沪科版初三数学知识点总结

合集下载

沪科版初三数学知识点总结【范本模板】

沪科版初三数学知识点总结【范本模板】

初三数学知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1。

二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小.2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1。

平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2。

平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1。

沪科版初三数学知识点总结

沪科版初三数学知识点总结

伊顿教育初三数学知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少2-32y=-2x 2y=3(x+4)22y=3x 2y=-2(x-3)2二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

沪科版初三数学知识点总结

沪科版初三数学知识点总结

初三数学知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c=+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴当0c>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2y ax bx c=++关于x轴对称后,得到的解析式是2y ax bx c=---;()2y a x h k=-+关于x轴对称后,得到的解析式是()2y a x h k=---;2. 关于y轴对称2y ax bx c=++关于y轴对称后,得到的解析式是2y ax bx c=-+;()2y a x h k=-+关于y轴对称后,得到的解析式是()2y a x h k=++;3. 关于原点对称2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c=++关于顶点对称后,得到的解析式是222by ax bx ca=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用2-32y=-2x 2y=3(x+4)22y=3x 2y=-2(x-3)2⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

沪科版初三数学知识点总结

沪科版初三数学知识点总结

初三数学知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

沪科版初三数学知识点总结资料讲解

沪科版初三数学知识点总结资料讲解

初三数学知识点总结一、二次函数看法:1.二次函数的看法:一般地,形如y ax2 bx c,c是常数,a 0)的函数,叫做二次函数。

这( a ,b里需要重申:和一元二次方程近似,二次项系数a 0 ,而b,c能够为零.二次函数的定义域是全体实数.2.二次函数 y ax2 bx c 的结构特点:⑴等号左侧是函数,右侧是关于自变量x 的二次式, x 的最高次数是 2.⑵ a ,b ,c 是常数, a 是二次项系数,b是一次项系数, c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:y ax2的性质:a的绝对值越大,抛物线的张口越小。

a 的符号张口方向极点坐标对称轴性质a 0 0 ,0 x 0 时, y 随x的增大而增大;x 0 时, y 随向上y 轴x 的增大而减小;x 0 时, y 有最小值 0 .a 0 0 ,0 x 0 时, y 随x的增大而减小;x 0 时, y 随向下y 轴x 的增大而增大;x 0 时, y 有最大值 0 .2.y ax2 c 的性质:上加下减。

a 的符号张口方向极点坐标对称轴性质a 0 向上0 ,c y 轴x 0 时, y 随x的增大而增大; x 0 时, y 随x 的增大而减小;x 0时,y有最小值 c .a 0 向下0 ,c y 轴x 0 时, y 随x的增大而减小; x 0 时, y 随x 的增大而增大;x 0时,y有最大值 c .3. y a x2的性质:h左加右减。

