Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra gl(mn)

合集下载

外文翻译

外文翻译

海洋沉积物中产生的L-谷氨酰胺酶的选择性分离和分子鉴定Kiruthika J. 和Saraswathy N.1.政府科技学院,哥印拜陀-641013,泰米尔纳德邦,印度2.库玛拉格鲁科技学院,哥印拜陀-641049,泰米尔纳德邦,印度摘要:L-谷氨酰胺酶(L-谷氨酰胺水解酶E.C.3.5.1.2)是一种催化L-谷氨酰胺裂解成L-谷氨酸和氨的酶。

由于其潜在的应用作为抗癌和风味增强剂,它已经得到了重视。

为了分离出一株有生产潜力的L-谷氨酰胺酶菌株,印度喀拉拉邦和泰米尔纳德邦不同河岸的土壤样品被收集起来。

几株菌种中,基于酶的活性,一株有效的分离菌被选择和确定了下来。

形态学和生化特征显示,有效的分离菌属于弧菌属。

此外,有效菌株的16s rRNA 基因(1.4Kbp)被扩增,分析表明大约有99%的相似性弧菌。

IMSF-06(NCBI登录号GQ907023)和下一个同源性弧菌是Azureus;HNS029(NCBI登录号JN128263)。

因此,该菌株最终鉴定为弧菌Azureus JK 79菌株(GenBank登录号JQ820323)。

关键词:L-谷氨酰胺酶,分离,鉴定,16s rDNA序列分析,弧菌Azureus JK 79。

引言L-谷氨酰胺酶(L-谷氨酰胺水解酶E.C. 3.5.1.2)催化谷氨酰胺水解成L-谷氨酸和氨。

它是各种含氮代谢中间体合成的关键酶。

L-谷氨酰胺酶是由不同的细菌,真菌,酵母,霉菌和丝状真菌合成的。

这种酶参与微生物的谷氨酰胺代谢。

哺乳动物也合成这种参与到以谷氨酰胺为主要呼吸燃料产生能量的酶。

因此,许多类型的肿瘤细胞以及积极分裂的正常细胞表现出对谷氨酰胺高几率的利用。

癌细胞,尤其是淋巴肿瘤细胞不能合成L-谷氨酰胺,因此需要大量的谷氨酰胺来使它们快速生长。

因此,这些癌细胞依赖于谷氨酰胺的外源供应来生存和细胞快速分裂。

因此,酰胺酶的使用剥夺了肿瘤细胞所需要的L-谷氨酰胺并且导致了L-谷氨酰胺依赖性肿瘤细胞的选择性死亡。

2-甲基-4-(4-甲基-1-哌嗪基)-10H-噻吩并[2,3-b][1,5]苯并二氮杂

2-甲基-4-(4-甲基-1-哌嗪基)-10H-噻吩并[2,3-b][1,5]苯并二氮杂

专利名称:2-甲基-4-(4-甲基-1-哌嗪基)-10H-噻吩并[2,3-b][1,5]苯并二氮杂 及其盐的合成
专利类型:发明专利
发明人:T·梅萨尔,A·科帕尔,H·斯图尔姆,J·路德谢尔
申请号:CN200580015935.6
申请日:20050317
公开号:CN101084222A
公开日:
20071205
专利内容由知识产权出版社提供
摘要:本发明属于有机化学领域,并涉及奥氮平的新型提纯方法,包括制备奥氮平的酸加成盐并将其转化成药物上可接受的纯净和脱色的最终产品。

本发明还涉及制备纯奥氮平的新型方法。

申请人:力奇制药公司
地址:斯洛文尼亚卢布尔雅那
国籍:SI
代理机构:北京市中咨律师事务所
更多信息请下载全文后查看。

coxeter群的半直积分解 英文

coxeter群的半直积分解 英文

coxeter群的半直积分解英文Title: Semi-direct Product Decomposition of Coxeter Groups Content:Coxeter groups are important objects of study in algebra and geometry. They are defined as groups generated by reflections in hyperplanes, subject to certain relations. Coxeter groups have many interesting properties, including their connection to finite and affine Weyl groups, and their role in the classification of finite reflection groups.One way to understand the structure of a Coxeter group is to decompose it as a semi-direct product of two subgroups. This decomposition is called a Bruhat decomposition, and it provides a way to understand the group in terms of simpler pieces.To construct a Bruhat decomposition of a Coxeter group, we start by considering the set of simple reflections, which are reflections in hyperplanes that intersect the origin. We then define two subgroups: the Coxeter subgroup, which is generated by the simple reflections; and the parabolic subgroup, which is generated by a subset of the simple reflections.The Bruhat decomposition states that the Coxeter group is a semi-direct product of the Coxeter subgroup and the parabolic subgroup. This means that every element of the Coxeter groupcan be written as a product of an element of the Coxeter subgroup and an element of the parabolic subgroup, in a unique way. Moreover, the multiplication rule for the semi-direct product is determined by the relations between the simple reflections. The Bruhat decomposition has many applications in algebra and geometry. For example, it can be used to study the geometry of flag varieties, which are spaces that parametrize complete flags of subspaces in a vector space. It also plays a key role in the theory of Kazhdan-Lusztig polynomials, which are important in representation theory and algebraic geometry. Overall, the Bruhat decomposition is a powerful tool for understanding the structure of Coxeter groups, and it has many important applications in mathematics and beyond.。

