2008年福建省数学(理科)高考试卷及答案

合集下载

2008高考全国卷Ⅰ数学理科试题含答案(全word版)

2008高考全国卷Ⅰ数学理科试题含答案(全word版)

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn nP k C P P k n -=-=,,,一、选择题1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )23.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A .B .C .D .ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .4三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.CDE AB方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.62008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅰ)参考答案1. C. 由()10,0,1,0;x x x x x -≥≥≥=得或2. A .根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知;3. A. 由()2AD AB AC AD -=-,322AD AB AC c b =+=+,1233AD c b =+; 4. D. ()()()22221210,1a i i a ai i a a i a +=+-=-+->=-;5. C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=; 6. B. 由()()()()212121,1,y x x y x e f x e f x e --=⇒=-==;7.D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----; 8.A.55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像. 9.D .由奇函数()f x 可知()()2()0f x f x f x x x--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x ya b+=与圆221x y +=22111a b +1,≥. 另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1a bαα+= 由⋅≤m n m n可得cos sin 1a b αα=+11.C .由题意知三棱锥1A ABC -为正四面体,设棱长为a,则1AB =,棱柱的高13AO ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC所成角的正弦值为113AO AB =另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060 长度均为a ,平面ABC 的法向量为111133OA AA AB AC =--,11AB AB AA =+ 2111126,,33OA AB a OA AB ⋅===则1AB 与底面ABC 所成角的正弦值为111123OA AB AO AB ⋅=. 12.B.分三类:种两种花有24A 种种法;种三种花有342A 种种法;种四种花有44A 种种法.共有234444284A A A ++=.另解:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯= 13.答案:9.如图,作出可行域,作出直线0:20l x y -=,将0l 平移至过点A 处 时,函数2z x y =-有最大值9.14. 答案:2.由抛物线21y ax =-的焦点坐标为1(0,1)4a -为坐标原点得,14a =,则2114y x =- 与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯= 15.答案:38.设1AB BC ==,7cos 18B =-则222252cos 9AC AB BC AB BC B =+-⋅⋅=53AC =,582321,21,3328c a c e a =+====. 16.答案:16.设2AB =,作CO ABDE ⊥面, OHAB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --cos 1CH OH CH CHO =⋅∠=,结合等边三角形ABC8与正方形ABDE可知此四棱锥为正四棱锥,则AN EM CH ===11(),22AN AC AB EM AC AE =+=-,11()()22AN EM AB AC AC AE ⋅=+⋅-=12故EM AN ,所成角的余弦值16AN EMANEM ⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,,),(,,222222M N ---,则3121321(,,),(,,),,322222AN EM AN EM AN EM ==-⋅===,故EM AN ,所成角的余弦值16AN EM AN EM ⋅=.17.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取BC 中点F ,连接DF 交CE 于点O ,AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE ,∴AF CE ⊥. tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G .CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG ,EG AD ∴⊥,则CGE ∠即为所求二面角的平面角.23AC CD CG AD ==,DG =,EG==,CE =222cos 2CG GE CE CGE CG GE +-∠==, πarccos CGE ∴∠=-⎝⎭,即二面角CAD E --的大小πarccos -⎝⎭.19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0fx '=求得两根为x =即()f x 在⎛-∞⎝⎭递增,⎝⎭递减,3a ⎛⎫-++∞⎪ ⎪⎝⎭递增 (2)23313a ⎧---⎪⎪-,且23a>解得:74a ≥20.解:对于乙:0.20.4⨯+.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠==10由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e = (Ⅱ)过F 直线方程为()a y x c b =--,与双曲线方程22221x y a b-=联立将2a b =,c =代入,化简有22152104x x b b-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369x y -=。

2008年普通高等学校招生全国统一考试理科数学(福建卷)

2008年普通高等学校招生全国统一考试理科数学(福建卷)

A.
B.
的图象,则m的值可以为() C.-
D.-
10. 在△ABC中,角A、B、C的对边分别为a、b、c,若a2+c2-b2= ac,则角B的值为
A.
B.
C. 或
D. 或
11. 双曲线 A.(1,3)
(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()
,求a的取值范围.
22. (本小题满分14分)
已知函数f(x)=ln(1+x)-x1
(Ⅰ)求f(x)的单调区间;
(Ⅱ)记f(x)在区间
(n∈N*)上的最小值为bx令an=ln(1+n)-bx。
(ⅰ)如果对一切n,不等式
恒成立,求实数c的取值范围;
(ⅱ)求证:

B.
C.(3,+ )
D.
12. 如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是( )
A.
B.
C.
D.
二、填空题
13. 若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=__________。(用数字作答)
成绩合格与否均互不影响。 (Ⅰ)求他不需要补考就可获得证书的概率; (Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为 ,求 的数学期望E 。
21. 已知椭圆
的一个焦点是F(1,0),O为坐标原点.
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (Ⅱ)设过点F的直线l交椭圆于A、B两点,若直线l绕点F任意转动,总有

【历年高考经典】2008年理科数学试题及答案-福建卷

【历年高考经典】2008年理科数学试题及答案-福建卷

绝密 ★ 启用前2008年普通高等学校招生全国统一考试(福建理科)数 学(理工农医类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数(a 2-3a +2)+(a-1)i 是纯虚数,则实数a 的值为 A.1B.2C.1或2D.-1(2)设集合A={x |1xx -<0},B={x |0<x <3},那么“m ∈A ”是“m ∈B ”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件(3)设{a n }是公比为正数的等比数列,若a 1=7,a 5=16,则数列{a n }前7项的和为A.63B.64C.127D.128(4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为 A.3B.0C.-1D.-2(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是A.16625B.96625C. 192625D.256625(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=1, 则BC 1与平面BB 1D 1D 所成角的正弦值为A.3B.552 C.5D.5(7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(8)若实数x 、y 满足 x-y+1≤0,则yx 的取值范围是 x>0A. (0,1)B. (0,1)C. (1,+∞)D. [1, +∞](9)函数f (x )=cos x (x )(x ∈R )的图象按向量(m,0) 平移后,得到函数y = -f ′(x )的图象,则m 的值可以为A.2πB.πC.-πD.-2π(10)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c , 若(a 2+c 2-b 2)tan B ,则角B 的值为A. 6π B.3π C.6π或56πD.3π或23π(11)双曲线12222=-b y a x (a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞(12)已知函数y =f (x ), y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)若(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=__________.(用数字作答) x =1+cos θ(14)若直线3x+4y+m=0与圆 y =-2+sin θ (θ为参数)没有公共点,则实数m 的取值范围是 .(15)若三棱锥的三个侧面两两垂直,,则其外接球的表面积是 .(16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b , ab 、a b∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集{},F a b Q =+∈也是数域.有下列命题:①整数集是数域;②若有理数集Q M ⊆,则数集M 必为数域;③数域必为无限集; ④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. (18)(本小题满分12分)如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱P A =PD ,底面ABCD为直角梯形,其中BC ∥AD , AB ⊥AD , AD =2AB =2BC =2, O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 求出AQQD的值;若不存在,请说明理由. (19)(本小题满分12分) 已知函数321()23f x x x =+-. (Ⅰ)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求证:点(n , S n )也在y =f ′(x )的图象上;(Ⅱ)求函数f (x )在区间(a -1, a )内的极值. (20)(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。

2008年福建省数学(理科)高考试卷及答案

2008年福建省数学(理科)高考试卷及答案

硕士研究生入学考试的数学试题以考察数学基本概念、基本方法和基本原理为主,并在这个基础上加强对考生的运算能力、抽象概括能力、逻辑思维能力、空间想象力和综合所学知识解决实际问题能力的考察。

具体遵循下列四原则:1.科学性与公平性原则作为公共基础课,考研数学试题以基础性、生活类试题为主,尽量避免对于广大考生来说过于专业和抽象难懂的内容。

2.覆盖全面的原则考研数学试题的内容要求涵盖所有考纲要求考核的内容,尤其涵盖数(一)、数(二)、数(三)、数(四)相区别之处。

3.控制难易度的原则考研数学试题要求以中等偏上的题为主,考试及格率控制在30%-40%。

4.控制题量的原则:考研数学试题的题量控制在20--23道之间(一般6道填空题,8道选择题,9道解答题),保证考生基本能答完试题并有时间检查。

硕士研究生入学考试的数学试题从知识内容来说有覆盖面较大的特点,从题型与难度来说有以下特点:1.填空题(现在一份试卷中有6个填空题、共占24分)填空题实际上相当于一些简单的计算题,用于考察“三基”及数学性质,主要是为扩大试卷的覆盖面而设计的,一般以中等偏下难度的试题为主。

2.选择题(现在一份试卷中有8个选择题、共占32分)选择题大致可分为三类:计算性的,概念性的与推理性的。

主要是考查考生对数学概念、数学性质的理解,并能进行简单的推理、判定和比较。

3.证明题以数学一为例,整张试卷中,一般有两道证明题:高等数学与线性代数各一题。

高等数学证明题的范围大致有:极限存在性、不等式,零点的存在性、定积分的不等式、级数敛、散性的论证。

线性代数有矩阵可逆与否的讨论、向量组线性无关与相关的论证、线性方程组无解、唯一解、无穷多解的论证,矩阵可否对角化的论证,矩阵正定的论证,关于秩的大小并用它来论证有关问题等等,可以说线代的证明题的范围比较广。

至于概率统计证明题通常集中于随机变量的不相关和独立性,估计的无偏性等。

此类题难度一般中等偏上,无过难的题。

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(福建卷)(理科)2690

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(福建卷)(理科)2690

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(福建卷)(理科) 测试题 2019.91,函数的图象按向量 平移后,得到函数的图象,则m 的值可以为A. B. C.- D.-2,在△ABC 中,角ABC 的对边分别为a 、b 、c,若,则角B 的值为A. B. C.或 D. 或3,双曲线(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B. C.(3,+)D.4,已知函数的导函数的图象如下图,那么图象可能是5,已知向量m=(sinA,cosA),n=,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小;(Ⅱ)求函数的值域.6,如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱PA=PD,底面ABCD 为直角梯形,其中BC ∥AD,AB ⊥AD,AD=2AB=2BC=2,O 为AD 中点.()cos ()f x x x R =∈(,0)m '()y f x =-2πππ2π222(a +c -b 6π3π6π56π3π22221x y a b -=(]1,3∞[)3,+∞(),()y f x y g x ==(),()y f x y g x ==1)-()cos 24cos sin ()f x x A x x R =+∈(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PD 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD?若存在,求出 的值;若不存在,请说明理由.7,已知函数.(Ⅰ)设是正数组成的数列,前n 项和为,其中.若点(n ∈N*)在函数的图象上,求证:点也在的图象上;(Ⅱ)求函数在区间内的极值.8,某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。

已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书。

2008年高考福建卷(理科数学)

2008年高考福建卷(理科数学)