a 的符号张口方向极点坐标对称轴性质a 0 向上h ,0 X=h x h 时, y 随x的增大而增大; x h 时, y 随x 的增大而减小;x h时,y有最小值0.a 0 向下h ,0 X=h x h 时, y 随x的增大而减小; x h 时, y 随x 的增大而增大;x h时,y有最大值0.4. y a x 2k 的性质:ha 的符号张口方向 极点坐标 对称轴性质a 0h ,kx h 时, y 随 x 的增大而增大; x h 时, y 随向上X=hx 的增大而减小; x h 时, y 有最小值 k .a 0h ,kx h 时, y 随 x 的增大而减小; x h 时, y 随向下X=hx 的增大而增大; x h 时, y 有最大值 k .三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线剖析式转变成极点式y a x h 2h ,kk ,确定其极点坐标 ; ⑵ 保持抛物线 yax 2 的形状不变,将其极点平移到h ,k 处,详尽平移方法以下:向上 (k>0)【或向下 (k<0)】平移 |k|个单位y=ax2y=ax 2+k向右 (h>0)【或左 (h<0)】 向右 ( h>0) 【或左 ( h<0) 】 向右 (h>0)【或左 (h<0)】 平移 |k|个单位平移 |k|个单位向上 ( k>0) 【或下 ( k<0) 】 平移 |k|个单位平移 |k|个单位y=a( x-h)2向上 (k>0) 【或下 (k<0)】平移 |k|个单位y=a (x-h)2+k2. 平移规律在原有函数的基础上 “h 值正右移,负左移; k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴ yax 2 bx c 沿 y 轴平移 :向上(下)平移 m 个单位, yax 2 bx c 变成y ax 2 bx c m (或 yax 2 bx c m )⑵ yax 2 bx c 沿轴平移:向左(右)平移 m 个单位, yax 2 bx c 变成y a( x m)2 b(x m) c (或 ya( x m) 2 b( x m) c )四、二次函数 ya x2k 与 y ax 2bx c 的比较h从剖析式上看, y a x h2ax 2bx c 是两种不同样的表达形式,后者经过配方能够获得前k 与 yb 24ac b 2b,k 4ac b 2者,即 y a x,其中 h .2a 4a2a 4a五、二次函数 y ax2 bx c 图象的画法五点画图法:利用配方法将二次函数y ax2 bx c 化为极点式y a(x h) 2 k ,确定其张口方向、对称轴及极点坐标,尔后在对称轴两侧,左右对称地描点画图 . 一般我们采用的五点为:极点、与 y 轴的交点0,c 、以及0 ,c 关于对称轴对称的点2h ,c 、与 x 轴的交点x1,0 , x2,0 (若与 x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:张口方向,对称轴,极点,与x 轴的交点,与y 轴的交点.六、二次函数 y ax2 bx c 的性质1. 当a 0 时,抛物线张口向上,对称轴为x b ,极点坐标为 b ,4ac b2 .2a 2a 4a当 x b 时, y 随x的增大而减小;当x b 时, y 随x的增大而增大;当x b 时, y 有最小2a 2a 2a2值 4ac b .4a2. 当a 0 时,抛物线张口向下,对称轴为x b ,极点坐标为 b ,4ac b2 .当x b时, y 随2a 2a 4a 2 ab时, y 随x的增大而减小;当x 时, y 有最大值4ac 2x 的增大而增大;当 x b b .2a 2a 4a七、二次函数剖析式的表示方法1. 一般式: y ax2 bx c ( a ,b, c 为常数,a 0 );2. 极点式: y a(x h)2 k ( a ,h,k为常数,a 0 );3. 两根式: y a(x x1 )( x x2 ) (a 0, x1, x2是抛物线与 x 轴两交点的横坐标) .注意:任何二次函数的剖析式都能够化成一般式或极点式,但其实不是所有的二次函数都能够写成交点式,只2有抛物线与 x 轴有交点,即 b 4ac 0 时,抛物线的剖析式才能够用交点式表示.二次函数剖析式的这三种形式能够互化 .八、二次函数的图象与各项系数之间的关系1.二次项系数 a二次函数y ax2 bx c 中, a 作为二次项系数,显然 a 0.⑴当 a 0 时,抛物线张口向上, a 的值越大,张口越小,反之 a 的值越小,张口越大;⑵当 a 0 时,抛物线张口向下, a 的值越小,张口越小,反之 a 的值越大,张口越大.总结起来, a 决定了抛物线张口的大小和方向, a 的正负决定张口方向, a 的大小决定张口的大小.2.一次项系数 b在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.⑴在 a0 的前提下,当 b 0时,b0 ,即抛物线的对称轴在y 轴左侧;2a当 b 0 时,b0 ,即抛物线的对称轴就是y 轴;2a当 b 0 时,b0 ,即抛物线对称轴在y轴的右侧.2a⑵在 a 0 的前提下,结论恰巧与上述相反,即当 b 0 时,b0 ,即抛物线的对称轴在y 轴右侧;2a当 b 0 时,b0 ,即抛物线的对称轴就是y 轴;2a当 b 0 时,b0 ,即抛物线对称轴在y轴的左侧.2a总结起来,在 a 确定的前提下, b 决定了抛物线对称轴的地址.ab 的符号的判断:对称轴x b0 ,概括的说就是在 y 轴左侧则 ab 0 ,在 y 轴的右侧则 ab2a“左同右异”总结:3.