塔科学家研发新型聚合材料

塔科学家研发新型聚合材料
培 训 更加 合 理 ;
— —
吸 引国营和私 营企业参 与教 育改革 ;
巩固物质技术基础 。


( 高等职业教 育机 构的改革 。 4 )
— —
塔 国 家 祝 芙 工 T 人 员 的 隹
根 据普通教 育的改革方 案 ,对 其教学 计
划和大纲进行现代化改革 ;
— —
受 教 育 水 军 提 高






人有博士 和 副博 士学 位 。现 在国 家机 关的工作人
员有 1 3 人 ,其 中 的 3 9 5 是女性 。塔 国 62 6 1人 家机关工作人 员的平 均 月工资 为 2 4 1 索莫尼。
【 书岭 译 自塔 吉克 斯 坦 电讯 社 2 0 聂 0 8年 1月 1 8日消 息 ]




巩固物质技术基础 。
【 李付 岩译 自塔 吉克斯坦 资讯 网 2 0 0 8年 1月 公布 的资料1



制订教师 的培  ̄ * 再 培训计划 ,提 高其 J P J I
业 务能力 ;
— —
塔 吉克斯坦 科学 院物理 技术研究所 的主要研
究方 向是研发合 成 的纤维状 聚合物 。这项工作 的 领导 人是 拉 西姆 ・ 鲁波 夫 院士 ,他多年来 一直 玛
完善 统一 的学 生 知 识水 平 国家 评 估 ( 测 维普资讯 社 Nhomakorabea 广 角
— —
【 亚 信 息 l l
吸 引其 它社会团体参 与办学 。
() 2普通 中等教 育 ( 初级 、基 础 与普通 中等教 育) 机构 的改革 。
— —

时俭益男一九四八年三月三十一日生于浙江省

时俭益男一九四八年三月三十一日生于浙江省

时俭益时俭益,男,一九四八年三月三十一日生于浙江省慈城镇(现名慈溪市),留英博士,华东师范大学数学系教授,博士生导师,终身教授;南开大学特聘讲座教授。

一九八七年加入民盟, 一九九二年加入中共。

任民盟华东师范大学委员会副主任,第八、九、十届上海市政协委员。

曾任第八届民盟上海市委常委和高教委副主任。

时俭益于一九六七年高中毕业, 一九六九年到安徽省来安县插队落户, 一九七四年返沪, 同年十一月到华东师范大学历史系培训班学习, 一九七六年初毕业后任华东师范大学图书馆职员。

