初一数学竞赛系列训练7
初一数学竞赛试题及答案
初一数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的结果是多少?A. 3 + 4B. 5 - 2C. 6 × 2D. 8 ÷ 2答案:C3. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C4. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 下列哪个选项是偶数?A. 2B. 3C. 4D. 5答案:C6. 一个数的立方是-8,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:B7. 计算下列表达式的结果是多少?A. (-2) × (-3)B. (-2) × 3C. 2 × (-3)D. 2 × 3答案:A8. 一个数的倒数是1/2,这个数是:A. 2B. 1/2C. 0D. -2答案:A9. 下列哪个选项是奇数?A. 2B. 3C. 4D. 5答案:B10. 计算下列表达式的结果是多少?A. 10 × 0B. 10 ÷ 0C. 10 - 0D. 10 + 0答案:C二、填空题(每题4分,共20分)11. 一个数的平方是36,这个数是____。
答案:±612. 一个数的立方是27,这个数是____。
答案:313. 计算下列表达式的结果:(-3) × (-4) = ____。
答案:1214. 一个数的绝对值是7,这个数是____。
答案:±715. 计算下列表达式的结果:(-5) ÷ (-1) = ____。
答案:5三、解答题(每题10分,共50分)16. 计算下列表达式的结果:(1) 2 × 3 + 4 × 5(2) (-3) × 2 - 5 × (-2)答案:(1) 2 × 3 + 4 × 5 = 6 + 20 = 26(2) (-3) × 2 - 5 × (-2) = -6 + 10 = 417. 求下列方程的解:(1) 2x + 3 = 7(2) 3x - 4 = 11答案:(1) 2x + 3 = 72x = 7 - 32x = 4x = 2(2) 3x - 4 = 113x = 11 + 43x = 15x = 518. 一个数的平方是49,求这个数。
七年级下数学竞赛试题及答案
饶平四中七年级数学竞赛试题 (满分100分)时间:50分钟 班级:_________姓名:___________评分:_________一、选择题:(每小题5分,共40分)1、在一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3 个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,那么摩托车应为: A 、14辆 B 、12辆 C 、16辆 D 、10辆2、文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板:A 、赚了5元B 、亏了25元C 、赚了25元D 、亏了5元 3.如果关于x 的不等式 (a+1) x>a+1的解集为x<1,那么a 的取值范围是:A 、a>0???B 、a<0? ?C 、a>-1??D 、a<-14已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是:A 、负数B 、正数C 、非负数D 、非正数5、如图△ABC中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,则S 阴影的值为: A 、2Mcm 61 B 、2Mcm 51C 、2Mcm 41D 、2Mcm 316、x 是任意有理数,则2|x |+x 的值:A 、大于零B 、不大于零C 、小于零D 、不小于零7、设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■” 的个数为:A 、5B 、4C 、3D 、28、老王家到单位的路程是3 500米,老王每天早上7∶30离家步行去上班,在8∶10(含8∶10)至8∶20(含8∶20)之间到达单位,如果设老王步行的速度为x 米/分,则老王步行的速度范围是:●●▲■●■▲●▲?(1)(2)(3)A 、70≤x ≤87.5B 、x ≤70或x ≥87.5C 、x ≤70D 、x ≥87.5二、填空题(每小题6分,共60分)9、某次数学竞赛共出了25道选择题,评分办法是:答对一道加4分,答错一道倒扣1分,不答记0分, 已知小王不答的题比答错的题多2道,他的总分是74分,则他答对了________________ 道题。
七年级上册数学竞赛题和经典题
七年级上册数学竞赛题和经典题一、竞赛题与经典题。
1. (有理数运算)计算:( 2)^3+[26 ( 3)×2]÷4解析:先计算指数运算( 2)^3=-8。
再计算括号内的式子,[26-( 3)×2]=[26 + 6]=32。
然后进行除法运算32÷4 = 8。
最后进行加法运算-8+8 = 0。
2. (整式的加减)化简:3a + 2b 5a b解析:合并同类项,3a-5a=-2a,2b b=b。
所以化简结果为-2a + b。
3. (一元一次方程)解方程:3(x 1)-2(x + 1)=6解析:先去括号,3x-3-2x 2=6。
再移项,3x-2x=6 + 3+2。
合并同类项得x = 11。
4. (数轴相关)在数轴上,点A表示的数为-3,点B表示的数为5,求A、B两点间的距离。
解析:数轴上两点间的距离等于右边的数减去左边的数(大数减小数)。
所以AB = 5-( 3)=5 + 3 = 8。
5. (绝对值)已知| x|=3,| y| = 5,且x>y,求x + y的值。
