第十六章 二端口网络
第十六章 二端口网络
6
§16.1 二端口网络
三、分析方法
1)分析前提:讨论初始条件为零的无源线性二端口网络;
但是二端口的串联、并联和级联是需要满足一定条件 的,即不能因为某种联接而破坏了端口处的端口条件。
几个二端口网络在做各种连接以后,可以用一个等效 的二端口来等效。考虑到在做不同联接时的参数方程的特 点,其等效二端口也应有不同的网络参数与其对应。
44
§16.3 二端口的连接
一、级联(链接,cascade)
17
§16.2 二端口的参数和方程
在端口
2
上外施电流
•
I
2
,把端口
1
开路,如图所示,由
Z
参数方程得:
18
§16.2 二端口的参数和方程
由以上各式得 Z 参数的物理意义: Z11 表示端口 2 开路时,端口 1 处的输入阻抗或驱动点阻抗; Z22 表示端口 1 开路时,端口 2 处的输入阻抗或驱动点阻抗; Z12 表示端口 1 开路时,端口 1 与端口 2 之间的转移阻抗; Z21 表示端口 2 开路时,端口 2 与端口 1 之间的转移阻抗, 因 Z12和 Z21 表示一个端口的电压与另一个端口的电流之间的 关系。故 Z 参数也称开路阻抗参数。
故
A Aa Ab
等效A参数矩阵为两个级联二端口的A参数之矩阵之积。
48
§16.3 二端口的连接
二、串联和并联:
1、串联:
1
i
1
u
二端口网络相关知识简介
对称二端口只有两个参数是独立的。
对称二端口是指两个端口电气特性上对称。电路结 构左右对称的,端口电气特性对称;电路结构不对称的 二端口,其电气特性也可能是对称的。这样的二端口也 是对称二端口。使用时可以不分彼此。
•
I1 2
+
•
U1
5
10 10
•
•
I2
I1 2
++
U U •
•
21
2
•
I2
+ 4 •
U2 2
U 2
Y21 Δ
I1
Y11 Δ
I2
Z 21 I1
Z22 I2
其中 =Y11Y22 –Y12Y21
其矩阵形式为
U U
1 2
Z11
Z
21
Z12 Z 22
I1 I2
Z
Z11
Z
21
Z12
Z
22
称为Z参数矩阵
Z参数的实验测定
U 1 Z11I1 Z12 I2 U 2 Z21I1 Z22 I2
互易 对称
Y Y12=Y21 Y11=Y22
Z Z12=Z21 Z11=Z22
T
H
detA=1 H12= -H21 T11=T22 detH=1
5 .含有受控源的电路四个独立参数。
§3 二端口的等效电路
(1) 两个二端口网络等效: 是指对外电路而言,端口的电压、电流关系相同。
(2) 求等效电路即根据给定的参数方程画出电路。
i2
–
1 i1 3
4 i2
1-1’ 2-2’是二端口
3-3’ 4-4’不是二端口,是四端网络
i1' i1 i i1 i2' i2 i i2
二端口网络课件
2. Y 参数表达旳等效电路(宜选用形等效电路)
I1
I2
Y11 Y21
Y12 Y22
U1 U 2
••
II11
++
••
UU11
--YY1122 YY111++YY1122
I2
••
II22
YY222++YY1122
++
••
UU22
(Y21 Y12 )U1
假如网络是互易旳,上图变为型等效电路。
串联后复合二端口Z 参数矩阵等于原二端口Z 参数矩 阵相加。可推广到 n 端口串联。
16-6 回转器和负阻抗转换器
1. 回转器
回转器是一种线性非互易旳多端元件,能够用晶体管电路
或运算放大器来实现。理想回转器是不储能、不耗能旳无源
线性两端口元件。
i1 理想回转器旳基本特征 +
uu12
ri2 ri1
第16章 二端口网络
工程实际中,研究信号及能量旳传播和信号变换时,经 常遇到如下两端口电路。
n:1 R
C
C
变压器
传播线
滤波器
(1)线性一端口网络旳外部性能用戴维南或诺顿等效电路替 代去分析;
(2)线性二端口网络旳端口处旳i, u 间旳关系可经过某些只 取决于构成二端口本身旳元件及连接方式旳参数表达。
us
u2
uc
N
4(t) V
uc
运算电路模型: I1(s)
12 V
s
N
uc (t ) 4 3e0.231t V (t 0)
I2(s)
1s U2(s) 1s V
12 s 3U2 (s) 13I2 (s)