2008年普通高等学校招生全国统一考试理科数学(福建卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为A .1B .2C .1或2D .1-2.设集合{0}1xA x x =<-,{03}B x x =<<,那么“m A ∈”是“m B ∈”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.设{}n a 是公比为正数的等比数列,若17a =,516a =,则数列{}n a 前7项的和为A .63B .64C .127D .128 4.函数3()sin 1f x x x =++(x R ∈),若()2f a =,则()f a -的值为A .3B .0C .1-D .2-5.某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是A .16625B .96625C .192625D .2566256.在长方体1111ABCD A B C D -中,2AB BC ==,11AA =,则1BC 与平面11BB D D 所成角的正弦值为A .3 B .5 C .5 D .57.某班级要从4名男生2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A .14B .24C .28D .488.若实数x 、y 满足100x y x -+≤⎧⎨>⎩,则y x 的取值范围是A .(0,1)B .(0,1]C .(1,)+∞D .[1,)+∞ 9.函数()cos f x x =(x R ∈)的图象按向量(,0)v m =平移后,得到函数()y f x '=-的图象,则m 的值可以为A .2πB .πC .π-D .2π-10.在ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c .若222()tan a c b B +-=,则角B 的值为A .6πB .3πC .6π或56πD .3π或23π11.双曲线22221x y a b-=(0a >,0b >)的两个焦点为1F ,2F ,若P 为其上一点,且122PF PF =,则双曲线离心率的取值范围为A .(1,3)B .(1,3]C .(3,)+∞D .[3,)+∞ 12.已知函数()y f x =,()y g x =的导函数的图象如下图,那么()y f x =,()y g x =的图象可能是二、填空题:本大题共4小题,每小题4分,共16分.13.若55432543210(2)x a x a x a x a x a x a -=+++++,则12345a a a a a ++++= .(用数字作答)14.若直线340x y m ++=与圆1cos 2sin x y θθ=+⎧⎨=-+⎩(θ为参数)没有公共点,则实数m的取值范围是 .15.若三棱锥的三个侧面两两垂直,,则其外接球的表面积是 .)))16.设P 是一个数集,且至少含有两个数,若对任意,a b P ∈,都有a b +、a b -,ab 、aP b∈(除数0b ≠),则称P 是一个数域.例如有理数集Q是数域;数集{,}F a b Q =+∈也是数域.有下列命题:①整数集是数域; ②若有理数集Q M ⊆,则数集M 必为数域; ③数域必为无限集; ④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知向量(sin ,cos )m A A =,(3,1)n =-,1m n ⋅=,且A 为锐角. (Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin f x x A x =+(x R ∈)的值域. 18.(本小题满分12分)如图,在四棱锥P ABCD -中,则面PAD ⊥底面ABCD ,侧棱PA PD ==面ABCD 为直角梯形,其中BC ∥AD ,AB AD ⊥,222AD AB BC ===,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q,使得它到平面PCD 的距离为2?若存在,求出AQQD的值;若不存在,请说明理由.19.(本小题满分12分)已知函数321()23f x x x =+-.(Ⅰ)设{}n a 是正数组成的数列,前n 项和为n S ,其中13a =.若点211(,2)n n n a a a ++-ABDO P(n N *∈)在函数()y f x '=的图象上,求证:点(,)n n S 也在()y f x '=的图象上; (Ⅱ)求函数()f x 在区间(1,)a a -内的极值. 20.(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A 每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.(Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ. 21.(本小题满分12分)如图、椭圆22221x y a b+=(0a b >>)的一个焦点是(1,0)F ,O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,恒有222OA OB AB +<,求a 的取值范围.22.(本小题满分14分) 已知函数()ln(1)f x x x =+-. (Ⅰ)求()f x 的单调区间;(Ⅱ)记()f x 在区间[0,]π(n N *∈)上的最小值为n b ,令ln(1)n n a n b =+-; (Ⅲ)如果对一切n<恒成立,求实数c 的取值范围;(Ⅳ)求证:13132112242421n na a a a a a a a a a a a -+++<L L L.。

2008年普通高等学校招生全国统一考试数学(福建卷·理科)(附答案,完全word版)

2008年普通高等学校招生全国统一考试数学(福建卷·理科)(附答案,完全word版)

2008年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( ) A .1B .2C .1或2D .1-2.设集合01x A xx ⎧⎫=<⎨⎬-⎩⎭,{}03B x x =<<,那么“m ∈A ”是“m ∈B ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.设{a n }是公比为正数的等比数列,若11a =,516a =,则数列{a n }前7项的和为( ) A .63B .64C .127D .1284.函数3()sin 1()f x x x x =++∈R ,若f (a )=2,则()f a -的值为( ) A .3B .0C .1-D .2-5.某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是( ) A .16625B .96625C . 192625D . 2566256.如图,在长方体1111ABCD A BC D -中,AB =BC =2,AA 1=1,则BC 1与 平面BB 1D 1D 所成角的正弦值为( ) A.3B .5C .5D .57.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( ) A .14 B .24 C .28 D .48 8.若实数x 、y 满足100x y x -+⎧⎨>⎩≤,,则yx 的取值范围是( ) A .(0,1)B .(]01,C .(1,+∞)D .[)1+∞,9.函数()cos ()f x x x =∈R 的图象按向量(m ,0) 平移后,得到函数()y f x '=-的图象,则m 的值可以为( )ABC DA 1D 1C 1B 1A .2π B .πC .-πD .2π-10.在△ABC 中,角A B C ,,的对边分别为a b c ,,,若222()tan a c b B +-=,则角B 的值为( ) A .6π B .3π C .6π或56πD .3π或23π11.双曲线22221x y a b-=(00)a b >>,的两个焦点为F 1,F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( ) A .(1,3)B .(]13,C .(3,+∞)D .[)3+∞,12.已知函数y =f (x ),y =g (x )的导函数的图象如图,那么y =f (x ),y =g (x )的图象可能是( )第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. 13.若55432543210(2)x a x a x a x a x a x a -=+++++,则a 1+a 2+a 3+a 4+a 5=__________.(用数字作答)14.若直线340x y m ++=与圆1cos 2sin x y θθ=+⎧⎨=-+⎩(θ为参数)没有公共点,则实数m 的取值范围是 .15,则其外接球的表面积是 . 16.设P 是一个数集,且至少含有两个数,若对任意a b P ∈,,都有a b +,a b -,ab ,a b∈P (除数0b ≠),则称P 是一个数域.例如有理数集Q是数域;数集{}F a b =+∈Q ,也是数域.有下列命题:①整数集是数域;②若有理数集M ⊆Q ,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上))xA .B .C .D .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量(sin cos )A A =,m,1)=-n ,1=m n ,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x =+∈R 的值域.18.(本小题满分12分)如图,在四棱锥P-ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PDABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC =2,O 为AD 中点. (Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD若存在,求出AQQD的值;若不存在,请说明理由.19.(本小题满分12分) 已知函数321()23f x x x =+-. (Ⅰ)设{}n a 是正数组成的数列,前n 项和为n S ,其中13a =.若点211(2)n n n a a a ++-,(n ∈*N )在函数()y f x '=的图象上,求证:点()n n S ,也在()y f x '=的图象上;(Ⅱ)求函数f (x )在区间(1)a a -,内的极值.20.(本小题满分12分) 某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A 每次考试成绩合格的概率均为23,科目B 每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.(Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ.A BCO DP21.(本小题满分12分)如图,椭圆22221(0)x y a b a b+=>>的一个焦点是F (1,0),O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A ,B 两点.若直线l 绕点F 任意转动,恒有222OA OB AB +<,求a 的取值范围.22.(本小题满分14分) 已知函数()ln(1)f x x x =+-. (Ⅰ)求f (x )的单调区间;(Ⅱ)记f (x )在区间[]0π,(n ∈*N )上的最小值为n b ,令ln(1)n n a n b =+-.(Ⅲ)如果对一切nc 的取值范围; (Ⅳ)求证:13132112242421n na a a a a a a a a a a a -+++<……….2008年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)参考答案一、选择题:本大题考查基本概念和基本运算.每小题5分,满分60分. 1.B 2.A 3.C 4.B 5.B 6.D 7.A 8.C 9.A 10.D 11.B 12.D二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分. 13.3114.(0)(10)-+∞,,∞ 15.9π16.③④三、本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力.满分12分. 解:(Ⅰ)由题意得3sin cos 1m n A A =-=,12sin 1sin 662A A ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,.由A 为锐角得66A ππ-=,3A π=. (Ⅱ)由(Ⅰ)知1cos 2A =,所以2213()cos22sin 12sin 2sin 2sin 22f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭因为x ∈R ,所以[]sin 11x ∈-,,因此,当1sin 2x =时,f (x )有最大值32. 当sin 1x =-时,()f x 有最小值3-,所以所求函数f (x )的值域是332⎡⎤-⎢⎥⎣⎦,.18.本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分. 解法一:(Ⅰ)证明:在△PAD 中PA =PD ,O 为AD 中点,所以PO ⊥AD ,又侧面PAD ⊥底面ABCD ,平面PAD 平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD .(Ⅱ)连结BO ,在直角梯形ABCD 中,BC ∥AD ,AD =2AB =2BC ,有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形, 所以OB ∥DC .由(Ⅰ)知,PO ⊥OB ,∠PBO 为锐角, 所以∠PBO 是异面直线PB 与CD 所成的角. 因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1, 所以OBA B CODPQ在Rt △POA 中,因为APAO =1,所以OP =1,在Rt △PBO 中,tan ∠PBO=PG PBO BO ==∠=. 所以异面直线PB 与CD所成的角是arctan2. (Ⅲ)假设存在点Q ,使得它到平面PCD的距离为2. 设QD =x ,则12DQC S x =△,由(Ⅱ)得CD =OB在Rt △POC 中,PC = 所以PC =CD =DP ,2(2)42PCD S ==△, 由P DQC Q PCD VV --=,得111132322x ⨯⨯=⨯,解得322x =<, 所以存在点Q 满足题意,此时13AQ QD =. 解法二:(Ⅰ)同解法一.(Ⅱ)以O 为坐标原点,OC OD OP ,,的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O xyz -,依题意,易得(010)A -,,,(110)B -,,,(100)C ,,,(010)D ,,,(001)P ,,, 所以(110)(111)CD PB =-=--,,,,,.cos 32PB CD PB CD PB CD<>===,, 所以异面直线PB 与CD 所成的角是arccos3(Ⅲ)假设存在点Q ,使得它到平面PCD 的距离为2, 由(Ⅱ)知(101)(110)CP CD =-=-,,,,,.设平面PCD 的法向量为n =(x 0,y 0,z 0).则00n CP n CD ⎧=⎪⎨=⎪⎩,,所以000000x z x y -+=⎧⎨-+=⎩,,即000x y z ==, 取x 0=1,得平面PCD 的一个法向量为n =(1,1,1). 设(00)(11)(10)Q y yCQ y -=-,, ≤≤,,, ,由32CQ n n=,得2=, 解得12y =-或y =52(舍去), 此时1322AQ QD ==,,所以存在点Q 满足题意,此时13AQ QD =. 19.本小题主要考查函数极值、等差数列等基本知识,考查分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.满分12分. (Ⅰ)证明:因为321()23f x x x =+-,所以2()2f x x x '=+, 由点211(2)()n n n a a a n ++-∈*N ,在函数()y f x '=的图象上, 得221122n n n n a a a a ++-=+,即11()(2)0n n n n a a a a +++--=,又*0()n a n >∈N ,所以12n n a a +-=,又因为13a =, 所以数列{}n a 是以3为首项,公差为2的等差数列. 所以2(1)32=22n n n S n n n -=+⨯+,又因为2()2f n n n '=+,所以()n S f n '=, 故点()n n S ,也在函数()y f x '=的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+,由()0f x '=,得02x x ==-或.当x 变化时,()f x ',()f x 的变化情况如下表:注意到(1)12a a --=<,从而①当12a a -<-<,即21a -<<-时,()f x 的极大值为2(2)3f -=-,此时()f x 无极小值; ②当10a a -<<,即01a <<时,()f x 的极小值为(0)2f =-,此时()f x 无极大值; ③当2a -≤或10a -≤≤或1a ≥时,()f x 既无极大值又无极小值.20.本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题,解决问题的能力.满分12分.解:设“科目A 第一次考试合格”为事件1A ,“科目A 补考合格”为事件A 2;“科目B 第一次考试合格”为事件1B ,“科目B 补考合格”为事件2B .(Ⅰ)不需要补考就获得证书的事件为A 1·B 1,注意到A 1与B 1相互独立, 则1111211()()()323P A B P A P B =⨯=⨯=. 答:该考生不需要补考就获得证书的概率为13. (Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,可得1112(2)()()P P A B P A A ξ==+2111114.3233399=⨯+⨯=+= 112112122(3)()()()P P A B B P A B B P A A B ξ==++21121112111143223223326699=⨯⨯+⨯⨯+⨯⨯=++=, 12221212(4)()()P P A A B B P A A B B ξ==+121112111113322332218189=⨯⨯⨯+⨯⨯⨯=+=, 故44182349993E ξ=⨯+⨯+⨯=.答:该考生参加考试次数的数学期望为83.21.本小题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.满分12分.解法一:(Ⅰ)设M ,N 为短轴的两个三等分点, 因为△MNF 为正三角形,所以OF =,即1=223b,解得b 2214a b =+=,因此,椭圆方程为22143x y +=. (Ⅱ)设1122()()A x y B x y ,,,. (ⅰ)当直线 AB 与x 轴重合时,22222224(1)OA OB a AB a a +==>,,因此,恒有222OA OB AB +<. (ⅱ)当直线AB 不与x 轴重合时,设直线AB 的方程为:1x my =+,代入22221x y a b+=,整理得22222222()20a b m y b my b a b +++-=,所以222212122222222b m b a b y y y y a b m a b m-+=-=++,. 因为恒有222OA OB AB +<,所以∠AOB 恒为钝角. 即11221212()()0OA OB x y x y x x y y ==+<,,恒成立.2121212121212(1)(1)(1)()1x x y y my my y y m y y m y y +=+++=++++222222222222(1)()21m b a b b m a b m a b m +-=-+++22222222220m a b b a b a a b m -+-+=<+.又a 2+b 2m 2>0,所以22222220m a b b a b a -+-+<对m ∈R 恒成立, 即2222222a b m a a b b >-+对m ∈R 恒成立.当m ∈R 时,222a b m 最小值为0,所以22220a a b b -+<.2222a a b b <-,2224(1)a a b b <-=,因为a >0,b >0,所以a <b 2,即210a a -->,解得a >a <(舍去),即a >,综合(i )(ii ),a 的取值范围为⎫+⎪⎪⎝⎭∞.解法二:(Ⅰ)同解法一,(Ⅱ)解:(i )当直线l 垂直于x 轴时,x =1代入22222221(1)1A y b a y a b a-+==,. 因为恒有|OA |2+|OB |2<|AB |2,222(1)4A A y y+<,21Ay >,即21a a->1,解得a >a < (舍去),即a > (ii )当直线l 不垂直于x 轴时,设11()A x y ,,22()B x y ,.设直线AB 的方程为y =k (x -1)代入22221x y a b+=,得(b 2+a 2k 2)x 2-2a 2k 2x + a 2 k 2-a 2 b 2=0,故22222212122222222a k a k a b x x x x b a k b a k -+==++,因为恒有|OA |2+|OB |2<|AB |2,所以x 21+y 21+ x 22+ y 22<( x 2-x 1)2+(y 2-y 1)2, 得x 1x 2+ y 1y 2<0恒成立.x 1x 2+ y 1y 2= x 1x 2+k 2(x 1-1) (x 2-1)=(1+k 2) x 1x 2-k 2(x 1+x 2)+ k 222222222222222222222222222()(1)a k a b a k a a b b k a b k k k b a k b a k b a k --+-=+-+=+++.由题意得(a 2-a 2 b 2+b 2)k 2-a 2 b 2<0对k ∈R 恒成立.①当a 2-a 2 b 2+b 2>0时,不合题意;②当a 2-a 2 b 2+b 2=0时,a ③当a 2-a 2 b 2+b 2<0时,a 2-a 2(a 2-1)+ (a 2-1)<0,a 4-3a 2 +1>0,解得a 2>a 2>a >a .综合(i )(ii ),a 的取值范围为⎫+⎪⎪⎝⎭∞.22.本小题主要考查函数的单调性、最值、不等式、数列等基本知识,考查运用导数研究函数性质的方法,考查分析问题和解决问题的能力,满分14分. 解法一:(Ⅰ)因为()ln(1)f x x x =+-,所以函数定义域为(1-,+∞),且1()111x f x x x-'=-=++. 由()0f x '>得10x -<<,()f x 的单调递增区间为(1-,0); 由()0f x '<得x >0,()f x 的单调递增区间为(0,+∞).(Ⅱ)因为()f x 在[0,n ]上是减函数,所以()ln(1)n b f n n n ==+-, 则ln(1)ln(1)ln(1)n n a n b n n n n =+-=+-++=.(ⅰ)2n ==++1>=,又lim lim 1x x→==,因此c <1,即实数c 的取值范围是(-∞,1). < 因为2135(21)246(2)n n ⎡⎤-⎢⎥⎣⎦……3222133557(21)(21)11246(2)2121n n n n n -+=<++…,所以135(21)246(2)n n -<……)n ∈*N ,则113135(21)224246(2)n n -+++………1<….13132112242421()n na a a a a a n a a a a a a -+++<∈*N ……….解法二:(Ⅰ)同解法一.(Ⅱ)因为f (x )在[]0n ,上是减函数,所以()ln(1)n b f n n n ==+-, 则ln(1)ln(1)ln(1)n n a n b n n n n =+-=+-++=.(ⅰ)因为<n ∈*N<对n ∈*N 恒成立.则2c n <+n ∈*N 恒成立.设()2g n n =+,n ∈*N ,则c <g (n )对n ∈*N 恒成立.考虑[)()21g x x x =+∈+∞,.因为12211()1(2)(22)11021x g x x x x x -+=-++=<-=+′,所以()g x 在[)1+∞,内是减函数;则当n ∈*N 时,g (n )随n 的增大而减小,又因为42lim ()lim(2x x x x g n n →∞→∞+=+===1.所以对一切()1n g n ∈>*N ,.因此1c ≤,即实数c 的取值范围是(]1-∞,.<下面用数学归纳法证明不等式135(21))246(2)n n n -<∈*N …….①当n =1时,左边=12<右边.不等式成立. ②假设当n=k时,不等式成立.即135(21)246(2)k k -<……当n=k +1时,13521(21)212462(22)222222k k k k k k k k ∙∙∙∙∙++<=++++=…(-)…()=<=,即1n k =+时,不等式成立综合①,②得,不等式135(21))246(2)n n n ∙∙∙∙∙∙∙∙-<∈*N ……成立.所以135(21)246(2)n n ∙∙∙∙∙∙∙∙-<……113135(21)224246(2)n n ∙∙∙∙∙∙∙∙∙∙-+++………1<…相信能就一定能即13132112242421()n na a a a a a n a a a a a a -+++<∈*N ……….8、这个世界并不是掌握在那些嘲笑者的手中,而恰恰掌握在能够经受得住嘲笑与批忍不断往前走的人手中。

