123角平分线的性质(2)
人教初中数学八上123角的平分线的性质《三角形的五心及其性质素材 新人教版
三角形的五心及其性质一、三角形的五心1.内心:指三条内角平分线相交的点,在三角形中只有一点,到三角形三边的距离相等,以这点为圆心,到一边的距离为半径,作的圆与三边相切.2. 旁心:指三角形两条外角平分线与另外一条内角平分线的交点.在三角形中有四个,到三角形三边所在直线的距离相等,以这点为圆心,到一边所在直线的距离为半径,作的圆与三边所在直线相切.3. 重心:指三条中线相交的点,在三角形中只有一点,是每条中线的三等分点.4. 垂心:指三条高线相交的点,在三角形中只有一点.锐角三角形垂心在三角形内,直角三角形垂心在直角顶点,钝角三角形垂心在三角形外.5. 外心:指三边中垂线〔垂直平分线〕相交的点,在三角形中只有一点.锐角三角形外心在三角形内,直角三角形外心在斜边中点,钝角三角形外心在三角形外.二、“五心〞的性质1.三角形的重心与三顶点的连线所构成的三个三角形面积相等.2.三角形的外心到三顶点的距离相等.3.三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心.4.三角形的内心、旁心到三边距离相等.5.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心.6.三角形的外心是它的中点三角形的垂心.7.三角形的重心也是它的中点三角形的重心.8.三角形的中点三角形的外心也是其垂足三角形的外心.9.三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(b a a b b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.〔三〕情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.AICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形. ……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. 〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩D CA B所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)D CABDC A B答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,D C A B12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的E DC A B P方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。
角平分线的性质定理和判定定理(含答案)
几何专题2:角平分线的性质定理和判定定理一、 知识点(抄一遍):1. 角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线.2. 角平分线的性质定理:角平分线上的点,到这个角的两边的距离相等. 3. 角平分线的判定定理:角的内部到角的两边距离相等的点在角的平分线上. 二、 专题检测题1. 证明角平分线的性质定理.(注意:证明文字性命题的三个步骤:①根据题意,画出图形;②写出已知和求证;③写出证明过程.) 2. 证明角平分线的判定定理. 3. 定理的几何语言表示 (1)角平分线的性质定理:∵ , ∴ . (2)角平分线的判定定理:∵ , ∴ .4. 已知:如图所示,BN 、CP 分别是∠ABC 、∠ACB 的角平分线,BN 、CP 相交于O点,连接AO ,并延长交BC 于M 求证:AM 是∠BAC 的角平分线.5. 如图,已知BE ⊥AC ,CF ⊥AB ,点E ,F 为垂足,D 是BE 与CF 的交点,AD 平分∠BAC. 求证:BD=CD.B6. 如图,在Rt △ABC 中,∠C=90°,AC=BC. AD 是∠CAB 的平分线. 求证:AB=AC+CD.7. 如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB.8. 如图,已知P 是∠AOB 平分线上的一点.PC ⊥OA ,PD ⊥OB ,垂足分别是点C ,D ,CD 与OP 交于点M. 求证:(1)∠PCD=∠PDC ;(2)OP 是CD 的垂直平分线; (3)OC=OD.O几何专题2:角平分线的性质定理和判定定理答案1. 证明角平分线的性质定理.已知:如图,OC 平分∠AOB ,点P 在OC 上,PD ⊥OA 于点D ,PE ⊥OB 于点E求证: PD=PE证明:∵OC 平分∠ AOB∴ ∠1= ∠2∵PD ⊥ OA,PE ⊥ OB ∴∠PDO= ∠PEO 在△PDO 和△PEO 中∠PDO= ∠PEO ∠1= ∠2 OP=OP∴△PDO ≌ △PEO(AAS) ∴PD=PE2.证明角平分线的判定定理.已知:如图,PD ⊥OA ,PE ⊥OB ,点D 、E 为垂足,PD =PE . 求证:点P 在∠AOB 的平分线上 证明: 经过点P 作射线OC∵ PD ⊥OA ,PE ⊥OB∴ ∠PDO =∠PEO =90°在Rt △PDO 和Rt △PEO 中PO =PO PD=PE ∴ Rt △PDO ≌Rt △PEO (HL )∴ ∠ POD =∠POE ∴点P 在∠AOB 的平分线上.3. 定理的几何语言表示 (1)角平分线的性质定理:∵ OP 平分∠AOB ,DP ⊥OA ,PE ⊥OB , ∴ DP=EP. (2)角平分线的判定定理:∵ PD⊥OA,PE⊥OB,PD =PE . ∴ OP 平分∠AOB .OO4.已知:如图所示,BN、CP分别是∠ABC、∠ACB的角平分线,BN、CP相交于O点,连接AO,并延长交BC于M求证:AM是∠BAC的角平分线.证明:作OE⊥AC,OG⊥AB,OF⊥BC,垂足分别为E、G、F.∵BN平分∠ABC,OG⊥AB,OF⊥BC,∴OG=OF.同理可证:OE=OF.∴OG=OE又∵OE⊥AC,OG⊥AB,∴AM是∠BAC的角平分线.5.如图,已知BE⊥AC,CF⊥AB,点E,F为垂足,D是BE与CF的交点,AD平分∠BAC.求证:BD=CD.证明:∵AD平分∠BAC,BE⊥AC,CF⊥AB,∴DF=DE.∵BE⊥AC,CF⊥AB,∴∠DFB=∠DEC=90°. 在△DFB和△DEC中,∠EDC=∠FDBDF=DE∠DFB=∠DEC∴△DFB≌△DEC(ASA)∴BD=CD.6.如图,在Rt△ABC中,∠C=90°,AC=BC. AD是∠CAB的平分线.求证:AB=AC+CD.证明:过点D作DE⊥AB,垂足为点E.∵AD平分∠CAB,∴∠CAD=∠BAD.∵DE⊥AB∴∠DEA=90°=∠C.在△CAD和△EAD中,∠CAD=∠BAD,∠DEA=∠C,AD=AD.∴△CAD≌△EAD(AAS).∴AC=AE,CD=DE.∵AC=BC,∴∠B=∠BAC=45°,∵∠DEB=90°,∴∠EDB=45°=∠B.∴DE=BE,∴CD=BE,∴AB=AE+BE=AC+CD.B7. 如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB.证明:过点M 作ME ⊥AD ,垂足为E ,∵DM 平分∠ADC , ∴∠1=∠2, ∵MC ⊥CD ,ME ⊥AD ,∴ME=MC (角平分线上的点到角两边的距离相等), 又∵MC=MB , ∴ME=MB ,∵MB ⊥AB ,ME ⊥AD ,∴AM 平分∠DAB (到角的两边距离相等的点在这个角的平分线上).8. 如图,已知P 是∠AOB 平分线上的一点.PC ⊥OA ,PD ⊥OB ,垂足分别是点C ,D ,CD 与OP 交于点M. 求证:(1)∠PCD=∠PDC ;(2)OP 是CD 的垂直平分线; (3)OC=OD.证明:(1)∵OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB , ∴PC=PD ∴∠PCD=∠PDC. (2)∵OP 平分∠AOB , ∴∠COP=∠DOP. ∵PC ⊥OA ,PD ⊥OB , ∴∠PCO=∠PDO=90°, ∴∠CPO=∠DPO. ∵PC=PD ,∴△CDP 是等腰三角形,∴PM 是等腰三角形底边上的中线和高线. 即OP 是CD 的垂直平分线. (3)由(2)知,∠CPO=∠DPO. ∴OP 平分∠CPD , 又∵CP ⊥OA ,DP 垂直OB , ∴OC=OD (角平分线的性质定理).O。
角平分线三个定理
角平分线三个定理全文共四篇示例,供读者参考第一篇示例:角平分线三个定理是几何学中非常重要的定理之一,它们可以帮助我们更好地理解和运用角平分线的性质。
本文将详细介绍这三个定理的含义和推理过程。
第一个定理是角平分线定理。
所谓角平分线定理指的是:如果一条直线将一个角分成两个大小相等的角,那么这条直线就是这个角的平分线。
换句话说,如果一条直线BD分割一个角ABC,且∠ABD≌∠CBD,则BD就是∠ABC的平分线。
证明这个定理的方法比较简单,可以通过相似三角形或等角相等辅助线的方法进行。
通过这三个定理,我们可以更深入地了解角平分线的性质,进而应用到解决各种与角平分线相关的几何问题中。
熟练掌握和灵活运用这三个定理对于提高我们的几何学水平至关重要。
希望通过本文的介绍,读者们能够更好地理解和掌握角平分线的性质,从而在学习和工作中取得更好的成绩。
愿大家在几何学的道路上不断进步,探索出更多有趣的数学定理和问题!第二篇示例:角平分线三个定理是解析几何中非常重要的定理,对于角平分线的性质进行了深入的研究和总结。
在平面几何中,角平分线是连接一个角的两边中点的线段,将这个角分成两个相等的角。
下面我们来详细介绍一下角平分线的三个定理。
第一个角平分线定理是角平分线定理,它的表述如下:若一条线段从一个角内的顶点引出,又将这个角分成两个相等的小角。
这个定理是解析几何中最基本的定理之一,也是很多其他定理的基础。
通过角平分线定理,我们可以得出许多结论和推论,解决很多关于角平分线的问题。
第二个角平分线定理是角平分线的长度比定理,它的表述如下:如果一条角平分线把一个角分成两个相等的小角,则这条角平分线上的一点到角的两边的距离分别等于这两条边的比值。
这个定理在解决角平分线长度问题时非常有用,能够帮助我们准确计算角平分线的长度。