常数项 c⑴当 c 0 时,抛物线与y 轴的交点在x轴上方,即抛物线与y 轴交点的纵坐标为正;⑵当 c 0 时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为 0 ;⑶当 c 0 时,抛物线与y 轴的交点在x轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来, c 决定了抛物线与y 轴交点的地址.总之,只要 a ,b ,c 都确定,那么这条抛物线就是唯一确定的.二次函数剖析式的确定:依照已知条件确定二次函数剖析式,平时利用待定系数法.用待定系数法求二次函数的剖析式必定依照题目的特点,选择合适的形式,才能使解题简略.一般来说,有以下几种情况:1.已知抛物线上三点的坐标,一般采用一般式;2.已知抛物线极点或对称轴或最大(小)值,一般采用极点式;3.已知抛物线与 x 轴的两个交点的横坐标,一般采用两根式;4.已知抛物线上纵坐标同样的两点,常采用极点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,能够用一般式或极点式表达1.关于 x 轴对称y ax2 bx c 关于 x 轴对称后,获得的剖析式是y ax2 bx c ;y a x h 2y a x h2 k 关于 x 轴对称后,获得的剖析式是k ;2.关于 y 轴对称y ax2 bx c 关于y轴对称后,获得的剖析式是y ax2 bx c ;y a x h 2y a x h2 k 关于y轴对称后,获得的剖析式是k ;3.关于原点对称y a x h 2y a x2k ;k 关于原点对称后,获得的剖析式是h4. 关于极点对称(即:抛物线绕极点旋转180°)2 y ax2 bx c 关于极点对称后,获得的剖析式是y ax2 bx c b ;2ay a x h 2y a x2k .k 关于极点对称后,获得的剖析式是h5.关于点 m,n 对称2k 关于点22n ky a x h m,n 对称后,获得的剖析式是 y a x h 2m依照对称的性质,显然无论作何种对称变换,抛物线的形状必然不会发生变化,因此 a 永远不变.求抛物线的对称抛物线的表达式时,能够依照题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的极点坐标及张口方向,再确定其对称抛物线的极点坐标及张口方向,尔后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程 ax 2 bx c 0 是二次函数 y ax2 bx c 当函数值 y 0 时的特别情况 .图象与 x 轴的交点个数:① 当b2 4ac 0 时,图象与 x 轴交于两点 A x1,0 ,B x2,0 ( x1 x2 ) ,其中的 x1,x2是一元二次方程 ax2 bx c 0 a 0 的两根.这两点间的距离AB x2 x1 b2 4ac .a② 当0 时,图象与 x 轴只有一个交点;③ 当0 时,图象与 x 轴没有交点 .1' 当 a 0 时,图象落在x 轴的上方,无论x 为任何实数,都有y 0 ;2' 当 a 0 时,图象落在x 轴的下方,无论x 为任何实数,都有y 0 .2. 抛物线 y ax2 bx c 的图象与y 轴必然订交,交点坐标为(0 , c) ;3.二次函数常用解题方法总结:⑴求二次函数的图象与 x 轴的交点坐标,需转变成一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转变成极点式;⑶依照图象的地址判断二次函数y ax2bx c 中 a ,b, c 的符号,或由二次函数中 a ,b, c 的符号判断图象的地址,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数相关的还有二次三项式,二次三项式ax2bx c(a 0) 自己就是所含字母x 的二次函数;下面以 a0 时为例,揭穿二次函数、二次三项式和一元二次方程之间的内在联系:0 抛物线与x 轴有二次三项式的值可正、一元二次方程有两个不相等实根两个交点可零、可负0 抛物线与x 轴只二次三项式的值为非负一元二次方程有两个相等的实数根有一个交点0 抛物线与x 轴无二次三项式的值恒为正一元二次方程无实数根 .交点二次函数图像参照:y=2x 2 y=3(x+4) 2y=3x2y=3(x-2)2y=x2y=2x 2 y=2(x-4) 2x2y=2y=2(x-4) 2 -3y=2 x2 +2y=2 x2y=2 x2 -4x 2y= -2y= -x 2 y=-2(x+3)2y=-2x 2 y=-2(x-3) 2y=-2x 2十一、函数的应用刹车距离二次函数应用何时获得最大利润最大面积是多少二次函数观察重点与常有题型1.观察二次函数的定义、性质,相关试题常出现在选择题中,如:已知以 x 为自变量的二次函数y (m 2)x2m 2m 2 的图像经过原点,则m的值是2.综合观察正比率、反比率、一次函数、二次函数的图像,习题的特点是在同素来角坐标系内观察两个函数的图像,试题种类为选择题,如:如图,若是函数 y kx b 的图像在第一、二、三象限内,那么函数 y kx 2 bx 1的图像大体是()y y y y1 10 x o-1 x 0 x 0 -1 xA B C D3.观察用待定系数法求二次函数的剖析式,相关习题出现的频率很高,习题种类有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3) , (4,6) 两点,对称轴为x 5,求这条抛物线的剖析式。