自学修完数学本科课程, 于一九七八年考取华东师范大学数学系代数群专业研究生, 一九八一年六月毕业并获理学硕士学位。

随即留校任教, 并公派留学英国瓦瑞克大学数学系, 一九八四年十月在该校获Ph. D. 学位。

一九八五年一月回华东师范大学数学系任教至今。

时俭益专攻代数群表示理论及其相关的组合数学。

出版专著与教科书各一部,发表论文三十五篇(其中三十一篇在国际SCI 核心刊物上,四篇在全国性杂志或论文集上)。

先后担任过十一名博士生与十八名硕士生的学位论文指导工作,主讲研究生、本科生与留学生课程十余门。

时俭益研究代数群与黑克代数的卡茨当--罗斯蒂克表示理论,在该理论的核心课题---- 仿射外尔群的胞腔理论方面取得了具有国际领先水平的突出成就。

他圆满地解决了型$\widetilde{A}$ 仿射外尔群的胞腔分解问题,以该成果为主要内容写成的专著《某些仿射外尔群的卡茨当--罗斯蒂克胞腔》在德国出版。

在卡茨当-罗斯蒂克表示理论研究中该书是被引用次数最多的基本参考文献之一。

美国MIT 著名的代数学家佛根教授在为该书作评论时写道: “这是非常漂亮的数学成果,内容叙述得清楚而完备,那些希望应用或推广其成果的数学家将会由衷地感谢作者”。

时俭益把在对称群上著名的鲁滨逊-宣斯坦特算法推广到型A仿射外尔群上。

从而深刻地揭示了该族仿射外尔群左胞腔的性质。

同时也为刻画其它典型仿射外尔群的胞腔提供了组合论模式。

氯仿-甲醇提取贝氏柯克斯体组分Q热疫苗的免疫保护性评价

氯仿-甲醇提取贝氏柯克斯体组分Q热疫苗的免疫保护性评价
oc l e nt a p rt e ly wih t h uatd i r — e ion a l t he om o o us va cn w e ks a t r h i a y m m unz ton. The l go c i e 4 e fe t e prm r i ia i n, t e i oc l e m ie h n uatd c we e c le ge ih 1 oft iulntC.b ne i nt a e ion a w e ks a t r t os e i m u z ton O n e fe r ha ln d w t 0 he v r e ur tii r p rt e Uy 2 e fe he bo t r m nia i . e we k a t r c le ge, m iew e e s c iie nd t i ple e e c lc e nd t ha ln c r a rfc d a hers e nsw r ole t d a hebur nsofC. r e i n s e nsw e ede e t d byqu — de bu n tii ple r t c e an tt tvepo y e a ec i e c i ia i l m r s han r a ton. I wa f und ha h r e o bu n ti n ple ie i m u z d t s o t tt e bu d n f C. r e i i s e ns ofm c m nie wih CM RV o t r W CV r i fc nty l we e sgniia l owe ha ha n i m unie m ie a o sgn fc n fe e e i r t n t tofu m z d c nd n i iia tdif r nc n bur ns o b ne i a oun de fC. ur tiw s f d b t e n ie i m unie ih CM RV n CV . I a iin, t e w e m c m zd w t adM n dd to hebur n ofC.b ne i n t p e n ie i m unie ih de ur tii he s l e s ofm c m zd w t 1 0 g ofva cne wa i niia l owe ha ha fm iei m u z d w ih 1 / fva cn hc sm a ke y lw e ha h t 0 c i s sg fc nty l rt n t to c m nie t 0 * o c i e w ih wa r dl o rt n t a g o ie i m un z d wih 1 “g ofva cne Cole tv l fm c m ie t ci . l ci e y,i ppe r h tCM RV r p r d wih t ta a st a p e a e t heChi s s a e b n tii ne e iolt sofC. ur e i s e fc cous O p o e tm ie f o i e ton w ih C. ur ti f ia i t r t c c r m nf c i t b ne i.

中岛启

中岛启

1. The quantum loop algebra Let g be a simple Lie algebra of type ADE over C, Lg = g
C[z; z 01 ] be its loop algebra, and Uq (Lg) be its quantum universal enveloping algebra, or the quantum loop algebra for short. It is a subquotient of the quantum ane algebra Uq (b g), i.e., without central extension and degree operator. Let I be the set of simple roots, P be the weight lattice, and P 3 be its dual lattice (all for g). The algebra has the so-called Drinfeld's new realization: It is a C(q)-algebra with generators qh , ek;r , fk;r , hk;n (h 2 P 3 , k 2 I , r 2 Z, n 2 Z n f0g) with certain relations (see e.g., [1, 12.2]). The algebra Uq (Lg) is a Hopf algebra, where the coproduct is de ned using the Drinfeld-Jimbo realization of Uq (Lg). So a tensor product M

二氧化钛表面超强酸化光氧复合降解罗丹明B

二氧化钛表面超强酸化光氧复合降解罗丹明B

第40卷第2期2021年3月Vol.40No.2Mar.2021大连工业大学学报JournalofDalianPolytechnicUniversityDOI:10.19670/ki.dlgydxxb.2021.0210二氧化钛表面超强酸化光氧复合降解罗丹明B温宇,杨大伟(大连工业大学轻工与化学工程学院,辽宁大连116034)摘要:采用共结晶方法制备了锌锆共掺杂的介孔二氧化钛,前驱体用硫酸处理使其具有超强酸性。

将制备的介孔二氧化钛用于降解废水模拟物罗丹明B,测试其光催化与氧催化降解能力。

通过紫外-可见分光光度计、X射线衍射、电镜扫描等对催化剂进行表征,实验结果表明,在强酸修饰二氧化钛前驱体的影响下,掺杂锌锆的介孔二氧化钛具有光催化与氧催化活性。

锌锆共掺杂介孔二氧化钛的光催化与氧催化效率分别达到了72%与25%o硫酸处理后在TiO2与掺杂原子表明形成酸性中心,在无光条件下氧化降解废水效率为30%,提高了降解效率。

关键词:二氧化钛;光催化;酸催化;罗丹明B中图分类号:X703.5文献标志码:A文章编号:1674-1404(2021)02-0136-04Composite degradation of rhodamine B using TiO2withphotocatalytic oxygen and super acidWEN Yu,YANG Dawei(SchoolofLightndustryandChemicalEngineering,DalianPolytechnicUniversity,Dalian116034,China) Abstract:The mesoporous titania doped with zinc oxide,zirconium dioxide,zinc and zirconium were prepared by the co-crystallization method and the precursor of mesoporous titania was pretreated with sulfuric acid to endowed it super acidic.The mesoporous titania was used for degradation of rhodamine B in simulated wastewater and its photocatalytic activity and oxygen catalytic ability was analyzed by UV-visible spectrophotometer,X ray diffraction,scanning electron microscopy.The results showed that the T1O2doped metal oxides and super acid exhibited excellent photocatalytic and oxygen catalytic ability.The degradation rate of rhodamine B photocatalyzed and oxygen catalyzed by the prepared catalysts were72%and25%,respectively.After treatment with sulfuric acid,the acidic centers were formed between the doped atoms and the surface of titanium dioxide,which improved the oxygen degrading efficiency of wastewater to30%.Keywords:TiO2;photocatalytic;acidic catalysis;rhodamine B0引言工业生产中生成的有机废水对环境造成严重污染,国家对废水排放标准执行越来越严格,如何降低或消除有机废水中大分子有机物成为研究的重点。