第十六章 二端口网络
第十六章 二端口网络16-1 求图示二端口的Y ,Z 和T 参数矩阵。
解:(1)对图(a)所示电路,标出端口电压21,U U 和电流21,I I及其参考方向,由KVL ,KCL 和元件VCR ,得:2121111)(1U L j U L j U U L j I ωωω+-=-= 212212)1(1)(1U L C j U L j U C j U U L j I ωωωωω-+=+-= 所以,Y 参数矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=)1(111L C j Lj L j Lj Y ωωωωω同理可得2121111)1()(1I C j I C L j I I C j I L j U ωωωωω+-=++= 2121211)(1I C j I C j I I C j U ωωω+=+=得出Z 参数矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=C j C j C j C L j Z ωωωωω111)1(根据KCL ,KVL 和元件VCR ,可得出端口11'-处电压1U 和电流1I为:211U I j U +=ω(1)221I U C j I -=ω(2)将式(2)代入(1)中,得:2222221)1()(I L j U LC U I U C j L j U ωωωω--=+-=(3)将方程式(3)与式(2)联立可得T 参数矩阵为:⎥⎦⎤⎢⎣⎡-=112Cj L j LCT ωωω(2)对图(b )所示电路,指定端口电压1U ,2U 和电流1I ,2I及参考方向,由KCL ,KVL 和元件VCR ,得:2121111)1()(1U L j U L C j U U L j U C j I ωωωωω+-=-+= 2121211)(1U L j U L j U U j I ωωω-=--=所以,Y 参数矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=L j L j L j L C j Y ωωωωω111)1(同理,可得Z 参数方程2121111)(1I C j I C j I I C j U ωωω+=+=212122)1(1)(1I C L j I C j I I C j I L j U ωωωωω-+=++= 故,Z 参数矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=)1(111C L j Cj Cj C j Z ωωωωω 又因为端口1-1`处的电压1U 和电流1I为:221I L j U U ω-= (1) 211I U C j I -=ω (2)将式(1)代入到式(2)中,得2222221)1()(I LC U C j I I L j U C j Iωωωω--=--= (3)将方程式(1)与式(3)联立,可得出T 参数矩阵为⎥⎦⎤⎢⎣⎡-=LC C j L j T 211ωωω注:本题也可采用教材中各参数的定义求解。
二端口网络
第十六章 二端口网络重点:1. 二端口网络的有关基本概念 2. 熟练计算二端口网络的四种参数矩阵3. 掌握分析网络参数已知的二端口网络组成的复杂电路的分析方法16.1 概述16.1.1 N 端网络与N 端口网络前面的电路分析与计算中,我们常常是研究一个具体的电路在一定电路结构与电路参数的情况下所产生的响应。
如果一个网络N 有2n 个端子向外接出(在大多数情况下,我们又并不关心电路的内部结构及内部各个支路的情况,而只讨论外电路的状态与变化,当这2n 个端子成对出现,即端口处的输入电流等于输出电流时,该网络可以视为一个n 端口网络,特别的,当网络只有四个端子引出时,我们称其为二端口网络。
(注意二端口网络与四端网络的区别与联系)sL U s I s I 212)()(=-=其实我们前面介绍一般的电路的分析,也可以用网络分析的思路来理解,即分析电路内某一条支路的情况时,可以将该支路划出原电路,而原电路的其他部分可以用戴维南或诺顿等效电路来代替,从而的出结果。