2008高考福建数学理科试卷含详细解答

2008高考福建数学理科试卷含详细解答

2008年普通高等学校招生全国统一考试(福建卷)数 学(理工类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为A.1B.2C.1或2D.-1解:由2320a a -+=得12a =或,且101a a -≠≠得2a ∴=(纯虚数一定要使虚部不为0) (2)设集合{|0}1xA x x =<-,{|03}B x x =<<,那么“m ∈A ”是“m ∈B ”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件解:由01xx <-得01x <<,可知“m A ∈”是“m B ∈”的充分而不必要条件 (3)设{a n }是公比为正数的等比数列,若151,16a a ==,则数列{}n a 前7项的和为A.63B.64C.127D.128解:由151,16a a ==及{a n }是公比为正数得公比2q =,所以771212712S -==- (4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为A.3B.0C.-1D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是 A.16625B.96625C. 192625D. 256625解:独立重复实验4(4,)5B ,22244196(2)55625P k C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭A(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为B.C.D.解:连11A C 与11B D 交与O 点,再连BO,则1OBC ∠为BC 1与平面BB 1D 1D所成角.111OC COS OBC BC ∠=,1OC =,1BC =1COS OBC ∴∠== (7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种 (8)若实数x 、y 满足100x y x -+≤⎧⎨>⎩ 则yx 的取值范围是A.(0,1)B.(]0,1C.(1,+∞)D.[)1,+∞解:由已知1y x ≥+,111y x x x x +==+,又0x >,故yx的取值范围是(1,)+∞(9)函数()cos ()f x x x R =∈的图象按向量(,0)m 平移后,得到函数'()y f x =-的图象, 则m 的值可以为A.2πB.πC.-πD.- 2π解:()sin y f x x '=-=,而()cos ()f x x x R =∈的图象按向量(,0)m 平移后得到cos()y x m =-,所以cos()sin x m x -=,故m可以为2π. (10)在△ABC 中,角ABC 的对边分别为a 、b 、c ,若222(a +c -b ,则角B 的值为A.6π B.3π C.6π或56πD.3π或23π解: 由222(a +c -b 3ac 得222(a +c -b )3cos = 22sin Bac B即3cos cos = 2sin B B B3sin B ∴,又在△中所以B 为3π或23π(11)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞解:如图,设2PF m =,12(0)F PF θθπ∠=<≤,当P 在右顶点处θπ=,222(2)4cos 254cos 2m m m c e a θθ+-===-∵1cos 1θ-<≤,∴(]1,3e ∈另外也可用三角形的两边和大于第三边,及两边差小于第三边,但要注意前者可以取到等号成立,因为可以三点一线. 也可用焦半径公式确定a 与c 的关系。

2008年福建高考理科数学试卷与答案解析(文字版)

2008年福建高考理科数学试卷与答案解析(文字版)

2021年**高考理科数学试卷及答案解析(文字版 )第一卷〔选择题共60 分〕一、选择题:本大题共 12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