沪科版初三数学知识点总结

沪科版初三数学知识点总结

初三数学知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查2-32y=-2x 22y=3(x+4)22y=3x2y=-2(x-3)2两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

沪科版初中数学知识点总结

沪科版初中数学知识点总结

沪科版初中数学知识点总结一、数与代数1. 有理数- 有理数的定义- 有理数的分类(正数、负数、整数、分数)- 有理数的四则运算- 绝对值的概念与计算2. 整数- 整数的性质- 素数与合数- 整数的因数与倍数- 质因数分解3. 分数与小数- 分数的基本性质- 分数的四则运算- 小数的意义与性质- 小数的四则运算4. 代数表达式- 单项式与多项式- 代数式的加减运算- 乘法公式(平方差、完全平方等)- 分式与分式的运算5. 一元一次方程- 方程的建立与解法- 实际问题的数学建模- 列方程解实际问题6. 二元一次方程组- 代入法与消元法- 方程组的解集与方程的解7. 不等式与不等式组- 不等式的性质与解法- 一元一次不等式- 一元一次不等式组8. 函数- 函数的概念与表示- 函数的性质(单调性、对称性等) - 线性函数与二次函数的图像与性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念与分类(邻角、对顶角等) - 三角形的分类与性质- 四边形的分类与性质2. 圆的基本性质- 圆的定义与性质- 圆周角与圆心角的关系- 切线的性质与判定- 圆与圆的位置关系3. 空间图形- 空间直线与平面的位置关系- 空间图形的展开与折叠- 多面体与旋转体的性质4. 相似与全等- 全等三角形的判定与性质- 相似三角形的判定与性质- 相似多边形与相似比5. 几何变换- 平移、旋转、对称的概念与性质- 几何图形的组合与分割6. 解析几何- 坐标系的建立与应用- 点的坐标与线段的长度- 直线与圆的方程三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概念- 概率的计算与应用- 事件的可能性与条件概率以上是沪科版初中数学的主要知识点总结。

这些知识点构成了初中数学的基础框架,学生需要掌握这些概念、公式和解题方法,以便为高中数学学习打下坚实的基础。

数学九年级知识点总结沪科版

数学九年级知识点总结沪科版

数学九年级知识点总结沪科版数学九年级知识点总结(沪科版)数学作为一门理科学科,对于学生的学习能力和思维能力有着重要的促进作用。

九年级是中学阶段的关键年级,掌握好九年级数学知识点对于学生的学业发展至关重要。

本文将对数学九年级的知识点进行总结,帮助学生们更好地备考和应用数学。

一、代数与函数在九年级数学学科的代数与函数部分中,学生将深入学习方程与不等式、一次函数与方程、二次函数与方程、数列与等差数列等知识点。

1. 方程与不等式方程与不等式是九年级代数与函数的基础。

学生需要学会解一元一次方程和一元一次不等式,并能够应用到实际问题中。

另外,还需要掌握解含有绝对值的方程以及二次不等式的方法。

2. 一次函数与方程一次函数是数学中重要的概念之一。

学生需要学习一次函数的表示、性质和应用。

同时,还需要学会解一元一次线性方程以及应用到实际问题中。

3. 二次函数与方程二次函数是九年级数学中的重点内容。

学生需要学习二次函数的图像、性质以及二次函数的应用。

此外,还需要学会解一元二次方程,并能够应用到实际问题中。

4. 数列与等差数列数列是九年级数学中的一个重要概念,学生需要学习数列的概念、性质以及数列的应用。

其中,等差数列是数列中的一种特殊形式,需要学会求等差数列的通项公式、前n项和以及利用等差数列解决实际问题。

二、图形与空间在图形与空间部分,九年级数学学科主要涉及图形的性质、相似与全等、空间与立体图形等内容。

1. 图形的性质学生需要学习几何图形的名称、性质、判定方法等,包括平行四边形、正方形、直角三角形、等腰三角形等图形。

2. 相似与全等学生需要学习相似与全等的概念,以及判定相似与全等的条件和方法。

同时,还需要学会利用相似与全等解决实际问题。

3. 空间与立体图形学生需要学习空间图形的名称、性质以及判定方法,包括长方体、正方体、棱柱、棱锥等。

另外,还需要学会计算空间图形的表面积和体积,并能够应用到实际问题中。

三、数据分析和统计数据分析和统计是九年级数学中的重要内容,它涉及到数据的整理、统计和分析方法等。

沪科版初三数学知识点总结资料讲解.doc

沪科版初三数学知识点总结资料讲解.doc

初三数学知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如y ax2 bx c,c是常数,a 0)的函数,叫做二次函数。