解析:因为| x|=3,所以x=±3;因为| y| = 5,所以y=±5。
又因为x>y,当x = 3时,y=-5,此时x + y=3+( 5)=-2;当x=-3时,y=-5,此时x + y=-3+( 5)=-8。
6. (有理数的混合运算)计算:(1)/(2)×(-2)^2-((2)/(3))^2÷(2)/(9)解析:先计算指数运算,(-2)^2 = 4,((2)/(3))^2=(4)/(9)。
然后进行乘除运算,(1)/(2)×4 = 2,(4)/(9)÷(2)/(9)=(4)/(9)×(9)/(2)=2。
最后进行减法运算2-2 = 0。
7. (整式的概念)若3x^m + 5y^2与x^3y^n是同类项,则m=_ ,n=_ 。
初一数学竞赛系列训练15套
初一数学竞赛系列训练1——自然数的有关性质一、选择题1、两个二位数,它们的最大公约数是8,最小公倍数是96,这两个数的和是( )A 、56B 、78C 、84D 、962、三角形的三边长a 、b 、c 均为整数,且a 、b 、c 的最小公倍数为60,a 、b 的最大 公约数是4,b 、c 的最大公约数是3,则a+b+c 的最小值是( )A 、30B 、31C 、32D 、333、在自然数1,2,3,…,100中,能被2整除但不能被3整除的数的个数是( )A 、33B 、34C 、35D 、374、任意改变七位数7175624的末四位数字的顺序得到的所有七位数中,能被3整除的数的个数是( )A 、24B 、12C 、6D 、05、若正整数a 和1995对于模6同余,则a 的值可以是( )A 、25B 、26C 、27D 、286、设n 为自然数,若19n+14≡10n+3 (mod 83),则n 的最小值是( )A 、4B 、8C 、16D 、32二、填空题7、自然数n 被3除余2,被4除余3,被5除余4,则n 的最小值是8、满足[x,y]=6,[y,z]=15的正整数组(x,y,z)共有 组9、一个四位数能被9整除,去掉末位数后得到的三位数是4的倍数,则这样的四位数中最大的一个,它的末位数是10、有一个11位数,从左到右,前k 位数能被k 整除(k=1,2,3,…,11),这样的最小11位数是11、设n 为自然数,则3 2 n+8被8除的余数是12、14+24+34+44+…+19944+19954的末位数是三、解答题13、求两个自然数,它们的和是667,它们的最小公倍数除以最大公约数所得的商是120。
14、已知两个数的和是40,它们的最大公约数与最小公倍数的和是56,求这两个数。
15、五位数H 97H 4能被12整除,它的最末两位数字所成的数7H 能被6整除,求出这个五位数。
16、若a,b,c,d 是互不相等的整数,且整数x 满足等式(x-a)(x-b)(x-c)(x-d)=9求证:4∣(a+b+c+d)17、一个数是5个2,3个3,2个5,1个7的连乘积,这个数当然有许多约数是两位数,这些两位约数中,最大的是多少?18、求2400被11除,所得的余数。
初一数学计算能力竞赛题
初一数学计算能力竞赛题计算题1:计算下列各题。
(每题5分,共20分)1. $3 \times (8 - 2)$2. $(7 - 4)^2$3. $15 \div 3 \times 4$4. $12 + (3 \times 2) - 5$解答:1. $3 \times (8 - 2) = 3 \times 6 = 18$2. $(7 - 4)^2 = 3^2 = 9$3. $15 \div 3 \times 4 = 5 \times 4 = 20$4. $12 + (3 \times 2) - 5 = 12 + 6 - 5 = 13$计算题2:求解下列方程。
(每题10分,共40分)1. $x + 6 = 18$2. $3x - 4 = 11$3. $2(2x + 3) = 20$4. $5x - 8 = 32 - x$解答:1. $x + 6 = 18$,移项得 $x = 18 - 6 = 12$2. $3x - 4 = 11$,移项得 $3x = 15$,再除以3得 $x = 5$3. $2(2x + 3) = 20$,去括号得 $4x + 6 = 20$,再移项得 $4x = 20 - 6 = 14$,最后除以4得 $x = 3.5$4. $5x - 8 = 32 - x$,移项得 $6x = 40$,再除以6得 $x = 40/6 = 20/3 ≈ 6.67$计算题3:一辆汽车从A地到B地,全程120公里,平均时速60公里/小时。
请计算从A地到B地需要多长时间。
(10分)解答:根据速度等于路程除以时间的公式,可得 $\frac{120}{t} = 60$,其中t表示时间,解方程得 $t = \frac{120}{60} = 2$,因此从A地到B地需要2小时。
思维题:两种水果按比例混合小明有10个苹果和5个橙子,小红有6个苹果和12个橙子。
若小明和小红想按照苹果和橙子的比例混合他们的水果,问他们各自需要拿出多少个苹果和橙子?解答:小明有10个苹果和5个橙子,小红有6个苹果和12个橙子。
七年级数学竞赛试题精选七 试题
智才艺州攀枝花市创界学校七年级数学竞赛试题精选(七)一、拆分法及应用例1、 计算:99163135115131++++。
(第三届华杯赛) 练习:〔1〕2081130170128141++++。
〔2〕)2(1641531421311+⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯+⨯n n 。
〔60年〕 〔3〕2021减去它的21,再减去〔第一次〕余下的31,再减去〔第二次〕余下的41,、、、、、、,依次类推,一直到减去〔第2021次〕余下的20031,问最后余下的是多少?〔第六届华杯赛〕 〔4〕计算20022002200320003200032002⨯-⨯。