这就将原电路除了待求支路外的其他电路部分组成一个一端口网络,经过戴维南等效,该一端口网络的电量关系就可以表征成为一种简单的端口电压与端口电流的伏安关系,从而研究在此伏安关系下外电路的情况。
在本书中,我们仅仅研究由线性电阻、电容、电感(包括互感)元件所组成的线性非时变无源网络,其中的“无源”是指无独立电压、电流源,动态元件初始状态为零的情况。
另外,本章中我们均采用拉氏变换法来研究二端口网络。
(实际上,如果激励为正弦量即可用相量法分析,方法完全相同)16.1.2 研究的问题对于二端口网络N ,我们需要研究怎样通过定义及电路的计算方法求其各种参数矩阵,另外还需要研究复杂网络中的二端口网络的参数矩阵对复杂网络分析的作用,从而通过模块化的思想将复杂网络等效成为简单的单口网络及二端口网络的组合,分别计算其参数或参数矩阵,得出电路的解。
16.1.3 研究的对象特性在本课程中,对所研究的二端口网络加以下面的限制。
邱关源—电路—教学大纲—第十六章
(三)教学思路
1、定义二端口网络。 2、用数学方程式定义各种二端口网络参数。 3、根据各种参数的定义解释其实际意义。 4、根据参数的定义,应用各种分析方法求解二端口参数
(四)教学内容和要点
第一节 二端口网络
一、定义
在理论研究和工程实际应用中,研究信号及能量的传输和信号变换时,经常遇到四端电路。如滤波电路、 放大电路、变压器和传输线等。二端口网络是一种特殊的四端网络。本章将研究二端口网络
I 2 ( s) I 1 ( s) I 2 ( s ) Y21 Z = = − 21 (U 2 ( s ) = 0) I 1 ( s ) Y11 Z 22
转移导纳:
I 2 ( s) U 1 ( s) I 2 ( s) 1 = (U 2 ( s ) = 0) U 1 ( s ) Y21
转移阻抗:
U 2 (s) I 1 ( s) U 2 ( s) = Z 21 ( I 2 ( s ) = 0) I 1 ( s)
参数矩阵:
Y12 Y Y = 11 Y21 Y22
互易二网络的性质:互易二端口 Y 参数中只有三个参数是独立的,其中 Y12 = Y21 。 证明: 在第四章特勒根定理第二种式的证明是根据基尔霍夫电流定律和电压定律证明, 而相量形式的基尔霍夫 定律与是与在形式上完全相同,因此特勒根定理的第二种形式同样适合于仅含电阻电感(包括互感)的电路。
当 I 2 ( s) = 0
U 2 ( s ) Z 21 = U 1 ( s ) Z 11
或者根据端路导纳参数矩阵 I 2 ( s ) = Y21U ( s )1 + Y22U 2 ( s ) ,当 I 2 ( s ) = 0
U 2 ( s) Y = − 21 U 1 ( s) Y22
第十六章二端口网络优秀课件
1. 确定二端口处电压、电流之间的关系,写出参数矩阵, 在分析中一般使用相量法或运算法。
2. 利用端口参数比较不同的二端口的性能和作用。
3. 对于给定的一种二端口参数矩阵,会求其它的参数矩阵。
4. 对于复杂的二端口,可以看作由若干简单的二端口组 成。由各简单的二端口参数推导出复杂的二端口参数。
16-2 二端口的方程和参数
+ i1 u1 -
i2 + u2 -
端口物理量4个 i1 i2 u1 u2
下:
•
•
I1
•
U1
•
I2 U 2
•
•
U
•
1
U
•
2
I1 I2
•
•
U
•
1
I1
•
I2 U 2
假 一、设Y 端 参数口 和U 方1电 和 程U压 2已知• , + I• 1
端口电 I1和 流 I2未知 •
U1
•
-
线性 无源
•
I2
+
•
-U 2
U
•
1
I1
•
U 2 I2
端U1口和电U流2共同I1和 作用I可2 产视生为。
1
外
NS
电
1 Req +
路
uoc
1’
1’
-
(a)
1 +
外电路 开路电压
第十六章二端口网络电路第五版邱广源
U1 I2
=
H11 H21
H12 H22
I1 U2
1、参数的含义
1 I1(S)
+
LTI
U-1(S)
1
N0
I2(S) +2
U-2(S) 2
H11
=
U1 I1
U2 =0
H21
=
I2 I1
U2 =0
H22
=
I2 U2
I1 =0
H12
=
U1 U2
I1 =0