通过这三个角平分线定理,我们可以更好地理解和运用角平分线的性质,解决各种与角平分线相关的问题。
在解析几何的学习中,掌握这些定理能够提高我们的解题能力和几何思维,帮助我们更好地理解平面几何知识,为进一步学习提供良好的基础。
角平分线的画法及性质
角平分线的画法及性质
角平分线的性质:1.角平分线可以得到两个相等的角。
2.角平分线上的点到角两边的间隔相等。
角平分线的性质:1.角平分线可以得到两个相等的角。
2.角平分线上的点到角两边的间隔相等。
角平分线怎么画材料:圆规、纸张、尺子、铅笔。
1、首先预备好下列图的工具,圆规和尺子是必不行少的。
2、在纸上任凭画一个角AOB。
3、用圆规以O为原点,任意间隔为半径,在纸上画弧,与角AOB相交于点C和点D。
4、先以点C为原点,CD为半径画圆弧;再以点D为原点,DC 为半径画圆弧,两圆弧相交于点E。
5、连接OE,OE就是叫AOB的角平分线了。
角平分线的性质1、角平分线可以得到两个相等的角。
2、角平分线上的点到角两边的间隔相等。
3、三角形的三条角平分线交于一点,称作三角形内心。
三角形的内心到三角形三边的间隔相等。
4、三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。
角平分线的性质定理和判定(经典)
第一部分:知识点回顾1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上第二部分:例题剖析例1. 已知:在等腰Rt Rt△△ABC 中,AC=BC AC=BC,,∠C=90°,AD 平分∠平分∠BAC BAC BAC,,DE DE⊥⊥AB 于点E ,AB=15cm AB=15cm,,(1)求证:)求证:BD+DE=AC BD+DE=AC BD+DE=AC..(2)求△)求△DBE DBE 的周长.的周长.例2. 如图,∠如图,∠B=B=B=∠C=90°,∠C=90°,∠C=90°,M M 是BC 中点,中点,DM DM 平分∠平分∠ADC ADC ADC,求证:,求证:,求证:AM AM 平分∠平分∠DAB DAB DAB..例3. 如图,已知△如图,已知△ABC ABC 的周长是2222,,OB OB、、OC 分别平分∠分别平分∠ABC ABC 和∠和∠ACB ACB ACB,,OD OD⊥⊥BC 于D ,且OD=3OD=3,△,△,△ABC ABC 的面积是多少?的面积是多少?角平分线的性质定理和判定第三部分:典型例题例1、已知:如图所示,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 、CD 交于点O ,且AO 平分∠BAC ,求证:OB=OC .【变式练习】如图,已知∠1=∠2,如图,已知∠1=∠2,P P 为BN 上的一点,PF⊥BC 于F ,PA=PC PA=PC,求证:∠PCB+∠BAP=180º,求证:∠PCB+∠BAP=180º,求证:∠PCB+∠BAP=180º例2、已知:如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC . (1)若连接AM ,则AM 是否平分∠BAD ?请你证明你的结论;?请你证明你的结论; (2)线段DM 与AM 有怎样的位置关系?请说明理由.有怎样的位置关系?请说明理由.(3)CD 、AB 、AD 间?直接写出结果【变式练习】如图,△如图,△ABC ABC 中,中,P P 是角平分线AD AD,,BE 的交点.的交点. 求证:点P 在∠在∠C C 的平分线上.21NPF CBA【变式练习】如图,D 、E 、F 分别是△ABC 的三条边上的点,CE=BF ,△DCE 和△DBF 的面积相等.求证:AD 平分∠BAC .例3.如图,在△ABC 中,BD 为∠ABC 的平分线,DE ⊥AB 于点E ,且DE=2cm ,AB=9cm ,BC=6cm ,求△ABC 的面积.的面积.第四部分:思维误区第五部分:方法规律第七部分:巩固练习DAD M A B C N P E D B C A E F ADP7.如图,如图,已知在△已知在△ABC 中,90C Ð=,点D 是斜边AB 的中点,2AB BC =,DE AB ^ 交AC 于E .求证:BE 平分ABC Ð.8、如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB. 9.如图,在∠AOB 的两边OA ,OB 上分别取OM=ON ,OD=OE ,DN 和EM 相交于点C . 求证:点C 在∠AOB 的平分线上.上.第八部分:中考体验BDAECA . 1B . 2C . 3D . 4A . 11 B . 5.5 C . 7D . 3.5 3.(2010•鄂州)如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △=7,A . 4B .3 C .6 D .5 间的距离为间的距离为 _________ .2.(2011•恩施州)如图,AD △ABC DF AB F DE=DG △ADG △AED。
角平分线三个定理-概述说明以及解释
角平分线三个定理-概述说明以及解释1.引言1.1 概述角平分线三个定理是解决与角度相关的几何问题时,非常重要且常用的定理。
它们分别应用于角的平分线问题,帮助我们更深入地理解角的性质与构造。
这三个定理不仅在数学学科中有广泛的应用,而且在实际生活中也具有重要的意义。
在解释这三个定理之前,我们先回顾一下角的基本概念。
在几何学中,角是由两条线段或射线共享一个公共端点而形成的图形。
以公共端点为中心,可以将角分为两个部分,分别称为角的两个腿。
角的大小通常用度或弧度来表示,这取决于所用的单位。
第一个定理是角的平分线定理,它指出:如果一条直线将一个角平分成两个相等的角,那么这条直线称为这个角的平分线。
换句话说,平分线将角分为两个相等的部分。
这个定理有广泛的应用,例如在三角形中,利用角平分线定理可以证明角的大小相等,从而推导出三角形的一些特殊性质。
第二个定理是外角平分线定理,它指出:如果一条直线通过一个三角形的外角的顶点,并将外角的两个邻角平分成两个相等的角,那么这条直线称为该三角形的外角平分线。
这个定理在解决外角问题时非常有用,它保证了外角平分线的存在性,并简化了我们分析与推导相关问题的步骤。
第三个定理是内角平分线定理,它指出:如果一条直线通过一个三角形的内角的顶点,并将内角的两个邻角平分成两个相等的角,那么这条直线称为该三角形的内角平分线。
这个定理与外角平分线定理类似,但是涉及的是三角形的内角。
利用内角平分线定理,我们可以简化三角形内角相关问题的分析过程。
角平分线三个定理在几何学中占据着重要的地位,是研究角度关系和解决几何问题的基础。
它们不仅具有理论意义,还具有广泛的应用价值。
通过深入理解和熟练运用这三个定理,我们能够提高问题解决的效率,并在实际生活中更好地应用几何知识。
1.2文章结构文章结构:本文主要介绍了角平分线的三个定理,分为引言、正文和结论三个部分。
引言部分首先概述了角平分线的意义和应用,以及本文的目的。
角平分线性质的原理
角平分线性质的原理角平分线是指将一个角分成两个大小相等的角的线段。
角平分线有以下几个重要的性质:性质一:角平分线上的所有点到角的两边的距离相等。
这个性质可以通过几何推理证明。
假设有一个角ABC,角平分线AD将角分成两个大小相等的角∠BAD和∠DAC。
我们需要证明,角平分线上的点到角的两边的距离相等,即AD = BD = CD。
证明如下:首先,连接AC。
假设∠BAD = ∠DAC = x。
由于∠BAD和∠DAC大小相等,因此四边形ABCD可以分成两个等腰三角形∆ABD和∆ACD。
根据等腰三角形的性质,AD = BD,AD = CD。
所以,角平分线上的点到角的两边的距离相等。
性质二:角平分线和角的另一条边相交的点是角的内切点。
内切点是指和角的另一条边相切于一个点的线。
角的角平分线正好满足这个条件,因此角平分线和角的另一条边相交的点是角的内切点。
证明如下:仍以角ABC为例,设∠BAD和∠DAC是由角平分线AD分出的两个大小相等的角。
连接AC并延长到点D,假设角∠ADC是由角平分线AD分出的较大的角。
根据性质一,AD = CD。
又根据角度和定理,∠A + ∠BAD + ∠DAC + ∠ADC = 180。
由于∠BAD = ∠DAC,所以∠A + 2∠BAD + ∠ADC = 180。
进一步化简得到∠A + ∠BAD + ∠BAD + ∠ADC = 180。
由于∠BAD + ∠ADC = 180(补角关系),所以∠A + ∠BAD + ∠BAD + 180 - ∠BAD = 180。
整理得到∠A + ∠BAD = 180,即∠BAD + ∠DAC = 180。
这说明∠BAD和∠DAC 构成的直线与延长线AC重合于点D,所以角平分线和角的另一条边相交于角的内切点。
性质三:角的内切线平分角的大小。
内切线是指从角的内切点到角的顶点的线段,它平分了角的大小。
证明如下:再以角ABC为例,连接内切点D和角的顶点A,假设角∠BAC的内切线为AD。
三角形角平分线的定理
三角形角平分线的定理角平分线是指将一个角分成两个相等角的直线。
在三角形中,角平分线起着重要的作用。
本文将介绍三角形角平分线的定理以及其相关性质。
一、三角形角平分线的定理三角形角平分线的定理是指:在一个三角形中,如果一条直线从一个顶点平分对角的两个角,那么这条直线将平分对角的对边。
具体而言,设△ABC为一个三角形,AD是∠BAC的角平分线,交BC于点D。
那么有以下结论:1.∠BAD = ∠DAC,即∠BAD和∠DAC是相等的。
2.∠ABD = ∠CAD,即∠ABD和∠CAD是相等的。
3.BD/CD = AB/AC,即BD与CD的比值等于AB与AC的比值。
二、三角形角平分线的证明要证明三角形角平分线的定理,首先我们可以通过角平分线的定义得出∠BAD = ∠DAC和∠ABD = ∠CAD。
接下来,我们需要证明BD/CD = AB/AC。
根据正弦定理,我们可以得到以下等式:AB/AC = sin∠BAC/sin∠ABCBD/CD = sin∠BAC/sin∠CBD由于∠ABC = ∠CBD,所以sin∠ABC = sin∠CBD。
因此,我们可以得出BD/CD = AB/AC。
三、三角形角平分线的应用三角形角平分线的定理在几何学中有广泛的应用。
以下是一些常见的应用场景:1.角平分线定理可以用来解决三角形内角的问题。