〔第四届迎春杯〕二、错位相减法例2、比较1234248162n n n S =++++⋅⋅⋅⋅⋅⋅+〔n 为任意自然数〕与2的大小。
练习:〔1〕12310011213110012222----+++⋅⋅⋅⋅⋅⋅+。
〔2〕21512412562561451212102411++⋅⋅⋅⋅⋅⋅+++。
三、观察归纳法例3计算:⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211〔第六届华杯赛〕例4计算:355133111111111-----练习:901177211556113421113019201712156131++++++++。
〔第四届华杯赛〕 五、放缩法 例5、19911198311982119811198011+⋅⋅⋅++++=S ,求S 的整数局部。
例6、下式,求a 的整数局部:1006915681467136612651170156914681367126611⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯=a ,问a 的整数局部是多少?〔第二届华杯赛〕六、换元法例7、计算:111121113114314119581958++++++++++ 练习:2000199920011998,2001199920001998,2001200019991998⨯⨯-=⨯⨯-=⨯⨯-=C B A 试比较C B A ,,的大小。
初中数学竞赛七年级奥赛综合训练题(7)(含解答)
七年级奥赛综合训练题(7)一、选择题1.已知a ,b ,c 满足a+b+c=0,abc=8,那么cb a 111++的值是( ) A .正数; B .零; C .负数; D .正、负不能确定2.将分式yx xy +中的x 和y 都扩大5倍,那么分式的值是( ) A .扩大5倍; B .缩小5倍; C .扩大25倍; D .以上结论都不对3.若(|x|-1)2+2)12(+y =0,则xy 的值是( )。
A .21,21-;B .21;C .23; D .-1 4.下列代数式中的多项式共有( )个。
5,,,1,3,5.0,,53222ab b a c bx ax y x a xy x m n ++---- A .1; B .2; C .3; D .45.下面计算正确的是( )A .632x x x =⋅;B .135351=⨯÷;C .932=-;D .)3(1|3|1-=- 6.若2||5b a x 与||32.0y b a -是同类项,则x 、y 的值分别是( )A .x=±3,y=±2; B. x = 3, y = 2; C. x = -3, y = -2; D. x = 3, y = -27. 若|1 - |x | | = 2,则( )A .x = -1; B. x = -2; C.x = -3; D.x = ±38.若三个连续偶数的和为18,这三个偶数分别为( )A .5,6,7;B .4,6,8;C .2,4,6;D .6,8,10二、填空题1.初三年级参加数、理、化小组的人数是6:5:4,三组共有135人,参加物理小组有__________人。
2.一个三位数的十位数字是m ,个位数字比m 小1,百位数字是m 的3倍,则这个三位数是________。
3.a ,b ,c 是小于4的整数,且a<b<c ,若a+b=c=abc ,则这样的整数a ,b ,c 有哪几组_______。
(word完整版)初中七年级数学竞赛试题及答案,文档.docx
2019 年初中七年级数学竞赛试题及答案一、选择题 ( 每小题 6 分,共 48 分;以下每题的4 个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内. )1 .如果 a 是有理数,代数式2a 1 1 的最小值是 --------------------------()(A) 1 (B) 2 (C) 3 (D) 42 .正五边形的对称轴有--------------------------------------------------( )( A ) 10 条( B )5 条( C ) 1 条( D ) 0 条3.已知等腰三角形的两边长分别为是3 和 6,,则这个三角形的周长是 --------( )( A ) 9( B ) 12( C ) 15( D ) 12 或 154.从一幅扑克牌中抽出5 张红桃, 4 张梅花, 3 张黑桃放在一起洗匀后,从中一次随机抽出 10张,恰好红桃、梅花、黑桃 3 种牌都抽到,这件事情 --------------- ( )( A )可能发生 ( B )不可能发生 ( C )很有可能发生( D )必然发生5 . 如 果( A )a b c abc 的 值 为 - - - - - - - - - - - - - - - - - - - - - - - - - - - ()ab1 , 则abcc1( B ) 1 ( C )1( D )不确定6.棱长是 1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是()( A ) 36cm 2( B ) 33cm 2( C ) 30cm 2 ( D ) 27cm 2(第 6 题图)(第 7 题图)7.如图是一块矩形 ABCD 的场地,长 AB=102m ,宽 AD=51m ,从 A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为 2m ,其余部分种植草坪,则草坪面积为 ----------- ( ) 22 2 (D) 2( A ) 2018m ( B ) 2018m (C) 2018m 2018m 8.