Y11+Y12 Y22+Y12
2、如果二端口网络满足互易条件,即Y12= Y21
+ I1
-Y12
I2
+
U1
U2
-
-
Y11+Y12 Y22+Y12
16-4 二端口的转移函数
16-5 二端口的连接
N1 N2
N3
N4
电路设计问题 电路分析问题
1、级联
T
2、串联
Z
3、并联
Y
一、二端口的级联(链型连接)
1、一般情况
+
I1 z11–z12 z22–z12
-
I2
++
U1
z12
(z21–z12)I1 U2
-
-
2、如果二端口网络满足互易条件,即z12= z21
z11–z12 z22–z12
+
I1
U1
z12
I2
+
U2
-
-
二、用Y参数表示的等效电路 1、一般情况
十六章 二端口网络
U 2
11
二端口网络的Y、Z参数特性:
1、对于线性R、L(M)、C元件构成的 任何无源二端口,Z12=Z21,Y12=Y21
2、对于对称的二端口,Z11=Z22,Y11=Y22 3、Z=Y-1参数
I 1 I 2
方法一:分别求Z四个 参数
+ -
+
-
U 1
第十六章 二端口网络(369)
$16-1 二端口网络 一、定义: N0由线性电阻、电感、 电容和受控源组成,不包括 独立电源。 端口条件: i1
i1
i1
i2
N0
i2
i1
i2 i2
满足端口条件的为双口网络,否则为四端网络。 放大器、滤波器、变压器等均可认为二端口网络
1
二端口网络分析特性: 1、对于二端口网络,主要分析端口的电流和电压, 不涉及内部电路的工作状况。因此,本章主要讨论 端口u、i为变量的电路方程(二端口VAR约束方程) 2、二端口网络端口有四个物理量(u1、i1、u2、i2), 若其中两个为自变量,另两个为应变量,可有六组 表征网络特性的独立方程:
4
方法二:分别求出四个Y参数,从而得出Y矩阵
根据方程
1 Y1 1U 1 Y1 2U 2 I 2 Y2 1U 1 Y2 2U 2 I
0 ,U 1V,则如图 1、令 U 1 2
I Y1 2 1 U2
I 1 U 1
0 U 1
I 1
二、电流控制型二端口VAR方程
+
I 1
U 1 -
No
+
i2 ) u1 f(i1 , i2 ) u 2 f(i1 , 结构电 路 如 图
第16章 二端口网络
Ya
Yc
有 Y12=Y21 且Y11=Y22 称为对称二端口。
对称二端口只有两个参数是独立的。
I2 U+ 2 -
对称二端口是指两个端口电气特性上对称。电路结构 左右对称的,端口电气特性对称;电路结构不对称的二端 口,其电气特性也可能是对称的。这样的二端口也是对称 二端口。
例
I1 2
10
I2
+
U1 5
U 2 0
I2
U+ 2 -
Y11 Y21
I1 UI21 U 1
U 2 0 Ya Yb U2 0 Yb
Y12
I1 U 2
U1 0 Yb
Y22
I2 U 2
U 2 0 Yb Yc
互易二端口
Y
Ya Yb
Yb
Yb
Yb
Yc
若 Ya=Yc,则Y11=Y22 。
I1
+ U 1 -
Yb
2
经比较,得
T11
Y22 Y21
1 T12 Y21
T21
Y12Y21 Y11Y22 Y21
其矩阵形式
T22
Y11 Y21
UI11
T11 T21
T12
T22
U 2 I2
(注意负号)
T
T11 T21
T12
T22
称为T 参数矩阵。
互易二端口、对称二端口T 参数之间关系:
互易二端口
I2 ( g Yb )U1 YbU 2
Y
Ya Yb g Yb
Yb
Yb
非互易二端口网络(网络内部有受控源)四个独立参数。
二、Z 参数(impedance parameters)和方程
电路教案第16章二端口网络
电路教案第16章二端口网络教学目标:1.了解二端口电路的基本概念和特性。
2.掌握二端口网络的矩阵描述方法。
3.掌握二端口网络的参数化描述方法。
教学准备:教材、讲义、黑板、白板、投影仪、计算机、实验装置等。
教学过程:一、引入(10分钟)1.教师通过提问的方式,引导学生回顾一端口电路的内容。
2.通过引入实际生活中的例子,如声学系统、通信系统等,引导学生了解二端口电路的概念。
二、理论讲解(40分钟)1.二端口电路的基本概念和特性:a.什么是二端口电路?b.二端口电路的输入端口和输出端口。