通过已知条件,我们可以利用角平分线的性质来求解未知角度的大小。
2.角平分线定理可以用来证明三角形的相似性。
当两个三角形的角平分线相交于同一点时,我们可以利用角平分线的性质证明这两个三角形是相似的。
3.角平分线定理可以用来证明三角形的内心存在。
内心是三角形内切圆的圆心,它同时也是三条角平分线的交点。
4.角平分线定理可以用来证明三角形的垂心存在。
垂心是三角形三条高的交点,其中两条高与第三条高的交点恰好是角平分线的交点。
四、总结三角形角平分线的定理是几何学中的重要定理之一。
通过角平分线的性质,我们可以解决三角形内角的问题,证明三角形的相似性以及存在性等问题。
角平分线的性质(4种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)
角平分线的性质(4种题型)【知识梳理】一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.二、角的平分线的逆定理角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:三、角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D 、E 为圆心,大于DE 的长为半径画弧,两弧在∠AOB 内部交于点C. (3)画射线OC.射线OC 即为所求. 【考点剖析】题型一:角平分线性质定理 例1.(2023春·陕西榆林·八年级校考期末)如图,在四边形ABCD 中,90B C ∠=∠=︒,点E 为BC 的中点,且AE 平分BAD ∠.求证:DE 是ADC ∠的平分线.【详解】证明:如图,过点E 作EF AD ⊥于点F ,∴90B Ð=°,AE 平分BAD ∠,∴BE EF =.∴点E 是BC 的中点,∴BE CE =,∴CE EF =.又∵90C ∠=︒,EF AD ⊥,∴DE 是ADC ∠的平分线.【变式1】(2023春·山西太原·七年级校考阶段练习)如图,ABC 中,90C ∠=︒,AD 平分BAC ∠,5AB =,2CD =,求ABD △的面积.12【答案】5【详解】解:作DE AB ⊥如图,∵AD 平分BAC ∠,90C ∠=︒,2CD =,∴=2CD DE =,1152522ABD S AB DE ∴=⨯⨯=⨯⨯=△.【变式2】(2023春·湖南常德·八年级统考期末)如图,点P 是ABC 的三个内角平分线的交点,若ABC 的周长为24cm ,面积为236cm ,则点P 到边BC 的距离是( )A .8cmB .3cmC .4cmD .6cm【答案】B 【详解】解:过点P 作PD AB ⊥于,PE BC ⊥于E ,PF AC ⊥于F ,如图,∵点P 是ABC 的内角平分线的交点,∴PE PF PD ==,又ABC 的周长为24cm ,面积为236cm ,∴()11112222ABC S AB PD BC PE AC PF PE AB BC AC =⋅+⋅+⋅=++,∴124363PE ⨯⨯=∴3cm PE =【变式3】(湖南省郴州市2022-2023学年八年级下学期期末数学试题)如图,在ABC 中,90ACB ∠=︒,BD 平分ABC ∠,DE AB ⊥于点E .如果8AC =,那么AD DE +=______.【答案】8【详解】解:∵在ABC 中,90ACB ∠=︒,BD 平分ABC ∠,DE AB ⊥,∴CD DE =,∵8AC =,∴8AD DE AD CD AC +=+==, 【变式4】(2023春·广东深圳·七年级统考期末)把两个同样大小的含30︒角的三角尺像如图所示那样放置,其中M 是AD 与BC 的交点,若4CM =,则点M 到AB 的距离为______.【答案】4【详解】解:由题意,得:90,30D C ABC DAB ∠=∠=︒∠=∠=︒,∴,60MC AC CAB ⊥∠=︒,∴30MAC BAC MAB MAB ∠=∠−∠=︒=∠,∴AM 平分DAB ∠,过点M 作MN AB ⊥,交AB 于点N ,∴4MN MC ==.故答案为:4.【变式5】如图,P 为ABC 三条角平分线的交点,PH 、PN 、PM 分别垂直于BC 、AC 、AB ,垂足分别为H 、N 、M .已知ABC 的周长为15cm ,3cm PH =,则ABC 的面积为______2cm .【答案】22.5【详解】解:连接PM 、PN 、PH ,P 为ABC 三条角平分线的交点,PH 、PN 、PM 分别垂直于BC 、AC 、AB ,3cm PM PN PH ∴===,ABC ∴∆的面积ΔAPB =的面积ΔBPC +的面积ΔAPC +的面积111222AB PM BC PH AC PN =⨯⨯+⨯⨯+⨯⨯ 1()32AB BC AC =++⨯222.5(cm )=.七年级校考期末)如图,在ABC 中,【答案】(1)32︒ (2)6【详解】(1)解:∵40B ∠=︒,76C ∠=︒,∴180407664BAC ∠=︒−︒−︒=︒,∵AD 平分BAC ∠, ∴1322BAD BAC ∠=∠=︒;(2)如图,过点D 作DF AB ⊥于点F ,∵AD 平分BAC ∠,DE AC ⊥,∴DF DE =,∵2DE =,6AB =,∴2DF =, ∴ABD △的面积12662=⨯⨯=.题型二:角平分线性质定理及证明 ,且PMN 与OMN 的面积分别是【答案】(1)证明过程见详解(2)20OM ON +=【详解】(1)证明:如图所示,过P 作PC MN PD OA PE OB ⊥⊥⊥,,,∵MP 平分AMN ∠,NP 平分MNB ∠,∴PD PE =,PC PE =,∴PD PE =,∵PD AO PE BO ⊥⊥,,∴OP 平分AOB ∠.(2)解:如图所示,过P 作PC MN PD OA PE OB ⊥⊥⊥,,,连接OP ,∵18162PMN MN S MN PC ===△,,∴4PC =,由(1)可知4PD PE PC ===,∵1624PMN OMN S S ==△△,,∴40MONP S =四边形,即1122OPM ONP MONP S S S OM PD ON PE =+=+△△四边形,∴1140442222OM ON OM ON =⨯+⨯=+,∴20OM ON +=. 【变式1】(2022秋·河南安阳·八年级校考阶段练习)如图,点E 是BC 的中点,AB BC DC BC ⊥⊥,,AE 平分BAD ∠.求证:(1)DE 平分ADC ∠;(2)AD AB CD +=.【详解】(1)证明:如下图,过E 作EF AD ⊥于F ,∵AB BC ⊥,AE 平分BAD ∠,∴EB EF =,∵点E 是BC 的中点,∴EB EC =,∴EF EC =,∵DC BC EF AD ⊥⊥,,∴90EFD ECD ∠∠︒==,在Rt EFD 和Rt ECD △中,EF EC ED ED =⎧⎨=⎩,∴Rt Rt HL EFD ECD ≌(),∴FDE CDE ∠∠=,∴DE 平分ADC ∠;(2)解:由(1)知,Rt Rt EFD ECD ≌,∴FD CD =,在Rt AEF 和Rt AEB 中,EF EB AE AE =⎧⎨=⎩,∴Rt Rt HL AEF AEB ≌(),∴AF AB =,∵AD AF FD +=,∴AD AB CD +=.【变式2】(2022秋·北京朝阳·八年级校考期中)如图,在ABC ∆中,90C ∠=︒,DE AB ⊥,于点E ,AD 平分CAB ∠,点F 在AC 上,BD DF =.求证:BE FC =.【详解】证明:∵AD 平分CAB ∠,90C ∠=︒,DE AB ⊥,∴DE DC =,90C DEB ∠=∠=︒,∴在Rt DEB ∆和Rt DCF ∆中,∵DE DC BD DF =⎧⎨=⎩,∴()HL DEB DCF ∆≅∆,∴BE FC =.(1)求证:BE =CD ;(2)判断点O 是否在∠BAC 的平分线上,并说明理由.(1)证明:BE 、CD 是ABC ∆的高,且相交于点O ,90∴∠=∠=︒BEC CDB ,在BDO ∆和CEO ∆中,90CDB BEC BOD COEBD CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,BOD COE ∴∆≅∆(AAS),OD OE ∴=,OB OC =,OD OC OE OB ∴+=+,即CD BE =;(2)解:点O 在BAC ∠的平分线上,理由如下: 连接AO ,如图所示:BE 、CD 是ABC ∆的高,且相交于点O , 90ADC AEB ∴∠=∠=︒,由(1)得BE CD =,∴在ABE ∆和ACD ∆中,90ADC AEB CAD BAE CD BE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,ACD ABE ∴∆≅∆(AAS), AD AE ∴=,由(1)得OD OE =,∴在AOD ∆和AOE ∆中,90AD AE ADC AEB OD OE =⎧⎪∠=∠=︒⎨⎪=⎩,AOD AOE ∴∆≅∆(SAS),DAO EAO ∴∠=∠, ∴点O 在BAC ∠的平分线上.题型三:角平分线的判定定理 例3.如图,90B C ∠=∠=︒,M 是BC 的中点,AM 平分DAB ∠,求证:DM 平分ADC ∠.【详解】证明:如图:过点M 作ME AD ⊥,垂足为E ,AM 平分DAB ∠,MB AB ⊥,ME AD ⊥,ME MB =∴(角平分线上的点到角两边的距离相等),又MC MB =,ME MC ∴=,MC CD ⊥,ME AD ⊥,DM ∴平分ADC ∠(到角的两边距离相等的点在这个角的平分线上).【详解】(1)证明:如图,过点E 作EF DA ⊥于点F ,∵90C ∠=︒,DE 平分ADC ∠,∴CE EF =,∵E 是BC 的中点,∴BE CE =,∴BE EF =,又∵90B Ð=°,EF DA ⊥,∴AE 平分DAB ∠.(2)解:∵EF DA ⊥,90C ∠=︒,∴EFD △和ECD 都为Rt △,又∵DE 平分ADC ∠,∴EC EF =,在Rt EFD 和Rt ECD △中,ED ED EC EF =⎧⎨=⎩,∴()Rt Rt HL EFD ECD △≌△, ∴EFD ECD S S =△△,CED FED ∠=∠,∵EF DA ⊥,90B Ð=°,∴EFA △和EBA △都为Rt △,又∵AE 平分DAB ∠,∴EF EB =,在Rt EFA △和Rt EBA △中,EA EA EF EB =⎧⎨=⎩,∴()Rt Rt HL EFA EBA △≌△, ∴EFA EBA S S =△△,FEA BEA ∠=∠, ∴()111809022DEA DEF AEF CEF BEF ∠=∠+∠=∠+∠=⨯︒=︒, ∵4AE =,3DE =, ∴1143622AED S AE DE =⋅=⨯⨯=△, ∴EFD ECD EFA EBA ABCD S S S S S =+++△△△△四边形EFD EFD EFA EFA S S S S =+++△△△△()2EFD EFA S S =+△△2AED S =△ 26=⨯12=.