如果一个方程有一个解是整数,我们称这个方程有整数解 . 请你观察下面的四个方程:( 1) 6x 4 y13 ( 2) 3x7 y 10 (3) ( x3)( y 2) 4( 4)1 11xy 2005其中有整数解的方程的个数是 ------------------------------------- ( )(A) 1(B) 2(C) 3 (D) 4二、填空题 ( 每小题 6 分,共 42 分 )9.观察下列算式:4 × 1 × 2+1=3 24 × 2 × 3+l=54 × 3 × 4+l=7 4 × 4 × 5+1=9222用代数式表示上述的律是.10.七 0 一班班主任一起共 48人到公园去划船 .每只小船坐 3 人,租金20 元,每只大船坐 5 人,租金 30元 . 他租船要付的最少租金是元 .11. 2018 减去它的1,再减去剩余数的1,再减去剩余数的1,⋯,依此推,一直234到减去剩余数的1,那么最后剩余的数是.200512.一个正 n 形恰好有 n 条角,那么个正n 形的一个内角是度.13.如, DE是△ ABC的 AB 的垂直平分,分交AB、 BC于 D、 E, AE 平分∠ BAC,若∠ B=30°,∠ C=度.14.ABC的三分a, b,c,其中a, b 足a b4(a b2)20 ,第三的 c 的取范是.15.根据下列 5 个形及相点的个数的化律,在第100 个形中有个点 .三、解答 ( 共 60 分 )16.( 15 分)如,ABC中, AB=6,BD=3, AD BC于 D,B=2 C,求 CD的 .AB CD17.( 15 分)两个代表从甲地乘往乙地,每可乘 35 人。
数学竞赛试卷七年级【含答案】
数学竞赛试卷七年级【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个数的平方根是9,那么这个数是:A. 81B. 9C. 3D. -92. 下列哪个数是有理数?A. √2B. √3C. √5D. √93. 下列哪个数是整数?A. 3.14B. 2.5C. 5.0D. -3.54. 下列哪个数是负数?A. -1B. 0C. 1D. 25. 下列哪个数是偶数?A. 21B. 23C. 25D. 27二、判断题(每题1分,共5分)1. 两个负数相乘的结果是正数。
()2. 两个正数相乘的结果是负数。
()3. 两个负数相除的结果是正数。
()4. 两个正数相除的结果是负数。
()5. 0乘以任何数都等于0。
()三、填空题(每题1分,共5分)1. 如果一个数的平方是16,那么这个数是______。
2. 如果一个数的平方根是4,那么这个数是______。
3. 两个负数相乘的结果是______。
4. 两个正数相乘的结果是______。
5. 0乘以任何数都等于______。
四、简答题(每题2分,共10分)1. 请解释有理数的概念。
2. 请解释整数的概念。
3. 请解释负数的概念。
4. 请解释偶数的概念。
5. 请解释奇数的概念。
五、应用题(每题2分,共10分)1. 计算下列各式的值:a) -3 + 7b) 5 (-2)c) -4 × 6d) -9 ÷ 3e) 14 ÷ (-2)2. 判断下列各式的符号:a) -(-5)b) -(+8)c) -(-12)d) -(+15)e) -(-20)3. 计算下列各式的值:a) √16c) √36d) √49e) √644. 判断下列各数是否为整数,并解释原因:a) 3.14b) 2.5c) 5.0d) -3.5e) 8.95. 判断下列各数是否为负数,并解释原因:a) -1b) 0c) 1d) 2e) -3六、分析题(每题5分,共10分)1. 请分析并解释为什么两个负数相乘的结果是正数。
数学竞赛试题初一及答案
数学竞赛试题初一及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个选项的结果等于10?A. 3 + 7B. 4 × 2C. 5 - 3D. 6 ÷ 2答案:A3. 如果一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?A. 20B. 30C. 50D. 60答案:C5. 一个数加上它的相反数等于:A. 0B. 1C. 2D. 无法确定答案:A6. 下列哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:D7. 一个圆的直径是14厘米,那么它的半径是多少厘米?A. 7B. 14C. 28D. 无法确定答案:A8. 如果一个三角形的两个内角分别是40度和60度,那么第三个内角是多少度?A. 40B. 60C. 80D. 无法确定答案:C9. 一个数的立方等于8,那么这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:A10. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。
答案:1612. 如果一个数的一半是10,那么这个数是______。
答案:2013. 一个数的倒数是2,那么这个数是______。
答案:1/214. 一个数的立方等于27,那么这个数是______。
答案:315. 一个数的绝对值是3,那么这个数可能是______或______。
答案:3或-3三、解答题(每题10分,共50分)16. 计算下列表达式的值:(3x - 2) + (4x + 5),其中x = 2。
答案:首先将x的值代入表达式,得到(3×2 - 2) + (4×2 + 5) = 6 + 8 + 5 = 19。
数学初中竞赛
数学初中竞赛
一、若一个正数的平方根是2m-1和3+m,则这个正数是?