凯库勒

凯库勒

Friedrich August Kekulé von StradonitzFrom Wikipedia, the free encyclopediaJump to: navigation, searchFriedrich August Kekule von StradonitzAugust Kekule von StradonitzBorn 7 September 1829 Darmstadt, GermanyDied 13 July 1896 (aged 66) Bonn, GermanyNationality GermanInstitutions University of Heidelberg University of Ghent University of BonnDoctoral students Jacobus Henricus van 't Hoff, Hermann Emil Fischer,Adolf von Baeyer,Richard AnschützKnown for Theory of chemical structureTetravalence of carbon Structure of benzeneInfluences Alexander Williamson Charles Gerhardt Auguste Laurent William Odling Charles Adolphe WurtzFriedrich August Kekule von Stradonitz(also August Kekulé) (7 September 1829 – 13 July 1896) was a German organic chemist. One of the most prominent chemists in Europe from the 1850s until his death, especially in the theoretical realm, he was the principal founder of the theory of chemical structure.Contents[hide]∙ 1 Name∙ 2 Early life∙ 3 Theory of chemical structure∙ 4 Benzene∙ 5 Honors∙ 6 See also∙7 External links∙8 References[edit] NameKekulé never used his first given name; he was known throughout his life as August Kekulé. After he was ennobled by the Kaiser in 1895, he adopted the name August Kekule von Stradonitz, without the French acute accent over the second "e". The French accent had apparently been added to the name by Kekulé's father during the Napoleonic occupation of Hesse by France, in order to ensure that French speakers pronounced the 3rd syllable.[edit] Early lifeKekulé was born in Darmstadt, the son of a civil servant. After graduating from secondary school, in 1847 he entered the University of Giessen, with the intention of studying architecture. After hearing the lectures of Justus von Liebig he decided to study chemistry. Following his education in Giessen, he took postdoctoral fellowships in Paris (1851-52), in Chur, Switzerland (1852-53), and in London (1853-55), where he was decisively influenced by Alexander Williamson.[edit] Theory of chemical structureIn 1856 Kekulé became Privatdozent at the University of Heidelberg. In 1858 he was hired as full professor at the University of Ghent, then in 1867 was called to Bonn, where he remained for the rest of his career. Basing his ideas on those of predecessors such as Williamson, Edward Frankland, William Odling, Auguste Laurent, Charles Adolphe Wurtz and others, Kekulé was the principal formulator of the theory of chemical structure (1857-58). This theory proceeds from the idea of atomic valence, especially the tetravalence of carbon (which Kekulé announced late in 1857)[1] and the ability of carbon atoms to link to each other (announced in a paper published in May 1858)[2], to the determination of the bonding order of all of the atoms in a molecule. Archibald Scott Couper independently arrived at the idea of self-linking of carbon atoms (his paper appeared in June 1858)[3], and provided the first molecular formulas where lines symbolize bonds connecting the atoms.For organic chemists, the theory of structure provided dramatic new clarity of understanding, and a reliable guide to both analytic and especially synthetic work. As a consequence, the field of organic chemistry developed explosively from this point. Among those who were most active in pursuing early structural investigations were, in addition to Kekulé and Couper, Frankland, Wurtz, Alexander Crum Brown, Emil Erlenmeyer, and Aleksandr Mikhailovich Butlerov.Kekulé's idea of assigning certain atoms to certain positions within the molecule, and schematically connecting them using what he called their "Verwandtschaftseinheiten" ("affinity units", now called "valences" or "bonds"), was based largely on evidence from chemical reactions, rather than on instrumental methods that could peer directly into the molecule, such as X-ray crystallography. Such physical methods of structural determination had not yet been developed, so chemists of Kekulé's day had to rely almost entirely on so-called "wet" chemistry. Some chemists, notably Adolph Wilhelm Hermann Kolbe, heavily criticized the use of structural formulas that were offered, as he thought, without proof. However, most chemists followed Kekulé's lead in pursuing and developingwhat some have called "classical" structure theory, which was modified after the discovery of electrons (1897) and the development of quantum mechanics (in the 1920s).The idea that the number of valences of a given element was invariant was a key component of Kekulé's version of st ructural chemistry. This generalization suffered from many exceptions, and was subsequently replaced by the suggestion that valences were fixed at certain oxidation states. For example, periodic acid according to Kekuléan structure theory could be represented by the chain structure I-O-O-O-O-H. By contrast, the modern structure of (meta) periodic acid has all four oxygen atoms surrounding the iodine in a tetrahedral geometry.[edit] BenzeneKekulé structure of benzene with alternating double bondsKekulé's most famous work was on the structure of benzene. In 1865 Kekulé published a paper in French (for he was then still in Francophone Belgium) suggesting that the structure contained a six-membered ring of carbon atoms with alternating single and double bonds.[4] The next year he published a much longer paper in German on the same subject.