∴四边形ABCD 的面积为12. 【变式2】如图,在AOB 和COD △中,OA OB =,OC OD =(OA OC <),AOB COD α∠=∠=,直线AC ,BD 交于点M ,连接OM .(1)求证:AC BD =;(2)用α表示AMB ∠的大小;(3)求证:OM 平分AMD ∠.【详解】(1)证明:AOB COD α∠=∠=,AOB BOC COD BOC ∴∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC 和BOD 中,OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩,()SAS AOC BOD ∴≌, ∴AC BD =,(2)解:由三角形的外角性质得:AMB OBD OAC AOB ∠+∠=∠+∠,由(1)得()SAS AOC BOD ≌△△,∴OAC OBD ∠=∠,AMB AOB α∴∠=∠=,(3)证明:作OG AM ⊥于G ,OH DM ⊥于H ,如图所示,则90OGA OHB ∠=∠=︒,在OAG △和OBH △中,OGA OHB OAC OBDOA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS OAG OBH ∴≌, OG OH ∴=,OG AM ⊥于G ,OH DM ⊥于H ,MO ∴平分AMD ∠,是ABC 的角平分线,且交于点(1)APB ∠=______.(2)求证:点P 在C ∠的平分线上.【详解】(1)解:证明:60C ∠=︒,AE ,BD 是ABC 的角平分线,12ABP ABC ∴∠=∠,12BAP BAC ∠=∠,11()(180)6022BAP ABP ABC BAC C ∴∠+∠=∠+∠=︒−∠=︒, 120APB ∴∠=︒;(2)如图,过P 作PF AB ⊥,PG AC ⊥,PH BC ⊥,AE ,BD 分别平分CAB ∠,CBA ∠,PF PG ∴=,PF PH =,PH PG ∴=,∴点P 在C ∠的平分线上;(3)如图,在AB 上取点M 使AM AD =,连接PM ,AE 是BAC ∠的平分线,PAM PAD ∴∠=∠, 在AMP 与ADP △中,AP AP PAM PADAM AD =⎧⎪∠=∠⎨⎪=⎩,()SAS AMP ADP ∴≌, 18060APM APD APB ∴∠=∠=︒−∠=︒,180()60BPM APM APD ∴∠=︒−∠+∠=︒,60BPE APD ∠=∠=︒,BPM BPE ∴∠=∠,BD Q 是ABC ∠的角平分线,MBP EBP ∴∠=∠,在BPM △与BPE 中,MBP EBP BP BPBPE BPM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA BPM BPD ∴≌,BM BE ∴=, AB AM BM AD BE ∴=+=+. (1)如图1,连接AC BD ,,交点为G ,连接OG ,求证:①AC BD =;②OG 平分DGC ∠;(2)如图2,若90AOD BOC ∠=∠=︒,E 是CD 的中点,过点在同一条直线上.∴AOD AOB BOC AOB ∠+∠=∠+∠,∴AOB AOC ∠=∠,又∵OA OD =,OB OC =,∴()SAS DOB AOC V V ≌,∴AC BD =;②如图所示,过点O 作OH DB ⊥于点H ,OF AC ⊥于点F ,∵DOB AOC ≌,OH DB ⊥,OF AC ⊥∴OH OF =,∴点O 在DGC ∠的角平分线上,∴OG 是DGC ∠的角平分线,∴OG 平分DGC ∠;(2)证明:连接OE ,并延长到N ,使NE OE =,连接CN ,∵E 是CD 的中点,∴CE DE =,又∵CEN DEO ∠=∠,NE OE =,∴()SAS CEN DEO ∠V V ≌,∴NCE ODE ∠=∠,CN OD =,∴CN OD ∥,∴180OCN COD CN OA ∠+∠=︒=,,90AOD BOC ∠=∠=︒,180AOB COD ∴∠+∠=︒,OCN AOB ∴∠=∠,在ONC 和BAO 中,OC OB OCN AOBCN OA =⎧⎪∠=∠⎨⎪=⎩,()SAS ONC BAO ∴≌, NOC ABO ∴∠=∠,OF AB ⊥,90ABO BOF ∴∠+∠=︒,90NOC BOF ∴∠+∠=︒,180NOC BOF BOC ∴∠+∠+∠=︒,∴点E O F ,,在同一条直线上.题型四:尺规作图—作角平分线 例4.(2023春·陕西榆林·七年级校考期末)如图,已知ABC ,利用尺规,在AC 边上求作一点D ,使得ABD DBC ∠=∠.(保留作图痕迹,不写作法)【详解】解:如图点D 即为所求..【变式1】(2023春·福建福州·七年级福建省福州第十九中学校考期末)如图,Rt ABC △中,90BAC ∠=︒,AD 为BC 边上的高.(1)尺规作图,在AB 边上求作点P ,使得点P 到边BC 的距离等于AP (保留作图痕迹,不写做法):(2)连接CP (P 为所求作的点)交AD 于点Q ,若30B ∠=︒,求AQC ∠的度数.【详解】(1)解:如图:点P 即为所求;作法:作ACB ∠的角平分线,与AB 的交点P 即为所求;理由:∵CP 是ACB ∠的角平分线,∴点P 到AC 的距离等于点P 到BC 的距离,∵90BAC ∠=︒,∴点P 到AC 的距离即为PA 的值,故点P 到边BC 的距离等于AP .(2)解:如图:∵90BAC ∠=︒,30B ∠=︒,∴180903060ACB ∠=︒−−︒=︒,又∵AD 为BC 边上的高,∴90ADC ∠=︒,∴180906030DAC ∠=︒−−︒=︒,由(1)可知CP 是ACB ∠的角平分线, ∴1302ACQ QCD ACB ∠=∠=∠=︒,∴1803030128001ACQ DAC AQC ∠−∠=︒−︒−︒=︒∠=︒−. 【变式2】(2023·甘肃兰州·统考中考真题)综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA 和OB 上分别取点C 和D ,使得OC OD =,连接CD ,以CD 为边作等边三角形CDE ,则OE 就是AOB ∠的平分线.请写出OE 平分AOB ∠的依据:____________;类比迁移:(2)小明根据以上信息研究发现:CDE 不一定必须是等边三角形,只需CE DE =即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在AOB ∠的边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同刻度分别与点M ,N 重合,则过角尺顶点C 的射线OC 是AOB ∠的平分线,请说明此做法的理由;拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路AB 和AC ,汇聚形成了一个岔路口A ,现在学校要在两条小路之间安装一盏路灯E ,使得路灯照亮两条小路(两条小路一样亮),并且路灯E 到岔路口A 的距离和休息椅D 到岔路口A 的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规..........在对应的示意图5中作出路灯E 的位置.(保留作图痕迹,不写作法)【详解】解:(1)∵OC OD =,CE DE =,DE DE =,∴()SSS OCE ODE ≌,∴AOE BOE ∠=∠,∴OE 是AOB ∠的角平分线;故答案为:SSS(2)∵OM ON =,CM CN =,OC OC =,∴()SSS OCM OCN ≌,∴AOC BOC ∠=∠,∴OC 是AOB ∠的角平分线;(3)如图,点E 即为所求作的点;. 【变式3】(2023春·重庆九龙坡·七年级校考期末)如图,已知在ABC 中,90BAC ∠=︒,AD BC ⊥于点D .(1)尺规作图:作ABC ∠的平分线交AC 于点E ,交AD 于点F ;(要求:保留作图痕迹,不写作法,不下结论)(2)在(1)的条件下,求证:AFE AEF ∠=∠.AD BC ⊥90ADB ∴∠=︒∴__________90BFD +∠=︒又BFD ∠=__________FBD ∴∠+__________90=︒90BAC ∠=︒ABF ∴∠+__________90=︒BF 平分ABC ∠ABF ∴∠=__________AFE AEF ∴∠=∠.【详解】(1)如图所示,(2)AD BC ⊥90ADB ∴∠=︒∴FBD ∠90BFD +∠=︒又BFD ∠=AEF ∠FBD ∴∠+AEF ∠90=︒90BAC ∠=︒ABF ∴∠+AFE ∠90=︒ BF 平分ABC ∠ABF ∴∠=FBD ∠AFE AEF ∴∠=∠.故答案为:FBD ∠;AEF ∠;AEF ∠;AFE ∠;FBD ∠.【过关检测】一、单选题 1.(2023春·四川泸州·八年级统考期末)如图,70AOB ∠=︒,点C 是AOB ∠内一点,CD OA ⊥于点D ,CE OB ⊥于点E .且CD CE =,则DOC ∠的度数是( )A .30︒B .35︒C .40︒D .45︒【答案】B【分析】根据角平分线的判定定理可得OC 平分AOB ∠,再计算角度.【详解】解:∵CD OA ⊥,CE OB ⊥,CD CE =,∴OC 平分AOB ∠, ∴1352DOC AOB ∠=∠=︒,故选C .【点睛】本题主要考查了角平分线的判定,注意:到角的两边距离相等的点在角平分线上. 2.(陕西省榆林市高新区2022-2023学年七年级下学期期末数学试题)如图,在Rt ABC △中,ABC ∠的平分线BD 交AC 于点D ,过点D 作DE AB ⊥交AB 于点E .若9cm CD =,则点D 到AB 的距离是( )A .9cmB .6cmC .4.5cmD .3cm【答案】A 【分析】根据角平分线的性质,角平分线上的点到角两边的距离相等,即可求解.【详解】∵BD 平分ABC ∠,DE AB ⊥,AC BC ⊥,∴9DC DE ==,∴点D 到AB 的距离是9cm .