这( a ,b里需要强调:和一元二次方程类似,二次项系数a 0 ,而b,c可以为零.二次函数的定义域是全体实数.2.二次函数 y ax2 bx c 的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式, x 的最高次数是 2.⑵ a ,b ,c 是常数, a 是二次项系数,b是一次项系数, c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:y ax2的性质:a的绝对值越大,抛物线的开口越小。

a 的符号开口方向顶点坐标对称轴性质a 0 0 ,0 x 0 时, y 随x的增大而增大;x 0 时, y 随向上y 轴x 的增大而减小;x 0 时, y 有最小值 0 .a 0 0 ,0 x 0 时, y 随x的增大而减小;x 0 时, y 随向下y 轴x 的增大而增大;x 0 时, y 有最大值 0 .2.y ax2 c 的性质:上加下减。

a 的符号开口方向顶点坐标对称轴性质a 0 向上0 ,c y 轴x 0 时, y 随x的增大而增大; x 0 时, y 随x 的增大而减小;x 0时,y有最小值 c .a 0 向下0 ,c y 轴x 0 时, y 随x的增大而减小; x 0 时, y 随x 的增大而增大;x 0时,y有最大值 c .3. y a x2的性质:h左加右减。

a 的符号开口方向顶点坐标对称轴性质a 0 向上h ,0 X=h x h 时, y 随x的增大而增大; x h 时, y 随x 的增大而减小;x h时,y有最小值0.a 0 向下h ,0 X=h x h 时, y 随x的增大而减小; x h 时, y 随x 的增大而增大;x h时,y有最大值0.4. y a x 2k 的性质:ha 的符号开口方向 顶点坐标 对称轴性质a 0h ,kx h 时, y 随 x 的增大而增大; x h 时, y 随向上X=hx 的增大而减小; x h 时, y 有最小值 k .a 0h ,kx h 时, y 随 x 的增大而减小; x h 时, y 随向下X=hx 的增大而增大; x h 时, y 有最大值 k .三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式y a x h 2h ,kk ,确定其顶点坐标 ; ⑵ 保持抛物线 yax 2 的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:向上 (k>0)【或向下 (k<0)】平移 |k|个单位y=ax2y=ax 2+k向右 (h>0)【或左 (h<0)】 向右 ( h>0) 【或左 ( h<0) 】 向右 (h>0)【或左 (h<0)】 平移 |k|个单位平移 |k|个单位向上 ( k>0) 【或下 ( k<0) 】 平移 |k|个单位平移 |k|个单位y=a( x-h)2向上 (k>0) 【或下 (k<0)】平移 |k|个单位y=a (x-h)2+k2. 平移规律在原有函数的基础上 “h 值正右移,负左移; k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴ yax 2 bx c 沿 y 轴平移 :向上(下)平移 m 个单位, yax 2 bx c 变成y ax 2 bx c m (或 yax 2 bx c m )⑵ yax 2 bx c 沿轴平移:向左(右)平移 m 个单位, yax 2 bx c 变成y a( x m)2 b(x m) c (或 ya( x m) 2 b( x m) c )四、二次函数 ya x2k 与 y ax 2bx c 的比较h从解析式上看, y a x h2ax 2bx c 是两种不同的表达形式,后者通过配方可以得到前k 与 yb 24ac b 2b,k 4ac b 2者,即 y a x,其中 h .2a 4a2a 4a五、二次函数 y ax2 bx c 图象的画法五点绘图法:利用配方法将二次函数y ax2 bx c 化为顶点式y a(x h) 2 k ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图 . 一般我们选取的五点为:顶点、与 y 轴的交点0,c 、以及0 ,c 关于对称轴对称的点2h ,c 、与 x 轴的交点x1,0 , x2,0 (若与 x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数 y ax2 bx c 的性质1. 当a 0 时,抛物线开口向上,对称轴为x b ,顶点坐标为 b ,4ac b2 .2a 2a 4a当 x b 时, y 随x的增大而减小;当x b 时, y 随x的增大而增大;当x b 时, y 有最小2a 2a 2a2值 4ac b .4a2. 当a 0 时,抛物线开口向下,对称轴为x b ,顶点坐标为 b ,4ac b2 .当x b时, y 随2a 2a 4a 2 ab时, y 随x的增大而减小;当x 时, y 有最大值4ac 2x 的增大而增大;当 x b b .2a 2a 4a七、二次函数解析式的表示方法1. 一般式: y ax2 bx c ( a ,b, c 为常数,a 0 );2. 顶点式: y a(x h)2 k ( a ,h,k为常数,a 0 );3. 两根式: y a(x x1 )( x x2 ) (a 0, x1, x2是抛物线与 x 轴两交点的横坐标) .注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只2有抛物线与 x 轴有交点,即 b 4ac 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化 .八、二次函数的图象与各项系数之间的关系1.二次项系数 a二次函数y ax2 bx c 中, a 作为二次项系数,显然 a 0.