匀速阶段 θ 2 = ω 1 t 2
5.2 定轴转动刚体的功和能

第5章 刚体

第5章 刚体

5.3.1 力矩对时间的积累效应 角动量守恒定理
1. 刚体的角动量
L
对于定点转动而言:
Lrp
r mv
描述物体转动状态的量
r
O
r sin
p mv
m
对于绕固定轴Oz的转
动的质元
m而i 言:
Li ri mivi
miri2k
对于绕固定轴Oz 转动 的整个刚体而言:
z
L
vi
mi
O ri
L N miri2 J
m1
Mr r
F’T1 FT1
a m1
a
m2 G1
m2
F’T2 FT2
a
G2
因m2>m1,物体1向上运动,物体2向下运动,滑轮以顺 时针方向旋转,Mr的指向如图所示。可列出下列方程:
FT1 G1 m1a G2 FT2 m2a
FT2r FT1r M r J
式中是滑轮的角加速度,a是物体的加速度。滑轮
现在将这些方法用于刚体的研究。
第5章 刚体
5.1 刚体运动学 5.2 刚体定轴转动定律 转动惯量 5.3 力矩对时间和空间的累积效应
5.1 刚体运动学
刚体:在外力的作用下,大小和形状都不变的物体 ----物体内任意两点的距离不变。
刚体运动研究的基础:刚体是由无数个连续分布的 质点组成的质点系,每个质点称为刚体的一个质量 元dm。每个质点运动都服从质点力学规律。刚体的 运动是这些质量元运动的总和。
一般的力学分析方法可归纳为:
(1)突出主要矛盾,撇开次要因素,建立理想模型; (2)将质点系化整为零,以质点或质元为研究对象,
作为突破口; (3)根据受力情况,正确画出受力图; (4)根据已知条件或初始条件,选用所需的基本原

《理论力学》课件 第5章

《理论力学》课件 第5章

因而 dBA/dt 0 ,于是得
vA vB
将上式再求一次导数,则得
aA aB
例5-1
如图5-4所示的曲柄滑道机构,当曲柄 OA 在平面上绕定轴 O 转动 时,通过滑槽连杆中的滑块 A 的带动,可使连杆在水平槽中沿直
线往复滑动。若曲柄 OA 的长为 r ,曲柄与 x 轴的夹角为 t,
其中 是常数,求此连杆在任一瞬时的速度及加速度。
根据上述结论,可作出截面上各点的加速度的分布图,在通过轴心的 直线上,各点的加速度按线性分布,将加速度矢的端点连成直线,此 直线通过轴心,如图5-10(b)所示。
(a)
图5-10
(b)
例5-3
如图5-11所示,一半径 R 0.2 m 的圆轮绕定轴O 的转动方程
为 t2 4t , 单位为rad, t单位为s。求 t 1 s 时,轮
*
t
当 t 趋近于零时,刚体转动的瞬时角加速度为
lim * lim d
t 0
t0 t dt
刚体绕定轴转动的角加速度等于角速度对于时间的一阶导数,
或等于转角对于时间的二阶导数。
角加速度与角速度一样都是代数量,它的单位是 rad/s2
若 与 的符号相同,则角速度的绝对值随时间而增加,这 时称为加速转动;反之,若 与 的符号相反,则角速度

设有平动的刚体,在刚体上任取两点 A 和 B ,并连成一直线如
图5-3所示。运动开始时 AB 线在 A0B0 的位置;经过极短时间间 隔 t 之后,移至 A1B1 ;依次再继续移至 A2B2 , ,AnBn 等。
首先证明这两个任意点的轨迹形状是完全 相同的,根据刚体的定义得知 A,B 两点间 的距离保持不变。 因此 AB A0B0 A1B1 A2B2 AnBn