(1)假设复数 (a 2-3a+2)+(a-1)i 是纯虚数,那么实数a 的值为A.1B.2C.1或 2D.-1(2)设集合 A={ x|x < 0 },B={ x|0<x <3}, 那么“ m A 〞是“ m B 〞的 x 1A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件n }是公比为正数的等比数列,假设a 1 5那么数列{ n }前7项的 (3)设{ a =7,a =16, a和为A.63B.64C.127D.128(4)函数 f(x)= x 3 +sinx+1(x R ),假设f(a)=2,那么f(-a)的值为A.3B.0C.-1D.-2(5)某一批花生种子,如果每1 粒发芽的概率为4,那么播下 4 粒种子恰有 25粒发芽的概率是A.16B. 96C. 192D. 256625 625625625(6)如图,在长方体1 1 11 中,AB=BC=2, AA 1=1,那么BC 1 与平面ABCD-A B C DBB 1D 1D 所成角的正弦值为A.6 B.2 5C.15 D.103555(7)某班级要从 4 名男生、 2 名女生中选派 4 人参加某次社区效劳,如果要求至少有 1 名女生,那么不同的选派方案种数为A.14B.24C.28D.48(8)假设实数 x、y 满足x-y+1 ≤0,那么y的取值X围是xx>0A. (0,1)B. (0,1)C. (1,+∞ )D. [1, +∞](9)函数 f(x)=cosx(x)(x R)的图象按向量(m,0)平移后,得到函数y= -f ′ (x)的图象,那么m 的值可以为A. B. C.- D. -2 2(10)在△ ABC 中,角A 、、、、 2 223ac ,那么角BB C 的对边分别为 a b c,假设 (a +c -b )tanB=的值为A. B. C.或5D.或2636633(11)双曲线x2y 21〔a>0,b>0〕的两个焦点为F 1、F2 ,假设 P 为其上一点,且|PF 1|=2|PF2|,a 2b2那么双曲线离心率的取值X围为A.(1,3)B. 1,3C.(3,+ )D. 3,(12) 函数y=f(x), y=g(x)的导函数的图象如以下列图,那么y=f(x),y=g(x)的图象可能是第二卷〔非选择题共90 分〕二、填空题:本大题共4 小题,每题 4 分,共 16 分,把答案填在答题卡的相应位置.(13〕假设 (x-2)5=a5x5+a4x4+a3x3+a2x2 +a1x+a0,那么 a1+a2+a3+a4+a5=__________.( 用数字作答 ) x=1+cos(14)假设直线 3x+4y+m=0 与圆y=-2+sin〔为参数〕没有公共点,那么实数m 的取值X围是.〔15〕假设三棱锥的三个侧面两两垂直,且侧棱长均为3 ,那么其外接球的外表积是.〔16〕设 P 是一个数集,且至少含有两个数,假设对任意a、 b∈ P,都有 a+b、a-b, ab、ab ∈ P 〔除数 b ≠ 0 〕,那么称P是一个数域.例如有理数集Q是数域;数集F a b 2 a,b Q 也是数域.有以下命题:①整数集是数域;②假设有理数集Q M ,那么数集M必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是.〔把你认为正确的命题的序号都填上〕三、解答题:本大题共6 小题,共74 分 .解容许写出文字说明,证明过程或演算步骤.〔17〕〔本小题总分值12 分〕向量m=(sin A,cosA),n= (3, 1) ,m·n=1,且A为锐角.〔Ⅰ〕求角 A 的大小;〔Ⅱ〕求函数f ( x) cos2 x 4cos Asin x(x R) 的值域.〔18〕〔本小题总分值12 分〕如图,在四棱锥P-ABCD 中,那么面 PAD ⊥底面 ABCD ,侧棱 PA=PD=2 ,底面ABCD为直角梯形,其中BC∥ AD, AB⊥ AD , AD=2AB =2BC=2, O 为 AD 中点 .〔Ⅰ〕求证:PO⊥平面 ABCD ;〔Ⅱ〕求异面直线PB 与 CD 所成角的大小;〔Ⅲ〕线段 AD 上是否存在点Q,使得它到平面PCD 的距离为3AQ ?假设存在,求出2QD的值;假设不存在,请说明理由.〔19〕〔本小题总分值12 分〕函数 f ( x)1 x 3 x2 2 .3〔Ⅰ〕设 { a n } 是正数组成的数列,前n 项和为 S n ,其中 a 1=3. 假设点(a ,a22a ) (n ∈nn 1n 1N*) 在函数 y=f ′ (x)的图象上,求证:点〔n, S n 〕也在 y=f ′ ( x)的图象上;〔Ⅱ〕求函数 f(x)在区间〔 a-1, a 〕内的极值 .〔20〕〔本小题总分值 12 分〕某项考试按科目 A 、科目 B 依次进展,只有当科目A 成绩合格时,才可继续参加科目B 的考试。

2008年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)

2008年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)