A. 4
B. 9
C. 16
D. 25(答案)C
二、在三角形ABC中,若角A是角B的两倍,且角C是直角,那么角A的度数是?
A. 30°
B. 45°
C. 60°
D. 90°(答案)C
三、已知一次函数y=kx+b,当x=2时,y=3;当x=-1时,y=-3。
则k和b的值分别为?
A. k=2, b=-1
B. k=-2, b=1
C. k=2, b=1
D. k=-2, b=-1(答案)A
四、若一个圆的半径为r,且该圆内接于一个正方形,那么正方形的面积为?
A. πr2
B. 2r2
C. 4r2
D. (π/2)r2(答案)C
五、解不等式2x-5 < 3x+1,x的取值范围是?
A. x > -6
B. x < -6
C. x > 6
D. x < 6(答案)B
六、已知等比数列的第一项为1,公比为2,那么前4项的和是?
A. 5
B. 7
C. 15
D. 31(答案)C
七、一个矩形的长是宽的3倍,如果矩形的面积是36平方厘米,那么矩形的宽是?
A. 2厘米
B. 3厘米
C. 6厘米
D. 9厘米(答案)A
八、在直角三角形中,如果一个锐角是另一个锐角的两倍,那么较小的锐角的度数是?
A. 15°
B. 22.5°
C. 30°
D. 45°(答案)C。
初中数学竞赛专项训练
初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。
当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+my x ny 28112004有整数解x 0、y 0。
则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( )A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。
A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N,若M -N 恰是某正整数的立方,则这样的数共___个。
初中奥林匹克数学竞赛训练题(7套)
数学奥林匹克初中训练题第 一 试一. 选择题.(每小题7分,共42分)( )1.已知33333a b c abc a b c++-=++,则22()()()()a b b c a b b c -+-+--的值为: (A)1 (B)2 (C)3 (D)4( )2.规定”Δ”为有序实数对的运算,如果(,)a b Δ(,)(,).c d ac bd ad bc =++如果对任意实数,a b 都有(,)a b Δ(,)(,),x y a b =则(,)x y 为:(A)(0,1) (B)(1,0) (C)(1,0)- (D)(0,1)-( )3.在ΔABC 中,211a b c=+,则∠A: (A)一定是锐角 (B)一定是直角 (C)一定是钝角 (D)非上述答案( )4.下列五个命题:①若直角三角形的两条边长为3与4,则第三边长是5;②2;a =③若点(,)P a b 在第三象限,则点1(,1)P a b --+在第一象限;④连结对角线垂直且相等的四边形各边中点的四边形是正方形;⑤两边及其第三边上的中线对应相等的两个三角形全等.其中正确的命题的个数是:(A)2个 (B)3个 (C)4个 (D)5个( )5.设P 为等腰Rt ΔABC 斜边AB 上或其延长线上一点,22S AP BP =+,那么:(A)22S CP (B)22S CP = (C)22S CP (D)不确定( )6.满足方程222()x y x y xy +=++的所有正整数解有:(A)一组 (B)二组 (C)三组 (D)四组二. 填空题.(每小题7分,共28分)1.一辆客车,一辆货车和一辆小轿车在同一条直线上朝同一方向行驶,在某一时刻,货车在中,客车在前,小轿车在后,且它们的距离相等.走了10分钟,小轿车追上了货车;又走了5分钟,小轿车追上了客车.问再过分钟,货车追上了客车.2.若多项式2228171642070P a ab b a b =-+--+,那么P 的最小值是 .3.如图1, ∠AOB=30O , ∠AOB 内有一定点P ,且OP=10.在OA 上有一点Q,OB 上有一点R.若ΔPQR 周长最小,则最小周长是 .4.已知二次函数2(1)y ax a =≥的图象上两点A,B 的横坐标分别为1,2-,O 是坐标原点,如果ΔAOB 是直角三角形,则ΔAOB 的周长为 .第 二 试一.(20分)已知实数,,a b c 满足不等式,a b c b c a ≥+≥+,c a b ≥+,求a b c ++的值.二.(25分)如图2,点D 在ΔABC 的边B 小 C 上,且与B,C 不重合,过点D 作AC 的平行线DE 交AB 于E,作AB 的平行线DF 交AC 于点F.又知BC=5.(1) 设ΔABC 的面积为S.若四边形AEFD 的面积为25S .求BD 长.(2) 若,AC =且DF 经过ΔABC 的重心G,求E,F 两点的距离.三.(25分)已知定理:”若三个大于3的质数,,a b c 满足关系式25a b c +=,则a b c ++是整数n 的倍数.”试问:上述定理中整数n 的最大可能值是多少?并证明你的结论。