⑴当 a 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大;⑵当 a 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.总结起来, a 决定了抛物线开口的大小和方向, a 的正负决定开口方向, a 的大小决定开口的大小.2.一次项系数 b在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.⑴在 a0 的前提下,当 b 0时,b0 ,即抛物线的对称轴在y 轴左侧;2a当 b 0 时,b0 ,即抛物线的对称轴就是y 轴;2a当 b 0 时,b0 ,即抛物线对称轴在y轴的右侧.2a⑵在 a 0 的前提下,结论刚好与上述相反,即当 b 0 时,b0 ,即抛物线的对称轴在y 轴右侧;2a当 b 0 时,b0 ,即抛物线的对称轴就是y 轴;2a当 b 0 时,b0 ,即抛物线对称轴在y轴的左侧.2a总结起来,在 a 确定的前提下, b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴x b0 ,概括的说就是在 y 轴左边则 ab 0 ,在 y 轴的右侧则 ab2a“左同右异”总结:3.常数项 c⑴当 c 0 时,抛物线与y 轴的交点在x轴上方,即抛物线与y 轴交点的纵坐标为正;⑵当 c 0 时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为 0 ;⑶当 c 0 时,抛物线与y 轴的交点在x轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来, c 决定了抛物线与y 轴交点的位置.总之,只要 a ,b ,c 都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与 x 轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于 x 轴对称y ax2 bx c 关于 x 轴对称后,得到的解析式是y ax2 bx c ;y a x h 2y a x h2 k 关于 x 轴对称后,得到的解析式是k ;2.关于 y 轴对称y ax2 bx c 关于y轴对称后,得到的解析式是y ax2 bx c ;y a x h 2y a x h2 k 关于y轴对称后,得到的解析式是k ;3.关于原点对称y a x h 2y a x2k ;k 关于原点对称后,得到的解析式是h4. 关于顶点对称(即:抛物线绕顶点旋转180°)2 y ax2 bx c 关于顶点对称后,得到的解析式是y ax2 bx c b ;2ay a x h 2y a x2k .k 关于顶点对称后,得到的解析式是h5.关于点 m,n 对称2k 关于点22n ky a x h m,n 对称后,得到的解析式是 y a x h 2m根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程 ax 2 bx c 0 是二次函数 y ax2 bx c 当函数值 y 0 时的特殊情况 .图象与 x 轴的交点个数:① 当b2 4ac 0 时,图象与 x 轴交于两点 A x1,0 ,B x2,0 ( x1 x2 ) ,其中的 x1,x2是一元二次方程 ax2 bx c 0 a 0 的两根.这两点间的距离AB x2 x1 b2 4ac .a② 当0 时,图象与 x 轴只有一个交点;③ 当0 时,图象与 x 轴没有交点 .1' 当 a 0 时,图象落在x 轴的上方,无论x 为任何实数,都有y 0 ;2' 当 a 0 时,图象落在x 轴的下方,无论x 为任何实数,都有y 0 .2. 抛物线 y ax2 bx c 的图象与y 轴一定相交,交点坐标为(0 , c) ;3.二次函数常用解题方法总结:⑴求二次函数的图象与 x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数y ax2bx c 中 a ,b, c 的符号,或由二次函数中 a ,b, c 的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式ax2bx c(a 0) 本身就是所含字母x 的二次函数;下面以 a0 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:0 抛物线与x 轴有二次三项式的值可正、一元二次方程有两个不相等实根两个交点可零、可负0 抛物线与x 轴只二次三项式的值为非负一元二次方程有两个相等的实数根有一个交点0 抛物线与x 轴无二次三项式的值恒为正一元二次方程无实数根 .交点二次函数图像参考:y=2x 2 y=3(x+4) 2y=3x2y=3(x-2)2y=x2y=2x 2 y=2(x-4) 2x2y=2y=2(x-4) 2 -3y=2 x2 +2y=2 x2y=2 x2 -4x 2y= -2y= -x 2 y=-2(x+3)2y=-2x 2 y=-2(x-3) 2y=-2x 2十一、函数的应用刹车距离二次函数应用何时获得最大利润最大面积是多少二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以 x 为自变量的二次函数y (m 2)x2m 2m 2 的图像经过原点,则m的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数 y kx b 的图像在第一、二、三象限内,那么函数 y kx 2 bx 1的图像大致是()y y y y1 10 x o-1 x 0 x 0 -1 xA B C D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3) , (4,6) 两点,对称轴为x 5,求这条抛物线的解析式。