c.二端口电路的参数:传输参数、散射参数、互阻参数和互导参数。
d.二端口电路的特性:传输特性、散射特性。
2.二端口网络的矩阵描述方法:a.传输矩阵(ABCD参数)的定义和计算方法。
b.传输矩阵的特性和应用。
3.二端口网络的参数化描述方法:a.K参数的定义和计算方法。
b.K参数的特性和应用。
三、实例分析(30分钟)1.教师通过实例分析的方式,讲解如何使用传输矩阵和K参数对二端口网络进行分析和设计。
2.学生根据所学知识,结合实例进行讨论,加深对二端口电路的理解和应用能力。
四、实践操作(30分钟)1.学生根据教师的指导,使用实验装置进行实验操作。
2.学生通过实验,掌握使用传输矩阵和K参数对二端口电路进行测量和分析的方法和技巧。
五、小结(10分钟)1.回顾本节课的学习内容和重点。
2.强调二端口电路的重要性和应用领域。
3.鼓励学生在日常学习中多进行实践操作,提高实际应用能力。
教学反思:本节课通过引入实际例子,结合理论讲解和实例分析,使学生对二端口电路有了更深入的了解。
通过实践操作,让学生掌握了使用传输矩阵和K参数对二端口电路进行测量和分析的方法和技巧。
但由于时间限制,实践操作可能不够充分,需要在后续的教学中加强实践环节。
电路原理 第16章 二端口(网络)
口网络,短路参数为Y
3 80
1 40
1 40
1 20
,求支路电流I1和I2。
解:列写回路方程为
R1I1 R2 I2
+U1 +U2
= Us =0
R1 I 1
US U1
I2
N U2
R2
II12
Y11U1 Y12U2 Y21U1 Y22U2
(R12YR211UY111)U(11RR21YY2122)UU22U0s
即:
I1 I2
Y11U 1 Y12U 2 Y21U 1 Y22U 2
Y 参数方程
写成矩阵形式为:
I1 I2
Y11 Y21
Y12
Y22
UU 12
[Y
]
Y11 Y21
Y12
Y22
Y参数值由内部参数及连接关系决定。
Y 参数矩阵.
(2) Y参数的物理意义及计算和测定
Y11 UI11 U 2 0 自导纳
端口电压电流有六种不同的方程来表示,即可用六套 参数描述二端口网络。
i1 u1 i2 u2
u1 u2 i1 i2
u1 i1 i2 u2
1. Y 参数和方程
•
(1)Y参数方程
I1
+
•
U1
N
•
I2
+ • U2
采用相量形式(正弦稳态)。将两个端口各施加一电压
源,则端口电流可视为这些电压源的叠加作用产生。
互易二端口: 对称二端口:
H12 H21 H11H22 H12H21 1
例3
•
I1
+
•
U1
R1
•
I2
第十六章 二端口网络
放大器
2 、二端口网络
1
i1in
1
i2 in
2
u1
1 i1out
u2
i2out 2
(1)给定一个四端网络,若 i1in i1out , i2 in i2out , 则这个四端网络构成了二端口网络。 (2)二端口网络的对外联接特性由端口电压 u1 , u2 和电流 i1 , i2 确定。端口四个变量的相互关系可 通过二端口的参数和方程来描述,参数只决定于 二端口本身的元件及联接方式。
Z1 Z 2
[Z ]
Z2
Z2 Z2 Z3
例2:若上图中加上一个受控电压源,如图所示, 求二端口网络的Z参数。 Z I I Z1
1
3
2
U1
Z2 U R
3U R
U2
Z1
Z3
Z2 U R
I1
3U R
解: 方法一:
在左边端口加电流为 I1的电流源,右端开路,则: U1 U1 ( Z1 Z 2 ) I1 Z11 Z1 Z 2 I1 U2 U2 Z 2 I1 3 Z 2 I1 Z 21 4 Z 2 I1 在右边端口加电流为 I 2 的电流源,左端开路,则: U1 U1 Z 2 I 2 Z12 Z 2 I2 U2 U2 ( Z 2 Z 3 ) I 2 3 Z 2 I 2 Z 22 4 Z 2 Z 3 I2
直接列方程
1
Yc
2
I1 YaU1 Yb (U1 U2 ) (Ya Yb )U1 YbU2 I 2 YcU2 Yb (U2 U1 ) YbU1 (Yb Yc )U2
16-二端口网络解析
例 求图示两端口的H 参数。
