Optical Lattices, Ultracold Atoms and Quantum Information Processing

合集下载

翻译

翻译

用硅前体制备高能量密度锂离子电池硅-氧化硅核壳结构纳米线阳极材料Chuanjian Zhang, Lin Gu, Nitin Kaskhedikar, Guanglei Cui, and Joachim Maier青岛生物能源与bioprocess科技研究院,中国科学院院士,崂山区松岭路189号,青岛266101,P. R.中国北京国家实验室凝聚态物理,物理研究所,中国科学院院士,8号,3号南街,中关村,海淀区,北京100190,P. R.中国马克斯普朗克研究所固体研究,heisenbergstasse 1,斯图加特70569,德国摘要:大批量硅-硅氧化物纳米线已经成功通过简便的高温合成方法混合环保硅和钛粉获得。

这就确认了获得纳米线过程是对结晶质核心和非晶质氧化层的加工。

获得的纳米线被球形硅-硅氧化物纳米颗粒催化沿[111]方向生长。

独特的一维结构和稀薄氧化层导致有利的电化学性能,这也许就是有利于高能量密度锂离子电池的硅阳极材料。

关键词:核−壳电池硅纳米线电化学阳极材料前言硅基纳米材料,特别是一维纳米线,由于其较高的理论容量硅(4200 mAh g−1)、石墨(372 mAh g−1)被认为是锂离子电池阳极材料的最佳候选。