数学九年级知识点沪科版

数学九年级知识点沪科版

数学九年级知识点沪科版数学是一门精密而又重要的学科,对于学习者来说,掌握数学的知识点是非常重要的。

本文将介绍数学九年级的知识点,以沪科版教材为基准。

以下是九年级数学的重点内容。

1. 实数与整式1.1 实数的概念:自然数、整数、有理数、无理数的定义及性质。

1.2 整式的概念及运算:整式的定义、加减乘除运算法则。

1.3 因式与整式:最大公因式、最小公倍数的计算与应用。

1.4 整式的乘法公式:平方差公式、完全平方公式等。

2. 一次函数与一次不等式2.1 一次函数及其表示:函数的概念、函数的图象及性质、函数关系式的建立等。

2.2 一次函数的应用:函数的解析式在实际问题中的应用。

2.3 一次不等式及其解集:一次不等式的表示、不等式的解集的含义和表示法。

3. 平面图形的认识3.1 平面图形的分类:三角形、四边形、多边形的定义及性质。

3.2 三角形的分类及性质:等腰三角形、等边三角形、直角三角形的特点等。

3.3 四边形的分类及性质:矩形、正方形、菱形的定义及性质。

3.4 多边形的特征:凸多边形与凹多边形的特性。

4. 不等式与线性规划4.1 不等式与不等关系:不等式的定义、不等式的性质及表示法。

4.2 不等式的求解:一元一次不等式、含绝对值的一元一次不等式的求解等。

4.3 线性规划:线性规划的基本概念、解的存在性及最优解的判定。

5. 相似与全等5.1 图形的相似:相似三角形的判定及相似比例的计算。

5.2 图形的全等:全等三角形的判定及全等证明。

5.3 相似性质的应用:相似性质在求解实际问题中的应用。

6. 二次函数与二次方程6.1 二次函数:二次函数的定义、图象及性质。

6.2 二次方程:二次方程的定义、根的概念及求解方法。

6.3 二次函数与二次方程的关系:通过二次函数求解二次方程的应用。

7. 统计与概率7.1 参数统计与统计推断:统计的基本概念、参数的估计与推断。

7.2 概率:概率的定义、概率的计算、事件的独立性及复合事件的计算。

九年级数学复习知识点总结沪科版

九年级数学复习知识点总结沪科版

九年级数学复习知识点总结沪科版
一元二次方程
- 一元二次方程的定义
- 一元二次方程的解法
- 一元二次方程的应用(例如抛物线的性质)
几何变换
- 平移、旋转和翻转的概念及性质
- 平移、旋转和翻转的图像变化规律
- 平移、旋转和翻转的实际应用
平面图形的性质与计算
- 三角形的性质与计算
- 四边形的性质与计算
- 圆的性质与计算
数据的分布与研究
- 统计图表的制作与分析
- 平均数、中位数和众数的计算与应用
- 数据搜集与调查的方法与步骤
概率与统计
- 概率的基本概念与计算
- 事件的相互关系与概率计算
- 统计分析与推论
几何证明
- 几何证明的基本方法与步骤
- 直角三角形、等腰三角形、相似三角形的证明- 平行线与角的证明
导数与函数
- 导数的概念与计算
- 函数的定义与性质
- 函数导数的计算与应用
三角函数
- 三角函数的基本概念与计算
- 三角函数的图像与性质
- 三角函数的应用(例如解三角形、计算高度等)
立体几何
- 三棱柱、四棱锥、棱台的性质与计算
- 球的性质与计算
- 空间几何图形的投影与截面
以上是九年级数学复习知识点的总结,包括了一元二次方程、几何变换、平面图形的性质与计算、数据的分布与研究、概率与统计、几何证明、导数与函数、三角函数、立体几何等内容。