初一数学竞赛赛前集训试题(含答案)
初一数学竞赛赛前集训题一一、填空题(每小题5分,共75分)1.计算:230.2110.875(2)-+-+⨯-=_________.2.设有理数a,b,c在数轴上的对应点如图所示,则│b-a│+│a+c│+│c-b•│=________.3.若m人在a天可完成一项工作,那么m+n人完成这项工作需_______天(用代数式表示).4.如果75ab=,32bc=,那么a bb c-+=_______.5.已知│x-1│+│x+2│=1,则x的取值范围是_______.6.“如果两个角的和等于90°,那么这两个角叫做互为余角;如果两个角的和等于180°,那么这两个角叫做互为补角”.已知一个角的补角等于这个角的余角的6倍,那么这个角等于_________.7.由O点引出七条射线如图,已知∠AOE和∠COG均等于90°,∠BOC>∠FOG,那么在右图中,以O为顶点的锐角共有______个.8.某人将其甲、乙两种股票卖出,其中甲种股票卖价1200元,盈利20%;其乙种股票卖价也是1200元,但亏损20%,该人交易结果共盈利_______.9.时钟在12点25分时,分针与时针之间的夹角度数为________.10.已知a×b×ab=bbb,其中a、b是1到9的数码.ab表示个位数是b,十位数是a的两位数,bbb表示其个位、十位、百位都是b的三位数,那么a=_____,b=______.11.一个小于400的三位数,它是完全平方数,它的前两位数字组成的两位数还是完全平方数,其个位数字也是一个完全平方数,那么这个三位数是______.12.甲、乙、丙三人同时由A地出发去B地.甲骑自行车到C地(C是A、B•之间的某地),然后步行;乙先步行到C点,然后骑自行车;丙一直步行.结果三人同时到达B地.已知甲步行速度是每小时7.5km;乙步行速度是每小时5km.甲、乙骑自行车的速度都是每小时10km,那么丙步行的速度是每小时________km. 13.小虎和小明同做下面一道题目:“甲、乙、丙三个小孩分一袋糖果,分配如下:甲得总数的一半多一粒,乙得剩下来的三分之一,丙发现自己分得的糖果是乙的二倍,那么这袋糖果□小虎的答案是:糖的总数是38粒,甲得20粒,乙得6粒,丙得12粒.□小明的答案是:从题目给出的数据,无法确定糖果的总数.你认为他们的答案是否正确?在答案前的方框内,将你认为正确的打∨,•不正确的打×.14.如图,3×3的正方形的每一个方格内的字母都代表某一个数,已知其每一L=22,那么b=•_____,h=________.15.一幢楼房内住有六家住户,分别姓赵、钱、孙、李、周、吴.这幢楼住户共订有A、B、C、D、E、F这种报纸,每户至少订了一种。
七年级数学竞赛试题(含答案)
七年级数学竞赛试题一、选择题(每小题4分,共40分)1、如果m 是大于1的偶数,那么m 一定小于它的…………………………..( )A 、相反数B 、倒数C 、绝对值D 、平方2、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、173、255,344,533,622这四个数中最小的数是……………………………….. ( )A. 255B. 344C. 533D. 6224、把14个棱长为1的正方体,在地面上堆叠成如图1所示的立体,然后将露出的表面部分染成红色.那么红色部分的面积为 ( ). A 、21 B 、24 C 、33 D 、375、有理数的大小关系如图2所示,则下列式子中一定成立的是…… ( )A 、c b a ++>0B 、c b a <+C 、c a c a +=-D 、a c c b ->-6、某商场国庆期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100元(100元可以是现金,也可以是购物券,或二者合计)就送20元购物券,满200元就送40元购物券,依次类推,现有一位顾客第一次就用了16000元购物,并用所得购物券继续购物,那么他购回的商品大约相当于打 ( )。
A 、9折B 、8.5折C 、8折D 、7.5折7、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………………………………………………… ( )A 、1B 、2C 、3D 、48、 方程 |x|=ax+1有一负根而无正根, 则a 的取值范围…………………… ( )A. a>-1B. a>1C. a ≥-1D. a ≥1 9、122-+-++x x x 的最小值是…………………………………………………… ( )A. 5B.4C.3D. 210、某动物园有老虎和狮子,老虎的数量是狮子的2倍。
初一数学竞赛系列训练15套