【1-3】此外,硅纳米线在电子学方面也吸引了极大的关注,因为它在硅纳米电子,【4】纳米光子学【5】和纳米生物传感器【6,7】打开了新的领域。

因此,探索硅纳米线材料成为纳米材料领域一项重要的课题。

为了制备硅纳米线人们做了许多努力,例如化学腐蚀、【8】热蒸发沉积、【9】化学汽相淀积(CVD)、【10】超临界流体−液-固体(SFLS)合成。

【11】硅纳米线最受欢迎的增长机制是液-固蒸发(VLS)机制,瓦格纳和埃利斯在1964年【12】开创使用金作为催化材料并被Givarizov【13】更好的发展。

与除了金的其他金属二次加工硅纳米线的可能性也被证明。

【14】在VLS过程,催化纳米线的生长期间金属催化剂通常是以微滴嵌入液相。

2022年自考专业(英语)英语科技文选考试真题及答案37

2022年自考专业(英语)英语科技文选考试真题及答案37

2022年自考专业(英语)英语科技文选考试真题及答案一、阅读理解题Directions: Read through the following passages. Choose the best answer and put the letter in the bracket. (20%)1、 (A) With the recent award of the Nobel Prize in physics, the spectacular work on Bose-Einstein condensation in a dilute gas of atoms has been honored. In such a Bose-Einstein condensate, close to temperatures of absolute zero, the atoms lose their individuality and a wave-like state of matter is created that can be compared in many ways to laser light. Based on such a Bose-Einstein condensate researchers in Munich together with a colleague from the ETH Zurich have now been able to reach a new state of matter in atomic physics. In order to reach this new phase for ultracold atoms, the scientists store a Bose-Einstein condensate in a three-dimensional lattice of microscopic light traps. By increasing the strength of the lattice, the researchers are able to dramatically alter the properties of the gas of atoms and can induce a quantum phase transition from the superfluid phase of a Bose-Einsteincondensate to a Mott insulator phase. In this new state of matter it should now be possible to investigate fundamental problems of solid-state physics, quantum optics and atomic physics. For a weak optical lattice the atoms form a superfluid phase of a Bose-Einstein condensate. In this phase, each atom is spread out over the entire lattice in a wave-like manner as predicted by quantum mechanics. The gas of atoms may then move freely through the lattice. For a strong optical lattice the researchers observe a transition to an insulating phase, with an exact number of atoms at each lattice site. Now the movement of the atoms through the lattice is blocked due to therepulsive interactions between them. Some physicists have been able to show that it is possible to reversibly cross the phase transition between these two states of matter. The transition is called a quantum phase transition because it is driven by quantum fluctuations and can take place even at temperatures of absolute zero. These quantum fluctuations are a direct consequence of Heisenberg’s uncertainty relation. Normally phase transitions are driven by thermal fluctuations, which are absent at zero temperature. With their experiment, the researchers in Munich have been able to enter a new phase in the physics of ultracold atoms. In the Mott insulator state theatoms can no longer be described by the highly successful theories for Bose-Einstein condensates. Now theories are required that take into account the dominating interactions between the atoms and which are far less understood. Here the Mott insulator state may help in solving fundamental questions of strongly correlated systems, which are the basis for our understanding of superconductivity. Furthermore, the Mott insulator state opens many exciting perspectives for precision matter-wave interferometry and quantum computing.What does the passage mainly discuss?A.Bose-Einstein condensation.B.Quantum phase transitions.C.The Mott insulator state.D.Optical lattices.2、What will the scientists possibly do by reaching the new state of matter in atomic physics?A.Store a Bose-Einstein condensate in three-dimensional lattice of microscopic light traps.B.Increase the strength of the lattice.C.Alter the properties of the gas of atoms.D.Examine fundamental problems of atomic physics.3、Which of the following is NOT mentioned in relation to aweak optical lattice?A.The atoms form a superfluid phase of a Bose-Einstein condensate.B.Each atom is spread out over the entire lattice.C.The gas of atoms may move freely through the lattice.D.The superfluid phase changes into an insulating phase.4、What can be said about the quantum phase transition?A.It can take place at temperatures of absolute zero.B.It cannot take place above the temperatures of absolute zero.C.It is driven by thermal fluctuations.D.It is driven by the repulsive interactions between atoms.5、The author implies all the following about the Mott insulator state EXCEPT that______.A.the theory of Bose-Einstein condensation can’t possibly account for the atoms in the Mott insulator stateB.not much is known about the dominating interactions between the atoms in the Mott insulator stateC.it offers new approaches to exact quantum computingD.it forms a superfluid phase of a Bose-Einstein condensate6、 (B) Gene therapy and gene-based drugs are two ways we would benefit from our growing mastery of genetic science. But therewill be others as well. Here is one of the remarkable therapies on the cutting edge of genetic research that could make their way into mainstream medicine in the c oming years. While it’s true that just about every cell in the body has the instructions to make a complete human, most of those instructions are inactivated, and with good reason: the last thing you want for your brain cells is to start churning out stomach acid or your nose to turn into a kidney. The only time cells truly have the potential to turn into any and all body parts is very early in a pregnancy, when so-called stem cells haven’t begun to specialize. Most diseases involve the death of healthy cells—brain cells in Alzheimer’s, cardiac cells in heart disease, pancreatic cells in diabetes, to name a few; if doctors could isolate stem cells, then direct their growth, they might be able to furnish patients with healthy replacement tissue. It was incredibly difficult, but last fall scientists at the University of Wisconsin managed to isolate stem cells and get them to grow into neural, gut, muscle and bone cells. The process still can’t be controlled, and may have unforeseen limitations; but if efforts to understand and master stem-cell development prove successful, doctors will have a therapeutic tool of incredible power. The same applies to cloning, whichis really just the other side of the coin; true cloning, as first shown, with the sheep Dolly two years ago, involves taking a developed cell and reactivating the genome within, resenting its developmental instructions to a pristine state. Once that happens, the rejuvenated cell can develop into a full-fledged animal, genetically identical to its parent. For agriculture, in which purely physical characteristics like milk production in a cow or low fat in a hog have real market value, biological carbon copies could become routine within a few years. This past year scientists have done for mice and cows what Ian Wilmut did for Dolly, and other creatures are bound to join the cloned menagerie in the coming year. Human cloning, on the other hand, may be technically feasible but legally and emotionally more difficult. Still, one day it will happen. The ability to reset body cells to a pristine, undeveloped state could give doctors exactly the same advantages they would get from stem cells: the potential to make healthy body tissues of all sorts. And thus to cure disease.That could prove to be a true “miracle cu re”.What is the passage mainly about?A.Tomorrow’s tissue factory.B.A terrific boon to medicine.C.Human cloning.D.Genetic research.7、 According to the passage, it can be inferred that which of the following reflects the author’s opinion?A.There will inevitably be human cloning in the coming year.B.The potential to make healthy body tissues is undoubtedly a boon to human beings.C.It is illegal to clone any kind of creatures in the world.D.It is legal to clone any kind of creatures in the world except human.8、Which of the following is NOT true according to the passage?A.Nearly every cell in the human brain has the instructions to make a complete human.B.It is impossible for a cell in your nose to turn into a kidney.C.It is possible to turn out healthy replacement tissues with isolated stem cells.D.There will certainly appear some new kind of cloned animal in the near future.9、All of the following are steps involved in true cloning EXCEPT_______.A.selecting a stem cellB.taking a developed cellC.reactivating the genome within the developed cellD.resetting the developmental instructions in the cell to its original state10、The word “rejuvenated” in para. 5 is closest in meaning to_______.A.rescuedB.reactivatedC.recalledD.regulated参考答案:【一、阅读理解题】1~5CDDAD6~10DBBA。