2008 年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1}C.{0,1,2} D.{﹣1,0,1,2}2.(5 分)设a,b∈R 且b≠0,若复数(a+bi)3是实数,则()A.b2=3a2B.a2=3b2C.b2=9a2D.a2=9b23.(5分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称4.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a5.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣86.(5分)从20 名男同学,10 名女同学中任选3 名参加体能测试,则选到的3 名同学中既有男同学又有女同学的概率为()A.B.C.D.7.(5 分)(1﹣)6(1+)4的展开式中x 的系数是()A.﹣4 B.﹣3 C.3 D.48.(5分)若动直线x=a 与函数f(x)=sinx 和g(x)=cosx 的图象分别交于M,N 两点,则|MN|的最大值为()A.1 B.C.D.29.(5 分)设a>1,则双曲线的离心率e 的取值范围是()A.B.C.(2,5)D.10.(5分)已知正四棱锥S﹣ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE、SD 所成的角的余弦值为()A.B.C.D.11.(5 分)等腰三角形两腰所在直线的方程分别为x+y﹣2=0 与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为()A.3 B.2 C.D.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)设向量,若向量与向量共线,则λ=.14.(5分)设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0 垂直,则a=.15.(5 分)已知F 是抛物线C:y2=4x 的焦点,过F 且斜率为1 的直线交C 于A,B 两点.设|FA|>|FB|,则|FA|与|FB|的比值等于.16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①;充要条件②.(写出你认为正确的两个充要条件)三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosB=﹣,cosC=.(1)求sinA 的值(2)设△ABC 的面积S△ABC=,求BC 的长.18.(12 分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000 元的赔偿金.假定在一年度内有10 000 人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000 元的概率为1﹣0.999 .(I)求一投保人在一年度内出险的概率p;(II)设保险公司开办该项险种业务除赔偿金外的成本为50 000 元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.20.(12 分)设数列{a n}的前n 项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.(I)设b n=S n﹣3n,求数列{b n}的通项公式;(II)若a n+1≥a n,n∈N*,求a 的取值范围.21.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.22.(12 分)设函数.(I)求f(x)的单调区间;(II)如果对任何x≥0,都有f(x)≤ax,求a 的取值范围.2008 年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1}C.{0,1,2} D.{﹣1,0,1,2}【考点】1E:交集及其运算.【分析】由题意知集合M={m∈z|﹣3<m<2},N={n∈z|﹣1≤n≤3},然后根据交集的定义和运算法则进行计算.【解答】解:∵M={﹣2,﹣1,0,1},N={﹣1,0,1,2,3},∴M∩N={﹣1,0,1},故选:B.【点评】此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.2.(5 分)设a,b∈R 且b≠0,若复数(a+bi)3是实数,则()A.b2=3a2B.a2=3b2C.b2=9a2D.a2=9b2【考点】A5:复数的运算.【分析】复数展开,化为a+bi(a、b∈R)的形式,虚部为0 即可.【解答】解:(a+bi)3=a3+3a2bi﹣3ab2﹣b3i=(a3﹣3ab2)+(3a2b﹣b3)i,因是实数且b≠0,所以3a2b﹣b3=0⇒b2=3a2故选:A.【点评】本题考查复数的基本运算,是基础题.3.(5 分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称【考点】3M:奇偶函数图象的对称性.【分析】根据函数f(x)的奇偶性即可得到答案.【解答】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选:C.【点评】本题主要考查函数奇偶性的性质,是高考必考题型.4.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a【考点】4M:对数值大小的比较.【分析】根据函数的单调性,求a 的范围,用比较法,比较a、b 和a、c 的大小.【解答】解:因为a=lnx 在(0,+∞)上单调递增,故当x∈(e﹣1,1)时,a∈(﹣1,0),于是b﹣a=2lnx﹣lnx=lnx<0,从而b<a.又a﹣c=lnx﹣ln3x=a(1+a)(1﹣a)<0,从而a<c.综上所述,b<a<c.故选:C.【点评】对数值的大小,一般要用对数的性质,比较法,以及0 或1 的应用,本题是基础题.5.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣8【考点】7C:简单线性规划.【专题】11:计算题.【分析】我们先画出满足约束条件:的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=x﹣3y 的最小值.【解答】解:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.6.(5分)从20 名男同学,10 名女同学中任选3 名参加体能测试,则选到的3 名同学中既有男同学又有女同学的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【分析】由题意知本题是一个古典概型,试验发生的所有事件从30 名同学中任选3 名参加体能测试共有C303 种结果,而满足条件的事件是选到的3 名同学中既有男同学又有女同学共有C201C102+C202C101 种结果.代入公式得到结果.【解答】解:由题意知本题是一个古典概型,;3020 10 20 10 ∵试验发生的所有事件从 30 名同学中任选 3 名参加体能测试共有 C 3 种结果,满足条件的事件是选到的 3 名同学中既有男同学又有女同学共有C 1C 2+C 2C 1 种结果,∴由古典概型公式得到,故选:D .【点评】本题考查的是古典概型,可以从它的对立事件来考虑,概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.7.(5 分)(1﹣)6(1+)4 的展开式中 x 的系数是() A .﹣4B .﹣3C .3D .4【考点】DA :二项式定理. 【专题】11:计算题.【分析】展开式中 x 的系数由三部分和组成: 的常数项与展开式的 x 的系数积 的展开式的 x 的系数与的常数项的积;的的系数与的的系数积.利用二项展开式的通项求得各项系数.【解答】解: 的展开式的通项为∴展开式中常数项为 C 60,含 x 的项的系数为 C 62,含的项的系数为﹣C 61的展开式的通项为∴ 的展开式中的 x 的系数为 C 42,常数项为 C 40,含的项的系数为 C 41故的展开式中 x 的系数是:C 60C 42+C 62C 40﹣C 61C 41=6+15﹣24=﹣3 故选:B .【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.8.(5 分)若动直线 x=a 与函数 f (x )=sinx 和 g (x )=cosx 的图象分别交于 M , N 两点,则|MN |的最大值为( )A .1B .C .D .2【考点】H2:正弦函数的图象;H7:余弦函数的图象. 【分析】可令 F (x )=|sinx ﹣cosx |求其最大值即可. 【解答】解:由题意知:f (x )=sinx 、g (x )=cosx 令 F (x )=|sinx ﹣cosx |= |sin (x ﹣)|当 x ﹣=+kπ,x=+kπ,即当 a=+kπ 时,函数 F (x )取到最大值故选:B .【点评】本题主要考查三角函数的图象和函数解析式的关系.属基础题.9.(5 分)设 a >1,则双曲线的离心率 e 的取值范围是()A .B .C .(2,5)D .【考点】KC :双曲线的性质. 【专题】11:计算题. 【分析】根据题设条件可知 ,然后由实数 a的取值范围可以求出离心率 e 的取值范围.【解答】解:,因为是减函数,所以当a>1 时,所以2<e2<5,即,故选:B.【点评】本题的高考考点是解析几何与函数的交汇点,解题时要注意双曲线性质的灵活运用.10.(5分)已知正四棱锥S﹣ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE、SD 所成的角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;35:转化思想.【分析】由于是正方体,又是求角问题,所以易选用向量量,所以建立如图所示坐标系,先求得相关点的坐标,进而求得相关向量的坐标,最后用向量夹角公式求解.【解答】解:建立如图所示坐标系,令正四棱锥的棱长为2,则A(1,﹣1,0),D(﹣1,﹣1,0),S(0,0,),E,= ,=(﹣1,﹣1,﹣)∴cos<>=故选:C.【点评】本题主要考查多面体的结构特征和空间角的求法,同时,还考查了转化思想和运算能力,属中档题.11.(5 分)等腰三角形两腰所在直线的方程分别为x+y﹣2=0 与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为()A.3 B.2 C.D.【考点】IQ:与直线关于点、直线对称的直线方程.【专题】16:压轴题.【分析】利用原点在等腰三角形的底边上,可设底边方程y=kx,用到角公式,再借助草图,选项判定结果即可.【解答】解:l1:x+y﹣2=0,k1=﹣1,,设底边为l3:y=kx 由题意,l3 到l1 所成的角等于l2 到l3 所成的角于是有,解得k=3 或k=﹣,因为原点在等腰三角形的底边上,所以k=3.k= ,原点不在等腰三角形的底边上(舍去),故选:A.【点评】两直线成角的概念及公式;本题是由教材的一个例题改编而成.(人教版P49 例7)解题过程值得学习.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.【解答】解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2 为矩形,于是对角线O1O2=OE,而OE==,∴O1O2=故选:C.【点评】本题考查球的有关概念,两平面垂直的性质,是基础题.二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)设向量,若向量与向量共线,则λ= 2 .【考点】96:平行向量(共线).【分析】用向量共线的充要条件:它们的坐标交叉相乘相等列方程解.【解答】解:∵a=(1,2),b=(2,3),∴λα+b=(λ,2λ)+(2,3)=(λ+2,2λ+3).∵向量λα+b 与向量c=(﹣4,﹣7)共线,∴﹣7(λ+2)+4(2λ+3)=0,∴λ=2.故答案为2【点评】考查两向量共线的充要条件.14.(5分)设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0 垂直,则a= 2 .【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】根据导数的几何意义求出函数f(x)在x=0 处的导数,从而求出切线的斜率,再根据两直线垂直建立等式关系,解之即可.【解答】解:∵y=e ax∴y′=αe ax∴曲线y=e ax在点(0,1)处的切线方程是y﹣1=a(x﹣0),即ax﹣y+1=0∵直线ax﹣y+1=0 与直线x+2y+1=0 垂直∴﹣a=﹣1,即a=2.故答案为:2【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及两直线垂直的应用等有关问题,属于基础题.15.(5 分)已知F 是抛物线C:y2=4x 的焦点,过F 且斜率为1 的直线交C 于A,B 两点.设|FA|>|FB|,则|FA|与|FB|的比值等于.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】先设点A,B 的坐标,求出直线方程后与抛物线方程联立消去y 得到关于x 的一元二次方程,求出两根,再由抛物线的定义得到答案.【解答】解:设A(x1,y1)B(x2,y2)由,,(x1>x2)∴由抛物线的定义知故答案为:【点评】本题主要考查直线与抛物线的位置关系,抛物线定义的应用16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①三组对面分别平行的四棱柱为平行六面体;充要条件②平行六面体的对角线交于一点,并且在交点处互相平分;.(写出你认为正确的两个充要条件)【考点】29:充分条件、必要条件、充要条件;L2:棱柱的结构特征.【专题】16:压轴题;21:阅读型.【分析】本题考查的知识点是充要条件的定义及棱柱的结构特征及类比推理,由平行六面体与平行四边形的定义相似,故我们可以类比平行四边形的性质,类比推断平行六面体的性质.【解答】解:类比平行四边形的性质:两组对边分别平行的四边形为平行四边形,则我们类比得到:三组对面分别平行的四棱柱为平行六面体.类比平行四边形的性质:两条对角线互相平分,则我们类比得到:平行六面体的对角线交于一点,并且在交点处互相平分;故答案为:三组对面分别平行的四棱柱为平行六面体;平行六面体的对角线交于一点,并且在交点处互相平分;【点评】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosB=﹣,cosC=.(1)求sinA 的值(2)设△ABC 的面积S△ABC=,求BC 的长.【考点】HT:三角形中的几何计算.【专题】11:计算题.【分析】(Ⅰ)由cosB,cosC 分别求得sinB 和sinC,再通过sinA=sin(B+C),利用两角和公式,进而求得sinA.(Ⅱ)由三角形的面积公式及(1)中的sinA,求得AB•AC的值,再利用正弦定理求得AB,再利用正弦定理进而求得BC.【解答】解:(Ⅰ)由,得,由,得.所以.(Ⅱ)由得,由(Ⅰ)知,故AB×AC=65,又,故,.所以.【点评】本题主要考查了正弦定理及三角形的面积公式在解三角形中的应用.属基础题.18.(12 分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000 元的赔偿金.假定在一年度内有10 000 人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000 元的概率为1﹣0.999 .(I)求一投保人在一年度内出险的概率p;(II)设保险公司开办该项险种业务除赔偿金外的成本为50 000 元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(1)由题意知各投保人是否出险互相独立,且出险的概率都是p,记投保的10000 人中出险的人数为ξ,由题意知ξ服从二项分布一投保人在一年度内出险的对立事件是没有一个人出险.(2)写出本险种的收入和支出,表示出它的盈利期望,根据为保证盈利的期望不小于0,列出不等式,解出每位投保人应交纳的最低保费.【解答】解:由题意知各投保人是否出险互相独立,且出险的概率都是p,记投保的10000 人中出险的人数为ξ,由题意知ξ~B(104,p).(I)记A 表示事件:保险公司为该险种至少支付10000 元赔偿金,则发生当且仅当ξ=0,=1﹣P(ξ=0)=1﹣(1﹣p)104,又P(A)=1﹣0.999104,故p=0.001.(II)该险种总收入为10000a 元,支出是赔偿金总额与成本的和.支出10000ξ+50000,盈利η=10000α﹣(10000ξ+50000),盈利的期望为Eη=10000α﹣10000Eξ﹣50000,由ξ~B(104,10﹣3)知,Eξ=10000×10﹣3,Eη=104a﹣104Eξ﹣5×104=104a﹣104×104×10﹣3﹣5×104.Eη≥0⇔104a﹣104×10﹣5×104≥0⇔a﹣10﹣5≥0⇔a≥15(元).∴每位投保人应交纳的最低保费为15 元.【点评】解决离散型随机变量分布列问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.19.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】14:证明题;15:综合题;35:转化思想.【分析】法一:(Ⅰ)要证A1C⊥平面BED,只需证明A1C 与平面BED 内两条相交直线BD,EF 都垂直;(Ⅱ)作GH⊥DE,垂足为H,连接A1H,说明∠A1HG 是二面角A1﹣DE﹣B 的平面角,然后解三角形,求二面角A1﹣DE﹣B 的大小.法二:建立空间直角坐标系,(Ⅰ)求出,证明A1C⊥平面DBE.(Ⅱ)求出平面DA1E 和平面DEB 的法向量,求二者的数量积可求二面角A1﹣DE﹣B 的大小.【解答】解:解法一:依题设知AB=2,CE=1.(I)连接AC 交BD 于点F,则BD⊥AC.由三垂线定理知,BD⊥A1C.(3分)在平面A1CA 内,连接EF 交A1C 于点G,由于,故Rt△A1AC∽Rt△FCE,∠AA1C=∠CFE,∠CFE 与∠FCA1 互余.于是A1C⊥EF.A1C 与平面BED 内两条相交直线BD,EF 都垂直,所以A1C⊥平面BED.(6 分)(II)作GH⊥DE,垂足为H,连接A1H.由三垂线定理知A1H⊥DE,故∠A1HG 是二面角A1﹣DE﹣B 的平面角.(8分),. ,又,..所以二面角 A 1﹣DE ﹣B 的大小为.((12 分))解法二:以 D 为坐标原点,射线 DA 为 x 轴的正半轴,建立如图所示直角坐标系 D ﹣xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).,.(3 分)(Ⅰ)因为,,故 A 1C ⊥BD ,A 1C ⊥DE . 又 DB ∩DE=D ,所以 A 1C ⊥平面 DBE .(6 分)(Ⅱ)设向量=(x ,y ,z )是平面 DA 1E 的法向量,则,.故 2y +z=0,2x +4z=0.令 y=1,则 z=﹣2,x=4,=(4,1,﹣2).(9 分) 等于二面角 A 1﹣DE ﹣B 的平面角,所以二面角 A 1﹣DE ﹣B 的大小为.(12 分),.n n n n ﹣n +1 n n +1 n n nnn nn +1 n n +1 nn n nn ﹣1【点评】本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.20.(12 分)设数列{a n }的前 n 项和为 S n .已知 a 1=a ,a n +1=S n +3n ,n ∈N *.(I ) 设 b n =S n ﹣3n ,求数列{b n }的通项公式; (II ) 若 a n +1≥a n ,n ∈N *,求 a 的取值范围.【考点】81:数列的概念及简单表示法;8H :数列递推式. 【专题】11:计算题;16:压轴题.【分析】(Ⅰ)依题意得 S =2S +3n ,由此可知 S ﹣3n +1=2(S ﹣3n ).所以 b =S ﹣3n =(a ﹣3)2n ﹣1,n ∈N *.( Ⅱ ) 由题设条件知 S =3n + ( a ﹣ 3 ) 2n ﹣ 1 , n ∈ N * , 于是, a =S ﹣ S 1=,由此可以求得 a 的取值范围是[﹣9,+∞).【解答】解:(Ⅰ)依题意,S n +1﹣S n =a n +1=S n +3n ,即 S n +1=2S n +3n ,由此得 S ﹣3n +1=2S +3n ﹣3n +1=2(S ﹣3n ).(4 分) 因此,所求通项公式为 b =S ﹣3n =(a ﹣3)2n ﹣1,n ∈N *.①(6 分) (Ⅱ)由①知 S =3n +(a ﹣3)2n ﹣1,n ∈N *,于是,当 n ≥2 时,a =S ﹣S =3n +(a ﹣3)×2n ﹣1﹣3n ﹣1﹣(a ﹣3)×2n ﹣2=2×3n ﹣1+(a ﹣3)2n ﹣2, a ﹣a =4×3n ﹣1+(a ﹣3)2n ﹣2= ,当 n ≥2 时, ⇔a ≥﹣9.又 a 2=a 1+3>a 1.综上,所求的 a 的取值范围是[﹣9,+∞).(12 分)【点评】本题考查数列的综合运用,解题时要仔细审题,注意挖掘题设中的隐含条件.21.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.【考点】96:平行向量(共线);KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】(1)依题可得椭圆的方程,设直线AB,EF 的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F(x2,kx2),且x1,x2 满足方程(1+4k2)x2=4,进而求得x2 的表达式,进而根据求得x0 的表达式,由D 在AB 上知x0+2kx0=2,进而求得x0 的另一个表达式,两个表达式相等求得k.(Ⅱ)由题设可知|BO|和|AO|的值,设y1=kx1,y2=kx2,进而可表示出四边形AEBF 的面积进而根据基本不等式的性质求得最大值.【解答】解:(Ⅰ)依题设得椭圆的方程为,直线AB,EF 的方程分别为x+2y=2,y=kx(k>0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,且x1,x2 满足方程(1+4k2)x2=4,故.①由知x0﹣x1=6(x2﹣x0),得;由D 在AB 上知x0+2kx0=2,得.所以,化简得24k2﹣25k+6=0,解得或.(Ⅱ)由题设,|BO|=1,|AO|=2.由(Ⅰ)知,E(x1,kx1),F(x2,kx2),不妨设y1=kx1,y2=kx2,由①得x2>0,根据E 与F 关于原点对称可知y2=﹣y1>0,故四边形AEBF 的面积为S=S△OBE +S△OBF+S△OAE+S△OAF=•(﹣y1)==x2+2y2===,当x2=2y2时,上式取等号.所以S 的最大值为.【点评】本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线的综合问题是支撑圆锥曲线知识体系的重点内容,问题的解决具有入口宽、方法灵活多样等,而不同的解题途径其运算量繁简差别很大.22.(12 分)设函数.(I)求f(x)的单调区间;(II)如果对任何x≥0,都有f(x)≤ax,求a 的取值范围.【考点】3R:函数恒成立问题;6B:利用导数研究函数的单调性.【专题】11:计算题;16:压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0 和fˊ(x)<0,求出单调区间.(2)令g(x)=ax﹣f(x),根据导数研究单调性的方法,即转化成研究对任何x≥0,都有g(x)≥0 恒成立,再利用分类讨论的方法求出a 的范围.【解答】解:(Ⅰ).(2 分)当(k∈Z)时,,即f'(x)>0;当(k∈Z)时,,即f'(x)<0.因此f(x)在每一个区间(k∈Z)是增函数,f(x)在每一个区间(k∈Z)是减函数.(6分)(Ⅱ)令g (x )=ax ﹣ f (x ),则= = .故当时,g'(x)≥0.又g(0)=0,所以当x≥0 时,g(x)≥g(0)=0,即f(x)≤ax.(9 分)当时,令h(x)=sinx﹣3ax,则h'(x)=cosx﹣3a.故当x∈[0,arccos3a)时,h'(x)>0.因此h(x)在[0,arccos3a)上单调增加.故当x∈(0,arccos3a)时,h(x)>h(0)=0,即sinx>3ax.于是,当x∈(0,arccos3a)时,.当a≤0 时,有.因此,a 的取值范围是.(12 分)【点评】本小题主要考查函数的导数、单调性、不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.。