[5] The empirical formula for benzene had been long known, but its highly unsaturated structure was challenging to determine. Archibald Scott Couper in 1858 and Joseph Loschmidt in 1861 suggested possible structures that contained multiple double bonds or multiple rings, but the study of aromatic compounds was in its earliest years, and too little evidence was then available to help chemists decide on any particular structure.More evidence was available by 1865, especially regarding the relationships of aromatic isomers. Kekulé argued for his proposed structure by considering the number of isomers observed for derivativesof benzene. For every monoderivative of benzene (C6H5X, where X = Cl, OH,CH3, NH2, etc.) only one isomer was ever found, implying that all sixcarbons are equivalent, so that substitution on any carbon gives only a single possible product. For diderivatives such as the toluidines,C 6H4(NH2)(CH3), three isomers were observed, for which Kekulé proposedstructures with the two substituted carbon atoms separated by one, two and three carbon-carbon bonds, later named ortho, meta and para isomers respectively.The counting of possible isomers for diderivatives was however criticized by Albert Ladenburg, a former stud ent of Kekulé, who argued that Kekulé's 1865 structure implied two distinct "ortho" structures, depending on whether the substituted carbons are separated by a single or a double bond. Since ortho derivatives of benzene were never actually found in more than one isomeric form, Kekulé modified his proposal in 1872 and suggested that the benzene molecule oscillates between two equivalent structures, in such a way that the single and double bonds continually interchange positions.[6]This implies that all six carbon-carbon bonds are equivalent, as each is single half the time and double half the time. A firmer theoretical basis for a similar idea was later proposed in 1928 by Linus Pauling, who replaced Kekulé's oscillation by the concept of resonance between quantum-mechanical structures.The new understanding of benzene, and hence of all aromatic compounds, proved to be so important for both pure and applied chemistry after 1865 that in 1890 the German Chemical Society organized an elaborate appreciation in Kekulé's honor, celebrating the twenty-fifth anniversary of his first benzene paper. Here Kekulé spoke of the creation of the theory. He said that he had discovered the ring shape of the benzene molecule after having a reverie or day-dream of a snake seizing its own tail (this is a common symbol in many ancient cultures known as the Ouroboros). This vision, he said, came to him after years of studying the nature of carbon-carbon bonds. It is curious that a similar humorous depiction of benzene had appeared in 1886 in the Berichte der Durstigen Chemischen Gesellschaft (Journal of the Thirsty Chemical Society), a parody of the Berichte der Deutschen Chemischen Gesellschaft, only the parody had monkeys seizing each other in a circle, rather than snakes as in Kekulé's anecdote.[7] Some historians have suggested that the parody was a lampoon of the snake anecdote, possibly already well-known through oral transmission even if it had not yet appeared in print.[8] Others have speculated that Kekulé's story in 1890 was a re-parody of the monkey spoof, and was a mere invention rather than a recollection of an event in his life. Kekulé's 1890 speech[9] in which these anecdotes appeared has been translated into English.[10] If one takes the anecdote as the memory of areal event, circumstances mentioned in the story suggest that it must have happened early in 1862.[11]The other anecdote he told in 1890, of a vision of dancing atoms and molecules that led to his theory of structure, happened (he said) while he was riding on the upper deck of a horse-drawn omnibus in London. If true, this probably occurred in the late summer of 1855.[12][edit] HonorsIn 1895 Kekulé was ennobled by Kaiser Wilhelm II of Germany, giving him the right to add "von Stradonitz" to his name, referring to a possession of his patrilineal ancestors in Stradonice, Bohemia. Of the first five Nobel Prizes in Chemistry, his students won three: van 't Hoff in 1901, Fischer in 1902 and Baeyer in 1905.[edit] See alsoStamp∙Non-Kekulé molecule∙Kekulé Program∙Auguste Laurent[edit] External links∙Kekulés Traum(Kekulé's dream, in German)∙Pronunciation of Kekulé∙Kekulé: A Scientist and a Dreamer[edit] References1.^Aug. Kekulé (1857). "Ueber die s. g. gepaarten Verbindungen und dieTheorie der mehratomigen Radicale". Annalen der Chemie und Pharmacie104(2): 129–150. doi:10.1002/jlac.185********.2.^Aug. Kekulé (1858). "Ueber die Constitution und die Metamorphosen derchemischen V erbindungen und über die chemische Natur des Kohlenstoffs".Annalen der Chemie und Pharmacie106 (2): 129–159.doi:10.1002/jlac.185********.3.^ A. S. Couper (1858). "Sur une nouvelle théorie chimique". Annales dechimie et de physique53: 488–489.http://gallica.bnf.fr/ark:/12148/bpt6k34794n/f468.table.4.^Aug. Kekulé (1865). "Sur la constitution des substances aromatiques".Bulletin de la Societe Chimique de Paris3 (2): 98–110.5.^Aug. Kekulé (1866). "Untersuchungen uber aromatische Verbindungen".Annalen der Chemie und Pharmacie137 (2): 129–36.doi:10.1002/jlac.186********.6.^HYLE 10-1 (2004): Book Review: Jerome A. Berson: Chemical Discoveryand the Logicians’ Program. A Proble matic Pairing, Wiley-VCH, Weinheim, 20037.^ Translated into English by D. Wilcox and F. Greenbaum, Journal ofChemical Education, 42 (1965), 266-67.8.^ A. J. Rocke (1985). "Hypothesis and Experiment in Kekulé's BenzeneTheory,". Annals of Science42 (4): 355–81.doi:10.1080/00033798500200411.9.^Aug. Kekulé (1890). "Benzolfest: Rede,". Berichte der DeutschenChemischen Gesellschaft23 (1): 1302–11.doi:10.1002/cber.189002301204.10.^O. T. Benfey, "August Kekulé and the Birth of the Structural Theoryof Organic Chemistry in 1858," Journal of Chemical Education,35 (1958), 21-2311.^Jean Gillis, "Auguste Kekulé et son oeuvre, realisee a Gand de 1858a 1867," Memoires de l'Academie Royale de Belgique, 37:1 (1866), 1-40.12.^ Alan J. Rocke, Image and Reality: Kekulé, Kopp, and the ScientificImagination (University of Chicago Press, 2010), pp. 60-66.Retrieved from"/wiki/Friedrich_August_Kekul%C3%A9_von_Strado nitz"。