基于功能基元序构的太赫兹超表面

基于功能基元序构的太赫兹超表面

尊敬的客户,我很高兴能为您撰写关于“基于功能基元序构的太赫兹超表面”的文章。

在本文中,我将会按照您的要求,以深度和广度兼具的方式来全面评估这一主题,并据此撰写一篇有价值的文章。

我也会在文章中多次提及“基于功能基元序构的太赫兹超表面”,并共享我的个人观点和理解。

1. 超表面的概念让我们来深入探讨一下超表面的概念。

超表面是一种能够对太赫兹波段进行有效调控的人工结构,它具有独特的电磁特性。

通过在微纳米尺度上排列功能基元,超表面能够实现对太赫兹波段的超材料调控,包括反射、透射和吸收。

基于功能基元序构的超表面在太赫兹波段的应用正在受到越来越多的关注,其在通信、成像、传感等领域具有巨大的潜在应用前景。

2. 功能基元序构在超表面中的作用我们需要深入了解功能基元序构在超表面中的作用。

功能基元的序构是指在超表面中精确排列功能性基本单元的过程。

通过精确的序构设计,超表面可以实现对太赫兹波段的高效控制,并具有多样化的电磁特性。

这种精确的序构设计不仅能够实现光的拟态调控,还可以实现对光场的局部调控,为太赫兹波段的传输和处理提供了全新的可能性。

3. 基于功能基元序构的太赫兹超表面的应用前景基于功能基元序构的太赫兹超表面在通信、成像、传感等领域都具有广阔的应用前景。

在通信领域,超表面可以用于提高太赫兹波段通信系统的传输效率和隐蔽性,同时还可以用于实现波束赋形和频谱调控。

在成像领域,超表面可以用于太赫兹波段的超分辨成像和深层非破坏检测。

在传感领域,超表面可以用于太赫兹波段的生物分子检测、化学成分分析等应用。

基于功能基元序构的太赫兹超表面将为太赫兹技术的发展带来巨大的推动力,并在多个领域实现突破性的应用。

4. 个人观点和总结从我的个人观点来看,基于功能基元序构的太赫兹超表面是一个非常具有前景和潜力的领域。

通过精确的序构设计,超表面可以实现对太赫兹波段的高效控制,从而在通信、成像、传感等领域实现广泛应用。

我对这一技术的未来充满信心,并期待看到它在实际应用中取得更多的突破和进展。

program-分会7-冷原子物理与量子模拟pdf

program-分会7-冷原子物理与量子模拟pdf

冷原子物理与量子模拟20日下午,地点:208,主持人:朱诗亮,南京大学 时 间 报告人 报告题目13:30-14:00张天才山西大学Full control and measurement of singleatom in micro-trap and micro-cavity14:00-14:30 史保森中科大Entanglement between a collective Rydbergexcitation and a ground-state spin wave14:30-15:00颜辉华南师大Narrowband single photons: Generation andApplication休息20日下午,地点:208,主持人:张天才,山西大学15:20-15:50 管习文物数所Luttinger liquid and beyond in one-dimensionalspin-1/2 Heisenberg antiferromagnet CuPzN15:50 -16:20钱静华东师大Non-equilibrium quantum phases in ultracold Rydberg atoms with strong blockadeeffect16:20-16:40金家森大连理工Steady-state phase diagram of a drivenQED-cavity array with cross-Kerrnonlinearities16:40-17:00魏世杰清华大学Duality Quantum Computer Simulates Open QuantumSystems Efficiently17:00-17:20周增荣清华大学The efficient quantum simulation algorithm in duality quantum computer21日上午,地点:208,主持人:颜辉,华南师范大学 时 间 报告人 报告题目8:30-9:00张靖山西大学Experimental realization of a two-dimensionalsynthetic spin-orbit coupling in ultracoldFermi gases9:00-9:30周小计北京大学Quantum dynamical evolution of cold atoms in the high bands of an optical lattice9:30-10:00张熙博北京大学Studying many-body physics based on coldstrontium atoms休息21日上午,地点:208,主持人:龙桂鲁,清华大学10:20-10:50冯芒物数所Precise control and quantum gating with trappedions10:50-11:20颜波浙江大学Ultracold polar molecules in an 3D opticallattice11:20-11:50陈澍物理所Existence of critical phase in quasiperiodic optical lattices11:50-12:10周智超武汉大学Thermal valence-bond-solid transition andcooling of SU(2N) ultra-cold Dirac fermions inthe optical lattice休息与海报21日下午,地点:208,主持人:刘伍明,中科院物理所 时 间 报告人 报告题目13:30-14:00 龙桂鲁清华大学Duality Quantum Computing: A New Paradiam forEfficient Quantum Simulation14:00-14:30 王大军港中文Creation of an ultracold gas of ground-statedipolar 23Na87Rb molecules14:30-15:00 纪安春首师大Oscillations of Solitons in 1D Spin-Orb it Coupled Bose-Einstein Condensates休息21日下午,地点:208,主持人:陈澍,中科院物理所15:20-15:50 许志芳华中科大Interaction-driven topological edgeexcitations in a bosonic chiral p-wavesuperfluid15:50-16:20 刘伍明物理所光晶格中冷原子的拓扑量子相变16:20-16:50 江开军物数所TBA16:50-17:20 朱诗亮南京大学Simulation of PT-invariant topological nodal loop bands with ultracold atoms in an optical lattice。