初⼀数学竞赛系列训练15套初⼀数学竞赛系列训练1——⾃然数的有关性质⼀、选择题1、两个⼆位数,它们的最⼤公约数是8,最⼩公倍数是96,这两个数的和是( )A 、56B 、78C 、84D 、962、三⾓形的三边长a 、b 、c 均为整数,且a 、b 、c 的最⼩公倍数为60,a 、b 的最⼤公约数是4,b 、c 的最⼤公约数是3,则a+b+c 的最⼩值是()A 、30B 、31C 、32D 、333、在⾃然数1,2,3,…,100中,能被2整除但不能被3整除的数的个数是( )A 、33B 、34C 、35D 、374、任意改变七位数7175624的末四位数字的顺序得到的所有七位数中,能被3整除的数的个数是( )A 、24B 、12C 、6D 、05、若正整数a 和1995对于模6同余,则a 的值可以是( )A 、25B 、26C 、27D 、286、设n 为⾃然数,若19n+14≡10n+3 (mod 83),则n 的最⼩值是( )A 、4B 、8C 、16D 、32⼆、填空题7、⾃然数n 被3除余2,被4除余3,被5除余4,则n 的最⼩值是8、满⾜[x,y]=6,[y,z]=15的正整数组(x,y,z)共有组9、⼀个四位数能被9整除,去掉末位数后得到的三位数是4的倍数,则这样的四位数中最⼤的⼀个,它的末位数是10、有⼀个11位数,从左到右,前k 位数能被k 整除(k=1,2,3,…,11),这样的最⼩11位数是11、设n 为⾃然数,则3 2 n+8被8除的余数是12、14+24+34+44+…+19944+19954的末位数是三、解答题13、求两个⾃然数,它们的和是667,它们的最⼩公倍数除以最⼤公约数所得的商是120。
14、已知两个数的和是40,它们的最⼤公约数与最⼩公倍数的和是56,求这两个数。
15、五位数H 97H 4能被12整除,它的最末两位数字所成的数7H 能被6整除,求出这个五位数。
初一数学竞赛系列练习16套 (含答案)全套 七年级
初一数学竞赛系列训练1——自然数的有关性质一、选择题1、两个二位数,它们的最大公约数是8,最小公倍数是96,这两个数的和是( )A 、56B 、78C 、84D 、962、三角形的三边长a 、b 、c 均为整数,且a 、b 、c 的最小公倍数为60,a 、b 的最大 公约数是4,b 、c 的最大公约数是3,则a+b+c 的最小值是( )A 、30B 、31C 、32D 、333、在自然数1,2,3,…,100中,能被2整除但不能被3整除的数的个数是( )A 、33B 、34C 、35D 、374、任意改变七位数7175624的末四位数字的顺序得到的所有七位数中,能被3整除的数的个数是( )A 、24B 、12C 、6D 、05、若正整数a 和1995对于模6同余,则a 的值可以是( )A 、25B 、26C 、27D 、286、设n 为自然数,若19n+14≡10n+3 (mod 83),则n 的最小值是( )A 、4B 、8C 、16D 、32二、填空题7、自然数n 被3除余2,被4除余3,被5除余4,则n 的最小值是8、满足[x,y]=6,[y,z]=15的正整数组(x,y,z)共有 组9、一个四位数能被9整除,去掉末位数后得到的三位数是4的倍数,则这样的四位数中最大的一个,它的末位数是10、有一个11位数,从左到右,前k 位数能被k 整除(k=1,2,3,…,11),这样的最小11位数是11、设n 为自然数,则3 2 n +8被8除的余数是12、14+24+34+44+…+19944+19954的末位数是三、解答题13、求两个自然数,它们的和是667,它们的最小公倍数除以最大公约数所得的商是120。
14、已知两个数的和是40,它们的最大公约数与最小公倍数的和是56,求这两个数。
15、五位数H 97H 4能被12整除,它的最末两位数字所成的数7H 能被6整除,求出这个五位数。
16、若a,b,c,d 是互不相等的整数,且整数x 满足等式(x-a)(x-b)(x-c)(x-d)=9求证:4∣(a+b+c+d)17、一个数是5个2,3个3,2个5,1个7的连乘积,这个数当然有许多约数是两位数,这些两位约数中,最大的是多少?18、求2400被11除,所得的余数。
七年级超难数学竞赛题带解析
七年级超难数学竞赛题带解析一、代数部分。
1. 已知a,b为有理数,且a + b√(2)=(1 - √(2))^2,求a^b的值。
- 解析:- 先将(1-√(2))^2展开,根据完全平方公式(a - b)^2=a^2 - 2ab+b^2,这里a = 1,b=√(2),则(1-√(2))^2=1-2√(2)+2 = 3 - 2√(2)。
- 因为a + b√(2)=3 - 2√(2),所以a = 3,b=-2。
- 那么a^b = 3^-2=(1)/(9)。
2. 若x^2 - 3x + 1 = 0,求x^4+(1)/(x^4)的值。