I1(s)
I2 (s)
+ U1(s) R1
I1(s)
+ R2 U2 (s)
U1(s) H11I1(s) H12U2 (s)
I
2
(s)
H
21I1
(s)
H
22U
2
(s)
U1(s) R1I1(s)
I2
(s)
I1(s)
1 R2
U2
(s)
H
R1
0
1/
R2
5. G 参数和方程
互易二端口: Y12 Y21
D Y11 Y21
AD BC 1
对称二端口: Y11 Y22
A D
n:1
例1
+ _u1
i1
*
*
i2
+ _u2
u1 nu2
i1
1 n
i2
即
u1 i1
n 0
0 1 n
u2 i2
n 0
T
0
1
n
I1(s) 1
2 I2(s)
例2
+
+
U1(s)
2
U2 (s)
A
U1 ( s) U2 (s)
I2 (s)0
1.5
B
U1 ( s) I2(s)
U2 (s)0
4
C
I1(s) U2 (s)
I2 (s)0
0.5
D
I1(s) I2(s)
U2 (s)0
2
4. H 参数和方程
H 参数也称为混合参数,常用于晶体管等效电路。
① H参数和方程
UI21((ss))
电路第五版课件 第十六章二端口网络
-Yb
(3)互易性和对称性 Y11 Y12 Y = 互易性:二端口满足: Y12 = Y21 Y21 Y22 . . I2 I1 Y21 = . Y12 = . . = Yb . = Yb U1 U2=0 U2 U1=0
1 . I1 1' Yb 1 + + . . U2 U1 2' 1' 2 Yb Ya Yc . I2 2'
. I1 . I2 .+ U1 线性 RLCM 受控源 +. U2
直接列方程法 . . . I1 = Y11 U1+ Y12 U2 . . . I2 = Y21 U1+ Y22 U2 写成矩阵形式: . . Y11 Y12 U1 I1 . = . I2 Y21 Y22 U2 Y11 Y12 Y 参数 Y = Y21 Y22 矩阵。 注意:Y 参数值由内部元 件参数及连接关系决定。
I 1 I
2
U 1 U
2
(1) Z参数方程定义 将两个端口各施加一 电流源,则端口电压可 视为电流源单独作用时 的叠加。
Z参数矩阵
注意:Z 参数值由内部元 件参数及连接关系决定。19
(2) Z参数的的物理意义及计算 开路法 . . . U1= Z11 I1 + Z12 I2 . . . U2= Z21 I1 + Z22 I2
Y11 Y12 Y21 Y22
11
Y =
例1:求P型电路的Y参数。 解法1:短路法 . Yb I1 1 Y11 = . . =Ya+Yb U1 U2=0 Ya Yc . I2 Y21 = . . = Yb 1' . U1 U2=0 Yb I1 . 1 + I1 . Y12 = . . = Yb Ya Yc U1 U2 U1=0 . 1' . I2 Y22 = . . =Yb+Yc Yb I1 U2 U1=0 1 Y = Ya+Yb
电路分析:二端口网络
二、压控型参数—短路导纳矩阵
1、对应的方程 以U1(s)、U2(s)为变量,即激励
II2 1((ss)) y y1 21 1 ((ss))U U1 1((ss)) yy122(2(ss))U U22((ss))
方程的矩阵式:
II1 2((ss))yy1 21 (1 (ss))
Y
Y 12 Y Y 11
Y
H
H 12
H 12
H 22
H 21
1
H 22 H 22
Y11 Y12 Y 21 Y 22
1
H 12
H 11
H 11
H 21
H
H 11
H 11
1 Y 12
Y 11
Y 11
Y 21
Y
Y 11
Y 11
H 11 H 12 H 21 H 22
Y 22 Y 21
三、混合型参数—混合参数矩阵
4、当二端口网络为线性非时变,且不
含受控源时,h12h21
5、注意:当以I1(s)、U2(s)为变量时, 得到的参数矩阵为逆混合参数矩阵H’
elecfans 电子发烧友 bbs.elecfans 电 子技术论坛
四、传输型—传输参数矩阵
1、对应的方程 以U2(s)、I2(s)为变量,即激励