《光电材料与器件》课程教学大纲

《光电材料与器件》课程教学大纲

《光电材料与器件》课程教学大纲一、课程名称(中英文)中文名称:光电材料与器件英文名称:Optoelectronics Materials and Devices二、课程代码及性质专业选修课程三、学时与学分总学时:32学分:2四、先修课程无五、授课对象材料及材料加工类专业本科生六、课程教学目的(对学生知识、能力、素质培养的贡献和作用)【注:教学目的要突出各项“能力”,且与表1中的某项指标点相对应】本课程是功能材料专业的选修课之一,其教学目的包括:1、掌握激光的产生机制,光纤的传导机制以及熟悉光调制的基本原理。

2、理解光电技术在信息传输,光探测以及光伏等领域的应用原理。

3、能够关注和了解光电材料与技术在日常生活中的应用。

掌握文献检索、资料查询、现代网络搜索工具的使用方法。

能够应用现代工具撰写报告、设计文稿、陈述发言、清晰表达或回应指令。

七、教学重点与难点:课程重点:(1)光电材料的工作原理和应用。

本课程重点介绍针对半导体材料的电学性能和其在激光领域的应用。

(2)在了解半导体材料相关物理理论知识的基础上,重点学习基于半导体的光电器件的种类、应用和影响性能的因素等。

(3)重点学习的章节内容包括:第2章“激光”(6学时)、第3章“波导”(6学时)、第5章“光探测器”(4学时)。

课程难点:(1)通过本课程的学习,充分理解基于半导体材料的激光基本原理,激光器的基本构造以及应用范围。

(2)通过对光电材料及其光电器件的学习,了解影响光电材料与器件性能的因素和改进策略,从而具备设计和改进光电器件响应性能的能力。

八、教学方法与手段:教学方法:(1)课程邀请相关科研工作者做前沿报告,调动学生学习积极性。

(2)课堂讲授和相关多媒体小视频相结合,提高学生听课积极性,视频与课程内容相关,加深记忆和理解概念;(3)通过期末专题报告的形式,让学生讲解生活中与课程相关的知识或技术,台下的学生听众提问,而台上的学生为自己的观点进行辩护,从而产生互动,加深记忆和理解,更主要是能激发学生的兴趣。

第四届冷原子会议会议安排July 5

第四届冷原子会议会议安排July 5
40
[P16]
Jing Qian(钱静)
Efficient production of polar molecular Bose–Einstein condensates via an all-optical R-type atom–molecule adiabatic passage
41
[P17]
31
[P07]
Haichao Zhang(张海潮)
Demonstration of Neutral Atom Guiding via Radio-Frequency Field
32
[P08]
Shuyu Zhou(周蜀渝)
Double-well Array Trapping Atoms Based on Binary Optics ethod
会议安排July 5, Monday
Opening Ceremony
Presider
Liang Liu(刘亮)
8:30-9:00
Yuzhu Wang(王育竹)and Chaohui Ye(叶朝辉)
Opening Remarks
Sec. A
Presider
Li You(尤力)
9:00-9:30
Jun Ye(叶军)
Xing-Dong Zhao(赵兴东)
A magical polarization orientation for canceling the dipole-dipole
interaction in ultracold Bosonic dipolar gases
42
[P18]
Cheng-ling Bian(边成玲)
46
[P22]
K. Zhang(张可烨)