我国学者首次合成螺旋手性碳纳米管片段

我国学者首次合成螺旋手性碳纳米管片段

研究合作者、NIST兼苏黎世联邦理工学院(ETH)的克里斯蒂安·哈夫纳指出,一些研究人员此前认为光—电—力学开关不切实际,因为它们“块头”大,操作速度慢且电压要求过高,计算机芯片的组件无法承受,但最新研制出的这款开关解决了上述问题。

该设备的紧凑性设计,确保光信号损失仅为2.5%,而之前的开关为60%。

研究人员表示,该设备有望在无人驾驶、神经网络等多个领域“大显身手”。

此外,新开关改变光信号时耗能极少,因此有望成为量子计算机不可或缺的一部分。

尽管目前科学家只研制出了模型,但其可用于商业领域。

该团队现在正通过缩短硅片和金膜间的距离来使设备更小,这将进一步减少信号损失。

新型半导体材料可拉伸可完全降解美国斯坦福大学研究人员11月13日在美国化学学会期刊《ACS核心科学》上发表研究报告称,他们开发出一种可拉伸、可完全降解,并能在应变时保持稳定电气性能的半导体材料。

研究人员称,这一同时具有3种不同属性的新材料有望在医疗、环境监测、信息安全等领域得到广泛应用。

半导体是计算机和电子设备的基本组成部分,其常温下的导电性能介于导体与绝缘体之间。

当前大多数半导体是由硅或其他刚性无机材料制成。

科学家在尝试使用不同的方法来制造柔性、可降解的半导体,但它们要么不能完全分解,要么在拉伸时会降低电气性能。

开发出一种完全可降解、且能在应变时保持稳定电气性能的半导体已成为可伸缩电子学研究领域面临的一个新挑战。

在新研究中,斯坦福大学研究人员将一种可降解的橡胶状有机聚合物和一种可酸降解的半导体聚合物混合,组装成半导体纳米纤维。

由这些纤维制成的薄膜可以拉伸到其正常长度的两倍而不会破裂或损害其电气性能。

当置于弱酸中时,这种新材料会在10天之内完全降解。

该材料对人类细胞无毒,但其在人体内的降解时间要更长一些。

研究人员表示,这是他们首次研发出同时具有半导体性、可拉伸性和完全可降解性这3种不同属性的新材料,该材料具有不受应变影响的机械和电气性能,可用于开发各种多功能电子设备,有望在医疗、环境监测、信息安全等领域大显身手。

2-溴-4,6-二硝基苯胺的制备方法[发明专利]

2-溴-4,6-二硝基苯胺的制备方法[发明专利]