希望对你的复习有所帮助!。

沪科版初三数学知识点总结

沪科版初三数学知识点总结

初三数学知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2.2y ax c=+的性质:上加下减。

3.()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+及2y ax bx c =++的比较从解析式上看,()2y a x h k =-+及2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、及y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、及x 轴的交点()10x ,,()20x ,(若及x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,及x 轴的交点,及y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a=-,顶点坐标为. 当2bx a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a=-时,y 有最小值.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为.当2b x a<-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2b x a=-时,y 有最大值.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线及x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线及x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象及各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好及上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线及y 轴的交点在x 轴上方,即抛物线及y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线及y 轴的交点为坐标原点,即抛物线及y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线及y 轴的交点在x 轴下方,即抛物线及y 轴交点的纵坐标为负.总结起来,c 决定了抛物线及y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线及x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°) 2y ax bx c =++关于顶点对称后,得到的解析式是;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数及一元二次方程:1. 二次函数及一元二次方程的关系(二次函数及x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象及x 轴的交点个数:① 当240b ac ∆=->时,图象及x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离. ② 当0∆=时,图象及x 轴只有一个交点; ③ 当0∆<时,图象及x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象及y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象及x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知及x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 及二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用 二次函数应用二次函数考查重点及常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)22. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为,求这条抛物线的解析式。

九年级数学沪科版复习知识点

九年级数学沪科版复习知识点

九年级数学沪科版复习知识点九年级数学是学生们学习数学的最后一年,也是对之前所学知识的一次综合梳理和巩固。

本文将回顾九年级数学沪科版的重要知识点,帮助学生们更好地复习。

一、代数与函数1.代数式与方程式代数式是由数字、字母和运算符号组成的式子,表达数学关系。

方程式则是含有未知数的等式,表示等式两边的值相等。

学生们需要熟练掌握代数式化简和方程的解法。

2.一次函数与二次函数一次函数的标准式为y = kx + b,k为斜率,b为截距。

二次函数的标准式为y = ax²+ bx + c,a为二次项系数,b为一次项系数,c为常数项。

学生们需要了解函数图像的特点并能进行图形分析。

3.幂指对数与指数函数幂指函数是y = a^x,a为大于0且不等于1的实数。

指数函数是y = a^x,a为正数且不等于1。

学生们需要学会求幂指函数的值以及指数函数的性质。

4.根式与分式根式是方程x² = a的解,可以是正数、负数或零。

分式则是含有分数形式的代数式,包括有理数与无理数的运算。

学生们需要学会化简分式和求根式的值。

二、几何与空间1.三角形与四边形学生们需要了解平面上的各种三角形(等边三角形、等腰三角形、直角三角形等)和四边形(矩形、正方形、菱形等)的性质和计算方法。

2.相似与全等相似和全等是几何中常见的两个概念。

相似是指两个图形的形状和比例相同,但大小不同;全等是指两个图形的形状和大小完全相同。

学生们需要学会判断和证明相似和全等关系。

3.立体几何与三视图立体几何包括棱柱、棱锥、球等等。

学生们需要了解立体几何的表面积和体积计算方法,并能绘制物体的三视图。

三、数据与概率1.数据的收集与整理学生们需要了解如何进行数据的收集、整理和呈现,包括样本调查、频数表、条形图、折线图等。

2.统计指标与概率计算统计指标包括平均数、中位数、众数等,学生们需要学会计算和分析统计数据。

概率计算则涉及到事件发生的可能性,学生们需要掌握概率的基本概念和计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c=+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴当0c>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2y ax bx c=++关于x轴对称后,得到的解析式是2y ax bx c=---;()2y a x h k=-+关于x轴对称后,得到的解析式是()2y a x h k=---;2. 关于y轴对称2y ax bx c=++关于y轴对称后,得到的解析式是2y ax bx c=-+;()2y a x h k=-+关于y轴对称后,得到的解析式是()2y a x h k=++;3. 关于原点对称2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c=++关于顶点对称后,得到的解析式是222by ax bx ca=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用2-32y=-2x 2y=3(x+4)22y=3x 2y=-2(x-3)2⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

相关文档
最新文档