功能基元 序构 光子晶体 首次提出

功能基元 序构 光子晶体 首次提出

功能基元序构光子晶体首次提出下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

本文下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documentscan be customized and modified after downloading, please adjust and use it accordingto actual needs, thank you!In addition, our shop provides you with various types of practical materials, suchas educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!功能基元是一种新型的材料,它的提出为科学界带来了崭新的探索方向。

半导体超晶格的光学性质

半导体超晶格的光学性质

半导体超晶格的光学性质半导体超晶格是一种由多个单晶体相互重叠而形成的一种特殊晶体结构,其结构可用于制备纳米尺度下具有特定光学性质的材料。

在此文中,将重点介绍半导体超晶格的光学性质,包括其吸收、荧光和折射等方面。

一、吸收半导体超晶格中的光吸收是一种复杂的现象,通常需要用到量子力学和计算机模拟等方法来解释其微观机制。

大多数半导体超晶格对可见光谱范围都表现出一定的吸收特征,其中包括从紫外光到红光的连续吸收带。

这些吸收带的宽度和位置通常与超晶格的结构和材料参数有关。

例如,对于由InAs和GaAs单晶体交替组成的InAs/GaAs超晶格,其吸收谱在900~1200nm范围内表现出显著的带状结构,这与超晶格的周期和厚度有关。

二、荧光半导体超晶格的荧光性质是其在光学应用中的重要特征之一。

荧光是半导体超晶格在受到光激发后发出的可见光,其波长通常取决于材料的能隙。

对于由GaAs和AlAs交替组成的超晶格,在晶格匹配度良好时,其荧光光谱呈现出尖锐的峰形结构。

这些峰的位置和强度可能会受到超晶格周期、结构界面的缺陷等因素的影响。

三、折射半导体超晶格的折射率是其光学性质中的一个重要参数,它直接决定了超晶格材料在光学器件中的应用效果。

在正常入射情况下,半导体超晶格的折射率与其周期和材料参数有关。

对于某些特殊的超晶格结构,如由氧化锌和硫化锌交替组成的ZnO/ZnS超晶格,其折射率不仅与周期和材料参数有关,还受到光激发和外加电场的影响。

这些性质使得ZnO/ZnS超晶格在光电器件中具有广泛的应用前景。

总的来说,半导体超晶格的光学性质是其在光电器件中应用的关键因素之一。

对其吸收、荧光和折射等特性的深入研究,可以为制备具有特定光学性质的材料和开发高性能光电器件提供有力支持。

可视化原位透射电镜技术见证纳米颗粒舞动之美

可视化原位透射电镜技术见证纳米颗粒舞动之美

可视化原位透射电镜技术见证纳米颗粒舞动之美关键词:纳米氧化钨氧化还原锂离子光谱标准物质北京标准物质网在纳米世界里的生活是很快的,就致力于纳米尺度的基本机制研究而言,其发展更加迅速,这个世界,便是尺寸只有十亿分之一米的原子和离子之类的颗粒的舞蹈。

随着对纳米尺度的理解,中国研究者团队研发了一种可视化的基于原位透射电镜技术,该技术可以提供新颖而强大的功能,它能够直接将原子尺度的结构和物化性能联系起来。

在 AIP 出版的 Applied Physics Letters 期刊里,研究者们说明了他们的发现对新一代科技设备的设计和制造的重要性。

这项研究具有广泛的应用潜力,从基于电致色变科技的智能窗到管理能源、信息和环境的新型器件。

团队负责人、中科院物理所白雪冬研究员介绍道,“目前,应用于能源、信息和环境方面的新设备的原子机制是一个重要的议题。

物化现象中原子过程的实时成像是原位透射电镜技术的任务。

我们研究的目标之一是理解从原子尺度可获得的设备的基本原理,另一个目标是探索基于原子过程中原位透射电镜成像的革新的设备。

”在诺贝尔奖透射电镜科技中,电子束取代了用于传统电镜中的光束,通过一个金属试样传输。

与光学显微镜相比,由于电子具有更短的波长,透射电子显微镜提供给研究者更高的分辨率,以至于他们可以观察到更多的信息。

白雪冬强调了结构和性能之间的关系是材料科学一个根本关注点。

然而研究这种关系的约束之一是使用传统的方法,结构表征和性能测定通常是分开的,对于纳米材料而言,他们的创新之处在于将这些步骤结合起来。

白雪冬还说道,“过去的十五年来,我们的研究工作集中于原位透射电镜技术的构造和应用,所以在不同的物理因素 ( 包括电和光 ) 下原子尺度的性能都通过透射电镜进行研究。