故选:A .【点睛】本题考查角平分线的性质,解题的关键是掌握角平分线的性质.3.(2023春·河南焦作·七年级校考期末)如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 的长不可能是( )【答案】A【分析】根据余角的性质可得ABD CBD ∠=∠,即BD 平分ABC ∠,作DE BC ⊥于E ,则3AD DE ==,再根据垂线段最短即可得到答案.【详解】解:∵90A ∠=︒,BD CD ⊥,∴90,90ABD ADB CBD C ∠+∠=︒∠+∠=︒,∵ADB C ∠=∠,∴ABD CBD ∠=∠,即BD 平分ABC ∠,作DE BC ⊥于E ,则3AD DE ==,∵P 是BC 边上一动点,则DP DE ≥,即3DP ≥,∴DP 的长不可能是52;故选:A .【点睛】本题考查了直角三角形的性质和角平分线的性质,得出BD 平分ABC ∠是解题的关键.A .12∠=∠且CM DM =B .13∠=∠且CM DM =C .12∠=∠且OD DM =D .23∠∠=且OD DM =【答案】A 【分析】由作图过程可得:,OD OC CM DM ==,再结合DM DM =可得()SSS COM DOM ≌,由全等三角形的性质可得12∠=∠即可解答.【详解】解:由作图过程可得:,OD OC CM DM ==,∵DM DM =,∴()SSS COM DOM ≌.∴12∠=∠.∴A 选项符合题意;不能确定OC CM =,则13∠=∠不一定成立,故B 选项不符合题意;不能确定OD DM =,故C 选项不符合题意,OD CM ∥不一定成立,则23∠∠=不一定成立,故D 选项不符合题意.故选A .【点睛】本题主要考查了角平分线的尺规作图、全等三角形的判定与性质等知识点,理解尺规作图过程是解答本题的关键. ,ABC 的面积为,则ABC 的周长为( A .4B .6C .24D .12【答案】C 【分析】过点E 作EF AB ⊥,垂足为F ,过点E 作EG AC ⊥,垂足为G ,根据角平分线的性质可得1EG EF ED ===,然后根据三角形的面积公式进行计算即可解答.【详解】解:过点E 作EF AB ⊥,垂足为F ,过点E 作EG AC ⊥,垂足为G ,∵BE 平分ABC ∠,ED BC ⊥,EF AB ⊥,∴1EF ED ==,∵CE 平分ACB ∠,ED BC ⊥,EG AC ⊥,∴1ED EG ==,∴ABC 的面积ABE =的面积BEC +△的面积AEC +△的面积()11111122222AB EF BC ED AC EG AB BC AC =⋅+⋅+⋅=⨯⨯++=,∴24AB BC AC ++=,即ABC 的周长为24.故选:C .【点睛】本题考查了角平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.A .3PD =B .3PD <C .3PD ≤ D .3PD ≥【答案】D 【分析】根据角平分线的性质得到3PF =,再根据垂线段最短即可解答.【详解】解:过点P 作PE AB ⊥于点E ,过点P 作PF BC ⊥于点F ,∵点P 在ABC ∠的平分线上,∴PE PF =, ∵3PE =,∴3PF =,∴根据垂线段最短可知:3PD ≥,故选D .【点睛】本题考查了角平分线的性质,垂线段最短,掌握角平分线的性质是解题的关键. 八年级统考期末)如图,在ABC 中, A .83 B .43 【答案】D【分析】由题意可求DC 的长,由角平分线的性质可求解.【详解】解:如图,过点D 作DH AB ⊥,垂足为H ,∵143AC DC AC ==,,∴1DC =,∵BD 平分ABC ∠,90C DH AB =︒∠,⊥,∴1CD DH ==,∴点D 到AB 的距离等于1,故选:D .【点睛】本题考查了角平分线的性质,熟练运用角平分线的性质是本题的关键.8.(2023春·湖南娄底·八年级统考期末)如图,三条公路把A ,B ,C 三个村庄连成一个三角形区域,现决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( )A .三角形三个内角的角平分线的交点B .三角形三条边的垂直平分线的交点C .三角形三条高的交点D .三角形三条中线的交点【答案】A 【分析】根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:根据角平分线的性质,集贸市场应建在三个角的角平分线的交点处.故选:A .【点睛】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.9.(2023春·陕西榆林·八年级统考期末)如图,OD 平分AOB ∠,DE AO ⊥于点E ,5DE =,F 是射线OB 上的任意一点,则DF 的长度不可能是( )【答案】A 【分析】过D点作DH OB ⊥于H ,根据角平分线的性质得5DH DE ==,再利用垂线段最短得到5DF ≥,然后对各个选项进行判断即可,【详解】过D点作DH OB ⊥于H ,OD 平分AOB ∠,DE OA ⊥,DH OB ⊥,5DH DE ∴==,DF DH ≥,5DF ∴≥,故选A【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,也考查了垂线段最短,掌握角平分线的性质是解题的关键. 10.(2023春·河南开封·七年级统考期末)如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥于E ,则下列结论:①DE CD =;②AD 平分CDE ∠;③BAC BDE ∠=∠;④BE AC AB +=,其中正确的是( )A .1个B .2个C .3个D .4个【答案】D 【分析】①根据角平分线的性质得出结论:DE CD =;②证明ACD AED △≌△,得AD 平分CDE ∠;③由四边形的内角和为360︒得180CDE BAC ∠+∠=︒,再由平角的定义可得结论是正确的;④由ACD AED ∆≅∆得AC AE =,再由AB AE BE =+,得出结论是正确的.【详解】解:①90C ∠=︒,AD 平分BAC ∠,DE AB ⊥,DE CD ∴=;所以此选项结论正确;②DE CD =,AD AD =,90ACD AED ∠=∠=︒,ACD AED ∴≌,ADC ADE ∴∠=∠,AD ∴平分CDE ∠,所以此选项结论正确;③90ACD AED ∠=∠=︒,3609090180CDE BAC ∴∠+∠=︒−︒−︒=︒,180BDE CDE ∠+∠=︒,BAC BDE ∴∠=∠,所以此选项结论正确;④ACD AED ≌,AC AE ∴=,AB AE BE =+,BE AC AB ∴+=,所以此选项结论正确;本题正确的结论有4个,故选D .【点睛】本题考查了全等三角形性质和判定,同时运用角平分线的性质得出两条垂线段相等;本题难度不大,关键是根据HL 证明两直角三角形全等,根据等量代换得出线段的和,并结合四边形的内角和与平角的定义得出角的关系.二、填空题 七年级统考期末)如图,在ABC 中,ABC 的内部相交于点 【答案】5【分析】先根据尺规作图描述得出AD 为BAC ∠的角平分线,再根据角平分线的性质得到点D 到AB 的距离5DE =,进而求出三角形的面积.【详解】由作法得AD 平分BAC ∠,如图所示,过点D 作DE AB ⊥于E ,∵90ACB ∠=︒,根据角平分线的性质,得43DC DE ==,ABD ∴的面积114102233AB DE AB =⋅⋅=⨯⨯=. ∴5AB =,故答案为:5.【点睛】本题考查角平分线的性质,解决本题的关键是熟知角平分线的性质并灵活应用.【答案】2【分析】根据尺规作图可得BF 平分ABC ∠,再利用角平分线的性质定理可得出2DF CF ==,最后根据垂线段最短即可得出FH 的最小值是2.【详解】解:如图,过点F 作FD AB ⊥于D .由作图可知,BF 平分ABC ∠,∵FC BC ⊥,FD AB ⊥,∴2DF CF ==.根据垂线段最短可知,FH 的最小值为DF 的长,即为2.故答案为:2.【点睛】本题主要考查角平分线的性质,垂线段最短,解题的关键在于能够准确判断出BF 是ABC ∠的角平分线.13.(2023春·重庆沙坪坝·七年级重庆八中校考期末)如图,Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,E 为线段AC 上一点,连接DE ,且B CED ∠=∠.若16AB =,6CE =,则AE 的长为________.【答案】4【分析】过点D 作DF AB ⊥于点F ,由角平分线的性质得出DC DF =,证明DCE DFB ≌,得出BF CE =,求出AF ,由HL 证明Rt Rt ADC ADF ≌,得出AC AF =,即可求出结果.【详解】解:过点D 作DF AB ⊥于点F ,如图所示:∵90C ∠=︒,AD 平分BAC ∠交BC 于点D ,,∴DC DF =,在DCE △和DFB △中,90=BFD DCE B CEDDC DF ∠=∠=︒⎧⎪∠=∠⎨⎪⎩,∴()AAS DCE DFB ≌,∴6BF CE ==,∴10AF AB BF =−=,在Rt ADC 与Rt ADF 中,==DC DF AD AD ⎧⎨⎩,∴Rt Rt ADC ADF ≌,∴10AC AF ==,∴1064AE AC CE =−=−=.故答案为:4.【点睛】此题考查全等三角形的判定和性质和角平分线的性质,解题的关键是作出辅助线,构造全等三角形,根据HL 证明直角三角形的全等解答.【答案】30【分析】由作图可知OC 是AOB ∠的角平分线,根据角平分线的定义即可得到答案.【详解】解:由题意可知,OC 是AOB ∠的角平分线,∴11603022AOC AOB ∠=∠=⨯︒=︒.故答案为:30【点睛】此题考查角平分线的作图、角平分线相关计算,熟练掌握角平分线的作图是解题的关键.,则POD 的面积是【答案】6【分析】过点P 作PF OB ⊥交OB 于点F ,由作图可知OP 是AOB ∠的平分线,根据角平分线的性质得3PF PC ==,即可求得POD 的面积.【详解】解:如图,过点P 作PF OB ⊥交OB 于点F ,由作图可知,OP 是AOB ∠的平分线,∵PC OA ⊥,PF OB ⊥,∴3PF PC ==,∴POD 的面积为:162OD PF ⋅=,故答案为:6.【点睛】本题考查了尺规作角平分线以及角平分线的性质定理:角平分线上的点到角两边的距离相等.16.