2008年全国统一高考数学试卷(理科)(全国卷一)及解析

2008年全国统一高考数学试卷(理科)(全国卷一)及解析

2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为()A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1} 2.(5分)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2 B.p1>p2 C.p1=p2D.不能确定3.(5分)在△ABC中,=,=.若点D满足=2,则=()A.B.C.D.4.(5分)设a∈R,且(a+i)2i为正实数,则a=()A.2 B.1 C.0 D.﹣15.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.236.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x 对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1D.e2x+27.(5分)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.C.D.﹣28.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C. D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B. C. D.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为.15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=.16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC的中点,则EM,AN 所成角的余弦值等于.三、解答题(共6小题,满分74分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f (a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•全国卷Ⅰ)函数的定义域为()A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1}【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域.【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0.又因为x≥0,所以x≥1,或x=0;所以函数的定义域为{x|x≥1}∪{0}故选C.2.(5分)(2008•全国卷Ⅰ)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2 B.p1>p2 C.p1=p2D.不能确定【分析】计算出各种情况的概率,然后比较即可.【解答】解:大于2小于5的数有2个数,∴p1==;投掷一次正面朝上的概率为,两次正面朝上的概率为p2=×=,∵>,∴p1>p2.故选B.3.(5分)(2008•全国卷Ⅰ)在△ABC中,=,=.若点D满足=2,则=()A.B.C.D.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选A4.(5分)(2008•全国卷Ⅰ)设a∈R,且(a+i)2i为正实数,则a=()A.2 B.1 C.0 D.﹣1【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0 【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D.5.(5分)(2008•全国卷Ⅰ)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选C6.(5分)(2008•全国卷Ⅰ)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1D.e2x+2【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x 对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.7.(5分)(2008•全国卷Ⅰ)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.C.D.﹣2【分析】(1)求出已知函数y在点(3,2)处的斜率;(2)利用两条直线互相垂直,斜率之间的关系k1•k2=﹣1,求出未知数a.【解答】解:∵y=∴y′=﹣∵x=3∴y′=﹣即切线斜率为﹣∵切线与直线ax+y+1=0垂直∴直线ax+y+1=0的斜率为﹣a.∴﹣•(﹣a)=﹣1得a=﹣2故选D.8.(5分)(2008•全国卷Ⅰ)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.9.(5分)(2008•全国卷Ⅰ)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案.【解答】解:由奇函数f(x)可知,即x与f (x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选D.10.(5分)(2008•全国卷Ⅰ)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C. D.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r ,∴故选D.11.(5分)(2008•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B. C. D.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,易得A1S=,所以AB1==2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选B.12.(5分)(2008•全国卷Ⅰ)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.【解答】解:分三类:种两种花有A42种种法;种三种花有2A43种种法;种四种花有A44种种法.共有A42+2A43+A44=84.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2008•全国卷Ⅰ)若x,y满足约束条件,则z=2x﹣y的最大值为9.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.14.(5分)(2008•全国卷Ⅰ)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为2.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为215.(5分)(2008•全国卷Ⅰ)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则,∴,.答案:.16.(5分)(2008•全国卷Ⅰ)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC 的中点,则EM,AN所成角的余弦值等于.【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故答案为:三、解答题(共6小题,满分74分)17.(10分)(2008•全国卷Ⅰ)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.【解答】解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.18.(12分)(2008•全国卷Ⅰ)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.19.(12分)(2010•大纲版Ⅱ)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.20.(12分)(2008•全国卷Ⅰ)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果.【解答】解:(Ⅰ)若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0.6+3×0.4=2.4.21.(12分)(2008•全国卷Ⅰ)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.22.(12分)(2008•全国卷Ⅰ)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.【分析】(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数在区间(0,1)上的单调性,从而进行证明.(2)由题意数列{a n}满足0<a1<1,a n+1=f(a n),求出a n+1=a n﹣a n lna n,然后利用归纳法进行证明;=f(a n)可得a k+1=a k﹣b﹣a k,然后(3)由题意f(x)=x﹣xlnx,a n+1进行讨论求解.【解答】解:(Ⅰ)证明:∵f(x)=x﹣xlnx,∴f′(x)=﹣lnx,当x∈(0,1)时,f′(x)=﹣lnx>0故函数f(x)在区间(0,1)上是增函数;(Ⅱ)证明:(用数学归纳法)(i)当n=1时,0<a1<1,a1lna1<0,a2=f(a1)=a1﹣a1lna1>a1,∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,∴f(x)在区间(0,1]是增函数,a2=f(a1)=a1﹣a1lna1<1,即a1<a2<1成立,(ⅱ)假设当x=k(k∈N+)时,a k<a k+1<1成立,即0<a1≤a k<a k+1<1,那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤a k<a k+1<1,得f(a k)<f(a k+1)<f(1),=f(a n),而a n+1则a k=f(a k),a k+2=f(a k+1),a k+1<a k+2<1,+1也就是说当n=k+1时,a n<a n+1<1也成立,根据(ⅰ)、(ⅱ)可得对任意的正整数n,a n<a n+1<1恒成立.=f(a n)可得(Ⅲ)证明:由f(x)=x﹣xlnx,a n+1a k+1=a k﹣a k lna k=,1)若存在某i≤k2,满足a i≤b3,则由(Ⅱ)知:a k+1﹣b<a i﹣b≥04,2)若对任意i≤k6,都有a i>b,则a k+1=a k﹣a k lna k==≥a1﹣b1﹣ka1ln=0,即a k>b成立.+1。

高考卷08普通高等学校招生全国统一考试数学(福建卷理科)(附答案完全word版)

高考卷08普通高等学校招生全国统一考试数学(福建卷理科)(附答案完全word版)

高考卷08普通高等学校招生全国统一考试数学(福建卷理科)(附答案完全word版)2022年普通高等学校招生全国统一考试数学(理工农医类)(福建卷)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数(a2-3a+2)+(a-1)i是纯虚数,则实数a的值为A.1B.2C.1或2D.-1(2)设集合A={x|},B={x|0<x<3,那么“mA”是“mB”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(3)设{an}是公比为正数的等比数列,若n1=7,a5=16,则数列{an}前7项的和为A.63B.64C.127D.128(4)函数f(x)=x3+sinx+1(xR),若f(a)=2,则f(-a)的值为A.3B.0C.-1D.-2(5)某一批花生种子,如果每1粒发牙的概率为,那么播下4粒种子恰有2粒发芽的概率是A.B.C.D.(6)如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为A.B.C.D.(7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(8)若实数x、y满足,则的取值范围是A.(0,1)B.C.(1,+)D.(9)函数f(x)=cosx(x)(xR)的图象按向量(m,0)平移后,得到函数y=-f′(x)的图象,则m的值可以为A.B.C.-D.-(10)在△ABC中,角ABC的对边分别为a、b、c,若(a2+c2-b2)tanB=,则角B的值为A.B.C.或D.或(11)又曲线(a>0,b>0)的两个焦点为F1、F2,若P 为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为A.(1,3)B.C.(3,+)D.(12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),y=g(x)的图象可能是第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.(13)若(x-2)5=a3x5+a5x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=__________.(用数字作答)x=1+cos(14)若直线3x+4y+m=0与圆y=-2+sin(为参数)没有公共点,则实数m的取值范围是.(15)若三棱锥的三个侧圆两两垂直,且侧棱长均为,则其外接球的表面积是.(16)设P是一个数集,且至少含有两个数,若对任意a、b∈R,都有a+b、a-b,ab、∈P(除数b≠0),则称P是一个数域.例如有理数集Q是数域;数集也是数域。

2008年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)

2008年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)

2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为( )A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1} 2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )A.B.C.D.3.(5分)在△ABC中,=,=.若点D满足=2,则=( )A.B.C.D.4.(5分)设a∈R,且(a+i)2i为正实数,则a=( )A.2B.1C.0D.﹣15.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=( )A.138B.135C.95D.236.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=( )A.e2x﹣2B.e2x C.e2x+1D.e2x+27.(5分)已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a 的值为( )A.2B.C.﹣D.﹣28.(5分)为得到函数的图象,只需将函数y=sin2x的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 .14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为( )A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1}【考点】33:函数的定义域及其求法.【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域.【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0.又因为x≥0,所以x≥1,或x=0;所以函数的定义域为{x|x≥1}∪{0}故选:C.【点评】定义域是高考必考题通常以选择填空的形式出现,通常注意偶次开方一定非负,分式中分母不能为0,对数函数的真数一定要大于0,指数和对数的底数大于0且不等于1.另外还要注意正切函数的定义域.2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】16:压轴题;31:数形结合.【分析】由已知中汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,汽车的行驶路程s看作时间t的函数,我们可以根据实际分析函数值S(路程)与自变量t(时间)之间变化趋势,分析四个答案即可得到结论.【解答】解:由汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变故图象的中间部分为平升的形状;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的前边部分为凸升的形状;分析四个答案中的图象,只有A答案满足要求,故选:A.【点评】从左向右看图象,如果图象是凸起上升的,表明相应的量增长速度越来越慢;如果图象是凹陷上升的,表明相应的量增长速度越来越快;如果图象是直线上升的,表明相应的量增长速度保持不变;如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;如果图象是凸起下降的,表明相应的量降低速度越来越快;如果图象是凹陷下降的,表明相应的量降低速度越来越慢;如果图象是直线下降的,表明相应的量降低速度保持不变.3.(5分)在△ABC中,=,=.若点D满足=2,则=( )A.B.C.D.【考点】9B:向量加减混合运算.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选:A.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的4.(5分)设a∈R,且(a+i)2i为正实数,则a=( )A.2B.1C.0D.﹣1【考点】A4:复数的代数表示法及其几何意义.【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D.【点评】本题的计算中,要注意到相应变量的范围.5.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=( )A.138B.135C.95D.23【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题.【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选:C.【点评】在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式.6.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=( )A.e2x﹣2B.e2x C.e2x+1D.e2x+2【考点】4R:反函数.【专题】11:计算题.【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.【点评】本题主要考查了互为反函数图象间的关系及反函数的求法.7.(5分)已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a 的值为( )A.2B.C.﹣D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】求出函数的导数,切线的斜率,由两直线垂直的条件,即可得到a的值.【解答】解:∵y=,∴y′==,∴曲线y=在点(3,2)处的切线的斜率k=﹣,∵曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,∴直线ax+y+1=0的斜率k′=﹣a×=﹣1,即a=﹣2.故选:D.【点评】本题考查导数的几何意义的求法,考查导数的运算,解题时要认真审题,仔细解答,注意直线与直线垂直的性质的灵活运用.8.(5分)为得到函数的图象,只需将函数y=sin2x的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选:A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)【考点】3N:奇偶性与单调性的综合.【专题】16:压轴题.【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案.【解答】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选:D.【点评】本题综合考查奇函数定义与它的单调性.10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.【考点】J9:直线与圆的位置关系.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴,故选:D.【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;31:数形结合;4R:转化法;5G:空间角.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,过B1作AB的垂线段,垂足为F,F=A1S=,AF=3,BF=1,B在直角三角形B1AF中用勾股定理得:AB1=2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选:B.【点评】本题考查了几何体的结构特征及线面角的定义,还有点面距与线面距的转化,考查了转化思想和空间想象能力.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48【考点】C6:等可能事件和等可能事件的概率.【专题】16:压轴题.【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.【解答】解:分三类:种两种花有A42种种法;种三种花有2A43种种法;种四种花有A44种种法.共有A42+2A43+A44=84.故选:B.【点评】本题也可以这样解:按A﹣B﹣C﹣D顺序种花,可分A、C同色与不同色有4×3×(1×3+2×2)=84.二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 9 .【考点】7C:简单线性规划.【专题】11:计算题;13:作图题.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.【点评】本题考查线性规划问题,考查数形结合思想.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 2 .【考点】K8:抛物线的性质.【专题】11:计算题.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为2【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识,解决实际问题的能力.15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则,∴,.答案:.【点评】本题考查椭圆的性质及应用,解题时要注意的正确计算.16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .【考点】LM:异面直线及其所成的角;MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故答案为:【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.【考点】GP:两角和与差的三角函数;HP:正弦定理.【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB >0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.【解答】解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.【点评】在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE 即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC ,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.【点评】本题主要考查通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【考点】3D:函数的单调性及单调区间;3E:函数单调性的性质与判断.【专题】16:压轴题.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【考点】C6:等可能事件和等可能事件的概率;CH:离散型随机变量的期望与方差.【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果.【解答】解:(Ⅰ)若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0.6+3×0.4=2.4.【点评】期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫.同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【考点】KB:双曲线的标准方程;KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角范围为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值,属于中档题.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.【考点】6B:利用导数研究函数的单调性;RG:数学归纳法.【专题】16:压轴题.【分析】(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数在区间(0,1)上的单调性,从而进行证明.(2)由题意数列{a n}满足0<a1<1,a n+1=f(a n),求出a n+1=a n﹣a n lna n,然后利用归纳法进行证明;(3)由题意f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣b﹣a k,然后进行讨论求解.【解答】解:(Ⅰ)证明:∵f(x)=x﹣xlnx,∴f′(x)=﹣lnx,当x∈(0,1)时,f′(x)=﹣lnx>0故函数f(x)在区间(0,1)上是增函数;(Ⅱ)证明:(用数学归纳法)(i)当n=1时,0<a1<1,a1lna1<0,a2=f(a1)=a1﹣a1lna1>a1,∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,∴f(x)在区间(0,1]是增函数,a2=f(a1)=a1﹣a1lna1<1,即a1<a2<1成立,(ⅱ)假设当x=k(k∈N+)时,a k<a k+1<1成立,即0<a1≤a k<a k+1<1,那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤a k<a k+1<1,得f(a k)<f(a k+1)<f(1),而a n+1=f(a n),则a k+1=f(a k),a k+2=f(a k+1),a k+1<a k+2<1,也就是说当n=k+1时,a n<a n+1<1也成立,根据(ⅰ)、(ⅱ)可得对任意的正整数n,a n<a n+1<1恒成立.(Ⅲ)证明:由f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣a k lna k=,1)若存在某i≤k,满足a i≤b,则由(Ⅱ)知:a k+1﹣b>a i﹣b≥0,2)若对任意i≤k,都有a i>b,则a k+1=a k﹣a k lna k==≥a1﹣b1﹣ka1lnb=0,即a k+1>b成立.【点评】此题主要考查多项式函数的导数,函数单调性的判定,函数最值,函数、方程与不等式等基础知识及数学归纳法的应用,一般出题者喜欢考查学生的运算求解能力、推理论证能力及分析与解决问题的能力,要出学生会用数形结合的思想、分类与整合思想,化归与转化思想、有限与无限的思想来解决问题.。