”该团队尤其对于应用最广泛的电化学材料之一——氧化钨和其产物的一个关键相转变进行了研究。

通过使用他们简化了的内含电化学电池的透射电镜技术,其微观的、动态的观察显示了实时的详细机理,涉及了电化学氧化钨纳米线的形成和演变,并且在工业上有很多应用。

硅片上技术的太赫兹拓扑绝缘体

硅片上技术的太赫兹拓扑绝缘体

硅片上技术的太赫兹拓扑绝缘体1.太赫兹波段是一种处于电磁波谱中的特定频率范围。

The terahertz band is a specific frequency range in the electromagnetic spectrum.2.太赫兹波段的应用范围广泛,包括通信、成像和材料科学等领域。

The terahertz band has a wide range of applications, including communication, imaging, and material science.3.在硅片上实现太赫兹技术是一种新的研究方向。

Implementing terahertz technology on silicon wafers is a new research direction.4.太赫兹技术能够在纳米尺度下实现高精度的材料成像。

Terahertz technology can achieve high-precision material imaging at the nanoscale.5.太赫兹拓扑绝缘体是一种具有特殊电子结构的材料。

Terahertz topological insulator is a material with a special electronic structure.6.这种特殊电子结构使得太赫兹拓扑绝缘体具有低能耗和高效率的特性。

This special electronic structure enables terahertz topological insulators to have low energy consumption and high efficiency.7.太赫兹拓扑绝缘体的研究有望带来下一代电子器件的革命。

The research of terahertz topological insulators is expected to bring about a revolution in the next generation of electronic devices.8.硅片作为基底材料能够提供良好的物理支持和热导性能。

钙钛矿不同波长转换效率

钙钛矿不同波长转换效率

钙钛矿不同波长转换效率
钙钛矿太阳能电池是一种新型的太阳能电池,其能量转化效率正在不断提高。

以下是不同时间报道的钙钛矿太阳能电池不同波长下的转换效率:
- 2020年3月:澳大利亚国立大学(ANU)研究团队表示,他们开发的新型钙钛矿-硅串联太阳能电池的能量转化效率,已经达到了27.7%。

- 2020年12月:柏林亥姆霍兹中心(HZB)的科学家创造了新的纪录,他们的硅/钙钛矿太阳能电池效率达到29.15%。

- 2023年6月:单结钙钛矿电池理论效率为31%,与晶硅叠层理论效率超过43%。

需要注意的是,这些数据仅代表了钙钛矿太阳能电池在特定条件下的能量转化效率,实际应用中的效率可能会受到多种因素的影响。

nature 聚合物半导体材料

nature 聚合物半导体材料

nature 聚合物半导体材料
"Nature" 是一本科学领域的高影响力期刊,其中包括了许多有关聚合物半导体材料的研究论文。

聚合物半导体是一类具有半导体性质的有机高分子材料,常用于柔性电子器件、有机光电子器件等领域。

以下是一些可能与"Nature" 期刊中聚合物半导体相关的研究方向:
1.有机薄膜晶体管:研究关于使用聚合物半导体材料制备的有机
薄膜晶体管,探讨其电学性质、载流子运输等方面的性能。