专利名称:2-溴-4,6-二硝基苯胺的制备方法
专利类型:发明专利
发明人:阿列克塞安德鲁·米克海罗维奇·安德瑞斯基,米开罗·维克托罗维奇·高瑞里克,爱弗格妮亚·瓦西里夫那·格
地弗斯卡亚,爱丽娜·叔里莫夫那·爱特曼,瑟给·雅克托
若维奇·爱维敦,高尔基·尼克拉维奇·弗若兹索夫,苛瑞
尔·米克哈罗维奇·扎马夫
申请号:CN89109829.1
申请日:19891229
公开号:CN1043933A
公开日:
19900718
专利内容由知识产权出版社提供
摘要:2-溴-4,6-二硝基苯胺的制备是通过用氨的水溶液在有阴离子活性分散存在下,在水或水-有机介质中,在86-90℃温度下进行处理而实施的。

申请人:阿列克塞安德鲁·米克海罗维奇·安德瑞斯基,米开罗·维克托罗维奇·高瑞里克,爱弗格妮亚·瓦西里夫那·格地弗斯卡亚,爱丽娜·叔里莫夫那·爱特曼,瑟给·维克托若维奇·爱维敦,高尔基·尼克拉维奇·弗若兹索夫,苛瑞尔·米克哈罗维奇·扎马夫
地址:苏联莫斯科
国籍:RU
代理机构:中国国际贸易促进委员会专利代理部
代理人:樊卫民
更多信息请下载全文后查看。

外国现代名人

外国现代名人

外国现代名人第一篇:外国现代名人篇一:十大外国名人(二)■十大外国人物■ 1.海伦·凯勒——创造人间奇迹海伦·凯勒是美国一位著名的残障教育家、作家。

幼时患病,两耳失聪,双目失明。

七岁时,安妮·沙利文担任她的家庭教师,使她学会说话并与人沟通,且努力向学,认真做人。

在沙利文帮助下,她考入哈佛大学,以优异成绩毕业。

在大学期间写了《我生命的故事》,讲述她如何战胜病残,给成千上万的残疾人和正常人带来鼓舞。

以后又写了许多文字和几部自传性小说,表明黑暗与寂静并不存在。

海伦·凯勒的轻声细语,诉说着对光明的珍视和对生活的热爱。

87年无声无息孤绝幽闭的岁月中,她将别人眼睛中的光明当作自己的太阳;将别人耳朵中的音乐当作自己的乐曲;将别人嘴角边的微笑当作自己的快乐。

摆脱身体的缺陷的桎梏,建起大大小小的慈善机构,把慈爱的双手伸向世界,飞翔的心灵奔向光明。

这不能不说是一个奇迹。

后来凯勒成了卓越的社会改革家,到美国各地、欧洲、亚洲发表演说,为盲人、聋哑人筹集资金,在世界各地兴建盲人学校,并常去医院探望病人,给予他们生存意志。

她同时也为贫民及黑人争取权益,提倡世界和平。

二战期间又访问多所医院,慰问失明士兵,她的精神备受人们崇敬。

1964年被授予美国公民最高荣誉——总统自由勋章,次年又被推选为世界十名杰出妇女之一。

2.邓肯■——自由与浪漫的女子典范邓肯,一位举世闻名的舞蹈天才,她摒弃古典芭蕾的严苛性,主张以自由流畅的方式呈现舞蹈,据此创立了自成一格的全新的舞蹈模式,从而成为现代舞的先驱。