《刚体运动学》课件

《刚体运动学》课件
总结词
理解定轴转动的定义和性质是掌握刚体运动学的基础。
详细描述
定轴转动是指刚体绕某一固定轴线旋转的刚体运动,具有角速度和角加速度两个重要的物理量。刚体在定轴转动 时,其上任意一点都以相同的角速度和角加速度绕轴线旋转。
定轴转动的合成与分解
总结词
掌握定轴转动的合成与分解是解决刚体动力学问题的关键。
详细描述
合成与分解的方法
通过选择合适的参考系和坐标系,利用矢量合成 和分解的方法进行计算。
刚体的定点平面运动
定义:刚体绕某一固定点在平 面内作圆周运动或椭圆运动。
描述参数:刚体的位置、速度 和加速度可以用定点、角位移 、角速度和角加速度等参数描
述。
动力学方程:根据牛顿第二定 律和刚体的转动定理,建立定 点平面运动的动力学方程。
在物理学中的应用
01
力学
刚体运动学是力学的一个重要分支,用于研究刚体的运动规律和力学性
质。通过刚体运动学分析,可以了解物体在不同力场作用下的运动状态
和变化规律。
02
天体物理学
在天体物理学中,刚体运动学用于研究天体的运动和演化。通过对天体
的刚体运动进行分析,可以了解天体的轨道、速度和加速度等运动参数
要点二
分解
空间运动的分解是指将一个复杂的运动分解为若干个简单 的运动。
刚体的定点空间运动
定义
刚体的定点空间运动是指刚体绕一个固定点在空间中的 旋转运动。
性质
定点空间运动具有旋转轴、旋转角速度和旋转中心等物 理量,其运动状态可以通过这些物理量来描述。
06
刚体运动学的应用
在工程中的应用
机械工程
刚体运动学在机械工程中广泛应用于机构分析和设计,如连杆机构、凸轮机构和齿轮机构等。通过刚体运动学分析, 可以确定机构的运动轨迹、速度和加速度,优化机构设计。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30
物理系:史彭
N 37.5rev 2
大学物理:刚体运动学
(2)t = 6s 时的角速度 由
0 t
6 5 6 4rad s 1 6
(3)t = 6s 时边缘上一点的
v a an
2
v r 0.8 2.5m s
-1
A
A B
B
Bቤተ መጻሕፍቲ ባይዱ
物理系:史彭
(2) 刚体的平动可归结为质点运动
大学物理:刚体运动学
§5.3 刚体绕定轴转动
刚体内各点都绕同一直线(转轴)作圆周运动___刚体转动
转轴固定不动 — 定轴转动
刚体的平动和绕定轴转动是刚体的 两种最简单最基本运动
z
一. 描述 刚体绕定轴转动的角量
角坐标 角速度 角加速度
大学物理:刚体运动学
第5章 刚体运动学
刚体运动随处可见,观览轮盘是一种具有水平转轴、能在铅垂平面 内回转的装置。轮盘和吊箱的运动各有什么样的特点?如何描述? 物理系:史彭
大学物理:刚体运动学
刚体力学
刚体运动学 刚体动力学
运 动 描 述
角 线 量 关 系
力矩的 瞬时作 用规律 转动 定律
力矩的 空间累 积效应 动能 定理
0 t 1 2 ( 0 ) 0t t 2 2 2 0 2( 0 )
物理系:史彭
大学物理:刚体运动学
二. 定轴转动刚体上各点的速度和加速度
任意点都绕同一轴作圆周运动,
且 , 都相同
法向加速度 切向加速度
a
an
O
a
an a
d a dt
2 an r
r
2
a an n a
a a a
2 n
物理系:史彭
大学物理:刚体运动学
例一飞轮半径为 0.2 m,转速为 150 rev/min,制动均匀减速, 经过 30 s 停止。 求(1)角加速度、转过的圈数
(2)t = 6s 时的角速度 (3)t = 6s 时边缘上一点的
力矩的 时间累 积效应 动量矩及 守恒定理
物理系:史彭
大学物理:刚体运动学
一. 刚体
§5.1
刚体和自由度的概念
特殊的质点系, 形状和体积不变化 —— 理想化模型 在力作用下,组成物体的所有质点间的距离始终保持不变
二. 自由度
确定物体的位置所需要的独立坐标数 —— 物体的自由度数 z s O x i=1 i=2 z
a r 0.105m s
a n r 31.6m s
2 2
负号表示什么含义?
物理系:史彭
I

f (t )

d f ' (t ) dt
P
II
M
d d 2 2 f " (t ) dt dt
物理系:史彭
大学物理:刚体运动学
匀变速直线运动
特点:加速度为常值
匀变速转动
特点:角加速度为常值
0 a t 1 2 ( x x0 ) 0 t a t 2 2 2 0 2a( x x0 )
(x,y,z)
y i=3
物理系:史彭
O
O x
y i = 3+2+1= 6
当刚体受到某些限制 ——自由度减少
大学物理:刚体运动学
刚体运动时,若在刚体内所作的任一条直线都始终保持和自 身平行 — 刚体平动 平动的特点 (1) 刚体中各质点的 运动情况相同
§5.2
刚体的平动
A
rA rB AB rA rB v A vB a A aB
解已知条件
150 2 r 0.2m 0 5rad s 1 60 t 30 0 0 0
30 0 rad s 2 30 6
v a an
(1)角加速度、转过的圈数 由 由
0 t
2 2 0 2( 0 ) 2 2 0 75rad 2
相关文档
最新文档