2.柔性电子器件:利用聚合物半导体材料制备柔性电子器件,如
柔性智能显示器、柔性传感器等,以应用于可穿戴设备和可弯
曲电子器件。

3.有机太阳能电池:研究有关聚合物半导体在有机太阳能电池中
的应用,包括提高光电转换效率、增强稳定性等方面的工作。

4.有机发光二极管(OLED):探讨聚合物半导体在OLED中的应
用,研究其对光电发射和光电性能的影响。

5.有机场效应晶体管:对聚合物半导体材料在有机场效应晶体管
中的性质进行研究,包括电子迁移率、载流子传输等方面的特
性。

这些领域的研究旨在推动有机电子学和光电子学的发展,以实现更先进、更高效的柔性电子器件。

请注意,"Nature" 期刊上的具体研究取决于最新的发表情况,建议查阅最新的期刊内容或官方网站以获取详细信息。

+全国2009年4月高等教育自学考试英语科技文选

+全国2009年4月高等教育自学考试英语科技文选

英语科技文选试题课程代码:00836PART A: VOCABULARYI. Directions: Add the affix to each word according to the given Chinese, making changes when necessary. (8%)1. artificial 人工制品 1. __________________2. fiction 虚构的 2. __________________3. coincide 巧合 3. __________________4. organic 无机的 4. __________________5. sphere 半球 5. __________________6. technology 生物技术 6. __________________7. formid 可怕的7. __________________8. harmony 和谐的8. __________________II. Directions: Fill in the blanks, each using one of the given words or phrases below in its proper form.(12%)stand for exposure to at work on the edge of short ofend up focus on a host of give off a sense ofin memory of comply with9. We were on a hill, right _________ the town.10. UNESCO _________ United Nations Educational, Scientific and Cultural Organization.11. I am a bit _________ cash right now, so I can’t lend you anything.12. The milk must be bad, it’s _________ a nasty smell.13. The traveler took the wrong train and _________ at a country village.14. The material will corrode after prolonged _________ acidic gases.15. _________ problems may delay the opening of the conference.16. The congress opened with a minute’s silence _________ those who died in the struggle for the independence of their country.17. Tonight’s TV program _________ homelessness.18. He promised to _________ my request.19. Farmers are _________ in the fields planting.20. She doesn’t sleep enough, so she always has _________ of fatigue.III. Directions: Fill in each blank with a suitable word given below.(10%)birth to unmarried had premature among were between such pastThe more miscarriages or abortions a woman has,the greater are her chances of giving birth to a child that is underweight or premature in the future,the research shows.Low birthweight (under 2500g) and premature birth(less than 37 weeks)are two of the major contributors to deaths 21 newborn babies and infants. Rates of low birthweight and 22 birth were highest among mothers who 23 black, young or old, poorly educated, and 24 . But there was a strong association 25 miscarriage and abortion and an early or underweight 26 , even after adjusting for other influential factors, 27 as smoking, high blood pressure and heavy drinking. Women who had 28 one, two, or three or more miscarriages or abortions in the 29 were almost three, five, and nine times as likely to give birth 30 an underweight child as those without previous miscarriages or abortions.21. _________ 22. _________ 23. _________ 24. _________ 25. _________26. _________ 27. _________ 28. _________ 29. _________ 30. _________PART B: TRANSLATIONIV. Directions: Translate the following sentences into English, each using one of the given words or phrases below.(10%)precede replete with specialize in incompatible with suffice for31.上甜食前,每个用餐者都已吃得很饱了。

有机光敏器件[发明专利]

有机光敏器件[发明专利]

专利名称:有机光敏器件
专利类型:发明专利
发明人:巴里·P·兰德,斯蒂芬·福里斯特申请号:CN200910252647.2
申请日:20050804
公开号:CN101728486A
公开日:
20100609
专利内容由知识产权出版社提供
摘要:本发明涉及有机光敏器件,尤其是涉及具有包含表现出等离子体激元共振的密封纳米微粒的光激活有机区的有机光敏光电子器件。

入射光场的增强经由表面等离子体激元极化子共振实现。

该增强增加入射光的吸收,产生更有效的器件。

申请人:普林斯顿大学理事会
地址:美国新泽西
国籍:US
代理机构:中国国际贸易促进委员会专利商标事务所
代理人:秦晨
更多信息请下载全文后查看。

【精品文章】上硅所在新型磁光陶瓷研究方面取得系列进展

【精品文章】上硅所在新型磁光陶瓷研究方面取得系列进展

上硅所在新型磁光陶瓷研究方面取得系列进展近日,中国科学院上海硅酸盐研究所研究员李江带领的透明与光功能陶瓷研究课题组通过顺磁性稀土离子掺杂对TAG陶瓷进行了性能调控,并取得了研究进展。

 (a)不同掺杂浓度Ce:TAG磁光陶瓷的实物照片(b)直线透过率曲线 他们以离子半径和Tb3+接近的Ce3+和Pr3+为改性离子,成功制备了高光学质量的Ce:TAG和Pr:TAG磁光陶瓷。

该团队采用共沉淀法合成了0.5at% Ho:TAG纳米粉体,再结合真空烧结及热等静压后处理(HIP)技术制备得到了具有优异光学质量和磁光性能的Ho:TAG透明陶瓷,该材料在1064 nm波长处的直线透过率达到81.9%,在632.8 nm处的Verdet常数为-183.1 rad·T-1·m-1,比商用TGG单晶高36%。