邓肯,一位浪漫又多情的现代女性,她藐视婚姻,特立独行,曾与多位世界著名的艺术家相知相恋,谱下一曲曲令人荡气回肠的情爱之歌。

邓肯,一位历经创痛的坚强母亲,先后遭受一双活泼可爱的儿女和刚刚出生的儿子离她而去的重创,饱受思念骨肉亲情之苦,几度绝望又几度重生。

邓肯,一位才华横溢的女性,一位历尽风霜的女性,一位20世纪杰出的女性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Research partially supported by the NSF (grant no. DMS-0139019). 2000 Subject Classification: 17B10.
1
2
JONATHAN BRUNDAN
Байду номын сангаас
transition matrices between these bases and the natural monomial basis {Kλ } of E m|n define polynomials uµ,λ (q ) and lµ,λ (q ) for each µ, λ ∈ X + (m|n): Uλ =
arXiv:math/0203011v3 [math.RT] 18 Sep 2002
KAZHDAN-LUSZTIG POLYNOMIALS AND CHARACTER FORMULAE FOR THE LIE SUPERALGEBRA gl(m|n)
JONATHAN BRUNDAN Abstract. We compute the characters of the finite dimensional irreducible representations of the Lie superalgebra gl(m|n), and determine Ext’s between simple modules in the category of finite dimensional representations. We formulate conjectures for the analogous results in category O. The combinatorics parallels the combinatorics of certain canonical bases over the Lie algebra gl(∞).
m
V∗⊗
n
V.
The latter also possesses a canonical basis {Tλ } and a dual canonical basis {Lλ }, see Theorems 2.17 and 2.23, which we parametrize via (4.4) by the set X (m|n) of all integral weights for gl(m|n). For λ ∈ X + (m|n) ⊂ X (m|n), the elements Lλ here coincide with the images of the elements with the same name in the previous paragraph under the embedding E m|n ֒→ T m|n . The entries of the transition matrices between these bases and the natural monomial basis {Mλ } of T m|n give us polynomials tµ,λ (q ) and lµ,λ (q ) for each µ, λ ∈ X (m|n): Tλ =
1. Introduction The problem of computing the characters of the finite dimensional irreducible representations of the Lie superalgebra gl(m|n) over C was raised originally by V. Kac in 1977 [Ka2, Ka3]. Kac proved that the finite dimensional universal highest weight modules, known nowadays as Kac modules, are irreducible for so-called typical highest weights, and gave a formula for their characters. After that, there were several conjectures and partial results dealing with atypical highest weights [BL, BR, Sg1, JHKT1, JHKT2, HKJ, KaW, PS2], before the complete solution to the problem was given by V. Serganova [S2, S3] in 1995 using a mixture of algebraic and geometric techniques. In this article, we present a different, purely algebraic solution of the problem. One consequence is a proof of a conjecture made by van der Jeugt and Zhang [JZ], which is apparently closely related to the conjectures made in [HKJ]. In particular the composition multiplicities of the Kac modules are all either 0 or 1, a fact which does not seem to follow easily from Serganova’s formula since that involves certain alternating sums. We also formulate for the first time a conjecture for the characters of the infinite dimensional irreducible representations in the analogue of category O for the Lie superalgebra gl(m|n). Inspired by ideas of Lascoux, Leclerc and Thibon [LLT], our approach is to relate the finite dimensional representation theory of gl(m|n) to the structure of the module m ∗ n E m|n := V ⊗ V, where V denotes the natural representation of the quantized enveloping algebra Uq (gl∞ ). By work of Lusztig [L, ch. 27], the module E m|n possesses a canonical basis {Uλ } and a dual canonical basis {Lλ }, see Theorems 3.6 and 3.13, which for the purpose of this introduction we parametrize via (4.4) by the set X + (m|n) of dominant integral weights for gl(m|n). The entries of the
µ∈X + (m|n)
uµ,λ (q )Kµ ,
Lλ =
µ∈X + (m|n)
lµ,λ (q )Kµ .
The remarkable thing is that it is quite easy to compute these polynomials explicitly, because all the sl2 -strings in the crystal graph underlying the module E m|n are of length ≤ 2, see Corollary 3.39 for the explicit formulae. The main result of the article shows that the polynomials uµ,λ (q ) evaluated at q = 1 compute the composition multiplicities of the Kac modules, see Theorem 4.37 and (4.39). Moreover, the polynomials lµ,λ (−q −1 ) coincide with the KazhdanLusztig polynomials Kλ,µ (q ) defined originally by Serganova [S2, S3], so can be used to compute Ext’s between Kac modules and irreducible modules, see Theorem 4.51 and Corollary 4.52. The module E m|n is a summand of the tensor space T m|n :=
µ∈X (m|n)
tµ,λ (q )Mµ ,
Lλ =
µ∈X (m|n)
lµ,λ (q )Mµ .
These should be viewed as the true combinatorial analogues for gl(m|n) of the Kazhdan-Lusztig polynomials of [KL, Deo]. We explain an explicit algorithm to compute tµ,λ (q ) in §2-j, and conjecture based on calculations with this algorithm that our polynomials share the positivity properties of the usual KazhdanLusztig polynomials, see Conjecture 2.28. We conjecture moreover that the polynomials tµ,λ (q ) evaluated at q = 1 compute the composition multiplicities of the Verma modules in category O, see Conjecture 4.32 and (4.34). This conjecture is true in the case m = 0 by the original Kazhdan-Lusztig conjecture [KL] for the Lie algebra gl(n) proved in [BB, BrK], see Theorem 4.31(i). Returning to finite dimensional representations, let us now formulate the conjecture of van der Jeugt and Zhang proved here precisely, to give the flavor of the combinatorics that arises. So let g denote the Lie superalgebra gl(m|n) over C, labeling rows and columns of matrices in g by the ordered index set I (m|n) = {−m, . . . , −1, 1, . . . , n}. We work always with the standard choices h and b of Cartan and Borel subalgebras, consisting of diagonal and upper triangular matrices respectively. For i ∈ I (m|n), let δi ∈ h∗ denote the function picking out the ith diagonal entry of a diagonal matrix. Put a symmetric bilinear form (.|.) on h∗ by setting (δi |δj ) = 1 if i = j > 0, −1 if i = j < 0, and 0 otherwise. Let W ∼ = Sm × Sn denote the Weyl group associated to g¯ 0 , acting
相关文档
最新文档