- 解析:- 由x^2 - 3x + 1 = 0,因为x = 0不满足方程,所以方程两边同时除以x得x-3+(1)/(x)=0,即x+(1)/(x)=3。
- 对x+(1)/(x)=3两边平方得(x +(1)/(x))^2=x^2+2+(1)/(x^2)=9,所以x^2+(1)/(x^2)=7。
- 再对x^2+(1)/(x^2)=7两边平方得(x^2+(1)/(x^2))^2=x^4 + 2+(1)/(x^4)=49,所以x^4+(1)/(x^4)=47。
3. 化简(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(2019×2020)。
- 解析:- 因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。
- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(2019)-(1)/(2020))- 去括号后中间项都可以消去,得到1-(1)/(2020)=(2019)/(2020)。
4. 已知a^2 + b^2=6ab,且a>b>0,求(a + b)/(a - b)的值。
- 解析:- 因为a^2 + b^2 = 6ab,所以(a + b)^2=a^2+2ab + b^2=8ab,(a - b)^2=a^2-2ab + b^2 = 4ab。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学竞赛系列训练(7)
选择题
1、若a 、b 是有理数,且a 2001+b 2001=0,则
A 、a=b=0
B 、a-b=0
C 、a+b=0
D 、ab=0
2、若abc 满足a 2+b 2+c 2=9,则代数式(a-b)2+(b-c)2+(c-a)2的最大值是( )
A 、27
B 、18
C 、15
D 、12
3、已知⎪⎩
⎪⎨⎧+=+=+=200420012003200120022001x c x b x a ,则ca bc ab c b a ---++222的值是( )
A 、0
B 、1
C 、2
D 、3
4、如果11111=++=++z
y x z y x ,则下列说法正确的是( ) A 、x 、y 、z 中至少有一个为1 B 、x 、y 、z 都等于1
C 、x 、y 、z 都不等于1
D 、以上说法都不对
5、已知=+-=-+-+=-+-+=++-+q q q q b
a c c
b a a
c b b a c c b a a c b 23 ,则( ) A 、1 B 、1-q C 、1-q 3 D 、1-2q 2
6、已知a+b+c=10,a 2+b 2+c 2=38,a 3+b 3+c 3=160,则abc 的值是( )
A 、24
B 、30
C 、36
D 、42
填空题
7、已知()()()=+≠--=-a
c b a a c b a c b ,则且0 412 8、已知a-b=2,b-c= -3,c-d=5,则(a-c) (b-d) ÷ (a-d)= 9、已知abc ≠0,a+b+c=0,则211111b 1a +⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫
⎝⎛+b a c a c b c 的值为 10、计算⎪⎭
⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛
-22221011911311211Λ= 11、已知a 、b 、c 、d 均不为0,当a ≠b 且
a d d c c
b b a ===时,=-+++++a d
c b
d c b a 12、已知a=102
18141211+++++Λ,则a-1的倒数为 解答题
13、求证:2(a-b) (a-c)+2(b-c) (b-a)+2(c-a) (c-b)= (b-c)2+(c-a)2+(a-b)2
14、求证:(a 2+b 2+c 2) (m 2+n 2+k 2) – (am+bn+ck)2=(an-bm)2+(bk-cn)2+(cm-ak)2
(拉格朗日恒等式)
15、若14(a 2+b 2+c 2)=(a+2b+3c)2,求证:a ∶b ∶c=1∶2∶3
16、若xy
z c zx y b yz x a 222=-=-,求证:ax+by+cz=(x+y+z) (a+b+c)
17、已知a 、b 、c 、d 满足a+b=c+d ,a 3+b 3=c 3+d 3, 求证:a 2001+b 2001=c 2001+d 2001
18、已知a+b+c=abc ,求证:a(1-b 2) (1-c 2)+b(1-a 2) (1-c 2)+c(1-a 2) (1-b 2)=4abc
19、已知a 3+b 3+c 3=(a+b+c)3,求证a 2n+1+b 2n+1+c 2n+1=(a+b+c) 2n+1,其中n 为自然数。
20、设a 、b 、c 都是正数,且
3=++a c c b b a ,求证:a=b=c。