2008年福建省高考数学试卷(理科)

2008年福建省高考数学试卷(理科)

2008年福建省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)若复数(a2﹣3a+2)+(a﹣1)i是纯虚数,则实数a的值为()A.1 B.2 C.1或2 D.﹣12.(5分)设集合A={x|<0},B={x|0<x<3},那么“m∈A”是“m∈B”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(5分)设{a n}是公比为正数的等比数列,若a1=1,a5=16,则数列{a n}的前7项的和为()A.63 B.64 C.127 D.1284.(5分)函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(﹣a)的值为()A.3 B.0 C.﹣1 D.﹣25.(5分)某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是()A. B. C. D.6.(5分)如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为()A.B.C.D.7.(5分)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为()A.14 B.24 C.28 D.488.(5分)若实数x、y满足则的取值范围是()A.(0,2) B.(0,2) C.(2,+∞)D.[,+∞)9.(5分)函数f(x)=cosx(x∈R)的图象按向量(m,0)平移后,得到函数y=﹣f′(x)的图象,则m的值可以为()A.B.πC.﹣πD.﹣10.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,若(a2+c2﹣b2)tanB=ac,则角B的值为()A.B.C.或D.或11.(5分)双曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()A.(1,3) B.(1,3]C.(3,+∞)D.[3,+∞]12.(5分)已知函数y=f′(x),y=g′(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()A.B. C.D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)若(x﹣2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=.(用数字作答)14.(4分)若直线3x+4y+m=0与曲线(θ为参数)没有公共点,则实数m的取值范围是.15.(4分)若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是.16.(4分)设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a ﹣b,ab、∈P(除数b≠0),则称P是一个数域.例如有理数集Q是数域;数集也是数域.有下列命题:①整数集是数域;②若有理数集Q⊆M,则数集M必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是.(把你认为正确的命题的序号填填上)三、解答题(共6小题,满分74分)17.(12分)已知向量,,且•.(Ⅰ)求tanA的值;(Ⅱ)求函数的值域.18.(12分)如图,在四棱锥P﹣ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的大小;(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.19.(12分)已知函数.(Ⅰ)设{a n}是正数组成的数列,前n项和为S n,其中a1=3.若点(a n,a n+12﹣2a n+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,S n)也在y=f′(x)的图象上;(Ⅱ)求函数f(x)在区间(a﹣1,a)内的极值.20.(12分)某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.(Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.21.(12分)如图,椭圆=1(a>b>0)的一个焦点是F(1,0),O为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,值有|OA|2+|OB|2<|AB|2,求a的取值范围.22.(14分)已知函数f(x)=ln(1+x)﹣x(1)求f(x)的单调区间;(2)记f(x)在区间[0,n](n∈N*)上的最小值为b n令a n=ln(1+n)﹣b n(i)如果对一切n,不等式恒成立,求实数c的取值范围;(ii)求证:.。

2008年福建省数学(理科)高考试卷及答案

2008年福建省数学(理科)高考试卷及答案

第 1 页 共 4 页2008年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上. 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数iz -=11的共轭复数是( )A .i 2121+B .i 2121-C .i -1D .i +1 2.已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值是 ( )A .15B .30C .31D .64 3.在△ABC 中,∠C=90°,),3,2(),1,(==AC k AB 则k 的值是 ( )A .5B .-5C .23D .23-4.已知直线m 、n 与平面βα,,给出下列三个命题: ①若;//,//,//n m n m 则αα ②若;,,//m n n m ⊥⊥则αα ③若.,//,βαβα⊥⊥则m m 其中真命题的个数是( )A .0B .1C .2D .35.函数bx a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是 ( )A .0,1<>b aB .0,1>>b aC .0,10><<b a第 2 页 共 4 页D .0,10<<<b a6.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则 ( )A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==7.已知p :,0)3(:,1|32|<-<-x x q x 则p 是q 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中 点,则异面直线A 1E 与GF 所成的角是( ) A .515arccosB .4πC .510arccosD .2π9.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( ) A .300种 B .240种 C .144种 D .96种10.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( )A .324+B .13-C .213+ D .13+11.设b a b a b a +=+∈则,62,,22R 的最小值是( )A .22-B .335-C .-3D .27-12.)(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f 在区间(0,6)内解的个数的最小值是( ) A .2B .3C .4D .5第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置。

2008年福建高考数学试卷

2008年福建高考数学试卷

2008年普通高等学校招生全国统一考试(福建理科)数 学(理工农医类)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数(a 2-3a +2)+(a-1)i 是纯虚数,则实数a 的值为 A.1B.2C.1或2D.-1(2)设集合A={x |1x x -<0},B={x |0<x <3},那么“m ∈A ”是“m ∈B ”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(3)设{a n }是公比为正数的等比数列,若a 1=7,a 5=16,则数列{a n }前7项的和为A.63B.64C.127D.128(4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为 A.3B.0C.-1D.-2(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是A.16625B.96625C.192625D.256625(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=1, 则BC 1与平面BB 1D 1D 所成角的正弦值为A.3B.552 C.5D.5(7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(8)若实数x 、y 满足 x-y+1≤0,则y x的取值范围是x>0A. (0,1)B. (0,1)C. (1,+∞)D. [1, +∞](9)函数f (x )=cos x (x )(x ∈R )的图象按向量(m,0) 平移后,得到函数y = -f ′(x )的图象,则m 的值可以为A.2πB.πC.-πD.-2π(10)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c , 若(a 2+c 2-b 2)tan B ,则角B的值为A. 6πB.3πC.6π或56π D.3π或23π(11)双曲线12222=-by ax (a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞(12)已知函数y =f (x ), y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)若(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=__________.(用数字作答) x =1+cos θ(14)若直线3x+4y+m=0与圆 y =-2+sin θ (θ为参数)没有公共点,则实数m 的取值范围是 .(15)若三棱锥的三个侧面两两垂直,,则其外接球的表面积是 . (16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b , ab 、a b∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集{}=+∈也是数域.有下列命题:F a b Q,①整数集是数域;②若有理数集Q M⊆,则数集M必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是.(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知向量m=(sin A,cos A),n=1)-,m·n=1,且A为锐角.(Ⅰ)求角A的大小;(Ⅱ)求函数()cos24cos sin()=+∈的值域.f x x A x x R如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱PA =PD ,底面ABCD为直角梯形,其中BC ∥AD , AB ⊥AD , AD =2AB =2BC =2, O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 2?若存在,求出AQ QD的值;若不存在,请说明理由.(19)(本小题满分12分) 已知函数321()23f x x x =+-.(Ⅰ)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求证:点(n , S n )也在y =f ′(x )的图象上;(Ⅱ)求函数f (x )在区间(a -1, a )内的极值.某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试。

2008年普通高等学校招生全国统一考试数学卷(福建.理)含详解

2008年普通高等学校招生全国统一考试数学卷(福建.理)含详解

绝密 ★ 启用前2019年普通高等学校招生全国统一考试数学卷(福建.理)含详解数 学(理工农医类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数(a2-3a+2)+(a-1)i 是纯虚数,则实数a 的值为 A.1 B.2 C.1或2 D.-1(2)设集合A={x|1xx -<0},B={x|0<x <3=,那么“m ∈A ”是“m ∈B ”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(3)设{an }是公比为正数的等比数列,若n1=7,a5=16,则数列{an }前7项的和为 A.63 B.64 C.127 D.128 (4)函数f(x)=x3+sinx+1(x ∈R),若f(a)=2,则f(-a)的值为 A.3 B.0 C.-1 D.-2(5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是A.16625B. 96625C. 192625D. 256625(6)如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D 所成角的正弦值为A.3B. 5C.5D.5(7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为 A.14 B.24 C.28 D.48(8)若实数x 、y 满足 {10,x y -+≤则yx 的取值范围是A.(0,1)B.(]0,1C.(1,+∞)D.[)1,+∞(9)函数f(x)=cosx(x)(x ∈R)的图象按向量(m,0) 平移后,得到函数y=-f ′(x)的图象,则m 的值可以为A.2πB.πC.-πD.- 2π(10)在△ABC 中,角ABC 的对边分别为a 、b 、c,若,则角B 的值为A. 6πB. 3πC.6π或56πD. 3π或23π(11)又曲线22221x y a b ==(a >0,b >0)的两个焦点为F1、F2,若P 为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为 A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞(12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),y=g(x)的图象可能是第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)若(x-2)5=a3x5+a5x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=__________.(用数字作答) x=1+cos θ(14)若直线3x+4y+m=0与圆 y=-2+sin θ(θ为参数)没有公共点,则实数m 的取值范围是 .(15 .(16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈R ,都有a+b 、a-b , ab 、ab ∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集{},F a b Q=+∈也是数域.有下列命题:①整数集是数域;②若有理数集Q M ⊆,则数集M 必为数域;③数域必为无限集; ④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号填填上)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知向量m=(sinA,cosA),n=1)-,m·n=1,且A为锐角.(Ⅰ)求角A的大小;(Ⅱ)求函数()cos24cos sin()f x x A x x R=+∈的值域.(18)(本小题满分12分)如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PD与CD所成角的大小;(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出AQQD的值;若不存在,请说明理由.(19)(本小题满分12分)已知函数321()23f x x x=+-.(Ⅰ)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点211(,2)n n na a a++-(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;(Ⅱ)求函数f(x)在区间(a-1,a)内的极值.(20)(本小题满分12分)某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.(Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ. (21)(本小题满分12分)如图、椭圆22221(0)x ya ba b+=的一个焦点是F(1,0),O为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,值有222OA OB AB+,求a 的取值范围. (22)(本小题满分14分) 已知函数f(x)=ln(1+x)-x1(Ⅰ)求f(x)的单调区间; (Ⅱ)记f(x)在区间[]0,π(n ∈N*)上的最小值为bx 令an=ln(1+n)-bx.(Ⅲ)如果对一切n,不等式2n a +-恒成立,求实数c 的取值范围;(Ⅳ)求证: 131321122424221 1.n n na a a a a a a a a a a a a -++++2019年普通高等学校招生全国统一考试(福建卷) 数 学(理工类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