 研究发现,由于掺杂离子对晶体场的影响以及和Tb3+之间存在超交换作用,掺杂后TAG磁光陶瓷的Verdet常数均有所提升,其中2.0at% Ce:TAG 透明陶瓷在632.8 nm处的Verdet常数达到-196.2 rad·T-1·m-1,比TAG陶瓷和商业TGG晶体分别提高了9%和46%(Scripta Materialia,2018, 155:46-49)。

 近年来,李江团队开展了关于TAG磁光透明陶瓷的研究工作,并取得了系列研究成果。

该团队首先以商业氧化物粉体为原料,采用固相反应法结合真空烧结技术来制备TAG磁光透明陶瓷,对粉体性能和陶瓷性能进行了系统研究,揭示了固相反应烧结过程中原料粉体的重要性(Optical Materials, 2016, 62: 205-210)。

针对商业氧化铽粉体存在的团聚问题,该团队又通过沉淀法自主合成了分散性相对较好的氧化铽纳米粉体并以此为原料来制备。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
Intrperimental creation of Bose-Einstein condensates (BEC) [1] in dilute weakly interacting gases of bosonic Alkali atoms in 1995 has brought new and exciting prospects to the fields of atomic physics and quantum state engineering. All the atoms in a BEC show identical quantum properties and in many respects a BEC therefore behaves like one ‘big’ quantum particle. It also can be imaged without being destroyed, its interactions with laser light are much stronger than that of a single particle and a BEC is less fragile than one might expect. Experimentally observed life times are of the order of several seconds; BEC’s can be moved, shaken and rotated without immediately destroying their striking quantum features. Therefore they turned out to be an ideal testing bed for fundamental quantum physics, basic techniques of quantum state engineering and for investigating atomic properties [2]. The successful achievement of BEC and the early studies of their properties led to to the Nobel Prize in 2001 for the pioneers in this field E.A. Cornell, W. Ketterle, and C.E. Wieman [3].
1
Figure 1: Laser setup and resulting optical lattice configuration in 3D.
The properties of a BEC described above make it an ideal tool for cold atom physics and quantum state engineering by quantum optical methods. One of the most promising experiments for future applications is the loading of a BEC into an optical lattice [4, 5, 6]. Optical lattices are periodic conservative trapping potentials which are created by interference of travelling laser beams yielding standing laser waves in each direction (see Fig. 1). The laser light induces an AC-Stark shifts in atoms and thus acts as a conservative periodic potential. The usage of a BEC for loading has the advantage that its large atom density allows a filling of few particles per site n 1 while laser cooled atoms loaded into an optical lattice typically only allow a filling factor smaller than one. Furthermore the atoms loaded from a BEC are ultracold at temperatures very close to zero so that they practically behave as if their temperature was T = 0, in particular all of them occupy the lowest Bloch band. The basic setup of optical lattices and the loading of a BEC will be described in detail in Sec. 2. An important novel feature which comes about because of the large filling factor n 1 is that interatomic interactions - due to s–wave collisions - of two or more atoms occupying the same lattice site become important. The interatomic interaction potential, which usually leads to incoherent collisions in a thermal cloud of atoms and is responsible for the mean field in a BEC, causes a coherent energy shift U of two particles occupying a single lattice site. For the most frequently used alkali atoms 87 Rb and 23 Na the interaction is repulsive U > 0 and thus the interaction energy competes with the kinetic energy J gained by a particle when hopping from one lattice site to the next. Both of these parameters depend on the laser intensity. When increasing the laser intensity the barriers between neighbouring sites increases in height and 2
Optical Lattices, Ultracold Atoms and Quantum Information Processing
D. Jaksch February 1, 2008
arXiv:quant-ph/0407048v1 6 Jul 2004
Abstract We review novel methods to investigate, control and manipulate neutral atoms in optical lattices. These setups allow unprecedented quantum control over large numbers of atoms and thus are very promising for applications in quantum information processing. After introducing optical lattices we discuss the superfluid (SF) and Mott insulating (MI) states of neutral atoms trapped in such lattices and investigate the SF-MI transition as recently observed experimentally. In the second part of the paper we give an overview of proposals for quantum information processing and show different ways to entangle the trapped atoms, in particular the usage of cold collisions and Rydberg atoms. Finally, we also briefly discuss the implementation of quantum simulators, entanglement enhanced atom interferometers, and ideas for robust quantum memory in optical lattices.
J goes down. At the same time two particles sitting in one site are pushed together closer resulting in an increased interaction energy. Therefore the competition between kinetic and interaction energy can be controlled by the laser intensity which is an extern
相关文档
最新文档