(2023春·山东泰安·七年级统考期末)如图,在锐角ABC 中,60BAC ∠=︒,BE 、CD 为ABC 的角平分线.且BE 、CD 交于点F ,连接AF .有下列四个结论:①120BFC ∠=︒;②BD CE =;③BC BD CE =+;④FBD FEC FBC S S S +=△△△.其中结论正确的序号是__________ .【答案】①③④【分析】根据角平分线的定义和三角形内角和定理求出BFC ∠;在BC 上取BM BD =,证明()SAS DBF MBF ≌△△,再证明()ASA MCF ECF ≌△△;过点F 作FG AB ⊥于点G ,FH AC ⊥于点H ,FK BC ⊥于点K ,根据角平分线的性质和三角形面积公式分别对各个结论进行判断即可.【详解】解:∵ABC 的两条角平分线BE 和CD 交于点F ,60BAC ∠=︒,∴FBC FCB∠+∠()12ABC ACB =∠+∠()11802BAC ︒=−∠()1180602=⨯︒−︒60=︒, ∴()180********BFC FBC FCB ∠=︒−∠+∠=︒−︒=︒,故结论①正确; ∴18060BFD BFC CFE Ð=°-Ð=°=Ð,在BC 上取BM BD =,∵BE 平分ABC ∠,∴DBF MBF Ð=Ð,在DBF 和MBF V 中,BD BM DBF MBFBF BF =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS DBF MBF ≌△△, ∴60BFD BFM ∠=∠=︒,∴1206060CFM BFC BFM ∠=∠−∠=︒−︒=︒,∴60CFM CFE ∠=∠=︒,∵CD 平分ACB ∠,∴MCF ECF ∠=∠,在MCF △和ECF △中,CFM CFE CF CFMCF ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA MCF ECF ≌△△, ∴CM CE =,∴BC BM CM BD CE =+=+,故结论③正确;∵没有条件得出点M 是BC 的中点,∴不能得出BD 与CE 一定相等,故结论②错误;过点F 作FG AB ⊥于点G ,FH AC ⊥于点H ,FK BC ⊥于点K ,∵BE 、CD 为ABC 的角平分线,∴FG FK =,FK FH =,∴FG FK FE ==, ∵12FBD S BD FG =⋅△,12FEC S EC FH =⋅△,12FBC S BC FK =⋅△,∴FBD FEC S S +△△1122BD FG EC FH =⋅+⋅ 1122BM FK MC FK =⋅+⋅ ()12BM MC FK =+⋅ 12BC FK =⋅FBC S =△,∴FBD FEC FBC S S S +=△△△,故结论④正确,∴结论正确的序号是①③④.故答案为:①③④.【点睛】本题考查角平分线的性质,全等三角形的判定与性质,三角形内角和定理,三角形的面积,作出辅助线构造全等三角形是解题的关键.三、解答题 17.(2023春·重庆江北·七年级统考期末)完成下面的解答过程,并填上适当的理由.已知:如图,DE BC ∥,BD 平分ABC ∠,EF 平分AED ∠.解: ∵DE BC ∥(已知)∴ABC AED ∠=∠( ① ).∵BD 平分ABC ∠,EF 平分∠∴112ABC ∠=∠,122AED ∠=∠【答案】两直线平行,同位角相等 2∠ 等量代换 同位角相等,两直线平行【分析】先分析角的位置关系,根据平行线的性质及判定定理,即可写出答案.【详解】证明:∵DE BC ∥(已知),∴ABC AED ∠=∠.∵BD 平分ABC ∠,EF 平分AED ∠,∴112ABC ∠=∠,122AED ∠=∠.∴12∠=∠(等量代换).∴EF BD ∥(同位角相等,两直线平行).故答案为:两直线平行,同位角相等 ; 2∠ ;等量代换 同位角相等,两直线平行.【点睛】本题主要考查平行线的性质(两直线平行,同位角相等),及平行线的判定方法(同位角相等,两直线平行).牢记平行线的性质和判定方法是解题的关键.18.(2023春·山东泰安·七年级统考期末)如图,在AOB 和COD △中,OA OB =,OC OD =,OA OC <,36AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM .求证:(1)36AMB ∠=︒;(2)MO 平分AMD ∠.【答案】(1)证明见解析 (2)证明见解析【分析】(1)证明()SAS AOC BOD ≌△△,由三角形全等的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OBD OAC AOB ∠+∠=∠+∠,可得出AMB ∠的度数;(2)作OG AC ⊥于G ,OH BD ⊥于H ,利用全等三角形对应边上的高相等,得出OG OH =,由角平分线的判定方法即可得证.【详解】(1)证明:∵36AOB COD ∠=∠=︒,∴AOB BOC COD BOC ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC 和BOD 中,OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS AOC BOD ≌△△, ∴OAC OBD ∠=∠,∵AEB ∠是AOE △和BME 的外角∴AEB AMB OBD AOB OAC ∠=∠+∠=∠+∠,∴36AMB AOB ∠=∠=︒;(2)如图所示,作OG AC ⊥于G ,OH BD ⊥于H ,∴OG 是AOC 中AC 边上的高,OH 是BOD 中BD 边上的高,由(1)知:AOC BOD ≌,∴OG OH =,∴点O 在AMD ∠的平分线上,即MO 平分AMD ∠.【点睛】本题考查全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识.证明三角形全等是解题的关键. 七年级统考期末)如图,在ABC 中, (2)18【分析】(1)根据BD 平分ABC ∠,CD 平分ACB ∠得12DBC ABC ∠=∠,12DCB ACB ∠=∠,根据40ABC ∠=︒,70ACB ∠=︒得140202DBC ∠=⨯︒=︒,170352DCB ∠=⨯︒=︒,根据三角形内角和定理即可得;(2)过点D 作DF BC ⊥于点F ,根据BD 平分ABC ∠,DE AB ⊥,DF BC ⊥得DE DF =,根据4DE =得4DF =,即可得.【详解】(1)解:∵BD 平分ABC ∠,CD 平分ACB ∠,∴12DBC ABC ∠=∠,12DCB ACB ∠=∠,∵40ABC ∠=︒,70ACB ∠=︒,∴140202DBC ∠=⨯︒=︒,170352DCB ∠=⨯︒=︒,∴在BCD △中,1802035125BDC ∠=︒−︒−︒=︒;(2)解:过点D 作DF BC ⊥于点F ,∵BD 平分ABC ∠,DE AB ⊥,DF BC ⊥,∴DE DF =,∵4DE =,∴4DF =,∵9BC =, ∴11S 941822BCD BC DF =⨯⨯=⨯⨯=△.【点睛】本题考查了角平分线,三角形内角和定理,三角形的面积,解题的关键是理解题意,掌握这些知识点. 八年级假期作业)如图,在ABC 中, 【答案】6cm CD =,34B ∠=︒【分析】根据角平分线的性质可得CD DE =,28BAD CAD ∠=∠=︒,再根据直角三角形的两个锐角互余即可求出B ∠的度数.【详解】解:∵ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥,∴6cm CD DE ==,28BAD CAD ∠=∠=︒,∴256BAC CAD ∠=∠=︒,∴9034B CAD ∠=︒−∠=︒.【点睛】本题考查了角平分线的性质定理和直角三角形的两个锐角互余,属于基础题型,熟练掌握角平分线的点到一个角的两边距离相等是解题关键.21.(2023春·广西南宁·七年级南宁十四中校考期末)如图,已知ABC .(1)尺规作图:作BAC ∠的角平分线交BC 于点G (不写作法,保留作图痕迹);(2)如果6AB =,10AC =,ABG 的面积为18,求ACG 的面积.【答案】(1)见解析(2)30【分析】(1)根据角平分线的尺规作图方法作图即可;(2)如图所示,过点G 作GE AB GF AC ⊥⊥,垂足分别为E 、F ,证明AEF AFG △≌△,得到EG FG =,根据面积法求出6EG FG ==,再根据三角形面积公式求解即可.【详解】(1)解:如图所示:(2)解:如图所示,过点G 作GE AB GF AC ⊥⊥,垂足分别为E 、F ,∴90AEG AFG ∠=∠=︒,∵AG 是BAC ∠的角平分线,∴EAG FAG ∠=∠,又∵AG AG =,∴()AAS AEF AFG △≌△,∴EG FG =;∵6AB =,ABG 的面积为18,∴1182AB EG ⋅=,即16182EG ⨯=,∴6EG =,∴6EG FG ==,∴111063022ACG S AC FG =⋅=⨯⨯=△.【点睛】本题主要考查了全等三角形的性质与判定,三角形面积,角平分线的尺规作图,角平分线的定义等等,灵活运用所学知识是解题的关键. 22.(2023春·山西太原·七年级统考期末)如图,在ABC 中,AD 是它的角平分线,DE AB ⊥于点,E DF AC ⊥于点F ,且BE CF =.线段BD 与CD 相等吗?说明理由.【答案】BD CD =,见解析【分析】根据角平分线的性质得出DE DF =,根据垂直定义得出90DEB DFC ∠=∠=︒,根据SAS 证明DFC △D E B ≌△,得出BD CD =即可.【详解】解:BD CD =;理由如下:∵AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,∴DE DF =,∵DE AB ⊥,DF AC ⊥,∴90DEB DFC ∠=∠=︒,又∵BE CF =,∴DFC △DE B ≌△, ∴BD CD =.【点睛】本题主要考查了角平分线的性质,垂线定义理解,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法,证明DFC △DE B ≌△. 23.(重庆市大渡口区2022-2023学年七年级下学期期末数学试题)如图,AD BC ∥,180B BCD ∠+∠=︒.