aaaabbbbOOOO(A) (B) (C)(D)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果函数a bx ax y ++=2的图象与x 轴有两上交点,则点(a ,b )在a Ob 平面上的区 域(不包含边界)为( )2.抛物线2ax y =的准线方程是y=2,则a 的值为 ( )A .81B .-81 C .8D .-8 3.已知==-∈x x x 2tan ,54cos ),0,2(则π( )A .247 B .-247 C .724 D .-7244.设函数,1)(.0,,0,12)(021>⎪⎩⎪⎨⎧>≤-=-x f x x x x f x 若则x 0的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪ (0,+∞)D .(-∞,-1)∪(1,+∞) 5.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足),,0[),||||(+∞∈++=λλAC AC AB AB OA OP 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心 6.函数),1(,11ln +∞∈-+=x x x y 的反函数为( )A .),0(,11+∞∈+-=x e e y xxB .),0(,11+∞∈-+=x e e y xxC .)0,(,11-∞∈+-=x e e y x x D .)0,(,11-∞∈-+=x e e y x x7.棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为 ( )A .33aB .43aC .63aD .123a8.设,)(,02c bx ax x f a ++=>曲线)(x f y =在点))(,(00x f x P 处切线的倾斜角的取值范 围为]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为( )A .[a1,0] B .]21,0[aC .|]2|,0[abD .|]21|,0[ab -9.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则|m -n|=( )A .1B .43C .21D .8310.已知双曲线中心在原点且一个焦点为F (7,0)直线y=x -1与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是( )A .14322=-yxB .13422=-yxC .12522=-yxD .15222=-yx11.已知长方形四个顶点A (0,0),B (2,0),C (2,1)和D (0,1).一质点从AB 的中点P 0沿与AB夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射角等于反射角).设P 4的坐标为(x 4,0).若1< x 4<2,则tan θ的取值范围是 ( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 ( )A .3πB .4πC . 33πD .6π第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,把答案填在题中横线上. 13.92)21(xx -展开式中x 9的系数是14.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取 , , 辆15.某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种 且相邻部分不能栽种同样颜色的花,不同的栽种方法有 种.(以数字作答)16.对于四面体ABCD ,给出下列四个命题 ①若AB=AC ,BD=CD ,则BC ⊥AD. ②若AB=CD ,AC=BD ,则BC ⊥AD.③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD. ④若AB ⊥CD ,BD ⊥AC ,则BC ⊥AD.其中真命题的序号是 .(写出所有真命题的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.(Ⅰ)求恰有一件不合格的概率;(Ⅱ)求至少有两件不合格的概率.(精确到0.001)18.(本小题满分12分)已知函数)0,0)(sin()(πϕωϕω≤≤>+=x x f 上R 上的偶函数,其图象关于点)0,43(πM 对称,且在区间]2,0[π上是单调函数,求ϕ和ω的值.19.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的垂心G . (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离.D E KBC1A 1B 1AFC G20.(本小题满分12分)已知常数0>a ,向量).0,1(),,0(==i a c 经过原点O 以i c λ+为方向向量的直线与经过定点A (0,a )以c i λ2-为方向向量的直线相交于点P ,其中.R ∈λ试问:是否存在两个定点E 、F ,使得|PE|+|PF|为定值.若存在,求出E 、F 的坐标;若不存在,说明理由.21.(本小题满分12分) 已知n a ,0>为正整数.(Ⅰ)设1)(,)(--='-=n n a x n y a x y 证明;(Ⅱ)设).()1()1(,,)()(1n f n n f a n a x x x f n n n n n '+>+'≥--=+证明对任意22.(本小题满分14分)设,0>a 如图,已知直线ax y l =:及曲线C :2x y =,C 上的点Q 1的横坐标为1a(a a <<10).从C 上的点Q n (n ≥1)作直线平行于x 轴,交直线l 于点1+n P ,再从点1+n P 作直线平行于y 轴,交曲线C 于点Q n+1.Q n (n=1,2,3,…)的横坐标构成数列{}.n a (Ⅰ)试求n n a a 与1+的关系,并求{}n a 的通项公式;(Ⅱ)当21,11≤=a a 时,证明∑=++<-nk k k k a a a 121321)(;(Ⅲ)当a =1时,证明∑-++<-nk k k k a a a 121.31)(Oc ylxQ 1Q 2Q 3 1a 2a 3a r 2 r 12003年普通高等学校招生全国统一考试数 学 试 题(江苏卷)答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分.1.C 2.B 3.D 4.D 5.B 6.B 7.C 8.B 9.C 10.D 11.C 12.A 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分. 13.221-14.6,30,10 15.120 16.①④三、解答题17.本小题要主考查相互独立事件概率的计算,运用数学知识解决问题的能力,满分12分. 解:设三种产品各抽取一件,抽到合格产品的事件分别为A 、B 和C.(Ⅰ)95.0)()(,90.0)(===C P B P A P , .50.0)()(,10.0)(===C P B P A P 因为事件A ,B ,C 相互独立,恰有一件不合格的概率为 176.095.095.010.005.095.090.02)()()()()()()()()()()()(=⨯⨯+⨯⨯⨯=⋅⋅+⋅⋅+⋅⋅=⋅⋅+⋅⋅+⋅⋅C P B P A P C P B P A P C P B P A P C B A P C B A P C B A P 答:恰有一件不合格的概率为0.176. 解法一:至少有两件不合格的概率为)()()()(C B A P C B A P C B A P C B A P ⋅⋅+⋅⋅+⋅⋅+⋅⋅012.005.010.095.005.010.0205.090.022=⨯+⨯⨯⨯+⨯=解法二:三件产品都合格的概率为812.095.090.0)()()()(2=⨯=⋅⋅=⋅⋅C P B P A P C B A P由(Ⅰ)知,恰有一件不合格的概率为0.176,所以至有两件不合格的概率为.012.0)176.0812.0(1]176.0)([1=+-=+⋅⋅-C B A P 答:至少有两件不合的概率为0.012.(18)在小题主要考查三角函数的图象和单调性、奇偶性等基本知识,以及分析问题和推理计算能力,满12分分解:由),()(,)(x f x f x f =-得是偶函数.0cos ,0,sin cos sin cos ),sin()sin(=>=-+=+-ϕωωϕωϕϕωϕω所以得且都成立对任意所以即x xx x x.232,;]2,0[)2sin()(,310,0;]2,0[)22sin()(,2,1;]2,0[)232sin()(,32,0.,2,1,0),12(32,,3,2,1,243,0,043cos ,43cos )243sin()43(,43cos)243sin()43(,0),43()43(,)(.2,0==+==≥+===+====+=∴=+=>=∴=+=∴=+==+-=-=≤≤ωωππωωππωππωωππωπωωπωππωππωππωπππππϕπϕ或综合得所以上不是单调函数在时当上是减函数在时当上是减函数在时当得又得取得对称的图象关于点由所以解得依题设x x f k x x f k x x f k k k k k f f x x f x f M x f19.本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力. 满分12分.解法一:(Ⅰ)解:连结BG ,则BG 是BE 在面ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2.3,1,31.,,,,,,112211所成的角是与平面于是中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EBEG EBG EB B A AB CD FC EG ED FD EF FD FD FG EFEFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)连结A 1D ,有E AA D AED A V V 11--=,,,F AB EF EF ED AB ED =⋂⊥⊥又AB A ED 1平面⊥∴, 设A 1到平面AED 的距离为h ,则ED S h S AB A AED ⋅=⋅∆∆1.2621,24121111=⋅==⋅==∆∆∆ED AE S AB A A S S AED AB A AE A 又.362.36226221的距离为到平面即AED A h =⨯=∴解法二:(Ⅰ)连结BG ,则BG 是BE 在面ABD 的射影,即∠A 1BG 是A 1B 与平ABD 所成的角. 如图所示建立坐标系,坐标原点为O ,设CA=2a , 则A(2a ,0,0),B(0,2a ,0),D(0,0,1).37arccos.372131323/14||||cos ).31,34,32(),2,2,2(.1.03232).1,2,0(),32,3,3().31,32,32(),1,,(),2,0,2(1111121所成角是与平面解得ABD B A BG BA BG BA BG A BG BA a a BD GE a BD a a CE a a G a a E a A =⋅=⋅=∠∴-=-=∴==+-=⋅∴-==∴(Ⅱ)由(Ⅰ)有A(2,0,0)A 1(2,0,2),E(1,1,1),D(0,0,1).,,0)0,1,1()2,0,0(,0)0,1,1()1,1,1(11AED ED E AA ED ED AA ED AE 平面又平面⊂⊥∴=--⋅=⋅=--⋅-=⋅(Ⅰ)当22=a 时,方程①是圆方程,故不存在合乎题意的定点E 和F ; (Ⅱ)当220<<a 时,方程①表示椭圆,焦点)2,2121()2,2121(22a a F a a E ---和(Ⅲ)当,22时>a 方程①也表示椭圆,焦点))21(21,0())21(21,0(22---+a a F a a E 和为合乎题意的两个定点.(21)本小题主要考查导数、不等式证明等知识,考查综合运用所数学知识解决问题的能力,满分12分.证明:(Ⅰ)因为nk kn nC a x 0)(=∑=-kkn x a --)(,所以1)(--=-='∑k kn nk k nxa kCy nk n 0=∑=.)()(1111------=-n k kn k n a x n xa C(Ⅱ)对函数nnn a x x x f )()(--=求导数:nnnnnnn n n n n n n n a n n a n n a n x a x x x f a x x f a x a n n n n f a x n nxx f )()1()1(,,.)()(,.0)(,0].)([)(,)()(1111-->-+-+≥--=≥∴>'>≥--='--='----时当因此的增函数是关于时当时当所以∴))()(1(])1()1)[(1()1(1nn n n n a n n n a n n n n f --+>-+-++=+'+).()1())()(1(1n f n a n n n n n n n'+=--+>-即对任意).()1()1(,1n f n n f a n n n '+>+'≥+22.本小题主要考查二次函数、数列、不等式等基础知识,综合运用数学知识分析问题和解决问题的能力,满分14分. (Ⅰ)解:∵).1,1(),,1(),,(422122121n n n n n n n n n a a a aQ a a aP a a Q ⋅⋅++-∴,121n n a aa ⋅=+ ∴2222122221)1()1(11-+--=⋅=⋅=n n n n a aa a a a aa ==⋅=-++-+3222222122321)1()1()1(n n a aa a a=1111221211221221)()1()1(---+-==-+++n n n n n a a a a a a a , ∴.)(121-=n aa a a n(Ⅱ)证明:由a =1知,21n n a a =+ ∵,211≤a ∴.161,4132≤≤a a∵当.161,132≤≤≥+a a k k 时∴∑∑=++=++<-=-≤-nk n k knk k k ka a a aa a a1111121.321)(161)(161)( (Ⅲ)证明:由(Ⅰ)知,当a =1时,,121-=n a a n因此∑∑∑=++-==++-≤-=-+-nk i i i i nk k k k a a a aaaa a a nk kk 1221111121212121121)()()(11∑-=-⋅-<-=1213131211312111)1()1(ni i aa a a aa a =.31121151<++aa a。

相关文档
最新文档