出,在分析中又并不关心电路的内部 结构及内部各个支路的情况,而只讨 论外电路的状态与变化时,称该网络 为N端网络。elecfans 电子发烧友 bbs.elecfans 电
子技术论坛
2.N端口网络 如果一个网络有2N个端子向外
接出,这2N个端子又成对出现,即 端口处的输入电流等于输出电流时, 该网络可以视为一个N端口网络。
由(2)式得:
第十六章 双端口网络
C I1
输出端开路时输入端电流与输出端电压比即为转移导纳;
U2 (I2 0)
负载短路时即 U2 0 时有
B U1 I 2 (U2 0)
输出端短路时输入端电压与输出端反向电流比即 为转移阻抗;
D I1 I2 (U2 0)
输出端短路时输入端电流与输出端反向电流比;
其矩阵形式为:
UI11
双端口网络基本方程和参数见表。
参数名称
自变量
因变量
开路阻抗 Z
I1, I2
短路导纳 Y U1,U2
U1 ,U 2
I1, I2
混合参数 H I1,U 2 U1, I2
逆混合参数 G U1, I2
传输参数 T U2, (I2)
逆传输参数 T
U1, I1
I1,U 2 U1, I1
U2, (I2 )
②通过实验求取,
Z11
U1 I1 ( I2 0)
称为输出端口开路时输入端口入端阻抗;
Z12
U1 I2 ( I1 0)
称为输入端口开路时的转移阻抗;
Z21
U2 I1
(I2 0)
称为输出端口开路时的转移阻抗;
Z22
U2 I2
( I1 0)
称为输入端口开路时输出端口入端阻抗;
Z 参数方程的矩阵形式:
解法1:输入端口加 U1 输出端口短路时有
+ I16Ω 3Ω
I2
+
U1 6Ω -
6Ω 6Ω
U2
-
H11
U1 I1 (U2 0)
U1 U1
9
9
H 21
I2 I1 (U2 0)
1 2
(
1 2
)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
& I 2 =0
& I 2 =0
& U1 Z12 = & I2 & U2 Z 22 = & I
2
& I1 =0
& I1 =0
3、讨论 、
1
& & & U1 = Z11I1 + Z12 I 2
2
& & & U 2 = Z 21I1 + Z 22I 2
1 2
& I1
1′ ′
LTI N0
& U2
+
+
-
& U1
& & I1 Y11 Y12 U1 = & I Y21 Y22 U & 2 2
1′ ′
-
2′ ′
2、参数的含义(短路导纳参数) 、参数的含义(短路导纳参数)
1
& I1
& I2
2
& U1
+
LTI N0
2′ ′
& I1 Y11 = & U
共射极晶体管的输入-输出特性 共射极晶体管的输入 输出特性 +
ib
ub
ic + uc
ub=h11ib+h12uc ic=h21ib+h22uc
-
-
& & U1 H11 H12 I1 = & I & H 21 H 22 U 2 2
解: +
U1
•
U1 −
•
Ya
I1
•
Yb Ya
I1
•
I2
U2 = 0
•
•
−
Yb Ya Yc
I2
•
U1 = 0
•
+
U2
•
& I1 Y11 = Y Y & & U 2 =0 = a + b U1 & I2 Y21 = & U2 =0 = −Yb & U1 & I1 Y12 = Y & & U1 = 0 = − b U
& U 2 =0
& I1 =0
2
& U1 H12 = & U2
& I1 =0
ii + ui -
ib
β ib
io + uo -
16-3 二端口的等效电路
一、用Z参数表示的等效电路 参数表示的等效电路 & & & & & & U1 = Z11I1 + Z12 I 2 = (Z11 − Z12 )I1 + Z12 (I 2 + I1 ) & & & & & & & U 2 = Z 21I1 + Z 22 I 2 = (Z 22 − Z12 )I 2 + Z12 (I 2 + I1 ) + (Z 21 − Z12 )I1 1、一般情况 、 +
1′ ′
& U 2 =0
-
1
端口2-2′短路,端口 ′ 端口 ′短路,端口1-1′的入端导纳 端口2-2′短路, 端口 ′短路,正向转移导纳
& I2 Y21 = & U1
& U 2 =0
1
& I1