(1)用直尺和圆规完成以下基本作图:过点A 作BAD ∠的角平分线,交CD 于点F ,与BC 的延长线交于点E ;(不写做法,保留作图痕迹)(2)求证:CFE FEC ∠=∠.证明:∵AD BC ∥(已知),∴DAF FEC ∠=∠(①__________). ∵AE 平分BAD ∠,∴②__________(角平分线的定义). ∴BAE FEC ∠=∠(③__________). ∵180B BCD ∠+∠=︒(已知), ∴④__________(⑤__________). ∴BAE CFE ∠=∠(两直线平行,同位角相等). ∴CFE FEC ∠=∠(等量代换). 【答案】(1)见解析(2)见解析【分析】(1)利用基本作图作BAD ∠的平分线即可;(2)先根据平行线的性质得到DAF FEC ∠=∠,再利用角平分线的定义得到BAE DAF ∠=∠,则BAE FEC ∠=∠,接着证明AB CD ∥得到BAE CFE ∠=∠,然后利用等量代换得到CFE FEC ∠=∠.【详解】(1)解:如图,BE 为所作;(2)证明:AD BC ∥(已知), DAF FEC ∴∠=∠(两直线平行,内错角相等).AE 平分BAD ∠,BAE DAF ∴∠=∠(角平分线的定义),BAE FEC ∴∠=∠(等量代换).180B BCD ∠+∠=︒(已知),AB CD ∴∥(同旁内角互补,两直线平行).BAE CFE ∴∠=∠(两直线平行,同位角相等).CFE FEC ∴∠=∠(等量代换).【点睛】本题考查了作图−基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了角平分线的性质和平行线的判定与性质. 七年级校考阶段练习)如图,ABC 中, 若BCG 的面积为,则ABC 的面积为【答案】(1)120︒(2)3(3)6【分析】(1)根据作图方法可得BG 是ABC ∠的角平分线,则1302ABG ABC ==︒∠∠,再由三角形外角的性质可得120BGC A ABG =+=︒∠∠;(2)如图所示,过点G 作GD BC ⊥于D ,先求出3AG AC CG =−=,再证明ABG DBG △≌△,得到3DG AG ==,根据垂线段最短可知线段H G 的最小值为3;(3)证明BDG CDG △≌△,得到122BDG CDG BCG S S S ===△△△,进而求出2BDG ABG S S ==△△,则6ABC ABG CBG S S S =+=△△△.【详解】(1)解:由作图方法可知BG 是ABC ∠的角平分线, ∴1302ABG ABC ==︒∠∠,∵90A ∠=︒,∴120BGC A ABG =+=︒∠∠,故答案为:120︒;(2)解:如图所示,过点G 作GD BC ⊥于D ,∴90BAG BDG ==︒∠∠,∵96AC CG ==,,∴3AG AC CG =−=,∵BG 是ABC ∠的角平分线,∴ABG DBG ∠=∠,又∵BG BG =,∴()AAS ABG DBG △≌△,∴3DG AG ==,∵H 是边BC 上一动点,∴当点H 与点D 重合时,HG 最小,∴线段HG 的最小值为3, 故答案为:3;(3)解:∵BG 是ABC ∠的角平分线,∴30ABG DBG ==︒∠∠,∵9030C ABC ∠=︒−∠=︒,∴GBD C ∠=∠,又∵90DG DG BDG CDG ===︒,∠∠,∴()AAS BDG CDG △≌△, ∴122BDG CDG BCG S S S ===△△△,∵ABG DBG △≌△,∴2BDG ABG S S ==△△,∴6ABC ABG CBG S S S =+=△△△,故答案为:6.【点睛】本题主要考查了全等三角形的性质与判定,三角形内角和定理,三角形外角的性质,角平分线的定义,角平分线的尺规作图等等,正确作出辅助线构造全等三角形是解题的关键. 七年级统考期末)ABC 中, (2)如图2,若ABC 是锐角三角形.过点FED ∠,EDB ∠与ABC ∠ (3)若ABC 是钝角三角形,其中FED ∠,EDB ∠与ABC ∠之间的数量关系.【答案】(1)45 (2)12BDE FED ABC ∠=∠+∠,证明见解析 (3)12ABC BDE DEF ∠=∠+∠【分析】(1)首先证明AED ABC ∠=∠得到DE BC ∥,得到EDB DBC ∠=∠,再根据角平分线的定义得到1452DBC ABC ∠=∠=︒,即可证明;(2)延长ED 、BC 交于G ,利用平行线的性质得FED G ∠=∠,再利用三角形外角的性质可得结论;(3)由(2)同理解决问题.【详解】(1)解:DE AB ∵⊥,90AED ∴∠=︒.90ABC ∠=︒,AED ABC ∴∠=∠.DE BC ∴∥.EDB DBC ∴∠=∠.BD Q 平分ABC ∠,1452DBC ABC ∴∠=∠=︒.45EDB ∴∠=︒.(2)如图,12BDE FED ABC ∠=∠+∠,理由如下:延长ED 、BC 交于G ,EF BC ∥,FED G ∴∠=∠,BD Q 平分ABC ∠,。
角平分线的性质
如果一个点到角两边的距离相等,则这个点在这个角的平分 线上。角平分线的三角函数应用
在直角坐标系中,一个角的平分线可以表示为该角终边上 任意一点到原点的距离与该点到角两边的距离之比为常数 。这个常数等于角的正切值。
对于一个任意的角度,其平分线上的点到原点的距离与该 点到角两边的距离之比等于1/sin(θ)。这个比值随着θ的增 大而增大。
展望角平分线性质在更高层次的应用
在复杂几何形状中的应用
01
角平分线性质在复杂几何形状中有着广泛的应用,如解析几何
、代数几何等领域。
在物理学中的应用
02
角平分线性质在物理学中也有着广泛的应用,如力学、电磁学
等领域。
在其他数学领域的应用
03
角平分线性质在其他数学领域也有着广泛的应用,如微积分、
统计学等领域。
角平分线的扩展应用
在几何问题中,常常需要利用角平分线的性质来解决一些问 题,如证明某些角度相等或者线段相等。
在实际生活中,角平分线也具有广泛的应用,如在进行测量 时,需要用到角平分线的性质来确定点的位置。
04
角平分线的代数性质
角平分线的代数表达式
角平分线定理
$\frac{OP1}{OP2} = \frac{O1P}{O2P}$,其中$OP1$和 $OP2$是角平分线上的点到角的两边的距离,$O1P$和 $O2P$是角平分线上的点到角的顶点的距离。
《角平分线的性质》
xx年xx月xx日
目录
• 角平分线的定义 • 角平分线的应用 • 角平分线的几何性质 • 角平分线的代数性质 • 总结与展望
01
角平分线的定义
角平分线的定义及表示方法
角平分线的定义
人教版八年级数学上册123角的平分线的性质第2课时角平分线的判定课件
解:∵
图上距离 500m
=
1 20000
∴图上距离 = 0.025m = 2.5cm.
P
如下图:P点即为所求 ; 理由:P点在这个交叉口的角平分线上,所 以P点到公路与铁路的距离相等.
练习2 要在三角形的内部找到一点,使这 一点到三角形的三边的距离都相等,这个点应 如何确定?
作其中任意两角的平分线,交点即为所要 找的点.
M
∵P点在∠CBE和∠BCF的平分
线上,∴PM = PQ,PN = PQ,
∴PM = PN.
又PM⊥AE,PN⊥AF, ∴ AP平分∠BAC.
N
拓展延伸 3.如图,AD是△ABC的角平分线,DE⊥AB,
DF⊥AC,垂足分别是E、F.连接EF,EF与AD 交于G,AD 垂直平分EF吗?证明你的结论. 解:AD垂直平分EF .证明如下: ∵AD是△ABC的角平分线, DE⊥AB,DF⊥AC, ∴∠1=∠2,∠AED =∠AFD =90°,
思考
推进新课
如图,要在S 区建一个集贸场,使它到公路、
铁路的距离相等,并且离公路和铁路的交叉处
500 m. 这个集贸场应建于何处〔在图上标出它的
位置,比例尺为1:20 000〕?
知识点1 角平分线的性质定理的逆定理的证明
交换角的平分线的性质中的和结论, 你能得到什么结论,这个新结论正确吗?
角的内部到角的两边的距离相等的点在角 的平分线上.
学习目标
【知识与技能】1.掌握角的平分线的判定.2.会利用三角形角平分线的性质. 【过程与方法】通过学习角的平分线的判定,开展学生的推理能力,培养学 生分析、归纳问题的能力.【情感态度】锻炼数学应用意识和用数学解决实际 问题的能力,体验数学的应用价值.【教学重点】角平分线的判定.【教学难 点】三角形的内角平分线的应用.
角的平分线的性质
角的平分线的性质汇报人:2023-12-08目录CONTENCT •角的平分线定义与性质•构造方法与证明技巧•在三角形中应用•在四边形和多边形中应用•拓展:关于角平分线其他知识点01角的平分线定义与性质定义及基本性质定义角的平分线指的是将一个角平分为两个相等的小角的射线。
基本性质平分线将对应的角平分为两个相等的小角,且平分线上的每一点到该角两边的距离相等。
存在性与唯一性定理存在性定理对于任何一个角,都存在一条射线将其平分为两个相等的小角,即存在一条角的平分线。
唯一性定理对于任何一个角,它的平分线是唯一的,即不存在两条不同的射线都可以将该角平分为两个相等的小角。
几何意义角的平分线在几何学中有着非常重要的意义,它可以用于构造等边三角形、等腰三角形等图形,并且是解决一些几何问题的关键。
应用场景在实际问题中,角的平分线常常被用于设计、建筑、工程等领域。
例如,在建筑工程中,可以利用角的平分线来确定某些结构的位置和方向;在机械设计中,可以利用角的平分线来设计齿轮、联轴器等零部件的位置和尺寸。
几何意义及应用场景02构造方法与证明技巧首先利用尺规作图作出给定角的平分线,再通过该平分线构造等腰三角形或利用其他相关性质进行证明。
尺规作图法利用了角的平分线性质,即平分线上的点到角两边距离相等,从而实现了对给定角的精确平分。
尺规作图法原理分析作图步骤三角形内心与外心相关性质三角形的内心到三角形三边的距离相等,且与三角形三顶点连线将三角形划分为三个面积相等的部分。
内心与三角形任意两顶点连线的夹角等于与该顶点相对的角的一半。
外心性质三角形的外心到三角形三个顶点的距离相等,且与三角形三边的中垂线交于一点。
外心与三角形任意两顶点连线的夹角等于与该顶点相对的角的外角的一半。
例题一思路梳理例题二思路梳理典型例题解析及思路梳理已知三角形ABC中,AD是角BAC的平分线,求证:AB/AC=BD/CD。
利用角的平分线性质,构造等腰三角形或利用相似三角形进行证明。
角平分线的性质kejia
02
多边形一条边的两个端点与不相邻的顶点的连线,将多边形划分为n-2个三角形, 每个三角形的内角和为180°。
03