LTI N0
& I2
2
+
1′ ′
-
& U2
& & & I1 = Y11 U1 + Y12 U 2 & & & I 2 = Y21U1 + Y22 U 2
Y12=Y21 (互易条件 互易条件) 互易条件 (2)如果二端口网络为对称二端口网络 ) Y11=Y22
4、Y参数的确定 、 参数的确定 例1
+
& U1
& I1
R jwL
& I2
1
+
& jwC U 2
解法一: 解法一:按参数定义
& 令U 2 = 0
1 y11= R + 1 jwL y21= –1 = y12 R 1 y22= R + jwC
• 关于 2前面的“–” 关于I 前面的“ ” • 参数的含义
讨论: 讨论:
& U1 A = I C & 1
• 与Y、Z基本参数的关系 、 基本参数的关系
& B U2 & D -I 2
• 双口网络满足互易条件时 参数的特点 双口网络满足互易条件时T参数的特点 z11 z22 z11 z22–z12 z21 =1 detT=AD –BC= z z – z21 z21 21 21 • 对称双口网络 参数的特点 对称双口网络T参数的特点 A=D
2′ ′
& I2 Y22 = & U2 & I1 Y12 = & U2
& U1 =0
端口1-1′短路,端口2-2′的入端导纳 端口 ′短路,端口 ′ 端口1-1′短路, 端口 ′短路,反向转移导纳
& U1 =0
参数。 例1 求Y 参数。
I1
+
•
Yb
I2
Yc + • U2 −
•
& & I 1 = Y 11 U 1 + Y 12 U 2 & & & & I 2 = Y 21 U 1 + Y 22 U 2
& U2 Z 21 = & I1 & U2 Z 22 = & I2
1 = Z12 & I 2 =0 jwC 1 = jwL + & I1 =0 jwC =
参数方程( 三、T参数方程(传输参数方程) 参数方程 传输参数方程)
1 1′ ′
& I1
+ & LTI N0
& I2
U2
U1
-
+ &
2
u 1 , i1 u 2 , i2
& U1 & I1
-Y12
& I2
+
& U2
Y11+Y12 Y22+Y12
& ( Y21-Y12 ) U
-
1
2、如果二端口网络满足互易条件,即Y12= Y21 、如果二端口网络满足互易条件, +
& U1 & I1
-Y12
& I2
+
& U2
Y11+Y12 Y22+Y12
-
16-4 二端口的转移函数
16-5 二端口的连接
u 2 , i2 u 1 , i1
- 2′′
& & & U1 = AU 2 + B(-I 2 ) & & & I = CU + D(-I )
1 2 2
& U1 A = I C & 1
& & U2 B U2 & = T & -I D -I 2 2
16 二端口网络
16-1 二端口网络 16-2 二端口的方程和参数 16-3 二端口的等效电路 16-4 二端口的转移函数 16-5 二端口的连接 16-6 回转器和负阻抗变换器
16-1 二端口网络
一、一端口网络 + i
u
& I
- i′
N
+
& U
+
& I
+
& U
-
& U OC
-
Z
-
Y
& I SC
二、二端口网络 i2= i’2 a. i1= i’1 b. 不包含任何独立电源 c. 零状态
1
+ u1
i1 i’1
1′ ′
-
二端口 网络
i2 i’2
+ u2
2
- 2′′
由线性R、 、 及线性受控 由线性 、L、C及线性受控 源组成, 源组成,在复频域是线性网 络
工程实际问题 常常要研究一个网络的两对端钮之间的关系
16-2 二端口的方程和参数
1
+ u1
i1
1′ ′
-
二端口 网络
i2
+ u2
1
& I1
LTI N0
& I2
2
& U1
1′ ′
+
-
& U2
+
-
2′ ′
& & & U1 = Z11I1 + Z12 I 2 & & & U 2 = Z 21I1 + Z 22 I 2
2、参数的含义 、
& U1 Z11 = & I1 & U2 Z 21 = & I1
& & U1 Z11 Z12 I1 = & U Z 21 Z 22 I & 2 2
不含受控源, 不含受控源, 互易二端口