多边形一条边的两个端点与不相邻的两个顶点的连线,是多边形的两条角平分线, 它们将多边形划分为n-1个三角形,每个三角形的内角和为180°。因此,多边形的 内角和也可以表示为(n-1)×180°-2×角平分线的夹角。
在平行四边形中,相邻两角的角 平分线互相垂直。
角平分线所在的直线是平行四边 形的对称轴。
梯形中角平分线特点
梯形中的角平分线将梯形的一个角平分为两个相等的小角。 梯形两腰的角平分线长度相等。
梯形中一组对角的角平分线互相平行。
多边形内角和与角平分线关系
01
多边形的内角和等于(n-2)×180°,其中n为多边形的边数。
证明垂直或平行问题
1 2
利用角平分线与垂线的性质
角平分线与垂线重合时,可证明两条直线垂直。
构造平行四边形
通过角平分线构造平行四边形,利用平行四边形 的性质证明直线平行。
3
应用同位角、内错角等性质
结合同位角、内错角等相关性质,可证明直线平 行或垂直。
05
角平分线在实际问题中应 用举例
测量问题中角平分线应用
之间的角度关系。
如机械臂的运动轨迹规划、机器人的路
径规划等。
06
总结回顾与拓展延伸
关键知识点总结回顾
角平分线的定义:角平分线是从一个角 的顶点出发,将该角平分为两个相等的 小角的射线。
角平分线的构造:通过角的顶点,使用 圆规和直尺可以构造出角的平分线。
角平分线将相对边分为两段,这两段与 角的两边所构成的三角形面积相等。
在测量角度时,如果无法直接测量或者测量难度较大,可以 利用角平分线的性质,将原角平分,然后分别测量两个较小 的角,再通过计算得到原角的度数。
角平分线的三个定理公式证明
角平分线的三个定理公式证明说到角平分线的定理,真是让人有点头疼的一个话题,不过别担心,我们慢慢聊,一起来把这个“难题”变得简单有趣。
先来个热身,想象一下,一个三角形就像一块美味的蛋糕,三个角就像三种不同的口味,而角平分线就是把这个蛋糕切得又好看又好吃的神奇刀具。
你看,一条线从角的顶点伸出,把这个角一分为二,就像把巧克力口味和香草口味分得清清楚楚,太棒了吧?咱们得说说第一个定理。
它告诉我们,如果你有一个三角形,角平分线所对的边上,两个小线段的比例正好和相邻两边的比例一样。
听起来有点复杂,其实就像是在说,如果你把这个三角形的某个角切开了,那么对面的那条边就像是个神奇的秤,称出了两边的比例。
想象一下你和朋友一起去买饮料,你买了可乐,他买了果汁,你们两个的饮料总量和价格都得成正比,不然怎么公平呢?这个定理就像在给你们打下了一个公平的基础,让你们都能喝到满意的饮料。
接着再说说第二个定理。
这一条有点意思,简单来说,就是如果你知道了三角形的两边和夹角,你就能利用角平分线来找到一个点,让这个点和三角形的两个顶点连成的线段和角平分线相等。
就像你在公园里散步,突然发现有一条小路把你和朋友们的聚集地分开,你想到了用一条线把它切成两个相等的区域。
这个时候,角平分线就是你的好帮手,它能让你不费吹灰之力找到完美的聚会地点。
再说到第三个定理,这个可真是个宝藏定理!它告诉我们,如果一个角平分线和三角形的另一条边相交,那交点到这条边的距离和两个角的比值也有关系。
简单地说,就是你在一场比赛中,不同的队伍在场上的表现得到了平衡。
如果有一方表现特别优秀,角平分线就像个公正的裁判,确保比赛不会太失衡。
想象一下,如果没有这个裁判,比赛一定会变成一场混乱的“打斗”,没有人知道胜负了,真是让人心烦。
说了这么多,其实这三个定理都有个共同点,就是它们都在强调一个“公正”二字。
就像生活中,我们每个人都希望能得到公平的对待,不管是在工作、学习还是在朋友间的交往。
角平分线的性质
⾓平分线的性质
⾓平分线性质:⾓平分线分得的两个⾓相等,都等于该⾓的⼀半。
⾓平分线上的点到⾓的两边的距离相等。
性质
1.⾓平分线分得的两个⾓相等,都等于该⾓的⼀半。
(定义)
2.⾓平分线上的点到⾓的两边的距离相等。
判定
⾓的内部到⾓的两边距离相等的点,都在这个⾓的平分线上。
因此根据直线公理。
证明:如图,已知PD⊥OA于D,PE⊥OB于E,且PD=PE,求证:OC平分∠AOB
证明:在Rt△OPD和Rt△OPE中:OP=OP,PD=PE
∴Rt△OPD≌Rt△OPE(HL)
∴∠1=∠2
∴ OC平分∠AOB
画⾓平分线
1、先在纸上画⼀个⾓∠AOB,这个⾓是作为要被平分的⾓。
2、以任意长度为半径,顶点为圆⼼画圆弧,交⾓两边于C、D。
3、然后以C为圆⼼,⼤于CD/2长度为半径⽤圆规画圆弧。
4、接着以D为圆⼼,同3步骤⼀样以长度为半径⽤圆规画圆弧。
5、最后两圆弧交于E点。
6、连接顶点O和E,OE即为⾓平分线。
人教版八年级上册数学123角的平分线的性质优秀课件
OP=OP(公共边),
O
P
PD= PE(已知 ),
∴Rt△PDO≌Rt△PEO( HL).
E B
∴∠AOP=∠BOP (全等三角形的对应角相等).
∴点P在∠AOB的平分线上.
探究新知
判定定理:
角的内部到角的两边的距离相等的点在角的平分线上. 应用所具备的条件:
(1)位置关系:点在角的内部; (2)数量关系:该点到角两边的距离相等.
BC=DC.将点A放在角的顶点,AB和AD沿着角的两边
放下,沿AC画一条射线AE,AE就是角平分线,你能
说明它的道理吗?
A
其依据是SSS,两全等三角形的 对应角相等.
D
B
(E)C
探究新知
【思考】如果没有此仪器,我们用数学作图做 请大家找到用尺规作角的平分线的方法,并说明
第一课时
角的平分线的性质
导入新知
下图是一个平分角的仪器,其中AB= AD,BC=DC. 将点A放在角的顶点,AB和AD 沿着角的两边放下,沿 AC画一条射线AE,AE 就是这个角的平分线,你能说
A
明它的道理吗?
D
B
C E
素养目标
3. 熟练地运用角平分线的性质解决实际 问题. 2. 探究并认知角平分线的性质.
P在∠AOB的平分线上.
3
2.如图,AB∥CD,点P到AB,BC,CD的距离相等,则
点P是 ∠ABC的平分线与 ∠BCD 的平分线的交点.
探究新知
知识点 2 三角形的内角平分线
分别画出下列三角形三个内角的平分线,你发现 了什么?
发现:三角形的三条角平分线相交于一点.
探究新知 分别过交点作三角形三边的垂线,用刻度尺量一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
N
M
C
B
A
12.3角平分线的性质(2)
学习目标:
1.会叙述角平分线的性质及“到角的两边距离相等的点在角的平分线上”
2.能利用两个性质解决一些实际问题 学习重点:角平分线的性质及应用 学习难点:利用两个性质解决一些实际问题 学习方法:探索归纳法
一、课前预习:阅读课本49页完成下列的问题:角平分线的判定及几何语言表述 【自能学习】复习旧知——角平分线的性质定理
1.性质定理:角平分线上的点到角的 的距离 . 2.几何语言:(注意:三个已知条件缺一不可) ∵21∠=∠,OA PD ⊥,OB PE ⊥ ∴PE PD =
3、画出三角形三个内角的平分线
你发现了什么特点吗? 4.如图,△ABC 的角平分线BM ,CN 相交于点P ,
求证,点P 到三边AB ,BC ,CA 的距离相等。
二、探究新知:
1.求证:到角的两边的距离相等的点在角的平分线上。
(提示:先画图,并写出已知、求证,再加以证明) 小帅已经做出了一些步骤,请你帮他补充完整:
解:如右图,过______做射线, 已知:_____________
⊥,____________⊥;并且_______=_______
求证:_____是AOB ∠的平分线 证明:
结论:角平分线的判定定理:
角的内部到角的两边____的点在角的___上。
注意:(1)该定理也是证明两角相等的一种方法;
(2)三角形的三条角平分线交于一点,这点是三角形的内心,到三边的距离相等. (3)符号语言:∵ PD ⊥OA ,PE ⊥OB ,PD= PE
∴ ______( )
(4)作用:常证明两个角相等
2、比较角平分线的性质与判定
D
C
B
A
2、如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,BE ,CD 相交于点O ,OB =OC ,
求证∠1=∠2 三、例题学习
例1.如图,在四边形ABCD 中,︒=∠=∠90B A ,
EC 平分BCD ∠交AB 于E ,且BE AE =,求证:DE 平分CDA ∠
例2.如图,在△ABC 中,BD 为∠ABC 的平分线,DE ⊥AB 于点E ,且DE =2cm , AB =9cm ,BC =6cm ,求△ABC 的面积.
例3.如图,在四边形ABCD 中,BC>BA ,AD=DC,BD 平分∠ABC,求证:∠A+∠C=180°
四、应用新知 解决问题:
1.要在S区建一个集贸市场,使它到公路,铁路距离相等且离 公路,铁路的交叉处500米,应建在何处? (比例尺 1:20 000)
【自我小结】本节课我有哪些收获?我还有什么疑惑?
【自能训练】
1、已知△ABC 中,∠A=60°,∠ABC,∠ACB 的平分线交于点O ,则∠BOC 的度数为
2、到三角形三条边的距离相等的点是( ) A 、三条中线的交点 B 、三条高线的交点 C 、三条边的垂直平分线的交点 D 、三条角平分线的交点 3.下面哪个点到三角形三边的距离相等( )
A .三条角平分线的交点
B .三条中线的交点
C .三条高的交点
D .三角形内任意一点
4.如图,ABC ∆的两个外角平分线相交于点P ,则下面结论正确的是( ) A .BP 不平分ABC ∠ B .BP 平分ABC ∠ C .BP 平分APC ∠ D .PC PA =
5.在ABC ∆中,︒=∠90ACB ,AD 是BAC ∠的角平分线,若cm BC 5=,cm BD 3=,则点D 到AB 的距离为 .
6.如图,ABC ∆的三边AB 、BC 、CA 的长分别为20、30、40,其三条角平分线的交点为O ,则=∆∆∆CAO BCO ABO S S S :: .
7.AOB ∠的平分线上一点P ,P 到OA 的距离为cm 5.1,则P 到OB 的距离为 cm . 8.如图,在直线CD 上求一点P ,使得点P 到射线OA 和OB 的距离相等.
9.如图,在ABC ∆中,︒=∠90ACB ,点O 为三条角平分线的交点,BC OD ⊥于D ,AC OE ⊥于E ,
AB OF ⊥于F ,且cm AB 10=,cm CB 8=,cm CA 6=,求OD 的长.
10.如图,B 是CAF ∠内一点,D 在AC 上,E 在AF 上,且EF DC =,BCD ∆与BEF ∆的面积相等. 求证:AB 平分CAF ∠。